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Motion of charged particles in a strong magnetic field

eMotion of a charged particle in a constant electromagnetic field (see for
instance Lifshitz-Pitayevski Physical kinetics §60)

T ="
v =9(E+ v A B)
Notation:

(z,v) — (acH, vH) projection in the direction of B
(x,v) — (x| ,v ) projection on the plane orthogonal to B
eParallel projection of the motion equation:
i =31F
| = m™
so that

2/ (t) = 27/(0) + tv) (0) + L=



eVVan der Pol transformation for the transverse motion:

w = %R(wt)EL : with w(t) = R(wt)v | (t)
where R (60) is the rotation of an angle 6 around the axis oriented by B
: B

One finds that

E
x(t) =z, (0) +Ct]|51§\|]§ 40 (q|B|> +0 (%)
slow secular drift ~ fast Larmor rotation

Transverse motion on a long time scale=slow drift in the direction £ |



eHamiltonian perturbation methods for nontrivial field geometries: see for
Instance Littlejohn (1980s) for given electromagnetic field, more recently

ePbm: handle a self-consistent electric field in a collisionless plasma

Difficulty: Hamiltonian perturbation methods may require a lot of regularity

In the fields, uniformly in the high magnetic field limit

= use only estimates propagated by the Vlasov equation that are uniform
In that limit



Mathematical toolbox

a) Weak convergence in functional spaces:
ethe strong magnetic field limit involves averaging out fast Larmor rotation

eweak convergence corresponds roughly with averaging out fast variables
locally

b) Van der Pol transform:

ePbm: to understand the asymptotic behavior of X.(¢) for ¢ < 1, where

. 1
Xe= B(t, X)) + —AX.

€

Difficulty: X contains high frequencies since X(t) = O(1/¢)



Idea: filter these high frequencies by solving EXPLICITLY the leading order
in the equation:

t
e
(Think of A as a skew-adjoint matrix, so that S(t) is a unitary transform.)

Then Y, satisfies

Y 1= S< )XG, where S(t) = et4

. t t t
v =5 (-2) B (65 (5)vem) = F (1.5 v) = o)
€ € €
so that Y; does not contain any more high frequencies since Y. = O(1)
—- one expects that Y — Y as e — 0+, where

. 1 /T
V() = (F)(¢,Y) where (F)(t, Z) = Timm?/(.) F(t, s, Z)ds

and hence
t

€

X.(t) ~ S ( ) Y (1)



Vlasov-Poisson with strong magnetic field

ePbm 1: to derive the leading order, longitudinal particle motion with self-
consistent electric field and strong, non constant magnetic field

Scaling: set € = wp/we < 1 where

we = 48 ‘ cyclotron frequency
wp = - plasma frequency, where mlu|?® = eg| E|?
Vlasov-Poisson in 3D periodic box with constant neutralizing background

( atfe"'v‘vxfe—vxve'vxfe‘l'%(v/\B)'vae:O,

\ — A Ve = /R3 fedv — //I‘3><R3 fedxdv , (z,v) € T3 x R3

in the time scale 1 /wy



Weak convergence in  LP

olf a sequence f, = fn(x) is bounded in L%, — meaning that

1/p
sup (/ |fn(:v)|pd:c> < 00
n
we say that
fn—fin L% weak if 1 < p < oo, or L weak-*

to mean that

Afn(x)dx — /Af(a;)da: for each cube A

oAll frequencies in f, that go to infinity with n are averaged out by this
procedure.



Example: let f,, = fn(x) be a sequence of periodic functions with period

1 and bounded in LZ;
fn— f weakly in L2 iff f,(k) — F(k) for each &

whereas f, — f (strongly) in L2 — i.e. in quadratic mean:
| fn — f||%2 a Z |fn(k)\2 —~0asn — oo
k

FACT 1. Weak convergence and nonlinear operations don’'t mix well, in
general

cos(nz)—0 but cos(nz)? = 3((1 + cos(2nz))—3
FACT 2. ... however, one can pass to the limit in products where all the
terms but one converge strongy:

" { fn—fin L? weak

gn — ¢ in L2 strong then fngn—fgin L1 weak



eHowever, the fact that the sequence of functions satisfy an elliptic PDE
can help in controling (some) high frequencies

Example: the Poisson equation

if { un = un(z)—u in L weak then u, — u in L? strong

—Aup = 0(1)in L?

(See this in Fourier space for periodic functions: the Laplacian wipes out
all high frequencies in uy, uniformly in n).



eCase where the direction of B is constant:

Thm 1: [FG & L. StRaymond, JMPA 1999] Assume B = b(x1, z2)e3 with
b e C(T?) and b # 0 on T2, and f. o = fin e Lt N L. In the limit
as ¢ — 0 and extracting subsequences if needed

fe—f = f(t,x, \/v% + v%, v3) in L weak-*
where

( Of + v30psf — 0usVOusf =0, t,r>0, €T3 v3e€R

— AV =27 /R3 frdrdvz — 27 /A‘3><R3 fdxrdrdvs,

7\

\ f(oaaja’n U3) — % g1 fm(ﬂ?,?“w,vzg)dw



eCase where the strength of B Is constant:

Thm 2: [FG & L. StRaymond, JMPA 1999] Assume that B € C1(T3) is
st. |B| = 1 and div B = 0, and f€|t:O = f" € L' N LY,. Let R(x, )
be the rotation of an angle 6 around the oriented axis R B, and define

ge(t7 X, UJ) L= fG(t7 X, R(CC, —t/G)’lU)
Then, in the limit as ¢ — O and after extracting subsequences if needed
ge—g in Lto’%’w weak-*
and, denoting D, B = (u - V) B the covariant derivative along u, one has

( Otg + (w-B)B-grad,g — (DgV)B -grad,,g + (w A X) -grad,,g = 0
where X = 3 (B A DyB + DB — 3(w- B)(B A DgB))

o — o mn — fin
\ ALV /R3gdv //T3><R3f dzdv , g|t:o f




Proof of Thm 1: use a priori uniform in e a priori bounds on f

0 < fe <sup fm(:c, v) (maximum principle for Vlasov)
x,v

[+ 10 et 7, 0)ded
+ / |Ee(t, z)|?°dz < C (mass+energy conservation)

Decomposing the number density into low- and high-speed components,
one finds

/ pe(t, )5 3de < C
so that, using Poisson’s equation
/|VxE€(t,x)|5/3dx i / 0, Ee(t,2)|?/4de < C
so that

Ee — E strongly in LY°LP for 1 <p < 2



Proof of Thm 2: observe that g solves the nonautonomous equation
(97596 _I_ R(QU, —t/G)w . nge _I_ R(CE, t/G)EE . nge
= no high frequencies in t in g,

Therefore, by nonstationary phase, for each C1 function ¢ = ¥ (z, w) and
each smooth, mean-zero periodic function a = a(t), one has

ot/ ) oot )0

so that
R(z,—t/e)w - Vzge—(w - B)B - grad,.g
R(z,—t/e)Ee- Vywge—(E - B)B - grad,,g
((R(z,—t/e)w - Vz)R(x,t/e)) R(x, —t/e)w - Vywge—(X AN w) - grad,,g



Guiding center for Vlasov-Poisson with strong magnetic field

ePbm 2: to derive the next to leading order, transverse particle motion with
self-consistent electric field and a strong, constant magnetic field

Scaling: set e = wp/we K 1 where wy, is the plasma frequency and w. the
cyclotron frequency.

eGuiding center motion = secular dynamics with speed c|FE|/|B| on a long

time scale T' defined by
1
Twp = Yo = > 1
CUp €
eMagnetic field of the form

B =|Bles, WLOG |B|=1



eGuiding center motion is observed in the plane orthogonal to B: for sim-
plicity, restrict the charged particle motion to that plane, with constant neu-
tralizing background.

Scaled Vlasov equation: denoting v = v A e3, one has

( Oife+ L(v- Vofe+ Ee- Vofe) + 5ol - Vofe=0, z€T2 veR?

N\

Ee=-ViVe, —A,V.= /R2 fedv — /[FQXRQ fedadv

— fin
t=0 €

Je

\



Thm 3:[FG & LS-R JMPA 1999, LS-R JMPA 2002] Assume that

li mn — 1 2\ fin Ez’n 2 )
tim, el g, = O and sup (II(L+ (o) Sl + BT, ) < oc

(i) Modulo extraction of a subsequence, there exist

a radial distribution function F' € L(M 4 (T? x R,))
and a defect measure v € L°(M4 (T2 x S1)) such that

fe—F(t,x,|v]) in L§?O(/\/l_|_(T2 x R?)) weak-*, while
[ (et 2,0) = F(t,2, [0)) 6o/ [odv — [ odv, ¢ C(Sh).

(ii) The limiting macroscopic density p(t,x) = /R2 F(t, x,|v|)dv satisfies

(
Orp + dive(pE+L) =0, E=V,A;1 (p — /T2 pd:v)

= weak- lim / nyg
X p‘tZO e—0 JR?2 fe *



Remarks:

a) analogy with 2D incompressible, inviscid fluid mechanics (2D Euler)

0 U1
Oww + divg(wu) =0, divyzu =0, O | = curly | us
w 0

Here
the velocity field « corresponds with E-+-
the vorticity w corresponds with p — /T X pdx

b) in the statement of Thm 3, the term div.(pE~L) is to be understood as

dive(pE") i= 01102, (E5 — ET) + (97, — 97,) E1E>



ecase of Euler-Poisson with strong magnetic field proved by E. Grenier (~
1996)

esimilar result obtained by Y. Brenier (~ 2000) for well-prepared initial data,
by using some modulated energy method

egyrokinetic limit (with finite Larmor radius effect) done by E. Frenod and
E. Sonnendrucker (~ 2001), completed by D. Han-Kwan (see poster in this
workshop)



Thm 4:[LS-R JMPA 2002] Assume that
(14 |v]2)"f" e WS>®(T? x R®) withr > 3, s > 3
and let g be the solution of

(819 + BT Vag + 5(m — po)t - Vug =0

2) <o) 2=t fo

find’U

N\

L p‘t:O - R2
Then, for each p € [1, 400) one has

fe(ta X, U) T g(ta X, R(—t/éz)’l)) — 0 in L?()Oc(dt, Lg,v)

ase — OT.



Ideas in the proof of Thm 3:

1) write the evolution of density and current:

1
B1pe + divx—/vfedv =0
€

eat/vfe + divm/v 20 fedv — peFe — l/vifedv — 0
eliminating the current leads to 6
Oupe + diva(peBL) = (02, — 92,) [ vrva fedo
+ 02102, [ (03 = v]) fedv + By divs [ v

Last term in r.n.s. —O0; the other terms satisfy

((93231 — 332;2) /vlvzfedv ~+ 0210z, /(v% — fu%)fedv

— (02, — 02) (v, wrwa) + D1 Dy (v, v3 — vF)



2) write
dive(peE:) = 02100,(ESy — EZ2) + (02, — 92) (B¢ 1Ee 2)
Lemma[J.-M. Delort, 1991] Assume that
sgp/ |E.|?dz < oo and divy Ee = ac + be

with

aec > 0, Sl,elp/aedw < oo and sup be(x)| < 00
If Ec—F in L2 weak, one has

EZy — E2,—Ef —E5 and FE.1E.,—F1F>

(Used in the context of vortex sheets for 2D incompressible Euler.)



3) Observation 1. the defect measure may exist. For instance, assume
| WP idzdy — 1and 0 < fin < Cé3

Then v # 0 (for any subsequence extracted from f* as e — 0.)

A priori, one has the following limiting equation for the macroscopic density

dip 4 diva(pET) = (97, — 07,) (v, w1w) 4 Oy Ouy (v, 3 — 07)
and it may happen that v #% 0. On the other hand, if
(07, — 02,) (v, w1w2) + 2105 (1,03 — vF) = 0

this defect measure will not affect the dynamics of v.



4) Observation 2. assume that

0< f<(C, and // w3 f " dzdv < oo

/OT // |v|3f€dtdmdv =0 (%)

then the defect measure v is independent of the angle variable w (rotation
invariant), so that in particular

a) If

(v, wiws) = (v,v53 —v$) =0

b) One always has

T | 1N €
/ / / fedtdzdy = O
0 €



= to get rid of this defect measure in the equation for the charge density
amounts to controling particles with speed of O(1/¢)

4) Going back to step 1 (the equations for the charge and current densities)
and replacing the original particle distribution function f. with its truncation

Fe(t, m,0)x(5€%[v|?) for a € (3,2)
and x a smooth truncation such that
0<x<1, x=1o0n[0,1], x=00n[2,00), [x|<?2

L. StRaymond was able to show that

(02, — 92,) (v, wiw2) + Oz, Oy (v, v5 —v5) = 0



Guiding center + quasineutral limit for Vlasov-Poisson

Scaling: assume that

pe = Larmor radius of electrons
pe ~ Ap < L where < Ap = Debye length
L = observation length scale

What happens to the drift-kinetic regime when gradient lengths are com-
parable to the Larmor radius?

Scaled Vlasov-Poisson equation:

p

Oife + v Vafe—2(ViVetvAes) Vofe=0, z€T3 veR3

eA;lve =1 — /R3 fedv

7\

— rin
\fet:O_ € 7



Assume that

//I‘3><R3 fldxdv =1, //I‘3XR3 |’U\2f§nd:€dv +/r3 |VxV€|2d:13 <C

eThe small e limit of the scaled Vlasov-Poisson system above is governed
by the 2D-3C incompressible Euler equations

(T 4 (JV2)J + VN =0

| J1(t, x1,22)
d|ngJ — O, 8:133J =0 l.e. J(t,$) — J]_(tax]JxQ)

J1(t, x1,22)

N\

— TN
\J‘tzo_J ’



Thm 5: [F.G. & L.StRaymond, M3AS 2003] Assume that f/"* satisfy
/fé”dv — 1 uniformly in z € T3
// v — J2 i dyda + / YV 4 T A eg]2da — O
for some smooth J*. Then
ViVe —e3 AN Jin leoc(t, x)
[ @ = JO fedv = 0in L. (t,2)
/feél in Ly> (t, Mg) weak-*

where J is the solution of the 2D-3C incompressible Euler system with
initial data J™



Roughly speaking, the initial distribution function converges to a “monoki-
netic" profile:

m _
e 5v:Jzn

eMethod of proof: compute the time derivative of the modulated energy

// v — J|? fedzdv + / VaVe — Va(—A) 20| da

where 7 and & are given, smooth functions, and apply Gronwall’s in-
equality to show that this quantity vanishes iff

J = Jand — Vg;(—A)_l/ch = JANe3



Remark:

1) more generally, one can handle “non monokinetic" asymptotic initial pro-
file, by replacing the term

// v — J|? fedzdv

iIn the modulated energy above with some relative entropy adapted to the
desired initial profile

2) one can also handle more general initial data = leads to fast oscillating
modes that are governed by systems of linear equations driven by the 2D-
3C Euler solution J



