terms

(18}

adence

(19)

herical

(20)

61. ON THE VIBRATIONS
OF THE ELECTRONIC PLASMA

The vibrations of the elecironic plasma are considered, which arise as a result of
an arbitrary initial non-equilibrinm distribution in it. It is shown that the vibrations
of the field in plasma are always damped, and the dependence of the frequency
and of the damping decrement cn the wave vector is determined for small and for
large values of the latter. .

The penetration of a periodical external electric field into the plasma is considered.
The case of the frequency of the external field being almost at resonance with the
proper frequency of plasma is considersd separately. i

TaE high frequency vibrations of the electronie plasma are described by com-
paratively simple equations. If the frequency is high enough, the collisions
of the electrons with the ions and with each other are inessential, and in the
kinetic equation the collision integral can be neglected. The distribution
function of ions can be considered as invariable, and only the distribution of
electrons vibrates. Let F(v, r,?) be the electronic distribution function, if
fo(w) is the equilibrium function (the Maxwell distribution), then

F=folo) + fle, 1, 1) )
f being a quantity small as compared with f,. The kinetic equation (without

the collision integral) is

 f R ( éfo
._'._:.. o I _ e — A0 - 0 2
el B i M) (2)

(p—the electric field potential). The Poisson equation is

Plo=—4me Il.fdr (dr = dv,de,dv,) (3)

(the equilibrium electronic charge e _{ fod7 is of course compensated by the
positive charge of the ions). Equations (2)and (3)form a complete set ofequations.

These equations were used by A. A. Vlasov® for an investigation of the
vibrations of plasma. However, most of his results turn out to be incorrect.
Vlasov looked for solutions of the form const e=12!*16" and determined the
dependence of the frequency w on the wave vector k. The equation, which
he obtained for this dependence contains a divergent integral; this already
indicates the mathematical incorrectness of his method. Vlasov® (and also

JL Jlammay, O RoJedaHmax BIERTPOEHOI DIasmel, MAyprai Swucnepusmenmarsrolt w Teopemu-
ueerois Quauwri, 16, 574 (1946).
L. Landau, On the vibrations of the electronic plasma, .J. Phys. U.IS.SAR. 10, 25 (1946).
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Adirovich?®) tries to escape from this difficulty by taking the principal value
of the integral involved. however, without any foundation. Actually there
exists no definite dependence of w on k at all. and for a given value of k arbi-
trary values of w are possible. The fact that solutions of the form of e-i®! ¥ 1tk
are insufficient can be seen already by observing that they give only a «o?
multiple of solutions (according to three independent parameters I, &y, &),
whereas there must actually exist a oo multitude of solutions {the equations
contain gix independent variables =, ¥. 2z, #,, v, ©.).

1. TEE VIBRATIONS WITHE & GivEX INiTiar DISTRIBUTION

In order to obtain a correct solution of equations {2) and {3), it is necessary to
consider the problem concretely stated; we shall discuss here two of such
preblems.

Let us assume, that a definite (non-equilibrium) electronic distribution in a
plasma is given in the initial moment. The problem is to determine the resulting
vibrations. As equations {2) and (3) are linear and do not eontain the co-ordinates
explicity, the function f(, v, {) can be expanded into a Fourier integral with
vespect to co-ordinates, and the equation can be written for every Fourier
component separately. This means, that it is sufficient to consider solutions
of the form

Ji(v. 1) gl th)

Further we shall, for the sake of convenience, omit the index k in f, so
that f(v, t) will denote the Fourier component of the distribution function in
question. By g(») we denote the Fourier component of the initial distribution
f(r, v, 0), we shall write shortly g{v) for g, (v). Finally, we choose the x-axis
along the direction of the considered wvalue of the vector k.

Taking the Fourier components of equations (2) and (3), we obtain

é e af,

— +ike, f-ik—e = 0, (4)
ot m o én,

Bt = 4neffd7:, (5)

@(t) is the Fourier component of the potential ¢ (v, ¢). These equations can be
solved by using the operational method. Following this method, we introduce
the function f,(v) defined by means of

fo(v) = [ fv, )2t at; (6)
then 0 -
1 Tl TG

o0 = o f f(2)edp, 2)

—l>m+e

th

th
fo
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- the integration being performed here in the plane of the complex variable p ; !
re along a straight line paralle] to the imaginary axis and passing to the right i1 .
i- of it (o > 0). {
o We multiply both sides of equation (4) by e-?* and integrate over d¢. Noting
03 that
[;1)5 :C(jf —ptd -;p.!'m ) ;c' —pi £ j
.,Ee t=fe jofpwfe di=pf,—9g ;
0 0
(we insert f(v, 0) = g(v)) we obtain } i
" i
; ot 6f :
to p+iko)f-ik—g——=g. _ ¢
i m T du,
In the same way (5) gives i E
La ; o : e e
ng i k‘“q:p:énev’fpdr. | E
ies i iz
“h The first of these equations yields Wi
= 1 e . Oho) i
: V)= — v)+ik—ug , 8 1 i
& b = oy o) + 1o, T ) o
and inserting this into the second one, we obtain for g,: | “‘
80 f glo) '-
in T
| dme v+ikw, il
& | B e, & ®) i
B | . fmie Fo l'r . i
km ] dv, (p+ikv,) {
These formulae solve, in principle, the problem considered. They determine i
: (4) | the electronic distribution and the electric field for an arbitrarily given initial -
TR i distribution.
: ' Before proceeding to the investigation of the formulae obtained, we note I
(5) ' that in (9) the integration over dv, dv, can be performed directly. Introducing
;_ for the following the notation v, = % and iEE
I g(ﬂ’) =Jg(f)d@ydvz
we write _ il
f L.)“du
p+iku _
dme -
;f“ ¢ "pjﬁ T 12 +m ! (10}
Ei} _ i d7ie? dfo(u) duw |
g ] km du (p+ikwu) . i
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o

the equilibrium function being

a7 —

/ i T
folw) = nf s—me ™ (11)

(z—the Boltzmann constant, n—the equilibrium number of electrons per unit

volume of the plasma).
An expression of the type of

g, = | ¢ltye=7tae,
{

considered as a function of the complex variable p has a sense only in the
right hali-plane, ie. for Be(p) > 0. The same refers correspondingly to the
expression {10). However, we can define ¢ on the left half-plane as the analyti-
cal continuation of expression (10). It is easy to see, that if g(u) {considered
as a function of the complex variable «) is an entire funetion of « {i.e, it has
no singularities at finite u), then the integral

-g(%}du
p+iku’
—_
c 4
u T I ? Imu:d
\ i /
p
\\ L] ”=_i_k //
L
Fic. 1.

continued analytically into the left half-plane of p also defines an entire
function of p. Actually, to perform the analytical continuation of the function,
defined by this integral, from the right half-plane to the left one, we displace
the integration path in the complex plane of « far enough into the lower
half-plane so, that the point w = — p/ik would lie above it. In this way we
shall obtain an analytical function, defined by the integral which for Re (p) > 0,
is taken along the real axis, and for Re(p) < 0 along the path, which is drawn
in Fig.1 by a full line. This function has no singularities at finite values
of p, ie. it is an entire function.

The same refers also to the integral in the denominator of expression (10},
for dfy{w)/du is an entire function. Thus, an analytical, in the whole plane,
function ¢, is (if g(u) is entire} a ratio of two entire functions. Hence the
only singularities (poles) of the function g, are the zeros of the denominator
in (10); all of these poles lie in the left half-plane.

These considerations allow us to determine the asymptotical form of the

potential ¢(f) for large values of the time . In the inversion formula
: + 1 o?' +a
) = wi 2‘
@(t) e g,e” dp (12)
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the integration is performed along a vertical line in the right half-plane,
However, if ¢, is defined in the manner indicated above as a function which
is analytical in the whole plane of p, we can displace the integration path
into the left half-plane going around all the poles of ¥p it meets. Let p, be
that of the poles of #p. 1.e. that of the roots of the equation

4nieﬂ[‘d;‘0 du

km  Jdu (p+iku)
¢

sy | (18)

(integration along the path shown in Fig. 1), which has the least absolute
value of its real part (i.e. which is the nearest to the imaginary axis). Let us
perform the integration in (12) along the path, which is displaced far enough
to the left and goes around the point p = p, in the manner shown in Fig. 2.
Then in the integral (12) (with large values of ¢} only the residue relative to
the pole g, will be of importance. All other parts of the integral (among them

Fig, 2.

the integral along the vertical line) will be exponentially small in comparison
with the residue due to the presence of the factor e?! in the integrated ex-
pression, which decreases rapidly with increasing |Re(p)].

Thus, for large values of ¢ the potential of the field ¢(¢) is proportional
to e”*. With complex p, this factor splits into a periodical part and a decreas-
ing (Re(p) < 0) one. We arrive, consequently, at aa essential result, that
the field is damped with time, the damping decrement being equal to—Re ().

Equation (13) determines P, L.e. the frequency and the damping decrement
of the vibrations. It coincides formally with Vlasov’s equations, the difference
being that here the integration is performed along the path C, whilst Vlasov
integrates simply along the real axis. This difference leads, as we shall see,
to qualitatively new results, namely to the presence of damping.

Consider the limiting case of long waves, & — 0. The point w = — pjik
(Fig.1) is displaced to very large |#| and as the function folu) decreases
rapidly with increasing |u], we can integrate in (13), in the first approximation,
only along the real axis, We expand the integrand in powers of % The first
term of the expansion disappears because

+ o

d, o
fd—fj-dwfo;fo.

=

CPL 15
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The second term gives
+ o

U du=1
prm du
Taking into account that
=+ + oo
d
. j ul da = ufy| — J. fodw = —n, (14)
du :
R a) -
we find
Ty -
= —1w, w=\/——n—5cr)o (15)
0

{we have chosen here the sign w which corresponds to a wave, propagating in
the positive direction of the z-axis). This expression corresponds to the ordinary
proper frequency of plasma; we denote it by w,. In the next approximation
the calculation leads to the following dependence of the frequency on the
wave vector:

w=wu(l+§a2k2) (16)

)

a = /% T{4nn e* being the electronic Debye—Hiickel radius. We omit here the
detailed calculations because they coincide with that of Vlasov done in his
first paperl. This part of his caleulations turns out to be correct due to the
fact, that in caleulating the frequency for small values of %, we can approxi-
mately integrate in (18) only along the real axis.

However, the vibrations are actually damped, although the damping coef-
ficient is small for small %. To calculate this decrement we start from an assump-
tion (which is verified by the result), that for £ — 0 the real part of g, tends
to zero, the imaginary part remaining finite. Hence for small & the point
u= —pfik (Fig.1) is situated at a finite distance from the imaginary axis
and very near to the real one (under the latter). Let

p=—io=y,

y is the damping coefficient in question (0 < y <€ w). We choose a point 4 on
the real axis (Fig. 1), situated not far from the point u = — g,fi%, but so, that
its distance from this point is still large as compared with |[Im (u)]. Then we
draw a semicircle 4 B through this point (shown by a dotted line in Fig. 1)
and use it instead of the corresponding part of the integration path C.
The integral along the straight parts of the integration path is real in the
limiting case of Re(p) = 0, in the approximation considered we can put it

equal to —4zn e?/m p> As to the integral along the semicircle, it equals the

residue relative to the pole, multiplied by =4 (a half of the total circle!). In
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this way we obtain equation (13) in the form

b
df. [ — 2
dnne? | 4mtel fﬂ( ik)

) =1.
m p* Ny du

Putting here p = —iw — y and solving the equation by means of successive

approximations, we get finally the following expression for the damping
decrement;

e

w1 —1f2(ka) (173

o= L e 1= 4 lP‘

' “’”\/8 (kay =

Thus, the damping decrement decreases exponentially with decreasing .
Formulae (15-17) are valid for y < w. This condition leads to the in-
equality '
La <l

Consider now the opposite limiting case of large k. We put again p = — iw
— 9. It will be verified by the result, that both w and v increase indefinitely
with & — o but in such a way, that for large k, w < y and the ratios w/k,
v/k tend to zero and infinity respectively. Then the pole u = — pfik is situated
relatively near to the imaginary, but far from the real axis (Re (%) is small,
Im (u) is large). As the function f, increases exponentially for large imaginary
values of w, we can integrate in (13) only along the circle around the pole,
neglecting the integral along the real axis. In this way we obtain from (13)

P
df [ — -2
4:rregj . 'fn( ik)

2mi =1,
m k2 du

or, using expression (11), for fy(u)

- Vs
\/gﬂ._pﬁezm.,'(ka)z.__ i (18)
wolka)?

By taking the moduli of the expression on the both sides of the equation,
and using the suggested inequality y > w, we get

- 1 :
e = a k) 19
£ :72—7 (a k) _ {19}
with :
E = ny'ICUG JIJ a.

The phase factor of the expression in the left side of equation (18) is equal,
in the same approximation, to

[(iyo )

-8 - ”
= \\ wy a? k2 )
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As on the right of the equation stands a real positive quantity, this factor
must be equal to + 1. Hence we find:

¥
w2 a? bt
(it can be shown, that by equating it to 3=, 5x, we would get a root of the
equation (13), which is not the nearest one to the imaginary axis). Together
with the definition of the quantity & this gives
__[2Tk [%T
TN E T TN,

These formulae determine the frequency and the damping decrement of
the vibrations, the function &{k) being defined implicitly by equation (19).
&(k) is a slowly increasing function of % (it goes approximately as ./Ink a).
The ratio y/w increases with I as £% ie. approximately as Ink a.

In the preceding calculations we supposed, that the given function g{w)
is an entire function. If this function has singularities, then ¢, will also possess
singularities apart from the poles, which are zeros of the denominator in (10).
The point p; in Fig. 2, which determines the behaviour of the potential g (f)
for large t, must be chosen as the nearest to the imaginary axis of all the
roots of equation (13) and of the singularities, which arise from the singular
points of g{u).

In particular, if g(w) is (on the real axis) a continuous function with a
discontinuous derivative, then ¢, will have purely imaginary singular points
p = —iku,; u, being the discontinuity points of g(w). Thus, the behaviour
of p(t) for large ¢ will be determined by purely imaginary values of g, i.e.
there will be no damping of the field. Hence it follows, that it is by no means
possible to use a curve with angles (e.g. composed of straight pieces) for g(u)
instead of a smooth one in order to get an approximate solution of a given
problem. Such a substitution will lead to a qualitatively incorrect picture
with an undamped field vibration.

Finally, it is necessary to discuss the electronic distribution function itself.
For the distribution function, integrated over dwv,dw, we have, according

k. (20)

to (8):
1 ike  dfy(u)
o) = p+ifcu{g(u)+ m P du |
+iom+o
; 1 Pedt
f('i‘.&, ) e Dl fp(ﬂ»)ﬁ‘- ;
—lwtao
The behaviour of the funection f{u, t) for large ¢ is determined by the purely
imaginary singular point p = —ikw of the funection j,(u). Thus, the distri-

bution function turns out to be proportional (for large ¢) to a periodical factor
e-¥ul je, it performs undamped vibrations with a frequency kw which
depends on the velocity . '
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2. THE VIBRATIONS OF A PLASMA IN 4 EXTERNAL Evrscrric
FIELD

Suppose, the plasma is placed into an external periodical electric field. The
problem is to find the law of the penetration of the field inside the plasma.
The external field can be expanded into a Fourier integral with respect to
time; therefore, we can confine ourselves to the consideration of a mono-
chromatic field of a frequency w. We suppose that the plasma is bounded by
& plane wall; the distribution is a funetion only of one co-ordinate, say z, along
the axis, perpendicular to the wall.

The electric field can be split into a longitudinal part, directed along the z-
axis, and a transversal part p which is parallel to the plane of the wall. There
is no need to consider the transversal field, because the behaviour of a plasma
in & transverse electromagnetic wave is described by well-known formulae.
Therefore, we confine ourselves to the case of o longitudinal feld.

As in section 1, we use the distribution function, integrated over the essential
variables v, »,. We can look for this function flu, 2,t) in the form of } (u, x) e-1*
(w denotes, as above v,).

The kinetic equation (2) becomes now

E{zx) d
Ctwpgnll , fB@ A
dx e du

(21)
{we write the electric field in the form B(x)e-1"!). As a second equation it is
convenient to use here (instead of the Poisson equation (3)) the equation, which
expresses the absence of the sources for the total current (the real current j
and the displacement current):

: d .
div(j— @ E) - —(j _1_“’-,5«;): 0.
47 dz 4 4 '
Hence we find that 47§ — i w F is a constant. Outside the plasma § = 0;

therefore, this constant equals —i w E, where &, e-t*! is the external field.
Thus, we have an equation

—in(x)+4ng'(x)=—inq. (22)

The current density j(x) can be expressed through the distribution function

by means of
+ o

j=e f wfu, z)dw. (23)

- @

At large distances from the wall the field  in the plasma is determined
directly by the condition of the constancy of the longitudinal component of
the induction D = ¢ &, the electric constant e of the plasma being equal to
the well-known expression '

4z 1 e

(24)

e=1—
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Outside the plasma D = #;; hence the boundary condition at infinity is

H
E=— for =+ (25)
&
(the positive direction of the z-axis is inte the plasma).

As to the properties at the wall, we shall suppose (as is usually done in
analogous cases), that it has an ideal reflection power. This means that an
electron, colliding with the wall, is reflected under the angle, equal to that
of the incidence, and with the unchanged absolute value of its velocity (so
that v,, v, Temain unchanged, and v, = w changes its sign). Then the distribu-
tion function must satisfy on the wall (x = 0) the boundary condition

flu, 0} = f(—u, 0). (26)

We integrate formally equation (21) and find:
eimzln'u feE{x} d‘fﬂ e
J mu du
In order to determine the integration constant, we proceed in the following
way. Consider o as & complex parameter with a small positive imaginary part
(which tends in the following to zero). Then the external field E, e-'®! increases
with time, but as it is finite for every finite value of ¢, the distribution function
must also be everywhere (for all x = o) finite.

If u < 0 then the factor e!®=* increases indefinitely with @, and in order
that f(u, 00) remains finite we must write for u < 0:

o

— oy dx

;‘(u,w}: i

e B (&) dfylu) LTV (27)
m du

flu, @) = ei“’""‘j

As to the function f(u, ) for % > 0 it must be written so, as to fulfil the condi-
tion (26). This gives for » > 0:

fe o] &

flu, z) =€ Jﬂ_eE(E) Yol#) iwsiu g -I ¢8O dlo rosege (28)
m du mu QU
0 0

(it is to be remembered, that f,(u) is an even function of u. hence djg/du is

an odd function).
Using the obtained expressions, we calculate the current density (23):

[=s} o

i ;—";{IE@)K@— fae+ [BOKE-as - [FO K@ agl, @
% o : o/
0 - ]
where the function K (&) is defined by means of
E(f) = 4nie-jd-fo iy, £ 0 (30)
M du
(1]

{(29) contains K(£) only for positive values of the argument).
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L]

In the following it is convenient to split E(z) into two terms, separating
the value of the field for # — + o

E(x):%ﬁrEl(x). X (31)

According to (25), E,(x) satisfies the boundary econdition E,(c0) = 0. Inser-
ting (31) into (29}, we obtain easily:

k:d

j=7jle) + ,1:9 Eufﬁ’(&) dé (32)

&

0

ji(x) defined by (29) with B,(z) standing instead of B (x). .
Inserting (31), (82) into (22) and performing some elementary transforma-
tions, we obtain the following integral equation for the function B (x)

B (x) - fK(m - &) &, {£)ds —IK(Eu m)El(E)d§+fK(£ +2z) B (§)dé
1] ] o

£

(K@ ae. s
J
0
In calculations we used here expression (24) for ¢ and the expression for the

integral f K (£)d¢ which can be obtained in the following way. Consider
0

again o as a complex parameter with Im o > 0. Then e!®## is zero for & — 00,
and integrating over d & under the sign of integral in (30), we get

fK(f)déz - 4”e"fui’fidu.
1]

]

m w=

The integrand w(df,/du) is an even function of u hence this integral is one
half of the integral (14). Finally,

2re*n

(34)

m w?

fK(E)d&:
0

The integral equation (33) can be solved in the following Wéy. Tﬁe'function

E,(x) has a physical meaning only inside the plasma, ie. for z > 0. We
continue this function, and also the function X (£) into the region of negative
values of the argument by means of the definitions:

E(—&=K(),B,(~2) = — B,(2) T
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(the function ¥, (z), thus defined, has a discontinuity at x = 0}. Then equa-
tion (33) after a simple transformation is reduced to a simpler form:
@0
28, [

+ o 6 4
B - | Ke-9R@as= (36)
2
- Hy fK(E)dE for z<O0.
£

K dEs for o> 0,

In this form it can be solved by using the Fourier method. Multiplying both
sides of the equation by e~ #% and integrating over dx within the limits between
—oo and + o0, we obtain:

2 B Kio— K,
Elk(l = Kk) = ’ : d )

g k

E,;, K, being the Fourier components:
+ i + @
B, = [ E@e*dz, K= [ K ei*ae

—r —

(K, is the value of E; for k= 0). By means of the inverse transformation

+ o
1 ikz
Bi(x) == E,e *dk
=T
we get the function E, (2) in’ questibn in the form of an i_nte.gral:

+ o

; . iBy [ K,- K,

B - ke q . aT
== J i N 8

The function K, can be presented in the following form:
+ =

r dfe
u_
dme? da ,
Fpe= ——du : (38)

Y mw Eu — o

- o

(we used the definitions (30), (35) and the integration over d ¢ is performed
under the sign of the integral over du with w considered again as complex
with Tm o > 0). If this integral is taken simply along the real axis, it diverges
at the point u = w/k. However, it is easy to see which must be actually the
path of integration. In deducing (38) we assumed that Im w > 0 and the
integral was taken along thereal axis, i.e. along a path, passing below (if & > 0),
or above (if & < 0) the singular point u = w/k. Therefore, after putting Im w
equal to zero, the integral (38) must be taken (if & > 0) along the path C,
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a- -(Fig. 3), which proceeds along the real axis and goes around the singular point
below it, or (if < 0) along the path ¢, which goes around the singular point
above it.

We introduce the notations:

K,=E,k) for k>0; K,=K,(k) for k<o0. (39)

The functions K, (k) and K,(k), defined formally by (38) with the integral
taken along the path ', or 0,, are analytical functions in all the plane of the
complex variable k.

Expression (37) is inconvenient for calculations. Introducing the functions

woth £y, K, we can represent it, after a simple transformation, in the form of
‘een :
iB, [ K- K
B (z) = o f. £y ,2(L) elhz I
me ) k[1— K,(k)]
oy + o (40)
me | W[ — K, (B[ — K, (k)]
tion usg
&/ G
—-—i--—f:L Cz
u=i:-
Fie. 3
(37) In this transformation we used the fact that according to (24), (38) and (14)
we have
KEy=1-—c¢. (41) .
The difference X, (k) — K, (k) is evidently expressed by the same formula (38), I
the integration being performed simply along & closed contour enclosing the '
pole (in the negative direction). According to the theorem of the residues, we
(38) have, consequently,
47 e? d
| Byl ~ By s wr® Qni(u _fﬂ) (42)
e mwk 1 —
Ipley. or e ” ;
A | Ey () — Ky () = 22 o~ aieh

Wyt

It is easy to see, that the functions K,, K, are connected with each other
by means of the following relations:

(K2 ()] = Ky (k%) BT (—k*) = K,(k), Ki(—k*)=K,(k). (43)
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At infinity both functions K,, K,, vanish. An investigation which we omib
here, shows, that the functions K, (k), K, (k) have in the whole plane of the
complex variable k only one singular point—namely, an essential singularity
at I = 0. The quantity K, is the limit to which K,, K, tend when k tends to
zero along the real axis. It can also be shown, that K, (%) tends to the same limit
K, when & tends to zero along an arbitrary path, passing outside a right-angled
sector in the upper half-plane, bounded by two straight lines, which mtersect
at the co-ordinate origin and make an angle of 45° with the imaginary axis.
The same holds for K, (k) outside an analogous sector in the lower half-plane.

In the integrals (40) those points are of importance, at which K, K, are
equal to unity. It can be shown, that the equation X,{k) = 1 has an infinite
pumber of roots in the upper half-plane, which converge to a condensation
point at k = 0. In the lower hali-plane there are no roots at allif & > 0 (i.e.
if K, < 1), or there is one root on the imaginary axis if ¢ < 0 (l.e. if Ko > 1).
Analogous results for the function E,(k) follow directly from the rela~
tions (43): the equation K,(k) = 1 has an infinite number of roots in the lower
half-plane, and has no roots at all (if ¢ > 0), or has one root on the imaginary
axis (if ¢ < 0) in the upper one.

Consequently, if ¢ > 0 the integrand of the first integral in (40) has no poles
in the upper half-plane and by pushing the path of integration to infinity in
this half-plane, we find, that the integral vanishes. If, on the other hand, e < 0,
there is & pols in the upper half-plane and the integral is reduced to the residue
relative to this pole. Its dependence on @ is, consequently, given by an exponen-
tially decreasing factor e™*%, o = 0.

A complete evaluation of the integrals in (40) can be performed only numeri-
cally. Tt is, however, possible to obtain an asymptotical expression, which deter-
mines ¥, (z) for large values of z(z > a). We shall see, that in this region the
second integral in (40) is larger as compared with the first one and we must
calculate only it. We shall do it with the aid of the well-known “method of
steepest descent”. Inserting (42) into (40) we obtain in the integrand an expo-

nential factor 1 o A\
BXP{“E(%M(;) + 1kx}.

Following the method of steepest descent we expand the exponent in powers

of 6k =k — k, where h 3/7 .
ko = e e

m%tﬁx

is the extremum point of the exponent, and then integrate along the path of
“the steepest descent”. In the non-exponential factor we can put k =k,
and take it out of the integration sign. In the denominator we can put
1 - K, (k)=1—K{k)=1—-EK;=¢ (k, is small for large z). After a simple
caloulation we obtain the following final result

in, (o) (o) A,

Ey(x) = \/582

Wy

Ha = e e

)
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Thus. the field B, (z) decreases according to an exponential law with =2 In
the exponent (as to the first term in (40), we have seen that it decreases accord-
ing to a stronger law e~*% and is, consequently, insignificant for large ). Ex-
pression (44) contains also a periodical factor.

The case of the frequency w, being nearly at resonance with the proper fre-
quency of the plasma, needs a separate consideration. The dielectric constant
is here small, [¢| < 1 (and is connected with the frequency by means of a simple
relation & = 2(® — wy/wy)). The calculations proceed differently for ¢ < 0 and
fore > 0.

Suppose first that ¢ is small and negative. We have seen, that for ¢ < 0
the first term in (£0) decreases as %% | i.e. faster than the second one. But with
|e] < 1 the coefficient & turns out to be small, and therefore, the second term
becomes predominant only for very large z; for smaller values of z the first
term prevails,

We shall see, that the integrand of the first term has (for small |¢]) a pole,
lying on the imaginary axis near to the co-ordinate origin (we are speaking
of the only root of the equation K,(k) = 1 in the upper half-plane). To calcu-
late this root we can, therefore, expand K, (k) in powers of k. As to the path
of integration C, in the integral (38), which defines &, (k), it is reduced simply
to the whole real axis—this path passes above the singular point u = w [k {(which
lies now on the negative half of the imaginary axis). A simple calculation gives
in the second approximation

Ky(k)=1—¢+ 3(ka).

Hence we find for the root of the equation K,(h) = 1:

Bt [l
2\ 3

Evaluating the first integral (40) as the residue relative to this pole, we find,
finally, the following expression for the total field E(x)

E(z) = % (1 - e_%\ I?). (45)

Thus, if ¢ is small and negative, the field increases monotonicaily, according
to & simple exponential law, tending to the limit Hfe. For z = 0 (45) gives
E(z) = 0 instead of the correct value E, this is connected with the fact that
In the adopted approximation the quantities of the order of & are neglected.

Consider, finally, the case of small positive values of &. For & > 0 the first
term in (40) vanishes. However, the second integral contains, except the ex-
pression (44), also a term, which decreases according te a law e-*%, For very
small e this term becomes predomninant for all values of z, except the largest.
This term is due to the residue relative to the integrand, which lies in the
upper half-plane near the real axis. It turns out, that among the infinite
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number of the roots of the equation X, (k) = 1 in the upper half-plane there

exists one, which lies (for small &) very near to the real axis. Expanding the -

K, (%) in powers of £, it is easy to obtain the following expression for the root

in guestion:
. 1[{..';, g (= _BE,{|
= — —_— [ — s
alV3 T 22V 72

Caloulating the residue relative to this pole, we obtain, finally, the following
expression for the field:

K i )& 3 [z w11
Elx) = To[l — exXp {-&—\/;w — E\;%e‘ 3”“‘“. {486)

Thus, in this case we find that the amplitude of the field increases, first,
rom zero (actually from Hg) up to 2 Hy/e, and then it performs damped oscilla-
tions (with a very small damping decrement) arcund the value #y/e fo which
it tends on large distances.
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