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Overview
 Global or full f GKs needs to evolve Φ as well as n & T and

flows on transport time scales

 Must avoid introducing an extraneous Φ

 Desire to retain neoclassical ion heat and momentum
transport effects on evolution

 Want to avoid doing GKs to very high order

 Today: Transport time scale gyrokinetics using hybrid
gyrokinetic - fluid description
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Hybrid gyrokinetics-fluid
 Retains all neoclassical effects as well as turbulence
 Simplification: electrostatic
 Simplification: drift kinetic electrons (ITG & TEM)
 Evolve n, Ti, Te, Φ,      and      with conservation equations
 Strategy: f used only for closure (heat flows and viscosities)

- f not used to evaluate n, T,     and     directly
 Use higher order GK variables to retain ion viscosity
 Valid for PIC or continuum GKs
 No need to solve GK equation in a conservative form:

conservation properties built into fluid description
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Gyrokinetic limitations
 Numerically implemented GKs typically valid thru O(ρ/L)

 Evolves n & T without neoclassical transport effects  
 Often does not satisfy intrinsic ambipolarity
 Can’t evolve the axisymmetric, long wavelength Φ
 Moments of the gyrokinetic equation contain less information than

moments of the full Fokker-Planck equation
 Need to extend GKs

 Desire to avoid having to solve GKE to higher order

 Need GK variables to O(δ2) but not GKE

[since f = fM + δf for neoclassical effects, only need δf to O(δ)]
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Gyrokinetic validity reminder
 GKE normally derived using             for which

     and

 Therefore

gives

 GKE normally gives f (r, v, t) = f (R, E, µ, t) + O(δ2) error
even though GKs good for arbitrary k⊥ρ: only good to O(δ)

 Desire GK variables to O(δ2) at k⊥L~1 with leading
collisional gyrophase dependence [it can be evaluated to
O(δ2)] : then can evaluate f (r, v, t) = f (R, E, µ, t) + O(δ3)
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Gyrokinetic equation reminder
 Variables G ⇒    , E = v2/2 + ZeΦ/M, µ, ϕ
 Changing variables, Fokker-Planck equation becomes:

 Variables G constructed so dGj/dt = 〈dGj/dt〉ϕ + small.
 Leading ϕ dependence from
 Gyroaveraging at fixed    ,E,µ (recall 〈dµ/dt〉ϕ = 0) gives

to O(δ) when we ignore O(δ2) from  f & variable change
Here  with u parallel velocity &     drift velocity
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Hybrid features
 Hybrid gyrokinetic - fluid description is a way forward

 Can solve any consistent gyrokinetic equation to order δ = ρ/L
 Conservation of number, charge, momentum & energy
 Insures intrinsic ambipolarity
 Evolve n, T, Φ,    and

 Use next order gyrokinetic variables only in ion viscosity

 Use moments of full Fokker-Planck equation to gain an order
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Moment approach in a tokamak
 In a strongly magnetized (B →∞) plasma easier to evaluate

certain moments of f indirectly

 Direct evaluation of             using a stationary
Maxwellian gives a vanishing radial particle flux

 Taking the (Mc/Ze)R2∇ζ⋅    moment of the full Fokker-
Planck equation

using              and          then inserting a
Maxwellian gives order δ ≡ ρ/L corrections

                &
with
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Moment evaluation of ion heat flux
 A direct evaluation of the classical radial collisional heat flux

      requires f to order O(νρ/ΩL)
 The diamagnetic flow only requires f to O(ρ/L) and can be

evaluated by using
to obtain

 To avoid calculating f to higher order (we only need
gyrophase dependent terms), form           moment
of the full Fokker=Planck equation to find the classical term

 Notice this evaluation only required the leading order
gyrophase dependent correction to the Maxwellian! 
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Neoclassical vs. classical in a tokamak
 The (Mc/2Ze)R2v2∇ζ⋅      moment of the full FP equation

gives the flux surface averaged collisional radial heat flux

 The leading gyrophase dependent correction to the
Maxwellian gives classical radial ion heat transport

 The leading gyrophase independent correction to the
Maxwellian gives the neoclassical radial ion heat transport

 Only need the leading corrections to the Maxwellian to
evaluate the radial tranport of heat

 Can use same procedure with turbulence
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Hybrid overview
 Conservation of number, charge and energies

 Moment evaluation of heat flux

 Gyrokinetic reminders

 Conservation of total and electron momentum

 Moment evaluation of viscosity (not for the faint hearted)

 Retains all turbulent, neoclassical & classical effects to
evolve profiles including the axisymmetric radial electric
field!
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Number, charge & energy
 Number:

 Charge:    with

 Ion energy:

 Electron energy:

energy exchange =
momentum exchange =
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Ion heat flow
 Start with

 A direct evaluation of                    using the lowest order
gyrokinetic f is independent of ν in the axisymmetric limit so
misses collisional radial heat flux

 To pick up an order form    moment of full FP

 To lowest order find (Q known)

anomalous collisional

ο Variables R, E and µ defined with dR/dt, dE/dt and dµ/dt independent of ϕ
⇒ fast gyromotion absorbed in GK variables
 Here d/dt ≡ Vlasov operator

 Need to find f (r, v, t) from f (R, E, µ, t)

  

€ 

r v v2/2

  

€ 

r q i = d3v∫ fi
r v (Mv2 − 5Ti)/2

  

€ 

〈
r q i ⋅ ∇ψ〉θ

  

€ 

t 
π i⋅ (

e
M
∇Φ +

5
2M

∇Ti)} = (1/2) d3v∫ (Mv2−5Ti)
r v Ci{fi}

€ 

  

€ 

Ω i
r n × r q i + ∂

r q i /∂t +∇⋅[ d3v∫ fi (Mv2 − 5Ti)
r v r v /2]+

5pi
2M

∇Ti +

  

€ 

〈
r q i ⋅ ∇ψ〉θ ≈ (5c/2e)〈pi

∂Ti
∂ζ

〉θ −
ν iBTi
Ω i

〈R2 d3v∫ fiQ
r v ⋅∇ζ〉θ



14

Full ion heat flow expression
 Putting everything together and neglecting the time

derivative term

 The time derivative term is ignored since it gives an O(δ)
correction to the fluctuating heat flux that when averaged
over a turbulent saturation time results in a O(δ2) correction
to the background evolution
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Neoclassical and classical limit
 The neoclassical and classical terms are in

 Only ∇Ti terms should contribute since

f = fM + (Mc/Ze)R∇ζ                  and

 Q has the property         so only     v2∂T/∂ψ term
from ∂fM/∂ψ will enter and it gives classical transport

 h1 & v||v2∂T/∂ψ give neoclassical (only depends on ∂T/∂ψ)

 Really have to do all this gyrokinetically
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Need a gyrokinetic f for ions
 Use your favorite GK variables & a PIC or Eulerian code

 For example,       , K = v2/2 + Ze(Φ− 〈Φ〉ϕ)/M, µ, ϕ

with the gyroaverage performed at fixed     , Κ, µ and
f = f(   ,K,µ,t) in velocity integrals performed at fixed

 For heat flux we only need the leading gyrokinetic variables

           , K = v2/2 + Ze(Φ− 〈Φ〉ϕ)/M   &    µ0=    /2Β
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Usual gyrokinetic orderings apply
 Small parameters:

 f and Φ have k⊥ρ ~ 1 but k||L ~ 1

 For k⊥L ~1, eΦ/T ~ 1 and f ≈ fM  ≡ Maxwellian

 For k⊥ρ ~1, eΦk/T ~ fk / fM ~ δ

 For general k⊥:

 Note ∇Φ ~ T/eL ~ k⊥Φk and ∇fk ~ ∇fM
 Drift ordering: VExB ~ δvi << vi
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Global of full f gyrokinetic evolution
 Evolution of n and T only contains what is in the density

and energy moments of the full f gyrokinetic equation

 Drift term in GKE contains ExB turbulent transport but no
neoclassical & classical collisional transport in GKE

 Profile evolution only due turbulence

 Can’t properly evolve the long wavelength axisymmetric
potential profile since Reynolds stress incomplete and
collisional terms missing
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Momentum conservation
 Electrons (neglect inertia & gyro+perp viscosity):

 Ions + electrons:

 Solve electron momentum for
 To lowest order radial particle flux

 Intrinsically ambipolar in axisymmetric limit since we use
requiring 
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Ion viscosity
 Start with

 Parallel anisotropy:        with

 Gyroviscosity & perpendicular viscosity evaluated using
moment of full FP equation to find form

 Perpendicular viscosity (using self-adjointness of        ):

F known, neglect ∂/∂t & need variables to O(δ2) in first term
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Ion viscosity & comments
 Ion gyroviscosity

 Reynolds stress part of gyroviscosity
 Need f to O(δ2) in first term for classical (need leading order

collisional correction to f from       )

Viscosity comments
 Good news:

 Long wavelengths can be done analytically [Simakov & Catto PPCF]
 Can assume Bp/B << 1 to retain O(Bδ2/Bp) poloidal gyroradius

neoclassical corrections and ignore O(δ2) classical transport

 Bad news:
 GKs gives f (r, v, t) = f (R, E, µ, t) but need to evaluate integrals at

fixed r and the expressions are complicated
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Radial momentum transport
 Conservation of toroidal angular momentum determines  

       and it enters both Reynolds stress & collisional
viscosity as

 Both ~ 10-5 for ITER: B=5.3 T, T = 8 keV, n = 1019 m-3,
R = 6 m, and                  with 0.1 de-phasing of

 Expect relaxation to steady state to be anomalous since
balancing ion inertia & Reynolds stress                O(δ 2p)
gives time to establish zonal flow

 But for times >>                       should retain collisional
viscosity and Reynolds stress to establish global
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Vorticity “replaces” quasineutrality

 Vorticity is used along with quasineutrality:
 The plasma is still quasineutral
 Vorticity must retain all physics in quasineutrality
 Must at least satisfy intrinsic ambipolarity to O(δ2) [not

determine long wavelength axisymmetric Φ to O(δ2)]
 Must retain Φ evolution including neoclassical effects for

global or full f descriptions
 Could evolve axisymmetric and non-axisymmetric pieces

separately
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Vorticity requirements
 Vorticity = charge conservation must be evaluated carefully:

 Need full      from momentum conservation in
 Ion inertial term gives time derivative of vorticity
 Must retain gyroviscosity/Reynolds stress and perpendicular

viscosity to get neoclassical effects

 Vorticity requirements differ for δf and full f
 Desire vorticity for a δf code to not determine the long wavelength

axisymmetric radial electric field
 Vorticity for a full f or global code needs to keep more physics to

determine the long wavelength axisymmetric radial electric field
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Final Comments
 Global gyrokinetics must satisfy intrinsic

ambipolarity

 Hybrid gyrokinetic-fluid description needed to
properly evolve turbulence with neoclassical
retained
 Density, temperatures, potential, ion flow,

current evolved by conservation equations
 Gyrokinetic f only used for closure and (almost)

anyones will do!


