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- Realistic collision operators \
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- In case (A) and (B) dominant ITG mode at low-k, afterwards a TEM can be seen which * High power law exponent (case C: a~5) does not
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- { IX. Summary and Conclusion } ~N

* |f ETG modes are unstable - there tends to be a scale separation between ion and electron heat transport (the latter can exhibit substantial or even dominant high-k contributions)
[T. Gorler and F. Jenko, PRL 100, 185002 (2008)]

* discharges with dominant electron heating, high beta, large equilibrium ExB shear
* residual electron heat fluxes in transport barriers

— density spectra tend to be anisotropic at higher k and may exhibit a flat region or modified power laws at k p,~0.15-0.25 (k p,~9-15 for D plasmas)

* Linear features (like cross phases or frequencies) tend to survive in the nonlinear simulations; deviations most pronounced in mode-transitional regimes




