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ABSTRACT
Both global dynamics and turbulence in magnetized weakly collisional cosmic plasmas are
described by general magnetofluid equations that contain pressure anisotropies and heat fluxes
that must be calculated from microscopic plasma kinetic theory. It is shown that even without
a detailed calculation of the pressure anisotropy or the heat fluxes, one finds the macroscale
dynamics to be generically unstable to microscale Alfvénically polarized fluctuations. Two
instabilities that can be treated this way are considered in detail: the parallel firehose instability
(including the finite Larmor radius effects that determine the growth rate and scale of the
fastest growing mode) and the gyrothermal instability (GTI). The latter is a new result – it
is shown that a parallel ion heat flux destabilizes Alfvénically polarized fluctuations even in
the absence of the negative pressure anisotropy required for the firehose. The main physical
conclusion is that both pressure anisotropies and heat fluxes associated with the macroscale
dynamics trigger plasma microinstabilities and, therefore, their values will likely be set by the
non-linear evolution of these instabilities. Ideas for understanding this non-linear evolution
are discussed. It is argued that cosmic plasmas will generically be ‘three-scale systems’,
comprising global dynamics, mesoscale turbulence and microscale plasma fluctuations. The
astrophysical example of cool cores of galaxy clusters is considered quantitatively and it is
noted that observations point to turbulence in clusters (velocity, magnetic and temperature
fluctuations) being in a marginal state with respect to plasma microinstabilities and so it is
the plasma microphysics that is likely to set the heating and conduction properties of the
intracluster medium. In particular, a lower bound on the scale of temperature fluctuations
implied by the GTI is derived.

Key words: instabilities – magnetic fields – MHD – plasmas – turbulence – galaxies: clusters:
general.

1 IN T RO D U C T I O N

Many astrophysical plasmas are not sufficiently collisional to be
described by the standard fluid equations of magnetohydrodynam-
ics (MHD) (see e.g. Balbus 2004; Schekochihin & Cowley 2006;
Sharma et al. 2006, 2007). When the collision frequency ν is smaller
than the Larmor frequency � = eB/mc of the particle gyration
about the magnetic-field lines, the plasma becomes magnetized:
pressure and heat flux are now tensors that depend on the local
direction of the magnetic field. This complication leads to three
significant physical effects. First, on the macroscopic scales, the
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momentum and heat transport become highly anisotropic with re-
spect to the magnetic-field direction. Secondly, old MHD instabili-
ties, like the magnetorotational instability (MRI), that are believed
to excite turbulence in astrophysical systems (Balbus & Hawley
1998), are significantly modified (Quataert, Dorland & Hammett
2002; Sharma, Hammett & Quataert 2003; Islam & Balbus 2005)
and new ones appear: MTI (Balbus 2000), MVI (Balbus 2004),
HBI (Quataert 2008). Thirdly, a host of superfast microscale insta-
bilities exist that are directly driven by the pressure anisotropies
(see Schekochihin et al. 2005; Sharma et al. 2006, and references
therein) and, as we are about to discover, also by heat fluxes.

The presence of microscale instabilities especially opens a fun-
damental problem: the equations one tends to use to describe the
macroscopic dynamics of magnetized plasma, be they fluid or
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kinetic, are derived in the long-wavelength limit (kρ � 1, where ρ

is the Larmor radius; see Kulsrud 1983) and turn out to be ill-posed
because in this limit the microinstabilities have growth rates propor-
tional to k (Schekochihin et al. 2005). In order to regularize them
at small scales, one has to take into account effects associated with
the finite Larmor radius (FLR), which requires fairly complicated
kinetic theory and typically means that the full multiscale problem
is analytically hard and numerically intractable. Ideally, one would
like to have an effective mean-field theory, with the microscale fluc-
tuations analytically averaged to produce some form of closure for
the momentum and heat transport. This has not been achieved yet,
but an educated guess about the form of such a closure can me
made, based on the idea that the system should always find itself
in the marginal state with respect to the microinstabilities (Sharma
et al. 2006, 2007; Schekochihin & Cowley 2006; Lyutikov 2007;
Kunz et al. 2010).

In this paper, we attempt to make progress in setting up the
theoretical framework for astrophysical plasma dynamics by ad-
dressing three basic questions: what is the general form of the
dynamical equations that we are attempting to approximate? what
can be learned about the microinstabilities under the most general
assumptions? what constraints do their marginal stability condi-
tions impose on the allowed macroscopic states of the plasma? The
first of these questions is addressed in Section 2, the second in
Section 3, where old (firehose) and new (gyrothermal) instabilities
of Alfvénically polarized perturbations are derived. Possible ways
of thinking about the non-linear physics of these microinstabilities
are proposed in Section 4. The physical conclusions are summa-
rized in Section 5, including a discussion of the relevance of all this
in galaxy cluster cores (as a case study of a multiscale astrophysical
plasma system).

2 EQUAT I O N S F O R PL A S M A DY NA M I C S

Let us consider a two-species fully ionized plasma. In the com-
pletely general case (assuming only quasi-neutrality), the evolution
of ion density n and flow velocity u is governed by the following
equations:

dn

dt
= −n∇ · u, (1)

mn
du
dt

= −∇ ·
(

P + I
B2

8π
− B B

4π

)
, (2)

where m is the ion mass, d/dt = ∂/∂t + u · ∇ the convective
derivative, I the unit dyadic, B the magnetic field and P the plasma
pressure tensor. It is via P that all the kinetic physics comes in:
in general, P is the sum of the ion and electron pressures and for
each species, it is P = m

∫
d3v vvf , calculated from the distribution

function f (t, r, v), which is the solution of the kinetic equation for
that species. Note that v is the peculiar velocity, i.e. the particle’s
velocity in a frame moving with the mean flow velocity u.

Thus, the challenge is to calculate P. This typically involves
setting up an asymptotic expansion of the kinetic equation with
respect to one or several of the small parameters available for the
plasma under the macroscopic conditions of interest. Many such
expansions for magnetized plasma exist, corresponding to various
physical regimes: collisional (Braginskii 1965; Mikhailovskii &
Tsypin 1971, 1984; Catto & Simakov 2004), long-wavelength col-
lisionless or drift-kinetic (Chew, Goldberger & Low 1956; Kulsrud
1983), short-wavelength anisotropic or gyrokinetic (Howes et al.
2006; Schekochihin et al. 2009, and references therein) and more

specialized versions of the above, appropriate for the treatment
of pressure-anisotropy-driven instabilities: firehose (Schekochihin
et al. 2008; Rosin et al. 2010) and mirror (Califano et al. 2008;
Istomin, Pokhotelov & Balikhin 2009; Rincon, Schekochihin &
Cowley, in preparation). We do not at the moment wish to pick any
one of these, but simply note that in all of them, the equilibrium
distribution function invariably turns out to be gyrotropic, i.e. inde-
pendent of the phase angle of the particle’s Larmor gyration. The
only assumptions needed for that is that the characteristic frequen-
cies ω for the evolution both of the equilibrium and of the pertur-
bations thereof should be smaller than the ion Larmor frequency
� and the length-scales of the equilibrium longer than the ion
Larmor radius ρ. If the pressure tensor is assumed to be determined
purely by the gyrotropic lowest order distribution, then it reduces
to a diagonal form, P = p⊥(I − bb) + p‖bb, where b = B/B, and
the perpendicular and parallel pressures are p⊥ = m

∫
d3v (v2

⊥/2)f
and p‖ = m

∫
d3v v2

‖f . These pressures can be shown to satisfy the
so-called Chew–Goldberger–Low (CGL) equations: for each par-
ticle species, they are (Chew et al. 1956; Kulsrud 1983; Snyder,
Hammett & Dorland 1997; see Appendix B for a simple derivation)

p⊥
d

dt
ln

p⊥
nB

= −∇ · q⊥ − q⊥∇ · b − ν(p⊥ − p‖), (3)

p‖
d

dt
ln

p‖B2

n3
= −∇ · q‖ + 2q⊥∇ · b − 2ν(p‖ − p⊥), (4)

where ν is the collision frequency, q⊥ = m
∫

d3v v‖(v2
⊥/2)f and

q‖ = m
∫

d3v v3
‖f are the parallel fluxes of the perpendicular and

parallel heat and q⊥ = bq⊥, q‖ = bq‖.
As mentioned above, pressure anisotropies p⊥ − p‖ �= 0 lead to

instabilities whose peak growth rates occur at scales smaller than
those allowed by the validity of the diagonal approximation for P
and are not captured by this approximation (Schekochihin et al.
2005). The instabilities are regularized by the FLR effects, so it is
natural to resort to FLR corrections in the plasma pressure tensor
(Snyder & Hammett 2001; Ramos 2005; Passot & Sulem 2007). To
lowest order in ω/� and kρi, this is quite easy to do and the result,
a simple derivation of which is given in Appendix A, is

P = p⊥I − (p⊥ − p‖)bb + G, (5)

G = 1

4�
[b × S · (I + 3bb) − (I + 3bb) · S × b]

+ 1

�
[b (σ × b) + (σ × b) b], (6)

where the auxiliary tensor S and vector σ are

S = (p⊥∇u + ∇q⊥) + (p⊥∇u + ∇q⊥)T , (7)

σ = (p⊥ − p‖)

(
db
dt

+ b · ∇u
)

+ (3q⊥ − q‖)b · ∇b. (8)

Each plasma species contributes a pressure tensor of the form (5).
In general, electron pressures are comparable to ion pressures, but
it is not hard to show that the electrons’ contribution to the FLR
term G is smaller than the ions’ by a factor of (me/mi)1/2.

Note that if one sets p⊥ − p‖ = 0 and 3q⊥ − q‖ = 0 (as would
be the case for an isotropic equilibrium distribution and collisional
heat fluxes), the FLR term G in equation (5) is readily recognized as
the so called ‘gyroviscosity’ tensor, first obtained (in the collisional
limit) by Braginskii (1965) [he assumed sonic flows and found
just the ∇u terms; the heat flux terms were introduced later by
Mikhailovskii & Tsypin (1971, 1984) to accommodate subsonic
flows].
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Thus, the momentum equation (2) has the form

mn
du
dt

= −∇
(

p⊥ + B2

8π

)

+∇ ·
[

bb
(

p⊥ − p‖ + B2

4π

)
− G

]
, (9)

where G is given by equation (6). Now we need an evolution equa-
tion for the magnetic field. Faraday’s law reads

∂B
∂t

= −c∇ × E, (10)

where E is the electric field. The electron momentum equation is
used to calculate E. Since the electron mass is small compared to
the ion mass, to lowest order in (me/mi)1/2 this reduces to the force
balance

−∇ · Pe − ene

(
E + ue × B

c

)
= 0. (11)

The electron density ne is related to the ion density n by the quasi-
neutrality of the plasma, ne = Zn (the ion charge is Z times electron
charge e). The electron flow velocity ue is related to the ion flow
velocity u by ue = u − j/ene, where, using Ampère’s law, the
current density is j = c∇ × B/4π. Finally, since the FLR terms
in the electron pressure tensor are negligible to lowest order in
(me/mi)1/2, we have Pe = p⊥eI − (p⊥e − p‖e)bb. Assembling all
this together, we get1

dB
dt

= B · ∇u − B∇ · u − c∇ × Ẽ, (12)

Ẽ = − 1

ene
∇

(
p⊥e + B2

8π

)

+ 1

ene
∇ ·

[
bb

(
p⊥e − p‖e + B2

4π

)]
. (13)

Note that c/ene = B/mn�, where m, n and � are ion mass, density
and Larmor frequency, respectively.

We will not be preoccupied here with the determination of the
pressures and heat fluxes (which is necessary to close the set of
equations we have written down). Depending on the physical regime
one is interested in, they can either be calculated in the collisional
limit (Braginskii 1965) or Landau fluid closures can be devised for
them, appropriate for a collisionless plasma (Snyder et al. 1997;
Snyder & Hammett 2001; Ramos 2005; Passot & Sulem 2007).
Instead of wading into this rather complex subject, we will inquire
what can be learned just from the general form of the equations of
plasma dynamics outlined above.

3 FI R E H O S E A N D G Y ROT H E R M A L
INSTABILITIES

In any given astrophysical problem, one might find some macroscale
solution of the equations of Section 2, describing the large-scale
dynamics. Such solutions turn out to be generically unstable to
perturbations with large wavenumbers and high frequencies (much
larger than the fluid turnover rates ω � |∇u|). In general, showing
this involves having to perturb all quantities, including the pressures
and the heat fluxes, which requires a kinetic closure. However, there

1See Appendix C for the demonstration that this equation conserves mag-
netic flux except at very small scales, where electron pressure anisotropy
can lead to violation of flux freezing.

is a class of perturbations whose stability does not depend on the
details of kinetic theory.

Let us start by perturbing the momentum equation (9). We assume
the perturbation to be ∝ exp(−iωt + ik · r). In our perturbation
theory, we will always consider terms containing ω and k to be
dominant in comparison with the terms containing time derivatives
or gradients of the macroscale quantities. Thus, from equation (9),
we get, noting that ∇ · B = 0 implies ∇ · b = −b · ∇B/B,

mnωδu = k⊥

(
δp⊥ + BδB

4π

)
+ bk‖

[
(p⊥ − p‖)

δB

B
+ δp‖

]

− k‖

(
p⊥ − p‖ + B2

4π

)
δb + k · δG. (14)

Note that δS = ip⊥(kδV + δV k), where δV = δu + (q⊥δb +
bδq⊥)/p⊥. Therefore, from equation (6),

k · δG = ip⊥
�

{ (
k2

‖ + k2
⊥
4

)
(b × δV )

+
[(

k‖b + k⊥
4

)
(k⊥ × b) − (k⊥ × b)

(
k‖b + k⊥

4

)]
· δV

}

+ 1

�
[k‖ (δσ × b) + k⊥ · (δσ × b) b], (15)

δσ = −i[(p⊥ − p‖)(ωδb − k‖δu) − (3q⊥ − q‖)k‖δb]. (16)

In the above equations, δB = δB‖ and δb = δB⊥/B, where δB
satisfies the perturbed equation (12):

ω
δB
B

= −k‖δu⊥ + b (k⊥ · δu⊥)

+ ik‖
mn �

{ (
p⊥e − p‖e + B2

4π

)
(k × δb)

+ (k⊥ × b)

[
δp⊥e − δp‖e −

(
p⊥e − p‖e − B2

4π

)
δB

B

]}
.

(17)

Examining equations (14–17), we observe that in the simplest
case of k⊥ = 0, the Alfvénically polarized perturbations decouple
from the compressive/slow-wave-polarized perturbations (δn, δB,
δu‖, δp⊥, δp‖, δq⊥ and δq‖). No kinetic physics is required to study
the stability of Alfvénic perturbations, which satisfy

mnωδu⊥ = −k‖

(
p⊥i − p‖i + p⊥e − p‖e + B2

4π

)
δb

+ ik2
‖

�
b×

[
p‖iδu⊥ + (p⊥i − p‖i)

ω

k‖
δb − (2q⊥i − q‖i)δb

]
,

(18)

ωδb = −k‖δu⊥ + ik2
‖

mn �

(
p⊥e − p‖e + B2

4π

)
(b × δb) , (19)

where we have restored species indices on pressures and heat fluxes;
note that only ion FLR terms are kept in equation (18). In the ab-
sence of FLR effects, equations (18) and (19) describe Alfvén waves
with propagation speed modified by the pressure anisotropy. When
p⊥ − p‖ < −B2/4π, it gives rise to the well-known firehose insta-
bility with a growth rate γ ∝ k‖ (Rosenbluth 1956; Chandrasekhar,
Kaufman & Watson 1958; Parker 1958; Vedenov & Sagdeev
1958). The FLR gives rise to a dispersive correction that sets the
wavenumber of the fastest growing mode (Kennel & Sagdeev 1967;
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Davidson & Völk 1968), but it also contains a contribution from the
heat fluxes, which lead to a new instability.

Let us combine equations (18) and (19) and non-dimensionalize
everything:

ω̄2δb = k2

2

(
	 + 2

β

)
δb + ik2

2
[(1 − δ)ω̄ + k�T ] (b × δb) ,

(20)

where ω̄ = ω/�, k = k‖ρ, ρ = vth/�, vth = (2p‖i/mn)1/2. The
problem has four physical dimensionless parameters:

	 = p⊥i − p‖i + p⊥e − p‖e

p‖i
, β = 8πp‖i

B2
, (21)

δ = p⊥i − p‖i − (p⊥e − p‖e)

p‖i
− 2

β
, �T = 2q⊥i − q‖i

p‖ivth
, (22)

but, in fact, only two matter because only the combination 	+ 2/β

figures in equation (20) and δ will turn out not to be of much
consequence. The resulting dispersion relation is[
ω̄2 − k2

2

(
	 + 2

β

)]2

= k4

4
[(1 − δ) ω̄ + k�T ]2. (23)

This has four roots of which two can be unstable:

ω̄ = ±k2

4
(1 − δ)

+ i|k|√
2

√
−

(
	 + 2

β

)
∓ k�T − k2

8
(1 − δ)2 (24)

(we will henceforth refer to the positive/negative frequency modes
as ‘+/− modes’). The instability occurs for k such that the expres-
sion under the square root is positive. Demanding that the interval of
such wavenumbers is non-empty gives the necessary and sufficient
condition for instability:

� ≡ �2
T − (1 − δ)2

2

(
	 + 2

β

)
> 0. (25)

3.1 Firehose instability

We observe first that if the heat fluxes are negligible, �2
T � |	 +

2/β|, this condition is satisfied for 	 + 2/β < 0 and we have the
standard parallel (k⊥ = 0) firehose dispersion relation (Kennel &
Sagdeev 1967; Davidson & Völk 1968):

ω̄ = ±k2

4
(1 − δ) + i|k|√

2

∣∣∣∣	 + 2

β

∣∣∣∣
1/2

√
1 − k2

k2
0

, (26)

k0 = 2
√

2

|1 − δ|
∣∣∣∣	 + 2

β

∣∣∣∣
1/2

, (27)

where k0 is the cut-off wavenumber and each of the + and −
modes has two peaks of the growth rate occurring symmetrically at
kp = ±k0/

√
2 (see Fig. 1a). The maximum growth rate is

γmax = 1

|1 − δ|
∣∣∣∣	 + 2

β

∣∣∣∣ . (28)

Note that here and everywhere else, we assume that 	 is not too
close to 1.
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Figure 1. Growth rates of the firehose and gyrothermal instabilities (equa-
tion 24) in three qualitatively different regimes: (a) pure firehose, �T = 0;
(b) GTI combined with firehose, 	 + 2/β < 0; (c) pure GTI, 	 + 2/β > 0
(firehose stable). We have set δ = 	 − 2/β, i.e. p⊥e − p‖e = 0.

3.2 Gyrothermal instability

The situation becomes more complicated when the heat fluxes are
not negligible. Let us assume, without loss of generality, that �T > 0
(otherwise, change the sign of the parallel spatial coordinate). There
are two unstable intervals

+mode : −
4

(
�T + √

�
)

(1 − δ)2
< k < −

4
(
�T − √

�
)

(1 − δ)2
, (29)

−mode :
4

(
�T − √

�
)

(1 − δ)2
< k <

4
(
�T + √

�
)

(1 − δ)2
. (30)

When 	 + 2/β ≤ 0, these intervals intersect and contain k = 0,
otherwise they are disjoint (see Fig. 1b,c). Computing their peak
growth rates and corresponding wavenumbers is straightforward.
Here, we consider two interesting limits.

When �2
T � |	 + 2/β|, we have, for the + and − modes,

respectively

kp = ∓ 6�T

(1 − δ)2
, γmax = 3

√
3 �2

T

|1 − δ|3 . (31)

We see that an instability is present that is driven purely by heat
fluxes, even when the pressure anisotropy is neutralized by the ten-
sion force (	 = −2/β). This is the purest form of the gyrothermal
instability (GTI), which, as far as we know, has not been previously
reported in the literature. In the more general case when the pressure
anisotropy is not negligible, the GTI operates in conjunction with
the firehose. The condition (25) means that GTI can be operative
even when 	 + 2/β > 0, a regime in which the Alfvén waves have
previously been believed to be stable.

The second important limit is the case when GTI is close to
marginal stability, � → +0 (we are assuming that �2

T is finite, so
the firehose is stable in this limit). According to equations (29) and
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(30), the instability intervals in this limit shrink to the immediate
vicinity of just two wavenumbers:

kp = ∓ 4�T

(1 − δ)2

(
1 + �

�2
T

)
, γmax = 4�T

√
�

|1 − δ|3 , (32)

where the upper sign is for the + mode, the lower for the − mode.
This is a very different behaviour from the firehose, for which
the interval of growing modes moves to ever longer wavelengths as
marginal stability (	+2/β → −0) is approached (see equation 27),
i.e. the firehose stops being a microscale instability in this limit. In
contrast, the GTI always excites Alfvénic fluctuations at very short
wavelengths.

Finally, we note that the assumption in our derivation that
ω/� � 1 and k‖ρ � 1 imposes constraints on the values of
our dimensionless parameters that we are allowed to consider:
|	+2/β| � 1 for the firehose and �T � 1 for the GTI. The expres-
sions for maximum growth rates and corresponding wavenumbers
derived above (equation 28, 31 and 32) provide guidance on the
relative smallness of all these quantities and, therefore, on the or-
dering schemes that can be pursued in weakly non-linear theories
(one example is the ordering adopted by Rosin et al. 2010).

4 N O N - L I N E A R EVO L U T I O N

Non-linear theories of pressure-anisotropy-driven plasma instabili-
ties are in their infancy, but most of them agree that the net result is
to drive the anisotropies towards marginal stability thresholds (e.g.
Shapiro & Shevchenko 1964; Quest & Shapiro 1996; Matteini et al.
2006; Schekochihin et al. 2008; Califano et al. 2008; Istomin et al.
2009; Rosin et al. 2010). Observational evidence from the solar
wind strongly points in the same direction (Kasper, Lazarus & Gary
2002; Hellinger et al. 2006; Matteini et al. 2007; Bale et al. 2009).

If we assume that this is what happens in the case of the firehose
and gyrothermal instabilities, then the marginal state � = 0 (see
equation 25) implies a certain relationship between the heat fluxes
and the pressure anisotropy in the non-linear regime. In order to find
the way in which the system contrives to set up this relationship,
we must first examine the physical mechanisms that determine 	,
q⊥ and q‖.

Subtracting equation (4) from equation (3), we get

d(p⊥ − p‖)

dt
= (p⊥ + 2p‖)

1

B

dB

dt
− (3p‖ − p⊥)

1

n

dn

dt

−∇ · (q⊥ − q‖) − 3q⊥∇ · b − 3ν(p⊥ − p‖).

(33)

This tells us that there are three sources of pressure anisotropy:
changing magnetic-field strength (changes in p⊥ have to match
changes in B to maintain conservation of the first adiabatic invariant
for each particle, μ = mv2

⊥/2B), compression/rarefaction, and heat
fluxes.

If we assume for a moment that the collision rate is larger than the
rate of change of all fields, then the differences between p⊥ and p‖
in equation (33) can be neglected everywhere except the collisional
term and so the steady-state average pressure anisotropy satisfies

	 = 1

ν

⎧⎨
⎩ 1

B

dB

dt
− 2

3

1

n

dn

dt
− ∇ · [

b(q⊥ − q‖)
] + 3q⊥∇ · b

3p‖

⎫⎬
⎭.

(34)

Note that if we use equations (1) and (12) (neglecting FLR terms
in the induction equation) to express the rates of change of B and
n in the right-hand side of equation (34), the first two terms are

the Braginskii (1965) parallel viscous stress. The last term is the
heat-flux correction to it introduced by Mikhailovskii & Tsypin
(1971, 1984) for subsonic flows. Under the same assumption of
high collisionality, the heat fluxes are2

q⊥ = 1

3
q‖ = −1

2
n

v2
th

ν
b · ∇T , (35)

where T = p/n and p = 2
3 p⊥ + 1

3 p‖.
As we showed in Section 3, the slow macroscale motions that

produce this 	 and these heat fluxes are unstable to microscale
perturbations, in particular, the Alfvénic ones excited by the fire-
hose/GTI. Schekochihin et al. (2008) showed that the way a sea of
small-scale Alfvénic fluctuations can change a large-scale driven
anisotropy is by growing secularly with time and thus producing a
finite change in the average field strength:

1

B

dB

dt
= 1

B0

dB0

dt
+ 1

2

∂|δb|2
∂t

, (36)

where the overbar denotes a small-scale average, B0 is the slowly
changing macroscale field and δb = δB⊥/B0 is the fast microscale
Alfvénic perturbation of it. Let us replace the magnetic term in
equation (34) with its average given by equation (36). Even though
the fluctuation amplitude is small, the non-linear feedback will
produce a finite contribution to 	 if the fluctuation energy grows
secularly, |δb|2 ∼ γ0t , where γ0 is the typical rate of change of B0.
There does not appear to be any other way for the small Alfvénic
fluctuations to affect the average macroscopic pressure anisotropy
or heat fluxes.

In the case of the pure firehose instability (no heat fluxes), the
non-linear feedback described above cancels the negative pressure
anisotropy that triggered the firehose and pushes the system towards
	 + 2/β → −0. If heat fluxes are present, the marginal state of the
GTI requires 	 + 2/β > 0 (� → + 0; see equation 25). This can
still be achieved by secularly growing Alfvénic fluctuations (which,
unlike for the firehose, now have a definite scale unaffected by the
pressure anisotropy; this is explored further in Rosin et al. 2010).

A remarkable consequence of this predicted tendency for a sys-
tem to develop positive pressure anisotropy to cancel the desta-
bilizing effect of heat fluxes is that instabilities associated with
	 > 0 (e.g. mirror) could perhaps be triggered as secondary in-
stabilities of the saturated state of the GTI. One might imagine
a sea of Alfvénic fluctuations attempting to neutralize the GTI
and exciting unstable mirror modes – this is feasible if the pres-
sure anisotropy corresponding to the marginal state of the GTI
exceeds the mirror stability threshold: 	 � 2�2

T − 2/β > 1/β, i.e.
�2

T > 3/(2β). The mirror mode near its threshold 	 − 1/β → +0
is polarized as a highly oblique slow wave: it has δu‖ and δB‖
with k‖ρ ∼ 	 − 1/β � k⊥ρ ∼ (	 − 1/β)1/2 (see e.g. Hellinger
2007). This suggests a three-scale system: a macroscale equilib-
rium, the microscale Alfvénic foam with k‖ρ ∼ �T ∼ 1/

√
β (see

2The numerical prefactor in the last expression in equation (35) depends
on the exact form of the collision operator used and is not relevant to our
discussion. The same applies to numerical coefficients in equation (34) and
so, to preserve consistency, we have given the values obtained by using the
Lorentz operator (Rosin et al. 2010). The more precise coefficients for ions
are 25/32 in equation (35), 3075/1068 in front of the first two terms in
equation (34) and 1823/1068 in front of the heat flux terms in the same
equation; the ion collision frequency is ν = 4

√
πne4�/3m1/2T 3/2, where

� is the Coulomb logarithm (Braginskii 1965; Mikhailovskii & Tsypin
1971, 1984; Catto & Simakov 2004).
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equation 32) driven by the GTI and producing an average pres-
sure anisotropy, and a mesoscale near-threshold mirror turbulence
driven by that anisotropy and, because of scale separation, probably
otherwise disconnected from the Alfvénic modes. Finding out how
they all co-exist and how the mirror saturates requires a systematic
kinetic calculation, which will be attempted elsewhere.

Finally, as an alternative to the above considerations, we should
perhaps mention the possibility of strong non-linear distortions of
the magnetic field (δb ∼ 1) that could reorient the field so as
to minimize the parallel ion temperature gradient and thus switch
off or weaken the GTI – on large scales, such behaviour has been
observed in simulations of another, macroscale, instability driven by
the parallel (electron) heat flux and buoyancy force, called the heat-
flux-buoyancy instability or HBI (Bogdanović et al. 2009; Parrish,
Quataert & Sharma 2009; Sharma et al. 2009).

5 PH Y S I C A L A N D A S T RO P H Y S I C A L
C O N S I D E R AT I O N S

5.1 Physical conclusions

The main physical conclusion is that parallel heat fluxes can directly
drive microscale instabilities in magnetized astrophysical plasmas.
This can happen in two ways.

First, as follows from equation (33), plasma pressure anisotropy
can be driven by heat fluxes, so firehose, mirror and the rest of
the microinstabilities due to p⊥ − p‖ �= 0 can be triggered not
just by plasma motions, but also by parallel temperature gradients.
Although perhaps not much discussed explicitly, this instability
mechanism is not particularly surprising and it is implicitly present
in the existing analytical and numerical models based on CGL
equations with heat fluxes (e.g. Snyder et al. 1997; Quataert et al.
2002; Sharma et al. 2006, 2007).

A more interesting and, we believe, novel instability mechanism
is the destabilization of the Alfvénic perturbations by the ion parallel
heat fluxes via the FLR effects in the plasma pressure tensor – we call
this the GTI. When the firehose is unstable, the GTI can substantially
modify (increase) its growth rate, but more importantly, the GTI
persists even when the firehose is stable, so the firehose marginal
stability condition has to be replaced by the GTI marginal stability
condition involving both the pressure anisotropy and the ion heat
flux (equation 25).

The GTI is distinct from the two other instabilities associated
with the presence of temperature gradients and recently explored
in astrophysical contexts – the MTI (Balbus 2000; Parrish & Stone
2007; Parrish, Stone & Lemaster 2008) and the HBI (Quataert
2008; Bogdanović et al. 2009; Parrish et al. 2009; Ruszkowski &
Oh 2009; Sharma et al. 2009). The latter are driven by buoyancy
and are essentially macroscale fluid instabilities, like MRI (Balbus
& Hawley 1998) or MVI (Balbus 2004). They are also much slower
than the GTI, which is a microscale plasma instability belonging to
the same class as the firehose, with peak growth rate a fraction of
the cyclotron frequency. Since such an instability can be triggered
by the presence of a heat flux, one might wonder whether in the
same way that large-scale pressure anisotropy could be conjectured
always to be determined by the marginal stability conditions of
the microinstabilities (Sharma et al. 2006, 2007; Schekochihin &
Cowley 2006; Lyutikov 2007; Kunz et al. 2010), the heat fluxes as
well should be constrained by the marginal stability conditions of
the GTI and, perhaps, other such instabilities. We stress, however,
that, whereas this might be a reasonable interim course of action, it

by no means excuses us from the task of finding out how GTI and
the rest of the instabilities behave and saturate on the microphysical
level (see discussion in Section 4).

5.2 An astrophysical example: galaxy clusters

A detailed development of applications to concrete astrophysical
systems falls outside the scope of this paper (see, e.g., Kunz et al.
2010). However, it is, perhaps, illuminating to provide a few esti-
mates of the role the GTI might play in cool cores of relaxed galaxy
clusters, a good example of a real astrophysical plasma for which
a sufficient amount of observational evidence exists to enable a
quantitative discussion of the multiscale dynamics.

5.2.1 Three-scale dynamics

The conditions in the cluster cores are believed to be controlled
by a balance between the radiative cooling and a reheating due
perhaps to electron heat conduction from the bulk of the cluster and
perhaps also to the turbulence excited by the active galactic nuclei
(e.g. Binney 2003; Dennis & Chandran 2005; Peterson & Fabian
2006; McNamara & Nulsen 2007; Guo, Oh & Ruszkowski 2008;
Ruszkowski & Oh 2009, and references therein). The plasma in the
cores has the electron density ne in the range 10−2 to 10−1 cm−3 at
the radial distance of r ∼ 10 kpc from the centre and about a factor
of 10 less at the edge of the core at r ∼ 100 kpc. The ion density
is the same for a hydrogen plasma. The electron temperature Te is
measured reasonably precisely and is of the order of a few keV,
rising by about a factor of 2 or 3 from r ∼ 10 to 100 kpc (e.g. David
et al. 2001; Vikhlinin et al. 2005; Fabian et al. 2006; Leccardi
& Molendi 2008; Sanders et al. 2010a,b). The ion temperature is
not measured, but the ion–electron temperature equilibration turns
out to be quite fast compared to all other relevant dynamics, so
Ti ∼ Te can reasonably be assumed. The unsolved macroscale
problem is why the temperature does not drop lower in the centre
– simple estimates suggest that the system should be vulnerable to
a collapse onto the centre precipitated by the radiative cooling on a
characteristic time-scale of about 1 Gyr.

This is where turbulent heat conduction3 and turbulent heating
are invoked as mechanisms that prevent the cooling catastrophe.
The outer scale L of turbulent motions is believed to be between
a few and a few tens of kpc, with corresponding velocities U of a
few hundred km s−1 (Enßlin & Vogt 2006; Sanders et al. 2010b).
The turbulent motions lead to fluctuations in the magnetic-field
strength and so excite pressure anisotropies, given by equation (34).
Equation (12) tells us that the typical rate of change of the field
is comparable to the typical rate of strain ∼ (U/L)Re1/2, where
Re ∼ ULν/v2

th is the Reynolds number (the maximum rate of strain
that can affect the magnetic-field strength is at the viscous scale set
by the parallel viscosity; see Schekochihin & Cowley 2006 for a
detailed explanation). Thus, we estimate the pressure anisotropy as

3Since the cooling rate is ∝ neT
−1/2

e and the relaxation rate of temperature
gradients based on Spitzer conductivity is ∝ n−1

e T
5/2

e (Spitzer 1962), they
cannot balance in a stable way, so Spitzer conduction by itself is not sufficient
to explain the absence of the cooling catastrophe. In contrast, turbulent
heating controlled by the plasma instabilities via pressure anisotropy (as
explained below) turns out to be a thermally stable mechanism for regulating
cooling flows (Kunz et al. 2010).
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follows:

	 ∼ 1

ν

U

L
Re1/2 ∼

(
1

ν

U

L

)1/2
U

vth

∼ 0.007
( ne

0.01 cm−3

)−1/2
(

Ti

1 keV

)1/4

×
(

U

100 km s−1

)3/2 (
L

10 kpc

)−1/2

, (37)

where ν is the ion collision rate. In view of the instability condition
(25), whether this anisotropy will trigger plasma microinstabilities
is decided by comparing it with

2

β
= 0.005

(
B

1 μG

)2 ( ne

0.01 cm−3

)−1
(

Ti

1 keV

)−1

. (38)

The two numbers are remarkably close (obviously, only orders of
magnitude matter here, given all the uncertainties). Thus the in-
tracluster plasma teeters at the brink of marginal stability. In the
unstable state, at the reference values B = 1 μG and Ti = 1 keV,
the firehose (or GTI) will have growth times and peak-growth scales
(see Section 3):

γ −1
max ∼ (	�i)

−1 ∼ 2 · 104 s � 6 hr, (39)

k−1
p ∼ 	−1/2ρi ∼ 700 000 km � 20 npc. (40)

These are microscopic scales compared both to global cluster dy-
namics and intracluster turbulence. The implication is that the
plasma instabilities should saturate and presumably contrive to re-
turn the intracluster medium to marginal stability instantaneously
fast via an observationally invisible sea of nanoparsec-scale mag-
netic fluctuations.

Thus, a cluster core is a ‘three-scale system’: global equilibrium
profiles (102 kpc, 100 Gyr) and turbulence (101 kpc, 101 Myr)
constitute the macroscale magnetofluid dynamics of the intracluster
medium,4 subject to transport properties controlled by ‘nanoscales’
(101 npc, 101 hr), where plasma microinstabilities are excited. Their
non-linear behaviour sets the pressure anisotropy and probably also
the heat fluxes. The pressure anisotropy determines the effective
viscosity of the plasma and, therefore the heating rate; the heat
fluxes determine the effective thermal conductivity – thus, neither
the turbulence nor the global dynamics (e.g. temperature profiles
for the cooling-core problem) can be computed correctly without a
good theory or, at least, a good model prescription, for the effect
of the microinstabilities on the macroscale dynamics. A similar
three-scale situation arises in most other weakly collisional5 cosmic
plasmas: e.g. accretion flows, solar wind, etc.

4As we already pointed out in Section 5.1, various macroscopic instabilities
that play an important part in plasma dynamics, including those due to
plasma effects such as anisotropic viscosity and thermal conductivity (MVI,
MTI, HBI) act on time scales roughly comparable with the turbulence and
are slow compared to the microinstabilities: e.g. HBI in cluster cores is
estimated to have growth times of the order of 102 Myr (Parrish et al. 2009).
5Collisional scales are intermediate between turbulence and plasma mi-
crophysics: the collision times are ν−1

ii ∼ 0.04 Myr, ν−1
ei ∼ 0.001 Myr,

ν−1
ie ∼ 1 Myr (the latter is the typical time for Ti and Te to equalize); the

mean free path is λmfp ∼ 0.01 kpc, where we have taken reference values
of ne = 0.01 cm−3 and Ti = 1 keV, collision frequencies are ∝ nT −3/2 and
λmfp ∝ n−1T 2.

5.2.2 Temperature fluctuations

As we have shown in this paper, ion temperature gradients, includ-
ing ones due to temperature fluctuations, if they are there and if the
associated parallel heat fluxes are large enough, will excite microin-
stabilities. The estimates of γmax and kp in Section 5.2.1 still hold,
by order of magnitude, for the GTI, so the instability is extremely
fast and one should expect to find plasma close to the marginal
state. We may estimate (crudely) the minimum parallel temperature
length-scale allowed by the instability condition (25) by requiring
�2

T � 2/β for stability and using equation (35) for the heat fluxes:

lT � 0.3
( ne

0.01 cm−3

)−1/2
(

Ti

1 keV

)5/2 (
B

1 μG

)−1

kpc, (41)

where l−1
T = b·∇ ln T is the temperature scale. Note the very strong

temperature dependence of this lower bound: thus, deep in the cool
cores, the estimate above gives kiloparsec-scale temperature fluc-
tuations, rising to tens and even hundreds of kpc at larger distances
from the centre.

Interestingly, temperature fluctuations on 1 to 10 kpc scales have
been detected in cool-core clusters (Simionescu et al. 2001; Fabian
et al. 2006; Sanders et al. 2010a) while in the bulk of the cluster
gas and in non-cool-core (radio-halo) clusters, the scales appear
to be larger, around 100 kpc (Markevitch et al. 2003; Million &
Allen 2009). Thus, we again find the observed physical conditions
intriguingly close to the marginal stability conditions set by plasma
microphysics. Nevertheless, we would like to conclude on a cau-
tious note: whether the plasma contrives to satisfy the lower bound
(41) by smoothing the temperature gradients or by aligning them
carefully across the magnetic field remains unclear and underscores
the need for a detailed theory of the non-linear saturation of the
GTI and other plasma microinstabilities. Observationally, it would
be fascinating to see if any evidence can be obtained of correlations
between the magnetic-field direction and temperature fluctuations
– presumably not an impossible task if one combines radio obser-
vations of polarized synchrotron emission and X-ray temperature
maps (cf. Taylor et al. 2006).
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APPENDI X A : PLASMA PRESSURE TENSO R

We start with the general kinetic equation for the distribution func-
tion of a plasma species:

df

dt
+ v · ∇f +

(
a + e

m

v × B
c

− v · ∇u
)

· ∂f

∂v
= C[f ], (A1)

where e is the particle charge, c the speed of light, a = (e/m)(E +
u × B/c) − du/dt and C[f ] is the collision integral. The flow ve-
locity u appears in the kinetic equation because v is the peculiar
velocity. Since (e/mc)(v × B) · ∂f /∂v = −�∂f /∂ϑ , where � is
the Larmor frequency and ϑ is the phase angle of the particle’s gyra-
tion around the magnetic-field line, equation (A1) can be rewritten
as follows:

�
∂f

∂ϑ
= df

dt
+ v · ∇f + (a − v · ∇u) · ∂f

∂v
− C[f ]. (A2)

We can now express the plasma pressure tensor P = m
∫

d3v vvf

using the following identity

vv = v2
⊥
2

(I − bb) + v2
‖ bb + ∂T

∂ϑ
,

T =
(
v‖b + v⊥

4

)
(v⊥ × b) + (v⊥ × b)

(
v‖b + v⊥

4

)
, (A3)

or, in index notation, Tij = (1/4)Mijklvkvl , where

Mijkl = (δik + 3bibk) εjlnbn + εilnbn

(
δjk + 3bjbk

)
. (A4)

Therefore, after integration by parts with respect to ϑ ,

Pij = p⊥δij − (p⊥ − p‖)bibj − Mijkl

4

∫
d3v mvkvl

∂f

∂ϑ
. (A5)

We now substitute equation (A2) into the above expression and note
that

∫
d3v vv a · ∂f /∂v = 0 after integration by parts and using the

fact that
∫

d3v vf = 0 by definition of peculiar velocity. We get,
therefore,

Pij = p⊥δij − (p⊥ − p‖)bibj − Mijkl

4�

[
dPkl

dt
+ ∇mQmkl

+ (δmnPkl + δknPml + δlnPmk)∇mun − Ckl

]
, (A6)

where Ckl = m
∫

d3v vkvlC[f ] and we have introduced the heat flux
tensor Qmkl = m

∫
d3v vmvkvlf .

So far we have made no approximations. As promised in
Section 2, we now calculate all terms in equation (A6) assuming that
we can use a gyrotropic (independent of ϑ) distribution function.
This amounts to setting up a perturbation theory in which to low-
est order, equation (A2) gives a gyrotropic equilibrium distribution,
�∂f0/∂ϑ = 0, and at the next order we have �∂δf /∂ϑ = . . . ,
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where only f0 appears in the right-hand side. The assumptions we
need to achieve such an expansion are ω/� � 1 and kρ � 1 for
all quantities involved.

Since f0 is gyrotropic, we may gyroaverage 〈vkvl〉 =
(1/2π)

∫
dϑ vkvl = (v2

⊥/2)(δkl − bkbl) + v2
‖bkbl inside all the ve-

locity integrals in the square brackets in equation (A6), so we get

MijklPkl∇mum = MijklCkl = 0, (A7)

MijklPml∇muk =
−p⊥

[
b × (∇u) · (I + 3bb) − (I + 3bb) · (∇u)T × b

]
,

(A8)

MijklPmk∇mul =
−p⊥[b × (∇u)T · (I + 3bb) − (I + 3bb) · (∇u) × b]

− 4(p⊥ − p‖)[b (b · ∇u × b) + (b · ∇u × b) b], (A9)

Mijkl

dPkl

dt
= −4(p⊥ − p‖)

(
b

db
dt

× b + db
dt

× b b
)

. (A10)

Similarly gyroaveraging 〈vmvkvl〉 in the heat flux integral, Qmkl =
q⊥ (bmδkl + δmkbl + δmlbk) − (3q⊥ − q‖)bmbkbl . Therefore,

Mijkl∇mQmkl = (I + 3bb) · [∇q⊥ + (∇q⊥)T
] × b

− b × [∇q⊥ + (∇q⊥)T
] · (I + 3bb)

− 4(3q⊥ − q‖)[b (b · ∇b × b) + (b · ∇b × b) b].

(A11)

Assembling equations (A7–A10) and (A11) together in equ-
ation (A6), we obtain equations (5–8).

A P P E N D I X B: C G L E QUAT I O N S

In order to derive equations (3) and (4), we average equation (A2)
over the gyroangles, (1/2π)

∫
dϑ , which eliminates the left-hand

side. In the remainder, we assume that the lowest order distribution
function is gyrotropic and so can be written as f = f (t, r, v, v‖).
The time and spatial derivatives in equation (A2) are taken at con-
stant v, so, in order for the gyroaverage to commute with them,
they have to be transformed into derivatives at constant v and v‖, a
non-trivial step because v‖ = v · b(t, r):(

df

dt

)
v

=
(

df

dt

)
v,v‖

+ db
dt

· v

(
∂f

∂v‖

)
v

, (B1)

(∇f )v = (∇f )v,v‖ + (∇b) · v

(
∂f

∂v‖

)
v

. (B2)

Using these formulae and also ∂f /∂v = (v/v)∂f /∂v + b∂f /∂v‖
and 〈v〉 = v‖b, 〈vv〉 = (v2

⊥/2)(I − bb) + v2
‖ bb, we find that the

gyroaveraged equation (A2) is

df

dt
+ v‖b · ∇f + v2

⊥
2

(∇ · b)
∂f

∂v‖
+ a · b

(
v‖
v

∂f

∂v
+ ∂f

∂v‖

)

+ (bb : ∇u)

[(
v2

⊥
2

− v2
‖

)
1

v

∂f

∂v
− v‖

∂f

∂v‖

]

− (∇ · u)
v2

⊥
2

1

v

∂f

∂v
= C[f ]. (B3)

Changing variables from (v, v‖) to (v⊥, v‖) or (μ, v‖), where
μ = v2

⊥/2B, transforms this equation into forms that are perhaps

more familiar from the well-known Kinetic MHD approximation
(Kulsrud 1983).

Equations (3) and (4) are obtained by taking the v2
⊥/2 and v2

‖
moments of equation (B3) and integrating by parts wherever oppor-
tune. The collisional relaxation terms are easiest to calculate with
a simplified collisional operator, e.g. Krook (Snyder et al. 1997) or
Lorentz (Rosin et al. 2010). To complete the picture, it may be use-
ful to mention here that in some cases, especially when the pressure
anisotropy p⊥ − p‖ is small compared to the pressures themselves,
it is convenient to replace equations (3) and (4) by equation (33)
determining the evolution of p⊥ − p‖ and an equation for the to-
tal pressure p = (2/3)p⊥ + (1/3)p‖ or temperature T defined by
p = nT . Using equations (3) and (4), we get

3

2
n

dT

dt
= p

1

n

dn

dt
+ (p⊥ − p‖)

(
1

B

dB

dt
− 2

3

1

n

dn

dt

)
− ∇ · q, (B4)

where q = q⊥ + q‖/2. The first term is compressional heating, the
second viscous heating and the third the heat flux. While the same-
species collisions do not affect the evolution of temperature (because
of the energy and particle conservation), we do have to add to the
above equation a temperature equilibration term, −(3/2)niνie(Ti −
Te) for ions and negative of the same for electrons, where νie is
the ion–electron collision frequency [the ion–electron temperature
equilibration terms were omitted in equations (3) and (4) because the
relaxation of the pressure anisotropy was the dominant collisional
effect there]. In situations where radiative cooling is important (as
in the case of galaxy clusters discussed in Section 5.2), the electron
temperature equation should also have a cooling term, −nine�(Te),
where � is the cooling function (e.g. Tozzi & Norman 2001).

Note that, in principle, since we kept the FLR terms in the
pressure tensor, we should have also kept FLR corrections in
the CGL equations. These arise from the FLR contribution to
the heat flux – in the collisional limit, it is the usual diamag-
netic heat flux δq = (5nv2

th/4�) b × ∇T (see Braginskii 1965).
While the unperturbed part of these FLR terms is small compared
to other macroscale terms, their perturbed part is comparable to
the perturbed gyroviscous stress terms (k · δG in equation 14). In
equation (14), the diamagnetic heat-flux terms are part of the per-
turbed pressures δp⊥ and δp‖. Since the instabilities we study in
this paper are Alfvénically polarized and so are indifferent to pres-
sure perturbations, we do not need to calculate the diamagnetic heat
fluxes and, therefore, omit them.

APPENDI X C : FLUX FREEZI NG

The non-MHD terms in equation (12) will still preserve the
magnetic-field topology if the electric field can be expressed in
the form E = −ueff × B/c + ∇χ , where χ is an arbitrary scalar
function and ueff is some effective velocity field into which the flux
will be frozen. Consider equation (11). It is not hard to show that
the electron pressure term is

∇ · Pe = ∇p⊥e − ∇ · [bb(p⊥e − p‖e)]

= ∇⊥(p⊥e − p‖e) − (p⊥e − p‖e)

(∇⊥B

B
+ b · ∇b

)

+ ∇p‖e + (p⊥e − p‖e)
∇B

B
, (C1)

where ∇⊥ = (I − bb) · ∇ and we have used ∇ · b = −b · ∇B/B.
Since the first two terms are perpendicular to B, they can be rep-
resented as a vector product of some effective vector field with B.
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Therefore, introducing

ueff = ue − c

eneB2

[
∇⊥(p⊥e − p‖e)

− (p⊥e − p‖e)

(∇⊥B

B
+ b · ∇b

)]
× B, (C2)

where ue = u − (c/4πene)∇ × B, we find from equation (11)

E = − ueff × B
c

− ∇p‖e

ene
− p⊥e − p‖e

ene

∇B

B
. (C3)

With this electric field, Faraday’s law (10) becomes

∂B
∂t

= ∇ × (ueff × B) − c∇ne × ∇p‖e

en2
e

+
(

c∇ p⊥e − p‖e

ene

)
× ∇B

B
, (C4)

which is an equivalent form of equation (12). Thus, the magnetic
field is frozen into the effective velocity field ueff except for two
effects. The first of the two non-flux-conserving terms in equ-
ation (C4) is the well-known Biermann (1950) battery (believed
to be one of the mechanisms responsible for seeding the cosmic
plasma with the initial magnetic fluctuations, subsequently ampli-

fied by turbulent dynamo; see Kulsrud et al. 1997); the second is
an effect due to the electron pressure anisotropy. While it is not a
battery in the sense of producing magnetic field from a zero ini-
tial condition (plasma is unmagnetized when B = 0, so there is
no pressure anisotropy), it is independent of the field strength and,
therefore, can act as a source term.

The flux unfreezing effect due to the electron pressure anisotropy
is small except at very small scales. If we use equation (33) to es-
timate p⊥e − p‖e ∼ (neTe/νei)(1/B)dB/dt , we find, very roughly,
that the flux conservation is significantly violated only if the scale
of variation of Te and B perpendicular to B is l⊥ � (ρeλmfp)1/2.
While this is larger than the electron inertial or Larmor scales,
where flux normally unfreezes in a collisionless plasma, and can be
larger than the Ohmic resistive scale, it is still extremely small com-
pared to any scales relevant for the macroscopic dynamics (for the
reference cluster core parameters used in Section 5.2, we get l⊥ ∼
109 km). Note that the parallel firehose and gyrothermal instabili-
ties considered in the main part of this paper are unaffected by this
flux unfreezing effect because we set k⊥ = 0 and the instabilities
contained no perturbation of the magnetic-field strength.
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