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DW-ZF paradigm (Balk, Nazarenko, Zakharov, 1990), Linear Modulational Instabilty (Gill, 1973), Nonlinear

Modulational Instability (Manin, Nazarenko, 1994), Appl to LH transitions (Diamond et a 2000).
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Charney-Hasegawa-Mima Model

Charney-Hasegawa-Mima Model

Very minimal, but allowed to discover the mechanism for the LH
transitions (generation of zonal jets which suppress drift
turbulence) and similar transport blocking by jets in geophysics.
GFD: quasi-geostrophic equation (Charney 1949):

∂t (∆ψ − Fψ) + β∂xψ − (∂yψ)(∂x ∆ψ) + (∂xψ)(∂y ∆ψ) = 0,

Plasmas: Hasegawa-Mima (1978) equation for electric
potential, φ:

∂t

(
ρ−2

s φ−∆φ
)

+ vd∂yφ+ (∂yφ)(∂x ∆φ)− (∂xφ)(∂y ∆φ) = 0,

Correspondence: (x , y , φ)→ (y , x ,−ψ), ρ−2
s → F , vd → −β.
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Rossby/Drift Wave Solutions of CHM Equation

CHM equation supports linear waves, known as Rossby/drift
waves:

ψ0(x, t) = Ψ0ei(k·x−ω(k)t) + Ψ̄0e−i(k·x−ω(k)t) (1)

(Anisotropic) dispersion relation:

ω(k) = − βkx

k2 + F
, (2)

where k = (kx , ky ) and |k|. Such waves are exact solutions of
the full nonlinear equation.
Are they stable? (Lorenz 1972, Gill 1973)

ψ(x,0) = ψ0(x) + ε ψ1(x) (3)
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The perturbation consists of three components,

ψ1(x) = ψZ (x) + ψ+(x) + ψ−(x), (4)

a zonal mode, ψZ (x), and two “sideband” modes, ψ+(x) and
ψ−(x). These are defined as:

ψZ (x) = aeiq·x + āe−iq·x (5)
ψ+(x) = b+eip+·x + b̄+e−ip+·x (6)
ψ−(x) = b−eip−·x + b̄−e−ip−·x (7)

where q is the zonal wave-vector, p± = k± q and a and b± are
the amplitudes of the constituent modes of the perturbation.
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Linear stability analysis

Perturbation propagates with a frequency Ω determined by:

(q2 + F )Ω + βqx + |Ψ0|2 |k× q|2 (k2 − q2)×[
p2

+ − k2

(p2
+ + F )(Ω + ω) + βp+x

−
p2
− − k2

(p2
− + F )(Ω− ω) + βp−x

]
= 0

Dimensionless parameter,

M =
Ψ0k3

β
(8)

Ratio of nonlinear to linear terms at the carrier wave scale.
M →∞: Euler limit (Rayleigh instability)
M → 0: wave turbulence limit (resonant wave interaction)
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Structure of instability as a function of M (F=0)

M=100 M=10 M=5

M=1 M=0.5 M=0.1

Unstable region collapses onto the resonant curve. For small M the most unstable disturbance is not zonal.
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Nonlinear stage of modulational instability

Growth of |ψq|2 compared to
predictions of linear stability.

Zonal velocity profile (aver-
aged over x).

Pinching of jets predicted by Manin & SN, 1994. Transport
barriers.
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Weakly Nonlinear regime: M → 0

Resonant manifolds for
various orientations of k.

In limit M → 0 instability
concentrated on (anisotropic)
resonant manifolds:

k + k1 = k2

ω(k) + ω(k1) = ω(k2)
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Strong wave case (M = 10): transition to turbulence

Jet consists of a vortex street. It breaks via a vortex pairing instability, NOT Kelvin-Helmholtz (as for x-independent

jet).
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Weak wave case (M = 0.1): zonal disturbance.

Original drift wave experiences self-focusing, but it preserves its wave identity. Zonal jets are also narrow and

located in the high wave amplitude regions.
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Weak wave (M = 0.1): off-axis disturbance.

Unstable but recursive (periodic).
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Weak wave (M = 0.1): off-axis disturbance.
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Conclusions

Modulational instability of a travelling drift wave exists for
any nonlinearity M.
Most unstable disturbance is zonal for large M ’s and an
inclined wave for small M.
Two limits : Euler limit for M � 1 vs weak resonance
interaction for M � 1.
Zonal jets are mostly eastward due to the β-effect.
Nonlinear pinching of jets (for any M). Simplest model for
the transport barriers.
Effect of the finite gyroradius?
Role of the modulational instability in cases with a broad
initial range of scales?
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