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Overview
 δf or local gyrokinetics has proven useful to treat local core

turbulence at k⊥ρ ~ 1 on turbulent saturation time scales

 BUT there are global or full f subtleties and complications
 Global axisymmetyric radial electric field in a tokamak

 Turbulent calculations in the pedestal and SOL

 Turbulent calculations on transport time scales

 Topics
 Today: Intrinsic ambipolarity & edge gyrokinetics

 Next time: Transport time scale gyrokinetics
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Terminology
 Full Fokker-Planck (FP) equation:

   df/dt ≡

 Drift kinetic equation (DKE): E=v2/2 + ZeΦ/M  &

 Gyrokinetic equation (GKE): E=v2/2 + ZeΦ/M  &

 Drift kinetic gyroaverage holds      or (r, θ ,ζ) fixed

 Gyrokinetic gyroaverage holds      fixed

  

€ 

∂f /∂t +
r v ⋅ ∇f + (Ze/M)(−∇Φ+ c−1r v ×

r 
B ) ⋅ ∇vf = C

  

€ 

∂f /∂t + (v||
r n + r v d) ⋅ ∇f + (Ze/M)(∂Φ /∂t)∂f /∂E = C {f}

€ 

〈dµ /dt〉ϕ= 0

  

€ 

∂f /∂t + (v||
r n + 〈r v d〉ϕ) ⋅ ∇Rf + (Ze/M)(∂〈Φ〉ϕ /∂t)∂f /∂E = 〈C{f}〉ϕ

  

€ 

r 
R = r r +Ω−1r v × r n 

  

€ 

r r € 

〈dµ /dt〉ϕ= 0
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Typical drift kinetic orderings
 Small parameters: 1 >> k⊥ρ ~ δ ~ ρ/L⊥ ~ ν/Ω

 Assumes k⊥L⊥ ~ 1 ~ k||L|| (allows L⊥/ρ >> k⊥L⊥ >> 1)
 Drift kinetics can order Ω−1∂/∂t ∼ δ but typically Ω−1∂/∂t ∼ δ2

 For zonal flow eΦκ/T ~ δ  so  e∂Φκ/∂t ~ TΩδ2

 Global f and Φ: f ≈ fM ≡ Maxwellian &
eΦ/T ~ 1 with e∂Φ/∂t ~ TΩδ2

 Fluctuations: eΦk/T ~ fk / fM ~  δ  << 1

 Allows ∇Φ ~ T/eL⊥ ~ k⊥Φk and ∇fk ~ ∇fM

 Drift ordering: VExB ~ δvi << vi
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Drift kinetics in tokamak core
 Using canonical angular momentum
ψ∗= ψ − (Mc/Ze)R2             streamlines derivation of DKE

 Let f = f0 + f1 + f2 +… & gyroaverage at fixed

 Lowest order:

 Lowest order Maxwellian:
f0 = fM = fM(ψ,E) with E = v2/2 + (Ze/M)Φ

 But ψ ≈ ψ∗  suggests using f = f* + h with
f* = fM(ψ∗,E) = fM(ψ,E) + (ψ∗− ψ) ∂fM(ψ,E)/∂ψ +…

  

€ 

Ω
r v × r n ⋅ ∇vf0 = −Ω∂f0 /∂ϕ = 0

  

€ 

˙ f 0 = v||
r n ⋅ ∇f0 = C0{f0} = 0

  

€ 

∇ζ ⋅
r v 

  

€ 

r r 
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Axisymmetric B ion drift kinetics
                                          and electrostatically

df*/dt = c(∂Φ/∂ζ)∂fM/∂ψ∗ + (Ze/M)(∂Φ/∂t)∂fM/∂E
 Fokker-Planck equation becomes

dh/dt + (Ze/M)(∂Φ/∂t)∂fM/∂E + c(∂Φ/∂ζ)∂fM/∂ψ∗ = C{f* + h}
 Lowest order using h << fM  &     ,E,µ,ϕ variables gives

- Ω∂h1/∂ϕ = C0{fM(ψ.E)} = 0   with   h = h1 + h2 + …
 Next order: using ∂fM/∂ψ ⇒ fM(Mv2/2T2)∂T/∂ψ

- Ω∂h2/∂ϕ + dh1/dt = C1{h1- (Mc/Ze)R2          ∂fM/∂ψ}
+ (ZefM/T)∂Φ/∂t - c(∂Φ/∂ζ)∂fM/∂ψ∗

 Gyroaveraging gives desired O(δ) DKE:

  

€ 

r r 

  

€ 

∇ζ⋅
r v 

  

€ 

r 
B = I∇ζ +∇ζ × ∇ψ= Br n 

€ 

C1{h 1− fM (Iv||Mv2/2T2Ω)∂T/∂ψ}  

€ 

∂h 1/∂t + v||
r n ⋅∇h 1=

€ 

+ (ZefM/T)∂Φ /∂t − c(∂Φ /∂ζ)∂fM /∂ψ∗
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Intrinsic ambipolarity
 Use           &

to recover standard O(δ) form in steady axisymmetric state

 First form more convenient in steady axisymmetric state:

 Only a ∂T/∂ψ drive: no ∂Φ/∂ψ appears!

 In axisymmetric systems for k⊥L⊥ ~ 1, n & T evolution does
not depend on or in any way determine 〈Φ〉θ  through O(δ 2)

 Intrinsically ambipolar to O(δ ) so far

  

€ 

Iv||
r n ⋅ ∇E (v||/Ω) =

r v d ⋅∇ψ

€ 

f 1 = h 1− (Iv||/Ω)∂fM /∂ψ

  

€ 

v||
r n ⋅∇f 1−C1{f 1} = −

r v d⋅∇ψ∂fM /∂ψ = −
r v d⋅∇fM

  

€ 

v||
r n ⋅∇h 1= C1{h 1− (Iv||/Ω)fM(Mv2/2T− 5/2)∂lnT/∂ψ}
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Toroidal angular momentum
 Flux surface averaging source free conservation of total

toroidal angular momentum in a quasineutral plasma

with 

 In the steady state must be consistent with charge
conservation & Ampere’s law

 Axisymmetric, steady state radial electric field determined
by

  

€ 

r 
J ⋅ ∇ψ

θ
=

c
V'

∂
∂ψ

V' R2∇ζ ⋅
t 
π i ⋅ ∇ψ θ

+ Mc ∂
∂t

nR2
r 
V ⋅ ∇ζ

θ

  

€ 

(c/4π) ∇ψ⋅∇ ×
r 
B 

θ
= 0 =

r 
J ⋅ ∇ψ

θ

  

€ 

t 
π i =M d3∫ vf(r v r v − v2

t 
I /3)

  

€ 

X
θ
≡ (1/V') dθdζX/

r 
B ⋅∇θ∫

  

€ 

R2∇ζ ⋅
t 
π i ⋅ ∇ψ θ

= 0

  

€ 

R2∇ζ ⋅
r 
J ×

r 
B =

r 
J ⋅ ∇ψ
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Intrinsic ambipolarity to O(δ 2)
 Direct evaluation of      using

     gives
since      doesn’t matter

 Using    to O(δ2) can show (notice     doesn’t matter)

(this is non-trivial to prove!)

  ∂Φ/∂ψ does not enter to O(ρpρ/L2) ~ O(δ2)

 To determine ∂Φ/∂ψ need to evaluate                            to
O(ρpρν/ΩL2) neoclassically ⇒ need f to O(ρpρν/ΩL2) ~ O(δ3)

  

€ 

f1 = h 1− (Mc/Ze)R2∇ζ ⋅
r v ∂fM /∂ψ+ O(δ2)

€ 

˜ f 

  

€ 

R2∇ψ⋅
t 
π i ⋅ ∇ζ θ

→ (MI /B) d3∫ vf1v||
r v d ⋅ ∇ψ θ

+ small→ 0

  

€ 

∇ψ⋅
t 
π i ⋅ ∇ζ= 0

  

€ 

t 
π i = M d3∫ vf(r v r v − v2

t 
I /3)

€ 

h 1

€ 

f 

  

€ 

R2∇ψ⋅
t 
π i ⋅ ∇ζ θ
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Gyrokinetic Φ(ψ)
 Sources

 Neoclassical + Reynolds stress: ∇Φ ~ T/eL⊥ ~ k⊥Φk

 Zonal flow generated by turbulence: ∇⊥Φk ~ k⊥T/ek⊥L⊥ ~ T/eL⊥

 Gyrokinetic quasineutrality presumably gets zonal flow
contribution correct, but not the neoclassical since
gyrokinetic equation only good through O(ρp/L⊥)

 Gyrokinetics gives correct neoclassical relation between
poloidal ion flow & ∂Φ/∂ψ since it calculates f to O(ρp/L⊥)
[coefficient sensitive to collision operator] 

 “Potential” problem if slowly varying part of Φ(ψ) helps to
regulate turbulence since it violates intrinsic ambipolarity

€ 

C{f0}
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Gyrokinetic implications
 Gyrokinetics is normally only good to O(δ) for k⊥ρ ~ 1

 Therefore, it should not determine the axisymmetric, long radial
wavelength portion of Φ(ψ) - zonal flow is short wavelength so ok

 If it does determine global Φ, then you can’t believe it and must
make sure your results are insensitive to it!

 Global (or full f) gyrokinetics should not determine the
axisymmetric, long wavelength portion of Φ(ψ) to O(δ2)
 Can we check this?
 How does gyrokinetics get into trouble?
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Gyrokinetic orderings
 Small parameters:

 f and Φ have k⊥ρ ~ 1 but k||L ~ 1

 For k⊥L ~1, eΦ/T ~ 1 and f ≈ fM  ≡ Maxwellian

 For k⊥ρ ~1, eΦk/T ~ fk / fM ~ δ

 For general k⊥:

 Note ∇Φ ~ T/eL ~ k⊥Φk and ∇fk ~ ∇fM
 Drift ordering: VExB ~ δvi << vi

€ 

eφk
T
~ fk
fM
~ 1
k⊥L

€ 

δ =
ρ
L
~ ω∗

Ω
~ ν
Ω

<<1
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Gyrokinetic details
 Evaluate the GK variables G = G0 + G1 + G2 +… by

removing gyrophase dependence order by order using
Ω∂Gj+1/∂ϕ = dGj/dt − 〈dGj/dt〉ϕ

 To keep µ an adiabatic invariant must retain the gyrophase
independent piece that makes 〈dµ/dt〉ϕ = 0

 The µ variable is only obtained to O(δ) since it is unclear
how to make 〈dµ/dt〉ϕ = 0  to higher order and the lowest
order f is presumed to be near Maxwellian
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Gyrokinetic variable R
 Define R such that dR/dt = 〈dR/dt〉ϕ+ small

where d/dt ≡ ∂/∂t + v⋅∇ – (Ze/M)∇Φ ⋅∇v – Ω∂/∂ϕ
 with 〈…〉ϕ ≡ gyroaverage at fixed R

R = r + R1 + R2, R1 = O(δL) and R2 = O(δ2L)
 To first order

 Imposing dR/dt = 〈dR/dt〉ϕ to first order

Then

Similarly

  

€ 

r ˙ R ≅ r ˙ r +
r ˙ R 1 ≅

r v −Ω∂
r 
R 1/∂ϕ

  

€ 

r 
R 1 =Ω−1 dϕ (r ˙ r − 〈r ˙ r 〉)∫ =Ω−1r v × r n 

  

€ 

r ˙ R ≅ r v −Ω∂
r 
R 1/∂ϕ = 〈

r ˙ R 〉 = 〈
r v 〉 = v||

r n 

  

€ 

r 
R 2 =Ω−1 dϕ (r ˙ r +

r ˙ R 1 − 〈
r ˙ r +

r ˙ R 1〉)∫
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Gyrokinetic validity
 GKE normally derived using              for which

   and

 Therefore

gives

 GKE normally gives f (r, v, t) = f (R, E, µ, t) + O(δ2) error
even though GKs good for arbitrary k⊥ρ: only good to O(δ)

 Desire GK variables to O(δ2) at k⊥L~1 with leading
collisional gyrophase dependence [it can be evaluated to
O(δ2)] : then can evaluate f (r, v, t) = f (R, E, µ, t) +O(δ3)

  

€ 

r 
R = r r +Ω−1r v ×r n 

  

€ 

d
r 
R /dt − 〈d

r 
R /dt〉ϕ ~ δvi ~ r v d ~ vp  

€ 

〈d
r 
R /dt〉ϕ =

r v d + ur n 

  

€ 

df /dt − 〈df /dt〉ϕ = −Ω∂˜ f /∂ϕ + (
r ˙ R − 〈

r ˙ R 〉ϕ) ⋅ ∇f + ...

  

€ 

˜ f ~ Ω−1 dϕ∫ (
r ˙ R − 〈

r ˙ R 〉ϕ) ⋅ ∇fM + ... ~ δ2fM
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Gyrokinetic equation
 Variables G ⇒    , E = v2/2 + ZeΦ/M, µ, ϕ
 Changing variables, Fokker-Planck equation becomes:

 Variables G constructed so dGj/dt − 〈dGj/dt〉ϕ + small.
 Leading ϕ dependence from
 Gyroaveraging at fixed    ,E,µ (recall 〈dµ/dt〉ϕ = 0) gives

to O(δ) when we ignore O(δ2) from  f & variable change
Here  with u parallel velocity &     drift velocity

  

€ 

r 
R 

  

€ 

∂f
∂t

+
r ˙ R ⋅ ∇Rf + ˙ ϕ 

∂f
∂ϕ

+ ˙ µ 
∂f
∂µ

+
Ze
M
∂Φ
∂t

∂f
∂E

= C{f}

  

€ 

r 
R 

  

€ 

∂f
∂t

+
r ˙ R ⋅ ∇Rf +

Ze
M
∂〈Φ〉ϕ
∂t

∂f
∂E

= 〈C{f}〉ϕ
€ 

−Ω∂˜ f /∂ϕ = C{f}− 〈C{f}〉ϕ

  

€ 

r ˙ R = ur n (
r 
R ) +

r v d   

€ 

r v d
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Alternate gyrokinetic forms
 Numerically often easier to use kinetic energy K or parallel

velocity u =[2(K - µB(R)]1/2

 Using kinetic energy K = v2/2 + Ze(Φ−〈Φ〉ϕ)/M +…

 Also possible to write in conservative form
 Will use the K form for discussion of quasineutrality

  

€ 

∂f
∂t

+ (ur n + r v d) ⋅ [∇Rf − Ze
M
∇R (Φ− 〈Φ〉ϕ) ∂f

∂K
] = 〈C{f}〉ϕ

  

€ 

r v d =
r v M − (c /B)∇R 〈Φ〉ϕ ×

r n 
  

€ 

〈Φ〉ϕ = (2π)−1 dϕΦ
r 
R −

r 
R 1 −

r 
R 2,t( )∫
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Quasineutrality (QN): Zni = ne
 Taylor expanding for ions to O(δ)

 For electrons (ITG ordering),
 with 〈…〉θ ≡ flux surface average

 For k⊥ρ ~ 1 and to O(δn)

 with

 For k⊥L ~ 1 & axisymmetry, need QN independent
of 〈Φ〉θ to O(δ2n) due to intrinsic ambipolarity!

  

€ 

fi(
r 
R ,K,µ,t) ≅ fi(

r r +Ω−1r v × r n ,v2/2,µ0,t) − Ze
Ti

(Φ− 〈Φ〉ϕ)fM

€ 

Z2e
Ti

d3v(Φ− 〈Φ〉ϕ)fM∫ +
en0

Te
(Φ− 〈Φ〉θ) = Z ˆ N i − n0€ 

ne= n0 +
en0
Te
(Φ− 〈Φ〉θ)

  

€ 

ˆ N i = d3vfi(
r r +Ω−1r v × r n ,v2/2,µ0,t)∫
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θ - pinch solution to O(δ2)
 Use Krook C{f} = – ν (f – fM) and 〈…〉ϕ to O(δ2fM)

with

 To find 〈Φ〉θ, need QN to O(δ2n) (valid for any ne)

with

 Yellow O(δ2) terms in fi result in exact cancellation: 0 = 0

€ 

fi = fM = fM0 1                                                                              
 

 
 

 

 
 

€ 

−∇ ⋅
Zcni

BΩ
∇⊥Φ

 

 
 

 

 
 +

ZniMc2

2TiB2
∇⊥Φ

2
= Z ˆ N i − ne

  

€ 

fM = ni
M

2πTi

 

 
 

 

 
 

3/ 2

exp −
M(r v −

r 
V i)2

2Ti

 

 
 

 

 
 , fM0 = ni

M
2πTi

 

 
 

 

 
 

3/ 2

exp −
MK
Ti

 

 
 

 

 
 

  

€ 

ˆ N i = d3v(1+
v||

Ω

r n ⋅ ∇ ×
r n )fi(

r r ,v2/2,µ0)∫ + (
t 
I − r n r n ) : ∇∇pi

2MΩ2

€ 

−
Mv⊥2

2pi
∇⋅

cni
BΩ

∇⊥Φ
 

 
 

 

 
 + 2 −Mv⊥

2

2Ti

 

 
 

 

 
 
Mc2

2TiB2
∇⊥Φ

2
+ ...
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θ - pinch and tokamak potential
 Any global axisymmetric, long wavelength 〈Φ〉θ should

satisfy QN to O(δ2)

 Typically δ2fM terms MISSING in QN ⇒ giving a non-
physical 〈Φ〉θ

 Even with full δ2fM terms, 〈Φ〉θ must be undetermined: any
initial guess works!

 Only need fi to O(δ2fM) if use

 Same in tokamaks:            gives 〈Φ〉θ at O(δ3p)
for fi to O(δ2fM)

€ 

Ze ∂Φ
∂r

+
1
ni
∂pi
∂r

= rB dr 3
rB

∂Ti
∂r

5
3
∂
∂r
lnB− ∂

∂r
ln pi

r
∂Ti
∂r

 

 
 

 

 
 

 

 
 

 

 
 ∫ ~ ∂Ti

∂r

  

€ 

R2∇ψ⋅ t π i ⋅ ∇ζ θ
= 0

  

€ 

R2∇ψ⋅ t π i ⋅ ∇ζ θ
= 0
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Bottom line!

Gyrokinetic quasineutrality works for k⊥ρ ~ 1

BUT it cannot determine the self-consistent
axisymmetric electric field in long wavelength
limit [see Felix Parra for more details]

Need an alternative equation for k⊥L ~ 1:
probably a moment approach similar to drift
kinetics (next time)
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Edge gyrokinetics
 Simplification: electrostatic gyrokinetics

    slowly varying and time independent

 To handle ρp ~ L⊥ conveniently replace radial gyrokinetic
variable by canonical angular momentum

 Variables                        , E* and µ* defined with d   /dt,
dE*/dt and dµ*/dt independent of gyrophase ϕ
⇒ fast gyromotion absorbed in GK variables
 d/dt ≡ Vlasov operator
 Gyrophase dependence from

 Need to find f (r, v, t) = f (R, E, µ, t) +      &

  

€ 

ψ∗ =ψ− (Mc /Ze)R2r v ⋅ ∇ζ =ψ+Ω−1r v × r n ⋅ ∇ψ− (Iv|| /Ω)

  

€ 

r 
R →ψ∗,ϑ∗,ζ∗   

€ 

r 
R 

  

€ 

r 
B 

€ 

−Ω∂˜ f /∂ϕ = C{f}− 〈C{f}〉ϕ

€ 

C{f0}

€ 

˜ f ~ O(fMδν /Ω)

€ 

˜ f 
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Exact isothermal ion solution
 An exact solution to the ion kinetic equation exists in the

isothermal limit when ion-electron collisions are neglected

 Function of total energy & canonical angular momentum to
make Vlasov operator vanish

 Must be Maxwellian to make ion-ion collision operator
vanish

 Therefore (T, η ,ω  constants)
€ 

f0 = f0(ψ∗,E)

€ 

fM(ψ∗,E) = η(M /2πT)3/ 2exp(−ME /T − eωψ∗/cT)
€ 

f0 = fM(ψ∗,E)

  

€ 

fM(ψ∗,E) = n(M /2πT)3/ 2exp[−M(r v −ωR2∇ζ)2/2T]



24

Axisymmetric steady state edge GKs
 Conveniently retains finite poloidal gyroradius effects

 Preserves        and total energy = E as constants of the
motion in steady state axisymmetric limit to exactly recover
isothermal limit

 Axisymmetric steady state:

 In axisymmetric steady state can prove the ion temperature
must vary slowly compared to a poloidal ion gyroradius
             :                     gives         in core

               :     with
gives rigidly rotating Maxwellian          so

          when       in banana regime

€ 

˙ ϑ ∗∂f0 /∂ϑ∗ = 〈C{f0}〉ϕ€ 

ψ∗

€ 

ρp→ 0   

€ 

〈 d3v∫ lnf0〈C{f0}〉ϕ〉ϑ = 0

€ 

∂f0 /∂ϑ∗= 0

€ 

f0 = fM

€ 

ρp→L⊥   

€ 

d3rped∫ d3v∫ lnf0〈C{f0}〉ϕ = 0

€ 

f0 = f0(ψ∗,E) = fM
  

€ 

ρp∇lnT <<1   

€ 

ρp∇lnn ~ 1
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Pedestal pressure balance
 Assume pedestal flow subsonic (as in C-Mod):
 Since banana T variation slow:   where

 Ions electrostatically confined:
 
 Electrons magnetically confined:

 Not clear what establishes a ρp~ L pedestal

 Another reason sonic ordering inappropriate!

  

€ 

|
r 
V i| << vi

  

€ 

r 
V i ≈ ω iR2∇ζ

€ 

ω i = −c dΦ
dψ

+
1
en
dpi
dψ

 

 
 

 

 
 ≈ 0 and cTiR

vien
dn
dψ

~
ρp
L⊥

~ 1

€ 

dΦ
dψ

≈ −
1
en
dpi
dψ

≈ −
Ti
en
dn
dψ

  

€ 

r 
V e =ωeR2∇ζ + ue(ψ)

r 
B 

€ 

ωe = −c dΦ
dψ

−
1
en
dpe
dψ

 

 
 

 

 
 ≈

c
en
d(pe+pi)
dψ

and ωeR
vi

~
ρp
L⊥

~ 1
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Edge zonal flow GKE
 Subsonic zonal flow gyrokinetic equation (axisymmetric):

Let  

then

with Φ(ψ,t) = Φ0(t)exp[iS(ψ)]   &   Φ*(ψ*,t) = Φ0(t)exp[iS(ψ*)]
Taylor expanding S leads to Q = S’Iv||/Ω

 Same as Hinton & Rosenbluth
 Can retain finite orbit effects in       and      [see Kagan for

more details]

€ 

f0 = fM(ψ∗,E;T(ψ)) + h(ψ∗,ϑ∗,ζ∗,E,µ∗,t)

  

€ 

∂h
∂t

+ ˙ ϑ ∗
∂h
∂ϑ∗

− 〈Cii
l{g − Iv||

Ω
Mv2

2T2
∂T
∂ψ

fM}〉ϕ= −
e
T
∂Φ∗

∂t
fMJ0(k⊥v⊥

Ω
)eiQ

€ 

Φ∗

€ 

˙ ϑ ∗
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Full f edge gyokinetic equation
 Full electrostatic full f gyrokinetic equation:

with gyroaverage holding ψ* fixed

Can use different energy variable or parallel velocity

€ 

∂f
∂t

+ c
∂〈Φ〉ϕ
∂ζ∗

∂f
∂ψ∗

+ ˙ ϑ ∗
∂f
∂ϑ∗

+ ˙ ζ ∗
∂f
∂ζ∗

+
e
M
∂〈Φ〉ϕ
∂t

∂f
∂E

= 〈C{f}〉ϕ

  

€ 

˙ ϑ ∗ = (v||
∗r n ∗ +

r v d) ⋅ (∇ϑ)∗ + (Iv||/Ω)∂(v||
r n ⋅ ∇ϑ) /∂ψ

  

€ 

˙ ζ ∗ = (v||
∗r n ∗ +

r v d) ⋅ (∇ζ)∗ + (Iv||/Ω)∂(v||
r n ⋅ ∇ζ) /∂ψ

  

€ 

r v d =
r v m + (c /B)r n × 〈∇Φ〉ϕ
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Edge gyrokinetic subtleties
 In a subsonic ρp ~ L⊥ with global Φ0 (ψ) satisfying

 Zonal flow Φ1(ψ,t) can have k⊥ρp > 1 >> k⊥ρ

 Poloidal ExB drift can be significant:
since cIΦΟ′/B ≈ -(cIT/eBn)∂n/∂ψ ∼ viρp/L⊥ ∼ vi

 Poloidal ExB and orbit squeezing due to ΦΟ′′ alter zonal flow!

 Poloidal ExB and orbit squeezing effects on neoclassical
 Use f = f* + h with f* = fM(ψ∗,E) and expand Ti about ψ

 Transit average of C1 involves cIΦΟ′/B ≈ -(cIT/eBn)∂n/∂ψ altering
ion flow and heat flux, but not altering ion = electron particle xport

€ 

˙ ϑ ∗ ≈ (v|| + cIΦ0' /B) /qR

  

€ 

e∂Φ/∂ψ = −Ti∂lnn/∂ψ+O(∂lnTi/∂ψ) ≈ −Ti∂lnn/∂ψ

  

€ 

(v|| + cIΦ0' /B)
qR

∂h 1
∂θ

= C1{h 1− fM
IMv2

2TΩ
(v|| +

cIΦ0'

B
) ∂lnT
∂ψ

}



29

Discussion
 Gyrokinetics should be made to satisfy intrinsic ambipolarity

 Can only turbulently evolve n & T; GKs can’t evolve the full Φ

 Edge gyrokinetics conveniently formulated using canonical
angular momentum as radial variable
 In the banana regime radial ion temperature variation must be

slow compared to the poloidal ion gyroradius
 Subsonic pedestal: ions electrostatic & electrons magnetic
 Zonal flow in pedestal different than in core
 Also works on axis and in internal transport barrier

 Next time: Hybrid gyrokinetic-fluid description
 Density, temperatures, potential, ion flow, current evolved by

conservation equations
 Gyrokinetic f only used for closure and (almost) anyones will do!


