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für PlasmaphysikWhat is a stellarator?

• In a tokamak (Tamm and Sakharov, 1951), the magnetic field lines twist 
around the torus because of the toroidal plasma current. 

• In the stellarator (Spitzer, 1951), this twist is imposed by external coils.
– Magnetic field is necessarily 3D. 
– No toroidal current is necessary. 
– Less „free energy“ in the plasma, no dangerous instabilities. 

Tokamak Stellarator
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für PlasmaphysikAdvantages with stellarators

• No current drive – inherently steady state

• No dangerous instabilities:
– no disruptions, sawteeth or large ELMs

• No Greenwald density limit

• High-density operation possible
– Much lower alpha-particle pressure
– No fast-ion-driven instabilities?
– Easier divertor operation?

• Greater deal of control over the plasma

• For a theoretician, more interesting!
– theory plays a much stronger role.

(pα ∼ n
−5/2
e )
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für PlasmaphysikQuestions answered in this talk

• Can a tokamak or stellarator plasma rotate?

• If so, how rapidly and in what direction?

• What determines the rotation?
– What is the relative role of collisional (neoclassical) processes and gyrokinetic 

turbulence?
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Tokamaks

B = I(ψ)∇ϕ+∇ϕ×∇ψ

ψ = poloidal flux

ϕ = toroidal angle
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für PlasmaphysikIntrinsic ambipolarity in tokamaks

• In a tokamak, the collisional transport is independent of the radial electric field,

• Why? A Galilean transformation

to a toroidally rigidly rotating frame

gives

if

But the physics is the same in the rotating frame as in the lab frame, except for

the centrifugal force, which is small (quadratic in E/BvTi)

the Coriolis force, which gives rise to a new drift that is odd in v||

E0 = E+V ×B

V = ω(ψ)Rϕ̂

E = −∇Φ = −Φ0(ψ)∇ψ

E0 = −Φ0∇ψ + ωRϕ̂× (∇ϕ×∇ψ) = 0

ω(ψ) = −
dΦ

dψ
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für PlasmaphysikNeoclassical angular momentum transport

• Radial electric field = toroidal rotation is set by the radial transport
of toroidal angular momentum.

• Fundamentally, there are three conserved quantities undergoing
transport:
– particles, energy and angular momentum

• We expect the turbulent momentum transport to be important for 
determining Er.

⎛⎝ Γi ·∇ψ
qi ·∇ψ

Rϕ̂ · π ·∇ψ

⎞⎠ ∝ −

⎛⎝ l11 l12 l13
l21 l22 l23
l31 l32 l33

⎞⎠⎛⎝ p0i/pi
T 0i/Ti
ω0/ω

⎞⎠
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für PlasmaphysikNeoclassical poloidal rotation

• Poloidal rotation is predicted to be slow due to 
friction between circulating and trapped
particles. 

– Residual due to themal force: 

• Note that the poloidal rotation is independent of 
the radial electric field!

Vp =
k

eB

dTi
dr

k = 1.17 (banana regime)

Hotter and less collisional

Colder and more collisional

Ion
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für PlasmaphysikSummary so far

• A tokamak plasma may rotate toroidally but not poloidally (in 
lowest order)
– Because of friction between trapped and circulating ions, poloidal

rotation is damped to the level

• More precisely,
– poloidal rotation is damped on the ion collision time scale
– toroidal rotation is damped on the confinement time scale

Vθ ∼ O(ρivTi/a)
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Stellarators
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Rapid rotation
(V ∼ vTi)
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• The most robust predictions of plasma theory are made in the limit of 
vanishing gyro-radius. What do we learn about equilibrium?

• Start with the kinetic equation in a frame moving with the local velocity

• Look for magnetised equilibrium

• In lowest order 

implies that f0 is independent of gyroangle and 

∂f

∂t
+(V+v)·∇f+

e

m

µ
E+ (V + v)×B−

∂V

∂t
− (V + v) ·∇V

¶
·
∂f

∂v
= C(f)+S,

V ∼ vT

δ = vT /ΩL¿ 1 ∂f0/∂t¿ (vT /L)f0

e

m
(E+V ×B+ v ×B) ·

∂f0
∂v

= 0

E+V ×B = 0, B ·∇Φ0 = 0 ⇒ Φ0 = Φ0(ψ)
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• In next order, one obtains the drift kinetic equation

with

• Entropy balance: multiply by ln fo and integrate over velocity space

• But the flux-surface average of           vanishes, so f0 is Maxwellian.

(vkb+V) ·∇f0 + ẇ
∂f0
∂w

+ μ̇
∂f0
∂μ

= C(f0),

ẇ = eEkvk −mvkV ·∇V · b−mv2kb ·∇V · b+ μBV ·∇ lnB

μ̇ = 0

∇ ·G = −

Z
ln f0C(f0) 2πv⊥dv⊥dvk, where

G = −

Z
(V + vkb)f0(ln f0 − 1) 2πv⊥dv⊥dvk

∇ ·G

w = mv2/2,μ = mv2⊥/2B,
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Substituting f0 back into the drift kinetic equation gives the constraints

Substituting gives

Thus,          should not change when moving along a line of constant B, or

b ·∇T = 0

b ·∇n = 0

b ·∇V · b = 0

∇ ·V = 0

V⊥ = b×∇Φ(ψ)/B

(∇ψ ×∇B) ·∇(b ·∇B) = 0 or V = 0

∇kB

B = B(ψ, l), where l = arc length or V = 0
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• Rapid plasma rotation (comparable to ion thermal speed) is only possible is
certain magnetic fields.

– The parallel variation of |B| must be the same for all field lines on each flux
surface.

• This follows from the kinetic equation in zeroth order (in gyroradius).
– is therefore independent of collisionality and of turbulence! 

• Physical reason:
– In this order, the parallel transport is infinitely faster than cross-field transport.
– Flux surfaces must therefore be isothermal and isobaric.
– Also, there must be no parallel transport of momentum.
– Rotation is only possible if a gyrating particle „cannot tell“ the difference between

different field lines. 
• Magnetic field strength and mirror force must be the same on all field lines on a flux

surface.
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Slow rotation
V ∼ (ρi/L)vTi
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für PlasmaphysikIntrinsic ambipolarity in stellarators

• Consider the drift kinetic equation in the absence of density or temperature
gradients

– Multiply by , sum over all species, integrate over velocity space and take
the flux-surface average.

• This gives an entropy theorem

with equality if, and only if, 

– But then must be odd in parallel velocity, so 

dΦ0
dψ

hj ·∇ψi =
X
a

Tah

Z
fa1Ca(fa1)d

3vi ≤ 0

vk∇fa1 − Ca(fa1) = −vd ·∇fa0 = (vd ·∇ψ)
ea
Ta

dΦ0
dψ

fa0

Tafa1

f̄a1 = (αa + βavk + γav
2)fa0 (Ta0βa/ma = Tb0βb/mb)

fa1 αa = γa = 0.
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But then

must equal

for all values of                         , which requires

What does this mean?

vk∇kf̄a1 = v
2
£
(1− λB)∇kβa − βaλ∇kB/2

¤
fa0

−vd ·∇fa0 =
mav

2

eaB3
∂fa0
∂ψ

µ
1−

λB

2

¶
(B×∇B) ·∇ψ

λ = 2μ/mav
2

(B×∇ψ) ·∇ lnB

∇kB
= flux function = F (ψ)
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• In tokamaks, particles always return to 
the flux surface they started on.

– mathematically, because of toroidal
symmetry (angular momentum
conservation)

• In stellarators, particles generally drift out 
of the plasma.

• The mean-free path of a fusion-produced
alpha particle is

lα ∼ 10
4 km
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• In the tokamak, trapped particles
precess toroidally around the torus

• Fundamental reason for confinement: 
|B| is toroidally symmetric.

• Topologically, precession can only
occur in three ways:

– Toroidally
– Poloidally
– Helically

• Could try to make B symmetric in 
these directions. 
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When expressed in so-called Boozer coordinates,

the guiding centre Lagrangian

depends only on the modulus B

For example, if B is „axisymmetric“ in Boozer coordinates

there is a correponding constant of motion

L =
mv2k
2

+ eA · v − μB

B = ∇ϕ×∇ψp +∇ψt ×∇θ = β(ψt, θ,ϕ)∇ψt + I(ψt)∇θ + J(ψt)∇ϕ

L =
m

2B2

³
I θ̇ + Jϕ̇

´2
+ Ze

³
ψtθ̇ − ψpϕ̇

´
− μB

B = B(ψt, θ)

pϕ =
∂L

∂ϕ̇
=
mIvk
B

− eψp = constant
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|B| can be symmetric in Boozer coordinates but not in real space

NCSX (Princeton):

B(θ,ϕ) at ψ/ψtot = 0.4B on last closed flux surface
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• HSX (Madison)

B(θ,ϕ) at ψ/ψtot = 0.4B on last closed flux surface
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Recall that intrinsic ambipolarity requires

In Boozer coordinates

After taking a Fourier transform

(B×∇ψ) ·∇ lnB

∇kB
= flux function = F (ψ)

J
∂B

∂θ
− I

∂B

∂ϕ
= F (ψ)

µ
ι
∂B

∂θ
+

∂B

∂ϕ

¶

B(ψ, θ,ϕ) =
X
m,n

bm,n(ψ)e
i(mθ−nϕ)
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we find

i.e.

which can only be satisfied if all non-zero Fourier components have the
same helicity,

Thus, for collisional transport

Intrinsic ambipolarity = quasisymmetry

[mJ + nI − F (mι− n)] bm,n = 0

bm,n = 0 or F (ψ) =
(m/n)J(ψ) + I(ψ)

(m/n)ι(ψ)− 1

B =
P

k αkM,kN (ψ)e
ik(Mθ−Nϕ)
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• Consider electrostatic, gyrokinetic turbulence:

• The turbulent transport of particles, energy, and momentum is then at the
gyro-Bohm level.

– Same order in δ as neoclassical transport. 
– In the tokamak, the radial electric field is set by the balance of momentum

sources and neoclassical + turbulent transport
– What about stellarators?

eφ̃

T
∼ δ =

ρi
L
, k⊥ρi ∼ 1
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Consider the momentum equation

Write

Multiply (1) by , and take an average over time and over the
flux surface:

∂(ρV)

∂t
+∇ · (ρVV + pI+ π) = j×B (1)

j = j0 + j1, p = p0(ψ) + p1, where j0 ×B = ∇p0

G = j0/p
0
0(ψ)

hj ·∇ψi = − h∇ · (ρVV + pI+ π) ·Gi

= h(ρVV + π) : ∇Gi−
1

V 0(ψ)
∂

∂ψ
hV 0(ψ) (ρVV + π) : G∇ψi

V (ψ) = volume inside flux surface ψ
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Normally in gyrokinetics

As a result,                    and 

π = (pk − p⊥) (bb− I/3) +O(δ2p)

pk − p⊥ ∼ δp

V ∼ δvTi

hj ·∇ψi = h(ρVV + π) : ∇Gi−
1

V 0(ψ)
∂

∂ψ
hV 0(ψ) (ρVV + π) : G∇ψi

∇ ∼ 1/(δL)

ρVV¿ π

small
comparable
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Again

Integrate over the volume, ΔV, between two flux surfaces several gyroradii
apart.

hj ·∇ψi = hπ : ∇Gi−
1

V 0(ψ)
∂

∂ψ
hV 0(ψ) (ρVV + π) : G∇ψi

Neoclassical transport
vanishes in quasisymmetric B

Reynolds stress Fluctuating parts of 
the viscosity

Z ψ2

ψ1

hj ·∇ψi V 0dψ =
Z ψ2

ψ1

hπ : ∇Gi V 0dψ − [hρVV+ π) : G∇ψV 0i]
ψ2
ψ1

∼ δp∆V (ρi/∆r) = small∼ δp∆V
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• Locally, the turbulent Reynolds stress is as important as the non-ambipolar
neoclassical current, but

• On a radial average, taken over several gyroradii, the current created by
parallel viscosity dominates:

• This current is the neoclassical current.

• Only if the contribution from parallel viscosity vanishes for some reason
does Reynolds stress become important. 

– This is the case in quasisymmetric B.

Z ψ2

ψ1

hj ·∇ψi V 0dψ '

Z ψ2

ψ1

hπk : ∇Gi V
0dψ
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• In tokamaks, the plasma can rotate almost freely in the toroidal direction
– Intrinsically ambipolar transport
– Toroidal rotation damped on the confinement time scale, can be comparable to 

the ion thermal speed.
– Poloidal rotation is small and damped on the collision time scale

• In stellarators, radial ion and electron particle fluxes are not automatically
equal.

– Radial electric field determined by ambipolarity
– Exception: quasisymmetric stellarators have exactly the same neoclassical

properties as tokamaks

• The plasma is free to rotate only if B is quasisymmetric. Otherwise
– Electrostatic turbulence is unlikely to affect the rotation.
– Small-scale zonal flows are possible, however.
– It is easer to calculate the radial electric field than in a tokamak!

References: P. Helander, Phys. Plasmas 14, 104501 (2007); 
P. Helander and A.N. Simakov, to appear in Phys. Rev. Lett. (2008).
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