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1. Comparison of Plasma and Liquid Turbulence

As aNintroduction to the whole problem of plasma turbulence, we start
with a,comparison of plasma turbulence and the turbulence in liquids. The
turbulence of liguids has been the subject of an enormous number of
investigations during the last 30 years, and therefore the basic concepts
are well known. The field of plasma turbulence has been developed
only in the last decade both experimentally and theoretically, Never-
theless, it is surprising to sec how much research is now devoted to plasma-
turbulence problems as compared to liquid-turbulence problems. On the
one hand, this is due to 2 very large activity in the experimental and theo-
retical study of plasmas in recent years; these activities are partly due
to the applications and explanations of the phenomena found in labora-
tory investiga*ions of plasmas in high electric and magnetic fields and
of shock wav.:s, as well as those phenomena found in plasma heating
or in geophycal and astrophysical applications. On the other hand,
there exists a physical reason which allows us to give a complete theo-
retical descriprion of the most important turbulent motions connected
with so-called plasma oscillations. This is the existence of some kind of
elasticity in collective motions of plasmas, which is absent in incompres-
sible liquids. For example, if in a plasma, a sheet of plasma electrons is
displaced over a distance d (see Fig. 1) the charge separation provides

4

i
4+ 4+ +++ +

i

———

Fic. 1.
Plasma oscillation arising from a charge sheet separation.
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2 THE THEORY OF PLASMA TURBULENCE

a force which tends to prevent the charge separation and oscillations
around the neutrality position arise. These are the so-called Langmuir
plasma oscillations which have a frequency

- . 0

where 7 is the mean density of the electrons and m, their mass. n the
presence of an external magnetic field a frequency of the order of the
gyrofrequency of electrons o :

eld .
mec’ : '(1'72.,).'
also occurs; other frequencies, involving the jon parameters, are also
possible (Stix, 1962; Ginzburg, 1970). ‘ o
In incompressible liquids the eddies have no special frequency and
thetr frequency is determined by their interaction with the other eddies.’
Turbulence is usually connected with the non-linear interaction of

Wpe =

collective motions. Owing to the elasticity of plasma motions there

occurs a small parameter, which is the ratio of a period of oscillation,

1/e> to the characteristic time ¢ of the non-linear interactions, that is,

we have

1 . . f . I
i 1. ‘ - | (1.3)

Condition (1.3) is called the condition for weak turbulence: The theoty
of plasma turbulence was completely developed for the case when (1.3)

holds, and this condition .seems to be valid in most experimental investi ga~

tions of plasma turbulence (Kadomtsev, 1964). .

‘In Fig. 2 we show the possible branches of collective plasma motions.

Plasmas can also have collective motions similar to those which incom-
pressible liquids have, namely eddies. These motions exist for o << » (vis
the two-particle collision frequency) and for w/k < v, where v, is the
sound velocity. This region is the very smiall shaded region in Fig. 2.
Most of the collective motions shown in Fig. 2 are coilisionless. Let us
mention that ey, /7, is usually a' very big number (as a definition of the
plasma as a state of matter implies) from 10% in laser produced plasmas
to 10® in most laboratory gas discharge plasmas, and to 102°-10%2 in
astrophysical conditions. We see, therefore, that the concepts of plasma
turbulence contain a generalisation of the concepts that were used earlier
in the case of liquid turbulence, - Cor :
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Possible branches of collective plasma motions. M and MS indicaté the

- fast (&0 = kv,) and slow (w = kv,) magnetohydrodynamic waves, A Alf-

© vénwaves (& = k,v,), W whistlers (w = Wgkie?wl.), S ion-sound waves
(o = kwv,), i plasma ion oscillations, h hybrid plasma oscillations (w=
wgek,/k), 1 Langmuir plasma oscillations (o s Gy}, and t, and t, erdi-
nary and extra-ordinary transverse waves. Here v, 3>v,, where vy is the
Alfvén velocity (va= H/+/(4nm,)), v, the sound velocity (v,=+/ (To/m)):
Wye 5 Wge; and the external mapnetic field is assumed to be in the z-

direction. .

The other essential difference between plasma and liquid turbulence
is the presence of electric and magnetic fields in collective motions.
Therefore, if in a liquid the stochastic variables are the mean particle
velocity of particles » or the density gin plasmas the electric fields also
become stochastic properties. '

In the general case one can divide the observables into two parts—a
regular and a stochastic part '

v = preE4pstech, (1.4)
E =Eres -+ Estoch | (1'5)
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By definition
<Esr.och> =0, <Ustoch> = 0’ (1.6)

where brackets indicate averages (for example, over a statistical ensemble).
As in liquids the statistical properties of the stochastic fields are given

by correlation functions that are measured in most experiments of

plasma turbulence:
%((E“‘“"(r, 7)- Estechiy’, §))) = J dw d3kI, , e~ U=+ k=D | (1.7)

Equation (1.7) is written for the case of a stationary and homogeneous
turbulence, and when r = ¢’ and ¢ = ¢’ the quantity I , gives the fre-
quency and k-dependence of the energy of the electric field of turbulent
motions.

Usually as, for example, for all turbulent motions shown in Fig. 2,
the whole energy Wy, , of turbulent motion, which consists of the energy
of the turbulent electric fields and the energy of the particle motion, is
proportional to I, ,:

Wi o =% olko. (1.8)

Equation (1.8) is an approximate one. It is approximately valid, if (1.3)
is valid. The w-width of W, ,, that is, dw, describes the characteristic

time of the correlations:

1
Teorr =% e (1.9

The correlation curve Wy, , of a collective plasma motion as a function
of o for fixed k has a maximum near the frequency of elastic responsge
(Fig. 3).

Fic. 3.
Sketch of the correlation curve in a turbulent plasma,
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The half-width de of this curve is much less than w(k), if the condition
(1.3) for weak turbulence is fulfilled. As in liquids the integral of W ,,
over w 1s called the turbulent spectrum

Wy — f W o doo. (1.10)

For the case of isotropic turbulence it is useful to introduce a quantity
W, normalised to the modulus of ¥ (Jk| = k):

Wy = dnk®Wy,, (1.11)

TR

r Wi dk = W. (1.12)
0

For magnetic types of oscillations it is also useful to introduce a quantity
W, o, which satisfies the equation

_[ " do f QW o = W, (1.13)
/]

where £2 is the solid angle,

Now let us come to the problem of the spectrum of turbulent liquids.
Suppose, as a very simple example, that we have a liquid flow in a pipe
of dimension L, (Fig. 4).

ILLIIITIIIII I NS ///////\////////////// 4
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Fic. 4.

Sketck of the velocity distribution in a liquid flowing through a pipe. The
solid line corresponds to laminar flow and the dashed line to turbulent
flow.

If the m-an velocity (or the Reynolds number) of the liquid is low
enough, theve exists a laminar flow which forms a velocity profile such
as shown on Fig. 4. If the velocity reaches some critical value, such
a profile becomes unstable and eddies of dimension L, are excited. These




6 THE THEQORY OF PLASMA TURBULENCE

eddies become also unstable, excite new ones with smaller dimensions,
and so on. In the developed turbuleni regime, eddies with dimensions
less than Lg are present, so that one can ask for the distribution of the
turbulent energy over the dimensions of the eddies, that is, the energy
that is carried by eddies with dimensions in the interval between ! and
I+dl. Instead of / one can introduce the wave-number k,

k=27 (1.14)

and ask for the distribution over k. This is the same as that given by
equation (1.12). The region k ~ k¢ = 2n/Ly is usnally called the energy-
containing region. The diminishing of the eddy dimensions described
above is usually considered as a result of their non-linear interactions
and leads to an energy flow in k-space from k = ko to higher k. For
very large k viscosity becomes important and the turbulent energy of
the eddies is decreased by viscosity (see, for instance, Landau and
Lifshitz, 1959).

We show in Fig. 5 the turbulence spectrum of incompressible liquids.
This spectrum is stationary. That means that for each k there is an energy

W

Q,>Q,

I
|
{
!
|
|
|
!
I
!
i
|
I
|
1
]
!
!
I
I
I
1

“:2—7: ! k
k L, .

FiG. 5.
The turbulence spectrum of incompressible hqmds Qistheenergy mput
Wy ~ k—%% the universal Kolmogorov law.

or
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balance between the eddies which enter and leave the interval k. In the
energy containing region (k of the order of ko) the balance is maintained
by the excitation of eddies and their transformation to higher % by non-
linear interactions. In the middle part of the spectrum, called the inertia
region, the balance is only caused by the non-linear interactions. That
means that the energy which enters the interval dk from lower k-values
is compensated by energy outflow from dk to the higher %. In this region
the spectrum is universal; it was first found by Kolmogorov (1941) to
vary as ~ k~%% by means of dimensional analysis and is known as
the Kolmogorov spectrum. In the region of high &, when the damping
of fhe eddies becomeés comparable with the energy input due to the
energy 'inflow from small k-values, there is a balance between energy
inflow and damping. If one raises the energy input 0 the energy spectrom
does not change (see Fig. 5, Qs = (1). All the characteristic elements of the
formation' of the stationary turbulence shown above for Hauids are also
found in the case of plasma turbulence (Tsytovich 19692). These are -

_ 1. The excxtatxon of collective motions 1n soine intefval in %-space.
2 The non-lmear energy transfer from the excitation region to the

... Tregion ‘where 'the turbulent osc111at10ns are damped.

C 3. The dampmg of the oscillations.

The dlfference hes, of course, in the actual mechanisms of exmtatmn
energy trapsfer, and damping,

Since damping is the final result of the history of any turbulent oscilla-
tion excited in a plasma, it is ugeful to classify the possible types of plasma
turbulence by mentioning the most important damping mechanjsms.
There are new mechanisms of damping that have no analogy with the
daniping of eddies in liquids, and, therefore, in a plasma new types of
turbulent motions can exist. First, it should be mentioned that the
turbulent oscillations can be damped by binary collisions, and this kind
of damping is in some: sense analogous. to the damping in liquids. (Al-
though-in & collisionless' pldsma e v and in liquids @< ».) This kind
of daniping can be essential, for example, in a partly ionised plasma, or
in the case when the turbulent -oscillations are transformed by non-
lineazity from the regions of intensive collective damping. Such a type
of turbulence—turbulence dissipated by binary collisions—can have a
large- energy ‘stored in the turbulent motions- because the dampmg is
isnally small.

--Secondly, in plasmas there exists a new type of dampmg—the co]lectlve
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damping, An example of such damping is the well-known Landau
damping. The presence of such damping is connected with the electric
field that exists in turbulent plasma muotions and, therefore, with the
possibility of the interaction of such a field with the charged thermal
particles of the plasma. It is essential also that one can associate with the
turbulent motions definite phase velocities

Vph = —2. (1.15)

Because of correlation broadening this correspondence is only approxi-
mate (see Fig. 3) but the uncertainly is of the order of the small parameter
(1.3). If then vy, becomes of the order of the mean thermal particle
velocity, all thermal particles are resonant with the waves, that is, it can
gain energy from the wave and, therefore, the turbulent oscillations are
heavily damped (Landau, 1946).

In a magnetic field there can also exist cyclotron resonance, when the
frequency of the field of turbulent oscillations in the reference frame
where the particles have zero velocity along the magnetic field is equal
to the gyration frequency of the particles or to its harmonics. This is the
so-called cyclotron resonance, or cyclotron damping, This kind of
damping can exist near the electron—cyclotron or near the ion-cyclotron
frequencies.

If the energy of turbulent motions flows in the direction where a region
of collective dissipation exists, the heating of plasma is very essential.
Such a kind of heating is usually called tarbulent heating. From the
considerations given above, it is obvious that the rate of such heating
depends on the rate of energy transfer and therefore depends on W, or
the energy input.

Thirdly, in a plasma there can exist also a new type of damping due
to acceleration of charged particles. Such an acceleration is a stochastic
one and is also deeply connected with the electromagnetic nature of the
plasma oscillations, One can call this also a heating of a small fraction
of the particles which are resonant with the oscillations, that is, with
the maximum in Fig. 3. The thermal particle can be non-resonant, and
then the oscillations are not heavily damped. Because of the long life of
the oscillations, fast particles can receive enough energy and as a result
the oscillations can be damped. Such particles occur naturally in the tail
of a Maxwellian distribution in a plasma. Their injection into an acceler-

PLASMA AND LIQUID TURBULENCE 9

ation regime (that is, one in which they are able to resonate with
oscillations) can be due to the non-linear interactions of the oscillations
or to a magnetic type of turbulent waves.

Fourthly, there can also be a transformation of the turbulent energy
into electromagnetic radiation. It is due to the electromagnetic nature of
turbulent plasma motions and their non-linear interactions. This kind
of turbulence is radiatively dissipative turbulence,

The excitation of turbulence in plasmas can be due to a change of
sign of the damping coefficient as a result of the anisotropy of particle
distributions. Thus the same collective effects that give damping in the
isotfopic case can produce instabilities, if the particles are distributed
anisotropically. The turbulence can be excited also by fast particles and
the best kn« #n example of this is the plasma beam instability, Also it is
possible to -xcite turbulent motion by radiation or by a high—frequen_cy
electromagr=tic field. This has an analogy with the non-linear optics
problem of “xcitation of supersonic waves in solids (Tsytovich, 1967).

The existcuce of charged particles in a plasma is very essential for the
nature of th2 non-linear energy trapsfer. In liquids the eddies interact
only with one another or, in other words, the whole energy of the tur-
bulent motion is conserved and is only transformed from the biggest eddy
to the lowest, or from smaller to larger k. The entropy in this kind of
process increases because the phase volume that is proportional to the
volume in k-space increases,

In the presence of charged particles and due to the electromagnetic
nature of plasma oscillations there exists the possibility of interac‘Fious
and energy exchange between the turbulent motion and the particles.
One of the most important of such processes is the induced scattering
of oscillations by particles. One such process is shown in Fig. 6. In such
a process the particles can gain energy or, in other words, are heated.

FiG, 6.
Scattering of oscillations by particles.

TSY 2




10 THE THEORY OF PLASMA TURBULENCE

The particle entropy increases because of this heating, and to compensate
this increase the phase volume occupied by the waves can decrease. In
other words, the energy of turbulent motions can be transformed from
higher to lower k. This is the case, for example, for Langmuir plasma
turbulence, the spectrum of which is shown in Fig. 7.
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FrG. 7.
The spectrum of Langmuir turbulence (T, = T3).

The turbulent oscillations created at high &k (where the source of the
turbulent energy is located) are transformed to lower k. The spectrum
~ k~5/2 is due to the energy balance when this transformation is pro-
duced by induced scattering by electrons. This spectrum exists only for
kE = (m, /%%y in 2 narrow region. The spectrum Wy = const = k~*,
v = 0, due to the induced scattering by ions is valid up to

Wpe

/2
k>(’”°)1 ko = ks = (1.16)

3my YTe

The turbulent energy is transferred to smaller & up to &, (each step of
such a transfer is of order &, so that one can only roughly say that the
spectrum is flat on the average in a k-interval larger than k). In the region
k <k, the whole energy has come to small k and the eddies visually
speaking must have very rapid collisions with one another because the
phase volumne is small, This repulsion is described by the interaction of
plasmons which is diagramatically shown in Fig. 8.
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Fie. 8.

Plasmon collisions; 1, and 1 describe the plasma state before and I; and ¥

the state afier the collision.
A 031 o

As the collisions of particles produce a Maxwellian distribution, the
collisions of plasmons produce a maximum in Fig. 7. The essential
difference is that there is continuous flow of plasmons from higher & into
this region. The damping of plasmons in the region of the maximum in
Fig. 7, which can be called an energy-containing region, can be due either
to ordinary binary collisions or to radiative losses, In the second case,
the Langmuir turbulence can be radiatively dissipative (if the number of
fast particles accelerated is small).

The spectrum in the asymptotic region, k> k= ko, is ~ k™, where
2:8 < v = 4, depending on the energy input . If the input of the turbulent
energy @ is raised the spectrum remains the same in all above-mentioned
regions except thelast where » tendsto 4,if Q increases. The position of
the maximum of the spectra, ko = 2s/Lo, comes down in k-space if the
dissipation is due to ordinary collisions and is vnchanged if the dissipation
is due to electromagnetic radiation. This picture was found by several
authors (Pikelner and Tsytovich, 1968; Liperovskii and Tsytovich, 1969)
by an analytical solution of the complicated non-linear equations of
weak turbulence and checked by numerical computations by Makhankov
et al. (1970).

We shall describe the properties of Lapgmuir turbulence in more
detail later on. We mention here that the energy transfer in this case is
the opposite of that in liquids, and that this can be possible only if the
particles are heated. Such a heating is a stochastic process. One must
distinguish this from the turbulent heating where the energy of turbulent
oscillations is directly drawn into the dissipative region. For Langmuir
turbulence we have no such heating in the absence of magnetic fields
because the direction of energy transfer in the case of isotropically dis-
tributed particles is such that the turbulent oscillations are drawn away

2!
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from the region of Landau damping. From the energy-conservation law
it is possible to see that the energy of plasmons becomes thermal particle
energy. Because the number of plasmons is conserved, the larger the
difference between the maximum and the minimum frequencies of the
branch to which the energy is transformed the larger the heating. There-
fore, the rate of stochastic heating depends on this difference as well as
on the time needed for the transfer of waves from maximum to minimum
frequencies. As can be seen from Fig. 2, the Langmuir waves undergo
a small change of frequency along the branch and the low-frequency
waves such as whistler and ion-sound waves a large one. On the other
hand, however, the interaction of whistlers is rather small compared
with the interaction of ion-sound waves and thus the transfer of the
energy across the same frequency difference needs a longer time. The
Langmuir turbulence can transfer the energy more quickly than the ion-
sound turbulence. Both Langmuir and ion-sound turbulence are appro-
priate for stochastic heating.

It is well known that for liquids in the turbulent regime the viscosity
becomes anomalously large and the profile of a liguid flowing through
a pipe is flattened. Similar effects are observed in turbulent plasmas. For
example, there occurs an anomalous diffusion in a plasma confined by a
magnetic field, an anomalous resistivity when an electric field is applied,
and so on. One can, therefore, introduce the effective collisions due to
such processes. The physical nature of such collisions in the weak-
turbulence case is very obvious, the collision frequency is the inverse
of the characteristic time of energy transfer along the turbulent spectra.
Thus one can expect that this characteristic collision frequency is detect-
able if a small-amplitude wave with a frequency smaller than that of the
characteristic turbulent collision frequencies is pushed onto the plasma.
In this case, the skin effect of the electromagoetic wave can be due to
such turbulent collisions. Indeed, a growth of the skin-depth when
turbulence is excited was found experimentally.

Generally speaking, one can say that the electromagnetic properties
of a turbulent plasma governing the penetration of a smalllinear perturba-
tion is quite different from those of a non-turbulent.plasma if the fre-
quency of the perturbation is much less than the turbulent collision
frequency. A new type of wave can appear and also a new stability pattern,
that is, the stabilisation of some waves which are unstable in the non-
turbulent regime and the existence of new instabilities. As an example,
we mention the possibility of the excitation of a magnetic type of per-
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turbations (Tsytovich, 1968a) in pure Langmuir turbulence, that is, in
the case when only electrostatic fields are present. This effect has an
analogy with the well-known effect of the excitation of a magnetic field
by the turbulent motion of conducting liquids—the Batchelor effect. The
scale of the characteristic dimensions or wavelengths of the excited
magnetic fields in the case of Lanpgmuir turbulence is much smaller than
in the case of the hydrodynamic dynamo.

TR



2. General Problems of the Theory of Plasma Turbulence

IN THIS chapter we shall give a summary and general description of some
problems of the theory of plasma turbulence.,

2.1. Excitation of the Turbulent State

Before discussing turbulence itself, one should define the kinds of
motion which can be considered turbulent and how the motions can be
excited. Usually the turbulence is connected with a stochastic variation
of some measurable quantity, for example the electric potential g. In
experimental investigations the time-dependence of the potential fluctu-
ations can be measured. One can find many examples of such measure-

ments in which ¢ changes in a very complicated manner with time (see
Fig. 9).

¢
t
FiG. 9.
A typical experimental variation of the electrical potential in turbulent
motion.

Does this mean that the potential is a stochastic variable ? Generally
not! For g to be a stochastic variable, the measurement should not be
reproducible by repeating the same experiment under the same macro-
scopic conditions (which must be carefully defined). When ¢ is stochastic
in this sense one can ask: What is the cause of the irreproducibility ?
The answer is that small changes in the initial conditions change the

14
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behaviour of ¢ considerably. This is well known in the statistical theory
of molecular motion. Plasma-turbulence theory deals with the collective
motions of a plasma, such as plasma oscillations. There are no difficulties
in describing this kind of motion such as there are in describing the
individual particle motions and general statistical concepts can be
applied to describe the turbulence of plasmas,

For plasma oscillations, which in zeroth approximation could be con-
sidered as propagating waves, the stochastic behaviour lies in the ran-
dompess of their phases. Indeed, the initial value to be specified to match
e potential of such a wave is its phase. Randomness of phase means

(9) = 0. @.1)

The average is over the statistical ensemble of the experiments mentioned
above. In the general case, there is an applied or regular component of
o as well:

P = (Preg_{_q)stoch, <,pstoch> = 0. (22)

For experimentalists it is necessary to mention that the theory predicts
the statistical average value which is to be found by averaging the results
from many equivalent experiments.

The question now is, why do small changes in the initial conditions
change so appreciably the time behaviour of the measured quantity ? The
answer Is that such initial states are usually unstable. One can find in the
Landau description of fluid turbulence the instability necessary for the
excitation of turbulence, It is also known, however, that the excitation
of turbulence in liquids is one of the most complicated problems. The
saffi€’is true in plasmas. Many plasma instabilities are known; they can
be divided into so-called kinetic and hydrodynamic types. For the first
kind the growth-rate y is much less than the characteristic frequency of
collective motions:

cl’fk‘s <1 (2.3)

For the second kind the growth-rate and the frequency are of the same
order and for so-called aperiodic instabilities the growth-rate is much
larger.

It is not obvious that the presence of instabilities leads to the excitation
of turbulence, but it is generally the case. The important factor is the
time needed for turbulence to develop, It is known from non-linear.
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optics (when large amplitude waves interact in solids, for example) that
the first stage of wave mixing can be described as an instability of the
generated waves. The instability is aperiodic, but this only describes the
initial energy transfer. The full history is obtained from an exact treat-
ment of three wave interactions.

One can now ask if an aperiodic instability of a plasma leads to only
one mode being excited. From the point of view of the uncertainly raised
by the growth-rate ¢ one should say yes, but one should really examine
the stochastic behaviour of the exciting field. Let us introduce the time
7 needed for a plasma to become stochastic in its behaviour. If only one
mode is excited it is obvious that the spread of energy to other modes
is due only to non-linear interactions. The turbulent state is reached, by
definition, when the energy is distributed over a large number of modes.
The time needed to develop turbulence in the case of an aperiodic
instability is, therefore, much larger than the growth-time of the instabil-
ity. It is possible that the parameters which characterise the plasma state
are changed sufficiently that the condition (2.3) is fulfilled in the last
stages. This is the case, for example, if a low-density beam interacts with
a plasma. In the first stage the instability of the beam is a dynamical
one and aperiodic. The beam comes to a stochastic regime as the instabil-
ity becomes kinetic. It is not known quite how this transition occurs:
two possibilities are an explosive non-linear instability or the action of
trapped particles. One can now not exclude the possibility that in the
aperiodic type of instability there is a stage of its development when it
cannot be considered a weak one. It is quite probable that the final state
of stationary turbulence is weak, but it is not known if the statistical
approach can be applied during this transition. If not, this means that
although the energy in collective motions during the transition may be
very high, this is not a strong turbulent regime. All of these questions
could be solved experimentally with the present level of knowledge, but
this has not yet been done.

From the general statistical point of view, in an ergodic system the
average over a statistical ensemble must be equal to the time average.
This can also be checked. From the work of Fermi, Pasta and Ulam
{1955), Kolmogorov (1955), and Arnold (1963) one can see that the non-
linearity plays a significant role in the stochastisation processes. The
smaller the difference between the characteristic frequencies of the system
and the higher the amplitude of the field, the sooner the stochastic regime
appears. In this sense, one could suppose that the best condition for
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stochastisation is the presence of broad branches of frequencies of
collective motions. This is, indeed, true for an infinite plasma as can
be seen from Fig. 2, and is also true in finite plasmas, if there are modes
with wavelengths much smaller than the size of the system. The presence
of a broad spectrum means that the energy of the collective motions can
be épread by non-linearity, at least in such a broad interval, and stochastic
behaviour is quite probable.

. 242 Description of Weak Turbulence by the Concept of “Elementary

Excitations”

Suppose that a weakly turbulent state exists in a plasma. It is usually
said that weak turbulence has an advantage over strong turbulence in
having a small parameter y/e (where y is the linear or non-linear growth-
rate) in which everything could be expanded. The presence of a small
parameter is a fact, but the conclusion that an expansion procedure is
possible is mostly wrong! For example, strictly speaking one cannot
expand the non-linear plasma equations in the energy of the turbulence,
W, or th+ strength of the stochastic part of the field connected with such
turbulenc:. We can give many examples of this. Only in an approximate
way for rome integrated value can such expansions be made, and there
is a good whysical reason for this statement as will be shown,

If a ste-istical description is valid and the collective motions of the
plasma a.e of a wave type, as in Fig. 2, one can consider waves as
“elementary excitations”, generally called plasmons (Tsytovich, 1967,
1968b). The interactions of plasmons can be treated by perturbation
theory. For example, one can introduce the number of plasmons, N,
connected with the energy W, describing the turbulent spectrum by the
relation
_ CO(k)Nk

We="Tzmp

(2.4)

where (k) is one of the frequency branches shown in Fig. 2. (T h_;&dtffefé’“ﬂ
from that wsed in quantum mechanics by a factor # (Birac’s/constant).
This will not matter as we know the N, can be described classically and
# does not appear.)

One can introduce the probability of, for example, the decay process
shown in Fig. 10,
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k2
k1
k3
Fra. 10.

Decay of a plasmon (k;) into two plasmons (%, and k).

Denoting the probability of this decay by w(ky, ks, k3), we can write
down the balance equation that shows the growth of the N, excitations
due to the coalescence of Ni,» Niy, and its decay into Ny, Ng,:

ag:-kl = J‘ W(k], kZ'J kS) [_Nkl(ng-l' 1) (Nks+ 1)
d¥le d%k
+(Nk1'+' 1)Nksz8]-T2W—)ns_3

d3kp d3k s

= f w(ky, ke, k3) { —NiNi,— Ny, N, + Ni, Ny, .} @Ay

2.35)

The normalisation of the probability is to the phase volume d% ; d3k5/(2)".
Similar equations can be written for the processes shown diagrammatically

in Figs. 11, 12 and 13,

a®,
FrG. 11.
Emission of a plasmon by a particle.

St

(a) (b)
FiG. 12,
Two possible mechanisms of plasmon—particle scattering,
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Here the solid line corrresponds to particles (electrons or ions). The
process shown in Fig. 11 decribes the quasi-linear effect which can be
called induced Cherenkov emission and absorption, first investigated in
plasmas by Drummond and Pines (1962) and by Vedenov, Velikhov, and
Sagdeev (1962). The process shown in Fig. 12 is an induced scattering
which gives a non-linear energy transfer in the spectrum of turbulent
waves. Sometimes it is wrongly called a non-linear Landau damping. It is
not a damping at all, because it can be shown to conserve the number of
quanta, This process was first mentioned by Pauli (as an induced one),

+bytpe did not consider the process shown in Fig. 12b, which is very
essential in all turbulent plasma-energy transfers, In the case of high-
frequency transverse waves the contribution of this effect is small com-
pared to that of Fig. 12a, but it generally exists, if one considers the effects
of many particles, even if they are only free electrons. For the ion-sound-
wave interaction with the ions the process shown in Fig. 12 was first
described by Kadomtsev and Petviashvili (1962), and the non-linear
mteraction of Langmuir waves was first considered by Sturrock {1957).

The process shown in Fig. 13 is a four-wave decay process—a scattering

of plasmons by plasmons,

(a) (b)

FiG. 13.
‘Two possible mechanisms of plasmon-plasmon scattering,

After the balance equations are written down the probabilities can be
found by the correspondence principle, that is, by finding the power
emitted in the N, mode, if N, — 0. For the case of equation (2.5) this is

N, d%
Q= fw(kﬂ—ar (2—“")%
_ f Wk, ks, k3)Nk2Nk,w(k1)&1(dzZ;:-—‘i%—s. 2.6)
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One must then compare this with the work done classically, which is
0=— f (j-E) dor. @7

This approach and the interpretation of non-linear interactions as
induced scattering processes was developed in detail in papers by the
author and collaborators (see Tsytovich, 1968b).
Tt is possible to find all the required probabilities in the presence of an
~Fxternal magnetic field—for example, the linear and non-linear inter-
| actions of drift waves, and also of the modes shown in Fig. 2. This subject
i__will be treated in full in the next section.

Now we must return to the approximations needed to describe the
turbulence by means of elementary excitations. First, one can easily see
from the non-linear interactions described by Fig. 12 that the plasmons
are driven in k-space and flow to smaller & (as was mentioned earlier).
Such a process has a finite characteristic time, 7 . It is apparent that
the frequency of the plasmons will be uncertain with an uncertainty
Aew ~ 1fz,. Therefore, there does not exist a one-0-one correspondence
between ¢ and k (energy and momentum of the plasmons) and for each
% one can only have frequencies in some broad area around the dispersion
curves shown in Fig. 2. Thus, the physical nature of the plasmons in
the turbulent state is quite different from that in statistical equilibrium
because the frequency width is determined, not by the decay of the plas-
mons, but by their non-linear interactions with other plasmons, which is
dependent on the level of turbulent energy (which determines the number
of other plasmons).

Usually there exist some resonance conditions for the interactions
shown in Figs. 11, 12, 13, which are nothing but the laws for conservation
of energy and momentum during the interaction. For the process shown
in Fig. 11itis

(k) = (k). @8

where v is the velocity of the particle.
For Figs. 12, 13 respectively:

w(k) = olk)+wlk—ky), (2.9)

(k1) —(k1+0) = o(kz)— (kze0), (2.10)
wkr)+w(ke) = ok)+olky+ks—ki). (2.11)
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Because th.e frequericy o(k) has an uncertainty these laws only need to be
satisfied v ithin the accuracy corresponding to this uncertainty. Thus,
resonance interactions such as (2.8) are not proportional to

S[w (k) —(k-v)], (2.12)

but to a broadened function of finite width. This point is essential, for
example, for ion-sound interactions with electrons, when the broadening
of the resonance (2.8) changes the interaction appreciably. As will be
shown later, this effect comes not from the uncertainty in o, but is due

. ta.the effective turbulent collision frequency which broadens the reso-

nance (2.8). The broadening of (2.9) is also essential for jon-sound inter-
actions.

One can see now that it is possible to derive the equations for plasmon
interactions as an expansion in the magnitude of the turbulent energy
only if one integrates over all o, This takes into account the whole area
around the broadened dispersion curve of w(k) and neglects approxi-
mately the uncertainty due to the turbulent broadening. Indeed, in suchan
approach it is possible to derive the balance equations given above from
the Vlasov kinetic equation. Dividing the distribution function into two
parts ’

f =f’reg+fstoch . <fstoch> =0, (213)

and similarly
E =Ereg+Estoch, <Estoch> = 0, (214)

one then expands in E®°R, constructing an equation for (EfSshggeh

which is then integrated over . It can then be seen that the regular part
of the.distribution function describes the solid lines of Figs. 11 and 12

and the f Wy, » dor = Nyeo(k)[(2m)? describes the wavy lines. The process

shown in Fig. 12b can be interpreted as a scattering of a plasmoen by
the oppositely charged cloud surrounding the initial charge. Thus, JreE
does not describe real particles (they take part in both the free motion
indicated by solid lines and the plasma oscillations indicated by wavy
lines), but an elementary excitation, that is, it represents charges sur-
rounded by polarisation clouds.
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2,3. Problems of Correlation Broadening

Suppose that a stationary state of weak turbulence is achieved; then the
principal question is that of the structure of the correlation functions
in such a state. To construct a theory of correlation functions it is obvious
that an expansion in the energy turbulence, W, is not possible even ap-
proximately. Indeed, if one tries to use an expansion similar to that used
in deriving the balance equation one finds that, for example, the correla-
tion function for longitudinal waves is proportional to

LN
gk)y w—okE’
Here (k) is the solution of the dispersion relation e(k, w(k)) = 0.

This resonance does not matter for the balance equations because, after

integration over @, only the imaginary part of (2.15) contributes. This
can be approximated as

(2.15)

w2é[ow —w(k)]. (2.16)

However, for the correlation function it is necessary to describe the
whole correlation curve inside the resonance. As was mentioned above,
the width of this resonance depends om the energy of the turbulence.
Formally, this divergence comes from using the Maxwell equation,

E(W)Ex = 4% Sn, 3y, s EXIE@(S(% — iy — %2) A%y dtus,

x=1{k ), di% = d% do, 2.17)

where the S, , ., are the components of the non-linear current, to express
the average (E1E>E3) in terms of the average of four fields (B, E,E, E,).
It is obvious now that to divide equation (2.11) by e(x) near the resonance
is impossible. It is possible to construct a non-linear integral equation
for (£, E,E, ) by supposing that [w—w(k)]/w and W/nT are of the same
order of magnitude. Thus, it is necessary to use a more precise equation
then equation (2.17) including higher-order terms in the expansion in E,.
A term proportional to W in e(x) arises and gives the turbulent renormali-
sation of e(x), which takes into account the turbulent collisions. This
kind of approach was derived in a paper by Makhankov and Tsyto-
vich (1970) and in a review paper at the Bucharest Conference (Tsytovich,
1969a).
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The complicated nop-linear equation for (E, E_E, 5 can be solved
approximately if one supposes that in the terms containing the integral
over w, 1/&(x) has no resonance behaviour and can be approximated by
(2.16). In other words, it is possible to make the same approximation
as in the balance equation, but only in the integrated terms, The final .
result given below in equation (2.18) for the correlation function has a
force that can be compared with that found by the expansion procedure
and given in equaticn (2.19).

Lle()+emt (x)]

v 9T _ o { Lol | S0, 3 |* 8t — 21— 22) dh1 d'a 218
= 32 f A CO2[B(—-7»C)+E“‘]' (_x)] L] ( )
LIe(e)+ e ()]
gy 4
= 522 [ Tk Sem P Mot —mrmi) s By -5 1
w?e(—x)

where again

nw={k 0w}, d%=d% dw. (2.20)

The difference is that the non-linear dielectric constant ¢*!- occurs in
the resonance denominator. The quantity &2 is defined as follows:

ol (») = 8% J‘Ex, “ le dey, (2.21)

83’5fo, My, K3y Sx—;q_, H— ¥y
(eo—co1) e(x — 1)

, (222

SRS MRS S
-whei':;S‘;nd 2 are the compenents of the non-linear current:
Jo = 0Bt f S s BBy (06— 1= 25) disy d¥n
+ f e s Eoy BB 80— ra— g —e5) oty oty d'ts. (2.23)

S and 2 can be found explicitly by the usual expansion of the Vlasov
equation. It should be mentioned that the balance equations found from
equation (2.18) using approximation (2.16) are practically the same as those
found from equation (2.19). Equation (2.18) can be written in a form
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which shows that 7, is always positive:

3202 (L1 18 | B(— 1 —300) Aoty dig
G [eG) + & ()P '

This necessary and reasonable condition is not always fulfilled by
various approaches to the description of fluid turbulence (that is, strong
turbulence),

From equation (2.24) it is easy to see that the correlation curves have
a Lorentzian structure near the resonance w = w(k), if one neglects the
difference between and  and w(k) in all terms except &(x):

I, (2.24)

Wk. w = Wk'y;l;.l' a2 ? (2'25)
al(o—w' &) + (2"’
where

nl _ Imfe(s)--ent(x)]

Yk ——W m:w(k), (2.26)
, Re en.l.(x)
k) = —_ . 2.

oW = oW~ e 2.27)

Equation (2.27) describes the non-linear shift in the frequency.

For weak turbulence y§" << eo(k). If the turbulence is stationary, yo
may be small because of the non-linear compensation of the linear damp-
ing and even smaller than the collision frequency. Therefore, the order
of magnitude of 2! corresponds usually to the slowest decay process
allowed by the conservation laws. As can be seen from the balance
equations (2.5) the decay balance is not a differential one, but an integral
one, the turbulent energy coming from different & values, ks, ks.

2.4, Problems of Stationary Turbulent Spectra

To find the stationary spectrum W, it is possible to avoid the detailed
forms of the correlation functions and simply use the balance equations.
Such equations were first used by Kadomtsev (1962) to find the spectrum
of ion-sound turbulence in a partially ionised plasma. Then in some
later papers there were attempts to use such spectra for a fully ionised
plasma, which, as we shall see, is sometimes doubtful. The Langmuir
turbulence spectrum was calculated by using the balance equations in the
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papers by I.kel’ner and Tsytovich (1968) and by Liperovskii and Tsyto-
vich (1969). and numerically by Makhankov ef al. (1970). We shall have
some special remarks to make later about both Langmuir and ion-sound
turbulence spectra,

Here we mention that after finding the spectrum it is possible to calcu-
late the correlation broadening. In particular, itis possible to use equation
(2.24) to find the form of the correlation curve outside the resonance,
that is, on the tail of the correlation curve. This is shown schematically
in Fig. 14.

Ik,m

A U

The correlation curve of Langmuir turbulence at low frequencies
(Aewfw ~ kofk).

The whole of this curve can be found when the power input Q is known,
The maximum in Fig. 14 corresponds to frequencies equal to the differ-
ence betwer1 the frequencies of the turbulent waves. These correlations
have no w, -~-dependence. Their action on the particles gives the heating.
Because the energy in the tail is proportional to W?2 (see equation (2.24))
the next terms compared to the quasi-linear diffusion, which is propor-
tional to W. in the expansion of the diffusion coefficient in I, are of

T8Y 3
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the same order of magnitude. Both terms together describe the heating
due to induced scattering.

Now, if the stationary turbulent spectrum is known, it is possible to
find the general form of (i) the rate of stochastic acceleration of fast
particles, (ii) the scattering, amplification and fluctuations of electro-
magnetic waves propagating in a furbulent plasma, (iii) the anomalous
turbulent emissivity, and (iv) macroscopic characteristics such as the
anomalous conductivity and anomalous diffusion.

2.5. The Electromagnetic Properties of a Stationary Tarbulent Plasma

As was mentioned previously, for low frequencies, & < #9 (3*9% jg
characteristic turbulent frequency), the electromagnetic properties of a
plasma for small signals or small perturbations are changed significantly.
This means that the dielectric constant £ as a functional of W,

e =s(w, k, W), (2.28)

cannot be expanded in W;,. One possible method of deriving (2.28) is
to consider a small deviation of this stationary turbulent state due to a
regular electric field perturbation, E™2, and expand all variables in the
amplitude of E™2, Collision integrals arise which describe the turbulent
collisions. It is sometimes possible to expand the kernels of these collision
integrals in terms of the turbulent energy, that is, to take into account
the highest turbulent collision rate. Nothing is expanded in +®/w, and
in this way the essential change in ¢ is found. Sometimes this expansion
of the collision integrals does not work because a resonance denominator
arises. Thus, a problem similar to that of the correlation broadening
arises. The non-linear integral equation for summing the series in the
turbulent energy for such collision integrals can be constructed. It can
be solved and the collision integrals found. This give s(w, k, W} ) and
the electromagnetic properties of a turbulent plasma can be investigated.

The first approach to such problems was made by Rudakov and
Vedenov (1964), who used a phenomenological approach with a Miller
force, and by Gailitis (1966), who used the correspondence prineiple, The
surnmation in the turbulent energy was done by Tsytovich (1968a, 1965b)
and an investigation of drift waves in a turbulent plasma was given by
Krivorutskii, Makhankov, and Tsytovich (1969). There is also an
approach in which the turbulent collisions are taken into account
phenomenologically.

3. The Balance Equation for a Turbulent Plasma

3“.-1. 7 The Refractive Index for Waves

The balance equations can be found in a simple way using the concept
of induced processes. Let us consider a linear mode propagating with
‘sniift damping, or small excitation, in an inhomogeneous plasma in an
external magnetic field, so that

o = wi+ivE, (3.1)

where 9§ < w]. As we mentioned above, ¥ describes a linear or quasi-
linear growth-rate or non-linear energy transfer. In the first approxima-
tion, one can neglect all these effects if p << e, and say that equation (3.1)
describes approximately a linear mode © =~ wj. As we shall see later
this f is determined not by the exact distribution function f but by the
part /£, which varies slowly in time. Thus, we consider wj as the frequency
of an elementary excitation, and drop the superscript “reg”, but remember
that # describes the distribution of the other elementary excitations—the
“dressed” particles. Thus the dispersion law for the elementary wave
excitations, the so-called plasmons, can be found from the linear disper-
sion equation. One can also find the normal unit vector ef, which charac-
terises different electric field components, It is useful then to introduce
the dielectric constant £ which describes such a2 wave, or the refractive
index " = v/(Re &%), where #° = k/o} and thus we have

K = (wf)? Re (o}, k). (3.2)
Thus, wf satisfies the usual equation for transverse waves, but the polar-
isation of the wave is in general arbitrary and is defined by e;. The

question is how to find &*(w, k), if ef and the dielectric tensor &;(co, k) are
known, The general linear dispersion relation is (¢ = 1)

Z [kzﬁ,-_,-—k,-kjwwzagj(w, k)] (Ex)j =0. (33)

if the field has the direction ef one can put (E,); = (ef};E, and by multiply-

3+ 27
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ing equation (3.3) by ¢, and using

(efeei”) = 1, (3.4)
we find
[k* — o’ (w, k)| Ef = 0, (3.5)
where
(o, k) = (&) e15(co, ) () + @}:L") . (3.6)

One may say that to find £ is useless because to find ef one must solve the
dispersion equation (3.3) for w°(k) and put it in (3.3) to find the relations
between the electric field components. However, ¢° describes the energy
of plasmons and comes into all probabilities of non-linear interactions.
Let us, for example, calculate the average energy density W of the field
corresponding to the o-mode, supposing that the field has a stochastic
nature.
From the energy conservation theorem we have

ow 1 oD 1 B
% =5 F) Yo (&%) @D

E= f GRES o T 4 iy,

and putting

D, = f ey, k) BR o (el 7 &k do, | (38)
Blc, w — [k/\Ek’ :u] = [k/\eﬂ Eg, wy
) w
we find that
oW f [
—_— = e,e;wkwe +ler);w'e o, B (e
e 875:1 )i (e, Ky eolef); + (67); o'e ) (el
&K ki) (k'vef 6 g
+(CD+CO ){ ) ( ) (_'—W}:l Ek, mEk’, m'
Xel([k+h 1-1y— i+ ') ddx dd.%’ (39)

The result is symmetrised in «» and x'. Integrating over ¢ and taking an
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ensemble average, and using
<E;, wE.f:". w‘) =
one finds that

Yo(k+E), (3.10)

IE!c, wl

W)= " 8w oo

(e"(co k)o?) &k dow. (3.11)

In the approximation where the correlation broadening is neglected

T

|Bx, ol = 0Ny 8{c0 —0f) + cxN_ 8(co+0f) (3.12)

(here o} = 0), we have

1 1 @ 5
<W> -—Efakaa %[ w=wo(k)d k. (3.13)
On the other hand,
wiNe &k
(W) = W s (3.14)
50 that
1 1
=— |— — (o w, k . 3.15
7 2:_52 [( k)g { ( )}:L,,ﬂui ( )

3.2. Quasi-linear Equations

The simple balance equation, which describes the induced emission
and absorption of plasmons by particles was first derived by Vedenov,
Velikhov, and Sagdeev (1962) and by Drummond and Pines (1962). We
shall write it in a general form applicable to a plasma in an external
magnetic field and including possible inhomogeneities of the plasma
perpendicular to the field. It is useful to start from the quantum de-
scription - f free-particle motion in & magnetic field and then consider the
classical 1 mit, or more precisely, the quasi-classical approximation.

The pa:ticle motion in a magnetic field H, = H, is described by the
energy spoctrum of the Landau levels which in the general relativistic
case are grven by

&% = mlct P2t e, (3.16)
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where p, is the particle momentum component along the field and p2 is
Ph = 2 |eH,|, (3.17)

where » is an integral quantum number characterising the energy levels
and # = k/2m, where h is Planck’s constant;

n=0,1,2 ..., . (3.18)

In the quasi-classical limit the spin does not change and can, therefore,
be neglected. The quasi-classical limit corresponds to a very high » such
thatn — eo, ## — 0, while n# is kept finite and p, is the particle momentum
component perpendicular to the magnetic field.

It is also useful to choose the gauge of the magnetic vector potential
as int the first Landau paper:

4. =Hy, A,=4,=0, (3.19)
Hy =[vAAd] (3.20)

The momentum component p, is conserved and the energy spectrum
is independent of p,. In the guasi-classical limit p, determines the y-coor-
dinate of the centre of the Larmor orbit:

[
y = —pr. (3.21)

The probability of emission of a o-plasmon by a particle gyrating in a
magnetic field (or in the quantum case by a particle in one of the Landau
levels) is denoted by

wo(k, Pz P s P)' (322)
This probability depends, as written, on the momentum of the emitted
plasmon &, on p,, the initial energy of the particle (or more precisely »,
the integer characterising the Landau level), and on the final »’ in which
one finds the particle after the emission. Instead of the variables z and #’
in equation (3.22), we use p, and », where
»=n'—n, (3.23)
and v varies in the range

y=—oo, vny —1,0,1, ..., 4+ oo, (3.24)
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The distribution function f of the particles depends on p,, p,, and n:

B F=5(ps o ). (3.25)

Expreséipns (3.22) and (3.25) are supposed to be normalised to the
phase volumes d%k/(27)* and d%p/(2m)8,
. The balance equation for the waves can be written in the form

dNg APz &

%’l;‘_ =¥ f%[(Nk+1)ﬂ(pz, Pr» W) —Ni fu(pa—ikezy py—tikin, n—1)]
%, N,y
Xw“(k, Pz Py V)v (326)

ARt
where & = e, 1 corresponds to electrons and ions, respectively. The term
with the minus sign occurs because of detailed balance arguments and
the conservation of momentum in the emission process gives

pi = po—tik., pr = py—tks, (327

where the prime corresponds to the state after emission. In the quasi-
classical limit #k, << p,, Ak, << p,, and v < n. Expanding in k,, k, and
v it is useful to introduce classical variables for the argument of f: p,
instead of »n and y instead of p.. Thus, instead of k, 8f/6p, we write
—{kyc/|eH, ) (8f/2y), and instead of » &f/6n we write Ap® 8f/6p% . From
(3.18) one finds that

Ap% = 2uki |eHy] = Fogve. (3.28)

Thus, equation (3.26) can be written as

aNi _ = f dp [ P p1, Y)
<@ =, 2. 5 @y [Vl pap ) AT 2

+ Wy Por 1y %) follPer D y)]. (3.29)

The first term describes the induced process, the second the spontane-
ous emission, and

21 =Pz, 22 =P, .2.3 =Y, (3.30)

. _ _ OV —— c
Ma=ke, Na="72, i e TR (3.31)
vy =p?l. (3.32)

m,tr N p——— - — e o
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Similarly, one finds the balance equations for particles:

dﬂ(pzspl,y) _ o] % g F] .
g = L, Pl S pas )Y e Ao 103, (3.33)

dt
where
yjzia (2 )3.‘4/1 Adwik, p=, po, VINE, (3.34)
,:Z:, (2 TP b a Wik Pz D1, ). (3.35)

The first term of (3.33) describes the induced process and the second
one the spontaneous emission. The d/dt operator on the left-hand sides
of equations (3.33) and (3.26) describes the free transitions of particles
and plasmons:

T =T, (3.36)
ﬁ'%k_ _ ?gu(vg,.vm, (337)

where v, = dwj/dk is the plasmon group velocity. In the case of an
inhomogeneous plasma, equation (3.37) is sometimes rather more com-
plicated and contains an additional term

- (vw an;r:) (3.38)

3.3. The Probabilities for Plasmon Emission

Let us consider the power @ emitied by all the particles in the limit as
N -~ 0, when only the spontaneous emission is essential in equation (3.29):

cdNp d% f
Q=) GaF ugro = ) Ty O P B30

where
3

= o0 4k
= Z oW (k, P P15 V) m (3.40)

P=—rco
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is the power emitted by a single particle. To find 0, in the classical limit,
we shall use a procedure similar to that used by Landau for calculating
Cherenkov losses, that is, we will calculate the work done by the field
E on the current j:

0=— f (j(r, 8)-EGr, ) dPr. (3.41)

The current produced by a particle spiralling in a magnetic field,

J = ev(t) 8(r—r(£)), (3.42)
AT .
where p(z) and r(z) are simple periodic (sine or cosine) functions of time,

has Fourier components

Ji o (2n)3 Z I e 50— fov,— v0g,); (343

ro = {Xo. Yo, Zo}, Xo and y, are thus the coordinates of the centre of the
Larmor orbit, zo and p are the inftial z and phase ¢ of the particles at
t = 0. The components of the vectors I" in the frame k, = O are

J:r , . ’
(I\?c)x = vJ‘vz (z ) : (Iﬁ')y =_I”_T_Jv(zu.);
(TD, =0ads(@); za=220 4 2P Gag
Wrre £

The J, are the Bessel functions of order ». The field produced by the
current (3.42) is found from the Maxwell equations (see equation (3.3))

[kgﬁgj—k,-kj—wge,-j(co, k)] (-Ex)j = 45"5260(‘].”),3 (345)
Because we are interested in the emission of the o-wave, we must set
(E); = (eihEx (3.46)

in equatior: (3.45). Multiplying (3.45) by ef* and using the definition (3.6),
we have

¢ . (ez* 'jx)
gy — 47'510) m . (3.47)

Expanding j and E in equation (3.41) in Fourier series and using
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equations (3.46) and (3.47) we get

k d dCU e (e’
0 =—(np [ LB B i j2oci) (e i)

. F-oo . . - »
_ (;::;3 | e (De]) (Tieel)
?,p=—ca

X oo — kv, — veo,) 8w’ — kv, —vog,) d%k do do' . (3.48)

k2 w26

We substitute here the exact expression (3.43) for the current j,.
Averaging over the initial phase ¢g,

1
o j =YW dipy = B, v, (3.49)

and noting that only the imaginary part of 1/(k?—«?s°) contributes to
equation (3.48) and that

ﬁ ~s 7l é(kﬂ—(DZEU)

. dlo—wh) + 8o +of)
= =T} (%) , (3.50)

Q):(D;

one finds ap expression of the form of equation (3.40) and can immedi-
ately find the required probability

ot 2o i) = ey SIS =) a1

‘m=mz

Using this probability in equations (3.33) and (3.29) gives us general
quasilinear equations valid, for example, for a relativistic plasma. The
equations describe all processes of interest, including transverse waves,
synchrotron emission, synchrotron instability, spontaneous processes,
and they take account of plasma inhomogeneities.

In the case of longitudinal oscillations, it is useful to introduce the
longitudinal dielectric constant in a way slightly different from equation
(3.0):

=iy =Ye;—sl k‘kf . (3.52)

%]
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The dispersion relation (3.5) then has the form
g =0. (3.53)
Using the fact that e, = k/k and that

o , e @1
2 _—
3 ?e, = (cop) F &y , (3.54)

w=m;: w=mk

we can write down a simple expression for the probability for the emission
of longitudinal plasmons:

R

Wik, pe, pLs ) = QP 5 e 5@ 6&%@ P 0m) (3 55

w=w}£

3.4. The Case of Non-magnetic Particles

Even with a magnetic field present, in some cases the Larmor radii
of the gyrating particles are much larger than the wavelength, that is,
z,> 1.1 In this case, a large number of cyclotron harmonics are involved
in the interaction and the probabilities which we gave above are useless.
In this case, one can consider the opposite limit, by supposing that
during the emission the particle does not gyrate, but moves rectilinearly.
One can use as the particle current the expression

Je = ;;)3 etk r) §(o— (ke0)). (3.56)

The quasi-linear equations have the same form as in the absence of a
magnetic field:

§r Z v, ap +Zap (3.57)
= f P w(k, p) Nikik;. (3.58)
4; = % kw(k, p), (3.59)

df;_;ra = Nk (2:“:)3 (k ) ( af) (27;)3 W(k P)f (3 60)

T We call such particles “non-magnetic particles™,
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The probability can easily be found from equations (3.40) and (3.56);

_ 2y & [(0oe2) ! 80— (k-0))
Wk, p) = Qmf — =2 /"aw) (wzs’é) . : (3.61)

w=w§z

Note that equations (3.57) to (3.60) are also valid for a relativistic
plasma or for relativistic particles in a cold plasma.

3.5. Examples of the Quasi-linear Equations

In the case of the Rosenbluth—Post loss-cone instability (Rosenbluth
and Post, 1965) the ions are non-magnetic and one can use equations
(3.57) and (3.60). Since &, = k,, we have

1 dng e? 1 (ki-01) Of o
— —— = oy —(kev)) ~———== L g% dp,
Ni dt  wk*(9s%/w) J (1= k-0) vy L PLep
ool (3.62)
Introducing
= (i)
Flen) = e ff ap: (3.63)

one immediately finds Galeev's quasi-linear equations for this instability
(Galeev, 1967):

H_'}m d]&i _ m?fzwiim}c J‘m f(s..!.) d‘SJ. (364)

N d 24/ Kk, (65 jow) W,
where
1 142
£1,0 =‘-‘-?:mi (CU_kkz)_’ €1,0 <% €1 min, (3.65)
and
0: if &< €] mins
= 3.66
£ { oo, o (3.66)
8 @ [ 1 ofe))
6t 0s, (»\/s_,_ de, ) G67)
(wh)’eNp+/m;
— 3
= ’f Dk 5 T 7R (0s5%) (3.68)

1
=0y
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Another example: if the Larmor radii are very small (z <« 1) one can
use for the probability for the emission of longitudinal plasmons the
following expression, which is easily found from equation (3.55):

(2.7?.’)382 av,
Wk Pos D1 9) = s

8w}, — kvs). (3.69)

1
w—wk

This immediately gives the quasi-linear equations for drift waves, first
found by Galeev and Rudakov (1963): :

1T TR
N, &Ny & ke ) .4
At T mmk(0eLjow) fd”’{ v, o 3)?} ok,
o (3.70)

a _ dSk(k 0 _ ke E) € ek~ kyv:) Ny
ar " Ov: wg, Oy wkPm(06 [Bw)

.1
a=ay

(3.71)

X(kz 0 ks a)

v, wme Oy}

It is evident that the method we have described can be used to obtain
rapidly results which would normally require a substantial amount of
work,

3.6_.____ Non-linear Plasmon-Plasmon Interactions

Let us.consider the simplest non-linear wave decay process:
o—+o'+o”. (3.72)
We shall denote the probability of this process by
wo™ (k, ki, ks). (3.73)
It is easy to obtain a balance equation similar to that of Section 3.2:

Ak, ks

dNy
2=

7 3.7

= f ws (k, ko ko) {NENE, — NENZ —NENEY
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To find the probability let us again use the correspondence principle.
The emissivity of o-waves in the limit as N - 0is

00 — f dNE &k
dt (2np
 d¥k d3y dPks

@y (3.75)

= fwgws &, Iy, kz)NklNkz

This emissivity is equal to
Q° =—{(j-E)) (3.76)

where j is the non-linear current excited in the plasma by the ¢'- and
o'’-waves, and E is the field produced by the current.

We recall the general expression for the second-order non-linear
current:

(Ji = z; f S, 11, #9) 8(sc—21—20)E; o By o, A1 dYe.  (3.77)
i,

The Sj; can easily be found from the Vlasov equation by means of an
expansion in powers of E. In the present case equation (3.77) becomes

(ju)i =2 j Si(ze, w1, MZ)E:;E:: B2 —201—2e9) d%ﬂ]_ d4%2 . (3.78)

The fields E can be found from equation (3.47). Substituting for j into
equation (3.76), we obtain

Q =t [ SEEE (e ) (o)
X eXp [z({k—kl}-r)—i(m—coi)t]. (3.79

We now use equation (3.50) and (3.78) and average the result by using
equations {3.10), ¢3.12) and (3.15). Comparing these resulis with equation
(3.75) we see that

WE K,y K ) = 320(20) SR —er) O(00f — oo, — )
(wr.) (05, )| Sewede%s &, ©0F, k1, w5 ko) (3.80)

X
a 2 o [ 6 2
e (60 Ek) wm 6_031 (601531)

v % (coge,, ) .

lwp=w, |wa=ep
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where
Sooer = .Z[ (en):(er) (ei’,)z Sy, (3.81)
hJe

and

(3.82)

1, if ¢ #o",
e:

L o ="
From this general formula it is easy to find many of the results of other
authors.

R tR5

3.7. Non-linear Plasmon-Particle Interactions

To a first approximation such an interaction is due to the induced
scattering of plasmons by particles

o4e o +a'. (3.83)
Let us denote the probability of this event by
Wik, k', Doy 210 V) (3.84)

The balance equation is very similar to that for emission except that
the momentum change is now

P, =pitki—k,, p.=porki—k,. (3.85)

‘We have .

dNi _ dp. d°K

- dT - RN .4 2m (2”')3
X [NZ(NE+1) ful P> P2 1)

—_ (Nj?'{" I)N;f;t(pz"l'k;_kz: px"l'k;"kxs H—I’)] (3'86)

In the guasi-classical limit we obtain

Wik, &', P2y P V)

dNg o fd‘”‘p &k oo oy 1
ar =2 2 2mp NENEWs (e k' peop > 9) A azﬂ‘(f’"h’y)

e [dp d%%k
RPN 7
t [ dép’ A3

T@np

—— Nir W:(k K, p.mpi, V) fl P2s P15 V)

Nkwo‘(k k » Pz P1s V)ﬂ(stpLa y)
3.87)

-2

@, o' v=—vo




40 THE THEORY OF PLASMA TURBULENCE
WV P kx—k;
My =ky—k, A¥ = . A3 = AR (3.88)

In the limit as ¥, — 0 equation (3.87) describes spontaneous scattering:

dN? = pdk . ,
k= ¥ o = Niws(k, k', pry pos D)o (3.89)

AT R L
This can be used to find the emissivity, as follows:
dip
o’ 3.90
0= | GRre (3.90)
o ‘oo Pk . ) .
r — ;;=Z—'oa ‘Efﬁ-ﬁn Nk'wa' (k: k s P D ]")wh" (3‘91)

In order to find the probability it is necessary to know the current due
to emission. This current has two components, corresponding to the two
possible mechanisms of scattering, that is, the usual Compton scattering
and the non-linear scattering (see Fig. 15).

A

(a) ()
Fig. 15,
Two possible mechanisms of plasmon-particle scattering.

Often these currents cancel one another as, for example, in the case of
the scattering of Langmuir waves by electrons, or ion-sound waves by
ions, and in many other circumstances.

The current due to Compton scattering is easily found. It is necessary
merely to compute the small oscillations of a particle in the E°-field
(c = 1)

d v
dt /(1=

m = gf{E,‘,’+ [o AHZ) et n~ior J3k den,  (3.92)

where
HZ = - [kAE). (3.93)
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In first approximation the particle moves either with constant velocity
or spiral in the zero-order constant magnetic field. If this trajectory is
substituted on the right-hand side of equation (3.92) the small oscillations
of the particle in the field can be determined. The current due to these
oscillations is easily found from the relation

J = eo(t) 5(r—r (). (3.94)

Although in the relativistic case the calculations are sometimes tedious,
the general result is usvally quite simple. We write it in the general form
Tt ‘(‘-"\ Es i(k = ro)+-ivepy 6({0 —_— — (kz—k;)’uz _V(DHQ,_),

(3.95)

e ”k_mf(zn)a %, %'y ¥

without specifying the coefficients 1.

The current due to the non-linear scattering is also easy to find.
Indeed, such a current stems from the simultaneous presence of the E?-
field and the field produced by the particle, neglecting the small oscillations
of the particle in the E°-field.

From equation (3.77) we thus obtain:

(]x): - fS;ﬂ(% % X— %)EXJJ e—' !d4 ! (396)

D:,U J'.
where
2. (/28— kde;— wPey(eo, RN(EZ) = dmion(j2;, (3.97)
7

and (f;); is given by equation (3.43). If one introduces the inverse Max-
wellian operator by

Z]Tm(%) [kzﬁ,-j—k,-kj—mzs,-;(x)] = 6.,_;, (398)
one finds
En—x = 1%1(60 0.)’) Z H[S(x # )ﬂ_Zoo (2 )3 x—u’ 5
X exp {z({k—k’} -ro) +ivgo] {00 —0" — (ke — kv, — vorm,);
(3.99)

I differs from I (see equation (3. 44)) by a rotation of the xy-axes such
that &, ¢ 0. Thus we find

f e, BT 0’ — (hey— K — voou,) di%’,
net oo {3.100)
TSY 4
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where
n 8 i —a’ a’ ’ r r e
(A, )i = Z %ﬁ"fﬂ_)(ek,)fsw(% #'y u—u) i —n) o s
FILT
(3.101)

The emissivity of such a current can be calculated in 8 manner analo-
gous to that in the case of plasmon emission. Comparing the result with
equation (3.91) we obtain

4(2m) ‘Aw.(coz, k, of., )'1:’)i2

Wwolk, K, pay pus ¥) = S I . (3.102)
{2 20"
aw (CL) 53 r B aamf (00 ax') w
ﬁ)——l’J'Jk o --ll)k,
where
A = Y (el (Ai+ AT, (3.103)

It should be noted that the inverse Maxwellian operator represents the
virtual wave in the non-linear scattering diagram. Often such a wave
can be considered to be longitudinal, in which case

1 kik;
Oy =—— 2oL, (3.104)

where ¢ is defined by equation (3.52). If, in addition, the non-linear
scattering dominates (as it does for the scattering of high-frequency
plasmons by ions) a simple expression for the probability results:

32(23?:)5@2 fSI(co}c, k, co};:, K, cu}k-—co};, k—-k’)‘2

W}'(k, k’s p:; p_u ])) = Z

= |k —k *| (oo — i, k—K')[?
2 1 ,
Ji(za) ok — wop — (k. — kL), — vog,) . (3.105)

(L) a & K2 g

AR B U R

.w—wk m—mk.

where
H([k_k’]L'Ui) [ keikn ko .

An equation for the change in the particle distribution function
resulting from the scattering can also be written down. It has the same
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form as equation (3.33) with

e (9% d%'

Dy=Y G dh; Aigwi(k, &', poy po, YNENE, (3.107)

A —_ +=° dsk dak' a’ el t o ’
=2, 2| e (NE =N AW e &, py py, 9). (3.108)

If the particles are non-magnetic (or if H, = 0) then 4 = p; and
iy = k. In the circumstances in which both the interacting and virtual

" whVes are longitudinal, the probability is obtained from (3.105) by making

the substitutions:
L (3.109
800k — 0 — (ks — kYoe— v0z) ~ 800~ o — ([(k—'}-0). (3.110)

For example, in the simplest case, when Langmuir waves are scattered
by ions, the probability is

W o, k. k) = 2n)® e%(k.k')za(wk—w};_([k—k’]-n))_

e, RN+ T, TR @.111)

The method described above enables one to obtain and use the probability
for the process of interest.

4%



4. Turbulent Collisions and Resonance Broadening

WE EMPHASISED in the earlier chapters that the balance equations are
only an approximation and that turbulent broadening of resonance
interactions plays an essential role in the turbulent state. One can say
that the broadening of resonances is due to turbulent collisions. The
derivation which we have given of the balance equation shows that the
particles emit and scatter waves in a linearly stable or unstable plasma
as if there were a high level of dissipative processes. The point is that we
used

Im — = 78(k2 —2e?), 4.1

1
k2 —coPe

which is only true in the region of transparency where Im (¢°) is small and
positive. This implies the use of retarded potentials in calculating the
waves emitted by particles. In an unstable plasma when the linear part
of Im (&°) is negative, one must use equation (4.1), but not the expression
with the opposite sign (advanced potentials), because the linear part of
Im (&°) has then no meaning for plasmons, It was already emphasised that
the plasmons are driven in k-space by non-linear interactions which play
an effective role as collisions. This means that the denominator in equa-
tion (4.1) depends on the turbulent energy which can, therefore, not be
used as an expansion parameter. Only in the balance equations where
the broadening due to the turbulent collisions is neglected can one use
equation (4.1). Also, the transition to the turbulent state involves non-
linear interactions and thus a more precise description of the turbulent
state is needed to include turbulent collisions,

Maybe one can say that for the balance equations it is an academic
question, because it is obvious that in a statistical description one can
use a transition probability approach and that the increase in entropy
needs a retarded potential. For example, it is obvious also that binary
collisions in a plasma could be described by collision probabilities or
cross-sections and the exact derivation of the collision integral from the

44
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Bogolyubov scheme can be regarded as an important, but academic
problem. However, this is not so because Bogolyubov’s scheme is the
way to prove the validity of the physical picture used.

Let us emphasise then, that the question of turbulent collisions is not
academic, nor is the treatment of the Landau poles in the balance
equation, but that they are essential practical guestions for ion sound,
for example. The study of this problem by Rudakov and Tsytovich (1971)
shows that the induced scattering of ion-sound waves by electrons be-
comes negligible compared to the quasi-linear collisions. Therefore, not

. all-possible diagrams should be taken into account, even in the balance

equations, and a full statement of which diagrams are the most important
will be given later. Let us only remark that the lifetime of the elementary
excitations depends on the turbulence energy and that they are physically
quite different from excitations near statistical equilibrinm,

4.1. The Balance Equation found by Statistical Averaging

Let us first find the balance equations exactly from the Vlasov and
Maxwell equations using an expansion in the stochastic field amplitude.
For simplicity let us consider waves in an. unmagnetised plasma which
are not resonant with the particles, that is w # (k-v), and start from
the equations

%J:“ -I—(U-Vfa)-l—e(E-g—f) =0, 4.2)
(v-E) =4n§eufﬁ~é%. 4.3)

We divide the distribution function and the electric field into regular
and stocuastic parts as follows:

fo = fEELSION, (i) =0, 4.4
E = Eres + Estoch’ <Estoch> =0. (45)

Thus, by averaging equations (4.2) and (4.3) and substracting from the
exact equation the averaged one, it is possible to find two sets of coupled
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equations for the regular and the stochastic variables (f = f¢):

B_f +(@-vf)+e (Efeg 2—1{) = — e< (ES“’“" gf—) sm}l>, (4.6)

afstoch
ot

+(U vfstoch)+e Estoch, af +e Ereg, ¥ afsm‘:h
ap op

A ) (e e

(v Eres) = 4er f fomm (2n)3 . (4.8)
(V-Eswoh) =45 Y e J' stoch (g;;s ) (4.9)

Let us consider for simplicity the case £™8 = 0, and expand in Estoch,
In the Fourier representation equation (4.7) splits into a series of equa-
tions:

ilev— (ke -0)] f:*°°h<1)+e(E;t°=h--g§) =0, (4.10)

~ilo— )l fr e | { (e 3_6_”)
‘ P

stoch (1)
~ <(E£I00h . —a,‘ﬂ—)\} 5(%—%1—%2) d4%1 d4%2 = 0, (411)

op /

o= (e 2+ | {(Eh oo w2
/4

afstoch@)
<(Estol:h ap )>} 6(%—%1—-%2) d%ﬂ]_ d‘iﬁﬂz = 0: (4.12)

Here the /™ are for simplicity taken to be time and space independent.
The generalisation is simple but this approximation is appropriate when
J™& varies slowly in space and tirne.

The first step is to substitute from equation (4.10) for /5", given by

toch _ e Eoh 4, of
A - dlo—kv)]  k (k Bp)’ (4.13)
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into the “collision integral” of equation (4.6) to get the quasi-linear
equation:

af 5 B_f
62‘ Bp)
ch
= _ef <Estoch ko O )> il +ka) P+ ondt Jhyg o,
klikZJ eftliy+ka} - #)—Hw; +wel af
i Ay EztochEztoch d‘%ﬁ d4x
e gapa keyky (B wy—(kz-0)+38  Op;
7] af
=Y — | Dy ==}, 4.14
;i op: ( g an) @.14)
where
kyides;
Dy = :n:ez.[ 1Bl (w1~ (ky1+0)). (4.15)
Here we have used the usual expression for the average of the stochastic
Iongitudinal fields, a minus sign arising as ky = —k;,
(ERORESODy — |, | 8(se1+ ). (4.16)

The imaginary part of [w—(k-v)+i6]~* has been put equal to
—nd(w— (k+v)). The essential question is how did we decide on this rule
for dealing with the singularities [o—(k-p)[~1? One could, of course,
introduce a small collision term in the initial equation (4.2), but this is
wrong because the turbulent collisions are much larger than the binary
collisions. From expression (4.13) one can see there is a divergence near
@ = (k-p) and one concludes that near the resonance one cannot use an
expansion in E5°® and the higher-order terms in ES*°® in equation (4.10)

- are essential. As we shall see this gives a broadening of é(w—(k-0))

in the quasi-linear equation (4.15). Because this function has an appre-
ciable maximum near » = (k -v), one can use equation {4.15)as an approxi-
mate expression for the diffusion coefficient. This can only be done for
integrated functions such as the diffusion coefficient, but not for the
stochastic part of the distribution function f*°*" so that equation (4.13)
is wrong near the resonance.

Let us leave this problem for the moment and consider the case where
w s (k.v), when expression (4.15) is approximately zero and equation
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(4.13) has a finite source term. An example of this is found in Langmuir
turbulence, when the phase velocity of the waves is much larger than the
thermal velocity. Substituting expression (4.13) into equations (4.11) and
(4.12) one finds the non-linear charge density

J- stoch (2) d3p
(2my

_ f d*p (k.i)_l_h_(k.ﬁ)
- kika(mR [o—(kev)] \ * 0p) wa—(kzeD) \ © Op
E:tochEstoch <Estoch stoch>] 6(% ”1—?‘2) d 1 d 2o

f B (BB i) ' L
(4.17)

s
stoch (3} P
=€ .[ 1 oy

(3 stoch stnch stuch stoch stoch yastoch’
= f QPF. M1y ¥y -"f.;[ E E

— (BBt g oY 50— sty — g —5) APy A dPus,  (4.18)

® _ it | 9P ] ( 0 ) !
o =) @aF To—Go] ' ) o—01—([k— k)
8 1 ofy_ 1
X (kz-ﬁp-) ——wwws_(ks.v) (ks- E) klkzks . (419)

One can now write the non-linear Maxwell equation (4.9) in the form
ikaz Estnch = dx f foz,')xb Mz Estoch stoch <EstochEstoci1>]
4, g4
X O —n1—na) d 1 d ng
+ 4oy f 95{.‘3)%l v s [ stoch stuch sto:h_E::och < stochEstoch

_ < Estoch EstochEsto:h>]
X 0(xe— 21— —2u3) dhey dhy ding, (4.20)
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where

gften)
4me? (k- op ) d%p @21)
k2 @—(k0)+18 (Cn)p’ )

Note-that ¢, contains the average regular distribution /™%, but not the
{inear stochastic distribution f*°®, so that equation (4.21) does not give
a linear dielectric constant, Also it is necessary to mention that expression
(4.21) was derived from equation (4.17) which has no exact meaning
But expression (4.21)isan mtegratedvalue and use of Im [eo— (k -v) + 6]
= mStco (k-p)) that leads in equation (4.21) to the quasilinear
growth-rate can be shown to be appropriate. Now o s (k-0) and the
imaginary part of ¢, is zero, Using equations (4.20) and (4.21), and
averaging over an ensemble, one has

sx=1+

4m
Ex} E:tochF J‘QE‘Z),‘J‘ xa( stuchEsr.ochEstoch> 3(%—%1-— }ﬂz) d4 ” d4x1 d4?£g

4”ij (3) [< E:‘;Eoch stoch toch stoch

+ Qx, ¥y, X2, ¥g "1 'z

k
h ch’ ch h'
< Estoc sto > < Es:o E::oc >]
X 5(%-"-%1'—%2—?%3) dh' dhey dbe des. (4.22)

This equation is written down for the case of stationary turbulence. If the
turbulent state depends weakly on time and space it is useful to define
[ESoR |2 by the relation

| E;toch]z — f <E,s‘tochE:?och> ei([k+kr]-r)—i(w+m‘)r d%ﬂ’ , ( 4. 23)

which coincides with that used above, if the turbulence is stationary.
Then the equations for (g, — ¢,.) (ESPEFN) lead to the term

|2+ 0w | [ B2 P 2P, (424)

which occu.s in the balance equations. Let us emphasise here that the
weak deperdence on ¢ and r in the treatment given now is not a resulf
of the smalness of the quasi-linear growth-rate, because the non-lingar
interactions may well lead to a stationary state,
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We shall continue to consider the case of stationary turbulence and
use equation (4.22). If the turbulence is weak, the correlations of the
fields are rather weak so that one can put in equation (4.22)
< E::tochE::och E::och E::och> ~ < E;toch E::oc.h> < E::och E:;och>

+ < E:rtmh E::och> < E::och E:;och> + < E:foch E:;och> < E::och E::och> . ( 4.2 5)

The last term of equation (4.22) is, therefore,

= f Lot 0P MBS B 0. 026

To find the average of the three fields one needs to express it in terms of
four fields. This is possible by using the first term of equation (4.20)

b dori 9 1 pstoch toch stoch:
E:toc = ke f QL,)"]. "z[E:.Ioc E:zoc - <E:.loc E;IDC >]
H

X Ozt — 1 —s0) dty Ay . 427

Let us mention that this expression has no meaning if ¢, is close to zero,
as can be seen by analogy with our discussion of equation (4.13). But if
it is used, one finds the first term of equation (4.22) in the following
form:

h |2
4 (42 { Estoch[2 f —(2) é(z) [ E:IDC o
k ot %, %1y oty —ry ety 5, —pty |k—k1| 83_,,1
4)? 2 ‘
25 | B o M B 80— ) e
—X

(4.28)

where §* is the non-linear charge density coefficient symmetrised in 7,
and xs:

B = ot 0P ). (4.29)

One may assume that the first term of expression (4.28) will cause no
trouble, because ¢, occurs under the integral sign, but the second
term goes to infinity when ¢, — 0. This inconsistency comes from equa-
tion (4.27). However, let us continue the comsiderations by neglecting
the term (4.28). This is possible, if the turbulent oscillations cannot even
roughly satisfy the decay conditions required by the -function in the
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second term in expression (4.28). This is exactly the case for Langmuir
turbulence because 2w, # ®,, and the frequency of the waves lies close
to .. Now equation (4.22) can be written in the form

(et et ) [EP = o, (4.30)
where
&t = - f Ty | BocBI2 g (4.31)
_ i o @ (4)?
R Zx. wy — T (Qx, Hys Xy —3y, + Qn, W1y —Hyy n) + 4 mﬂ“
écz) Q.(z)
e e e Ve B 2’(‘?3‘1 +Ea(f)x, . (432)
-

The quantity X2® contains p® and the quantity X similarly 2. The
term ~Im & (8¢/80) |, .0, = ¥3-" can be called a non-finear growth-
rate and indeed describes the energy transfer of the turbulent waves.
Because « = (k-v) the imaginary part of the first term of . C2D
easily be found from equation (4.19):

Im 29, = ?C’;:j f (S;I)’S [mf"f('ffg)]z w8 —01—([k—k1]-0))

[+ 2) ey (e3p)

_ (kl. 5%) ﬁ (k- %)]f
= 2% | o (4 5

xa(wwl—([k—kl]-v)%. 4.33)

By expressing |E, [* in terms of Ny, and calculating 72" we easily
find that equation (4.33) is exactly the same as the one we find for the usual
Compton scatiering of particles. If one examines the next term =@,
and calculates the total imaginary part that exists in &% , 0, vy and

b one finds the non-linear scattering and the interference of

Qx—nl, ) —xy?
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the non-linear and the Compton scattering, so that—as must be the case—
the scattering cross-section is |M;-+ M,|? where My and M, are, re-
spectively, the matrix elements of the two scattering processes. Thus the
result is just the same as found in the scheme described in the previous
section,

To finishthis kind of consideration, wereturn to the problem of stochastic
heating. Supposing that for the turbulent oscillations & = (k-v) for the
thermal particles so that the diffusion (4.15) seems to be absent. This is
not quite true because the non-fulfilment of the condition w, = (k-v)
in the centre of correlation curve does not mean that this condition
cannot be fulfilled far away from this centre, and this indeed is possible.
It is interesting that it is possible to find the form of this correlation
tail by using the secular term (the second term in expression (4.28), which
we have neglected in equation (4.30) or near the centre of the correlation
curve). Indeed, far from the centre e_, has no singularities and the
terms that are proportional to |E, |2 become negligible because |E,|? is
small. If one takes into account only the second term of expression (4.28)
and substitutes it in the diffusion coefficient one finds that 8(c—(% -v))
is replaced by (e —wy— ([k — k1] -v)), and the whole term is proportional
to |E, |* | E,,|* and is exactly the same as found from non-linear scattering
in the scheme of the previous section.

As the result is proportional to | E,,|¢ one must take all terms of the same
order of magnitude into account and these come into the collision
integral (right-hand side of equation (4.6)) from the product ftosh®
X f5°6) These give the Compton scattering and the interference of the
Compton and the non-linear scattering,

Although we derived the same results by another procedure, it is clear
that there exist some questions about the singularities [eo— (k-)]~! and
&, 1, which indeed are not formal, but deep and physical. Still we find the
stochastic heating and it is very clearly explained; it comes from sub-
stitution Im [w—(k-0)]"2 = —= 8(ww—(k-v)) or a similar substitution
for [w—w1—([k—k1}+v)]7%, and this was done formally. Thus to clarify
the physical meaning of the stochastic heating, one needs to treat the
singularities correctly.

It is known how this problem of the singularity [o— (k)] is treated
in the linear theory. This is the Landau treatment that gives the Landau
damping. It can be found as the limit of [w—(k-v)+iv]~ (where » is a
small collision term) as » — 0. However, in the turbulent regime the
energy in the fluctuations is much higher than at thermal equilibrium
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and is, thurefore, dominant. This means that the denominators must
have a brcadening dependent on the energy of the turbulence. Thus the
whole Landau problem must be re-examined. This means that the nature
of the Landau damping of plasmons ‘is different from the usual linear
damping. This also follows from the well-known fact that the linear
Landau damping can be reversible and the plasmon Landan damping
1s irreversible.

On the other hand, the presence of the energy of the turbulence in
denominators that can be expected from this physical picture, means
thatwio construct the corresponding theory it is necessary to sum the
whole series in |E, |2

This one can hope to do only because the turbulent coilision frequency
M i5 much smaller than the frequency of the plasmons, or at least
than Avp. Thus we must use the small parameter

1 pturb

(4.34)

- »

0T ()]

which is appropriate for weak turbulence,

4.2. Turbulent Broadening of the Wave-particle Resonance

To include the turbulent collisions it is necessary to change the per-
turbation theory, and to start with an initial approximation that already
is & sum of the | E, |2. This is possible to do as was shown by Rudakov and
Tsytovich (1971), by a renormalisation of the equation for the stochas-
tic distribution function, or by a renormalisation of the propagator
[eo— (K +v)]~L. Let us write equation (4.7) for /5" once more in the Fourier

representation :
E  ofres
. stoch stoch

:;_eJ‘ [E::och(kl__@g_g_di)_<Ej:och(k1_ f%t;Ch)>]

d4%1
< %

d"?ﬂz 5(%—%1—'%2) (435)

Let us extract then from the right-hand side of equation (4.35) the term
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that is diagonal in £ and denote it by

—I[CD ( k-!)) + W,g (p)] fstoch —e Estoch ( "Z 6f ) x( ) fstoch

_Ef I:EstOCh(“ﬁ . afstoch) Estoch(_’il . f;s:och) jl
m \& T o “ \k T op

X 6(% %1—%2) d‘*xl d‘i%o (4 36)

We introduce the operator g,(p) that is the inverse of the left-hand side
operator of equation (4.36)

8dp) [0 — -0+ B p)] 2 = fIo0, (4.37)
and write equation (4.36) in the following form

" Estoch a TeE "
72 = S 8 (£ i s

‘!- g stoch(k]_ afswch) stoch Ky afsm':h \
e [ [ ) (e - 2 —)))

X 6(%—?{1—%2) d4?’1 d4n'52 (4 38)

We insert this relation into the non-linear term on the right-hand side of
equation (4.36)

—i[ew— (kev)+ i, (PN stoch — €E51OCh(:: afstoch) ( )fstoch

+ie f (E::DChE::och <E::ochEstoch> (& 1 a )g (P)(k é“r‘?g)
2 F4

X B —w1—xa) d%e; diey

- Eliele) k stoc
—ie f [E “( = ——) G PRI
stoc k 6‘ - -~ StOC]
—<E “( Y p)gx(p)vk(p)ﬁc h>] B —e1— 5 ey ey

ezf( ) a (E&.i stoch stoch stoch

_ E::OCh < E::och stoch(p)> < sto:h Estoch stoch (P)/]
X 8(r — 1 — 315 —223) ey dins d4es. (4.39)
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In order that the operations that have been made have a meaning, it is
necessary that the diagonal term, at least to first order, vanishes on the
right-hand side of equation (4.39). This term comes from the last integral
on the right-hand side of equation (4.39), that is, from

/ Estnch stoch> fstoch (4 40)

We thus find an integral equation for the turbulent collision operator

v.{p):
‘ vx( )fstoch —ie? Z fd4%1 klz

Remember that g is related to # by equation (4.37). The new perturbatlon
theory can now be constructed by using as a first approximation

och
28 oip) Lo afﬁ . (441)

*y

~ il —(k-v)+ P £ = eE““h(';i a;gp ) (4.42)

From this we obtain
Te
ot = 2 B (p) ( . a’;; ) (4.43)

This result differs from equation (4.13) in that [ —(k -0)] is replaced
by a propagator which involves the turbulent collisions. Equation (4.43)
leads to a quasi-linear diffusion coefficient:

By = ie® f i | B0 |2 S0y 4 o 4.44)

and a dielectric constant
. dne® [ d%p afre
s,,—-l—l——[zz—f G P )( - ) (4.45)

By this means we have included the effect of the turbulent collisions
in the lowest order of perturbation theory. One can also work out the
next approximation, that is, the equation corresponding to equation (4.22)
(including equation (4.26) and (4.28)). The result is:

= | grstoch|2 stoch |2
| B = | B

f): | Bol* d*

2(4 -
,fzﬂ“) f (8 VB | By [ Boe—rir— ) a1 da. (446)
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The quantity ¢® is derived from g® (see equation (4.28)) by replacing
[@—(k-v)]™* by g,(p). The quantity X, is derived from Z, « Of equation
(4.32) by replacing [w— (k -v)] ™2 by Z.(p), except that the term correspond-
ing to (4mijk)o®),  _.. . must be omitted. It may be shown that terms of
this type are now included in the first approximation.

We must now consider in more detail the equation for 3. It is obvious
that away from resonance the solution of equation (4.37) is the same as
it was for the incorrect expansion procedure, that is, [ —(k -r}]"L. So we
need only consider the solution near resonance. Introducing s = w—(k -p)
and assuming that

7 << Max {w(k), kvr}, (4.47)
one can consider g as a function of 7, &, and p. The equation

[o—(k-v)+#p)l £ p) = 1, (4.46)

which follows from equation (4.37) is an operator equation and we find
that the most important terms are the derivatives 8/67 that arise in 7,
when the new variables are introduced. In this case g is diagonal and can
be replaced by its eigenvalue, so that we obtain

— D . = 4.49
(7?—!_ 67? ’D?I 67’} ) &, k(.p) 19 ( )
where
22 r k'k, 2
Dy = e fd%c ~(,_7c’2) |Ex'|zgg2w'-k—ff’ (p). (4.50)

Because of condition (4.47) 5 can be neglected in equation (4.50) so that

D, ~—iDy, (4.51)
e [ (kolip)?
Dy =2 ( k;) B 2@ s, %y dooy . (4.52)
1

It can be ascertained that the imaginary part of Dy is small compared
with the real part; we shall, therefore, assume Dq to be real.
If we now perform a Fourier transformation

1 {7 .
&9, = 3= &9, ™ dr, (4.53)
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we obtain

-if;"_wpogg?’,, = — i 8(z), (4.54)

The soluti “n of equation (4.54) is
o gu(p) = goexp (—4Der’), 70, (4.55)
while g, , s determined by the condition

(0) (0}

v T 8% s —&r, k —o_ = —2oi. (4.56)
There are two possibilities:
) Do>0, glx=0, go=—2mi; } @57
2) Dy <0, g8 s=0, go=2mi.
In the first case
g0up) = —i fm 5D gy (4.58)
In the second case '
£%(p) = z'f: D gy (4.59)

Introducing expression (4.58) into equation (4.52), one finds

Dl p) =& v G 'k’;l)z f " drexp [— b{wr— (rrm)) 7
. 7 ),

— % Do(k—ks, p)zs] : (4.60)

Since the integration in equation (4.60) is over a wide range of k and o
one can approximate Dy by

me? Kok P
Dg = o f dhiy ( k%l) | E.,[? 8(c0— (k+0)). (4.61)
This confirms that Do is real and positive. The second solution (4.57)
leads to the same results, if one uses the substitution f— — t, as long as
one takes the positive time direction to be always to correspond to in-
creasing entropy.

TSY 5
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We can now also estimate the effective collision frequency. From
equations (4.58) and (4.61) it is easily seen that

2 2,2 | 13
. pie . WOk
Verp ~ 0

T kv

kvpe\ V3 [ W\ 18
~ ZfTe _— 4.62
Nwm(%e) (n:n,) . (4.62)

This estimate is valid for electron—plasmon interactions. A similar esti-
mate can be made for ion—plasmon interactions,

It must be emphasised that v, cannot be expanded in the turbulent
energy and that this comes about because of the importance of the turbu-
lent collisions near resonance. Notice also that vz does decrease very
rapidly with wave-number and that vz is associated with the stochastic
part of the distribution function.

Let us now return to the problem of stochastic heating and the Landau
damping of plasmons. The non-linear &, now describes such a damping,
which in the zeroth approximation is identical with the linear Landan
damping. If @ = (k-v), we can expand the equation for g, taking_ Yasa
perturbation. But g appears in % and we now know how to treat it wh.en
resonance is possible. This is, in fact, possible for the beat frequencies
and we can obtain an approximation by replacing g, (p) in the integrals
by 8(w—wi—([k—k4]-v)). We thus find the result obtained pr_eviously
and can understand the physical meaning of the stochastic heating.

We have not yet succeeded in avoiding all the singularities. Indeed,
§_, in equation (4.46) has the same resonance as before, since it follows
from equation (4.62) that the turbulent collisions produce only a‘smaH
broadening and that the real part of &_, is almost the same as it was
previously.

4.3. Broadening of the Wave—~Wave Interactions and Correlation
Functions in a Turbulent Plasma

We now suppose that the three-wave decay process is possible and
that the singularities in equations (4.46) and (4.28) exist. The wave-particle
collisions, even if they introduce an imaginary part into the non-linear
e, do not remove the singularity. We must now renormalise the
plasmon propagator (£%—w?e%)~4,
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This problem was considered by Makhanov and Tsytovich (1970).
Here we give only the main ideas. It is obvious that one cannot use

equation (4.27) to express the average of the three fields by an average
of four fields.

Two sieps are essential. The first is the introduction of a non-linear
(renormalised) dielectric constant & = — fd‘ixlfm | E,, [%. The second is

to split the stochastic field into two parts: the high-frequency part E¥,
with frequencies of the order of the mean plasma frequency, and the
low-frequency part E' with frequencies of the order of the frequency
of i€ plasmon—plasmon interactions (that is, the frequency corresponding

to the correlation time of the fluctuations). We rewrite equation (4.20)
as follows:

(5, + &) o — _‘:% J' E'ff)xl,xg( Estochgstoch_ <E;_f:ochE::och>)

X 6(;'5 —M1— %2) d%{j_ d4%2 + 41-‘_;; f ’éff)xl. Ha, xs{E::achE:;OChE::OCh

_ E::och < E::och Ej:och> _ < E:I.ochE::czch E;;och>

X B — 21 —wn—xs) dey d'g d'ug— f Z, sz,f:°°h<E,f:°°hE::°°h

X B — ey — g —23) dhey ds dis. (4.63)

The g include the turbulent collisions considered in the previous section
(although this is not crucial for the considerations given below). Thus by
averaging equation (4.63) multiplied by E, we get a result similar to
that of equation (4.22) with &+ on the left-hand side instead of
&, and the term &' |E, |? on the right-hand side. By definition, the last
terme must vanish to take into account all the terms diagonal in |E, |2

on the left-hand side. The average of the three turbulent fields can be
written in the form

(BIUELEL®) = (EEEIER) + (EIELES) + (FIEEED);
E — ER L EL. (4.64)

The E,-field in equation (4.22) is always a high-frequency field. Thus
one needs to express the low-frequency field in terms of the high-frequency
5‘
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feld EE. This can be done if one takes into account that a low frequency
can come from the difference of two high frequencies and thus

1 4?‘5 Q(2)

.. x,nl,un(EEEE < HEH 5(%-%1—-%2) d4%1 d%ﬂg.
i+, ik

(4.65)

Er =

We can also of course write down the next terms of equation (4.62),
but this will not help in the calculation of expression (4.64). Thus, by
using equation (4.65) in the last two terms of equation (4.64) and also in
equation (4.25) one finds from them one of the terms diagonal in |E,|?;
the other one comes from p®. The requirement that these diagonal
terms do mnot occur on the right-hand side of the equation which we
derived leads to the relation

Zx,x: - i b£3)x1, #, —3) + 47;(4%)2 QEV?)M:[ — 95‘2_)_”;, - —”1 (466)
k|k—Fk| en—x1+£x—kl

This equation together with the definition of & gives a non-linear
integral equation for ¢™*. Because the denominator E,,__,q—t—s,‘:lm occurs
in an integral in the induced decay process, one can sometimes neglect

&> and put approximately

2z — 7 §(&,). (4.67)

To calculate (ESESEy) one needs (i) to write down the equation
(4.63) for E¥, taking on the right-hand side only the terms linear in
ErF, (i) multiply the result by E; E,.; and (jii) average over a statistical
ensemble. Then, by using equation {(4.65) and approximating the five-field
average terms by a product of the averages of three and two fields, one
finds a non-linear equation:

(,+8") (BYERERy = jf,’ BD g 1B P | By | 80" +2+22)

2m

{|E,,1| fo oy B ER s 8(" oty — sy —5)

X%y dhes+1 3 2}, (4.68)
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where
~(2) ~(2)
=(3) 8“I9N2+#s sen, 2303, %1, g toeg . (469)

3 —
My Wy KR T 9-"‘,*1;"’3 ng .l

Ik2 +k3| (Enz-i-xa + sxg-i-x;) i

One can solve this equation by a perturbation method using only the
first term of the right-hand side of equation (4.68) in first approximation
and one finds that the other terms give small corrections of the order of
WinT << 1. Thus the equation for the correlation function takes the
form

TR 4z)? ~,(¢23¢ *: * -
E B B = Z(kz)f |9"’;], [ B[ | Exf?

[ ﬁ_x
b4 6(x-—x1-—x2) dbey d‘?ﬂg . (4.70)

This has (i) a soluble form as |E, |2 > 0 and there are no secular terms,
(i) gives the same expression for the balance equation, and (iii} gives
also the same tail of the correlation function as without .

Thus we have seen that the turbulent collisions are essential.in the
treatment of the properties of a turbulent plasma and the appropriate
treatment of them can be found by summing an infinite series of some
of the terms which are essential near resonances. The turbulent broaden-
ing can be neglected only for such average values as the diffusion coeffi-

cients or the expression f |E, |2 dew. Tn the next chapter, we shall show

through the example of ion-sound turbulence how essential this turbulent
broadening is, which is due both to wave-particle interactions and to
wave-wave interactions.



5. The Spectrum and Correlation Functions
of lon-sound Turbulence

5.1. Introduction

Ion-sound turbulence can be excited by different processes. For
example, it is well known that such turbulence can be excited in shock
waves propagating perpendicular to an external magnetic field or arising
from an external electric field along the magnetic field lines. In both cases,
excitation arises if the mean drift velocity u of the electrons is larger
than the ion-sound velocity v, and T, = T;. A detailed numerical calcula-
tion of the growth-rate of this instability was given by Stringer (1964).
The essential behaviour of this kind of instability is that, if u = v, the
growth-rate exceeds the Landau damping for each frequency. Dissipation
possibly exists only for the waves that propagate outside the Cherenkov
cone or, in the case when u > v,, in the direction opposite to the applied
electric field. This means that an exactly stationary turbulence can be
created, if there is energy transfer in the angles of the turbulent waves.
Another example is the excitation by non-linear creation of waves that
can be due to the decay of waves with higher frequencies (for instance,
Langmuir waves). In this case, the excitation can exist in a narrow
interval of frequencies so that the lowering of the frequencies of the ion-
sound wave can lead the system to a stationary turbulent state.

An essential question is what kind of non-linear interactions can be
involved in such an energy transfer. Usually, ion-sound turbulence is
accompanied by an anomalous resistivity of the plasma, due to the scatter-
ing of the electrons by the turbulent ion-sound waves. This is usually
observed and measured experimentally, The value of the anomalous
resistivity depends, of course, on the nature of the non-linear energy
transfer.

In principle, one can suppose that there can exist the three following
non-linear processes:

e+s = e'45", (5.1)
i+s = i'+5, (5.2)
s =8 +s5". (5.3)

G2
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The first two processes are induced scattering processes and the last
one is a decay process. The process (5.2) was first considered by Kadom-
tsev (1964) in a partially ionised plasma. The condition that the ionisation
of the plasma is very small seems to be a very essential point in the
Kadomisev theory, that is, the binary collisions must play a significant

.role. Indeed, as a result of the presence of a high number of collisions, a

region where damping exists is created at nmot very low frequencies,
Energy transfer to this region due to a lowering of the frequencies is
possible. Still, in the Kadomtsev treatment as given in his book (1964)

‘it 1s supposed that the waves mostly go into a direction near to that of

the applied field because, for example, the plasma is confined in a long
tube, and the waves that move at larger angles strike the wall of the tube
and are, therefore, damped. The turbulent energy is not very high
because of the binary collisions. These two restrictions (the collisions and
a long tube) are very essential. Nevertheless, some authors tried later
to apply the same equations to a fully ionised plasma, or to the case
where the change in the angle of the wave can be rather large. Indeed,
from the probabilities derived earlier we find the following non-linear
growth-rate “due to the scattering of ions™:

n.l.
PR = Im &2
»
O,
6w a)=|:l.)k

0 T: ko)) ([k A Koyl -TK A Ker])
= kzwé-!—g Te-J.dXI k‘ik%nTe

W,r.-l 23!]632)3 y

x =& o = T m) 54

One can see from equation (5.4} that if there exist waves propagating
in a direction close to that of the applied electric field, waves with fre-
quencies sufficiently lower than the original ones are growing in any
direction including the direction opposite to that of the field. Thus, the
distribution of turbulent waves must be more or less isotropic. This seems
to contradict the known experimental results (Janarik and Hamberger,
1970; Daughney et al., 1970). On the other hand, the interaction (5.4)
seems to be rather weak. That means that to compensate the high
Landau damping one needs a high level of turbulent energy. Indeed, if
one takes into account that the linear decrement is of the order of
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v/($mm,/m;) and requires that it balances expression (5.4), one finds the
following rough estimate for the turbulent energy:

W mey T Wmax

ﬂ;*4VLmyfmﬂE;j’ (5.5)
which shows that # seems to be too high (as we assumed that W/nT, < 1).
Estimating W from balancing the non-linear interaction with the linear
growth-rate of the current driven turbulence—which is of the order of
V(Em) (m./m) (ufv,) o—and putting it in the quasi-linear equation makes
it possible to estimate the turbulent collision frequency of the electrons

and, therefore, the turbulent conductivity. This was done by Sagdeev
(1967), who found that

Tturb — _ 1 u 1

. A e mr—
S~ o o, (5.6)

where =, when calculated from equation (3.4), is of the order of unity
or even less. To obtain agreement with the observed thickness of shocks
it is necessary to put in equation (5.6) an experimental value for « of
the order of 102, This means that the non-linear interaction must be much
more effective, if one believes that the observed anomalous resistivity is
due to the development of the ion-sound instability.

The problem became much more sophisticated after Drummond’s
suggestion that the most important non-linear interactions may be due
to the scattering of ion-sound waves by electrons, that is, to the process
(5.1). Indeed the rough estimates by Sisonenko and Stepanov (1969) and
by Krall and Book (1969) show that such an interaction produces a
balance for the linear growth-rate, even if the level of the turbulent energy
is very small,

W M. U

=3

T T 5.7

This also contradicts the observations that show the turbulent energy
level to be high (Jan&arik and Hamberger, 1970; Daughney et al., 1970).

The interaction (5.3) is usually neglected because the ion-sound waves
do not satisfy the conservation laws

w(k) = w(k1)+w(ks), (5-8)
k=Fkyvks. (5.9)
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If this process is allowed, it dominates the processes (5.1) and (5.2),
because the scattering arises as a tail of the decay process.

To finish this introduction, it is necessary to mention the work of
Rudakov and Korablev (1966) and of Kovrizhnyk (1967) who considered
the quasi-linear development of jon-sound turbulence. The argument
that the quasi-linear interaction may be a most important one can be
seen as follows. The non-linear interaction (5.4) is rather weak. Therefore,
one may assume that the quasi-linear change in the spectrum is unimpor-
tant. On the other hand, the quasi-linear development can also change
the angular distribution or, in other words, bring the oscillations from

*th& excitation region to the damping region. However, the best known

quasi-linear effect is to form a kind of plateau. In this case, it means
that the growth-rate comes near to the threshold, that is, y; ~ 0. This
means that u is of the order of v,. On the other hand, as shown by the
above authors, the spectrum of the turbulent frequencies must be very
narrow. The two statements (u ~ v, and narrow spectrum) seem to
contradict the above-mentioned observations (broad spectrum and
essential difference between u and @),

5.2. The Influence of the Turbulent Collisions

Mow let us consider from the general point of view of the turbulent
collisions the interactions with ion-sound waves, and illustrate the essen-
tial physical change of the picture of the turbulent state, if these are taken
into acco-:nt. First of all, the interaction of ion-sound with the electrons
is taken into account in the quasi-linear interaction. We cannot expect
that*the next term in the expansion, that is, the non-linear interaction,
can be expanded in terms of the turbulent energy, because the turbulent
collisions were already taken into account, and the result camnot be
expanded in terms of W. In other words, only the first rough approxima-
tion corresponds to the quasi-linear one as was shown above, and the
exact expression cannot be expanded and, therefore, the corrections to
this rough approximation can also not be expanded. This means that
the broadening of the resonance must be supposed to depress the non-
linear interaction, that is, the difference between the rough and the exact
solution as well as higher-order effects. Indeed, in any consistent theory,
in which there is a small parameter, the next order {perturbation effect)
must be small, so that one can expect the effect of process (5.1) to be
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negligible. This was indeed shown by Rudakov and Tsytovich (1971) to
be the case.

The next question is the possibility of the process (5.3), It is forbidden,
but not strictly so. Indeed, if one neglects the curvature of the ion-sound
wave branch and supposes that

ws = ko, (5.10)

then for three waves propagating in the same direction the fulfilment of
the conservation law (5.9) means the fulfilment of the conservation law
(5.8). However, if there is a curvature, this is no longer possible. What
is the effect of the turbulent collisions associated with the wave—wave
interactions ? If the spreading-out of the dispersion curve due to these
turbulent collisions is larger than the effect of the curvature, one must
say that such a process is allowed. Because the probability of this process
is large, one can suppose that the non-linear interactions become much
stronger, This is the effect needed to obtain agreement between the theory
and the observed thickness of the shock waves.

5.3. The Electron Jon-sound Non-linear Interactions

It is easy to see that the large cross-section for electron ion-sound
interactions found by Krall and Book (1969) and by Sisonenko and
Stepanov (1969) can exist for a very small level of the turbulent energy,
much smaller than that for which this non-linear interaction can balance
the linear growth-rate. Indeed, the perturbation theory expansion used
in these papers can only be supposed to have any meaning if the particle
oscillation velocity in the turbulent field v is much smaller than the
mean particle velocity. In the case of ion-sound, one can write

efstoch ef/stoch

e mlog—(k-v)]  mewp .11

because the Cherenkov condition means that (k .v) = @, while the lowest
{k -v) is of the order of w,. Therefore,

v, - 2 Estochy2 N w%e W m W
~ I Y = — .
VT mioivg, wy; 1, m, nl,

(5.12)

Here o, is of the order of w,;. We find thus that even from these argu-
ments one can see that the limit (5.7) which is necessary to balance the
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linear growjrth-ratc cannot be reached. However, one can see that the non-
linear interactions are lowered by the turbulent collisions even for much
smaller W.
Indeed, the theory of turbulent collisions developed in the previous
section is a theory that uses the small parameter
5= 32( Estoch)z ~ wpeW .
PR, (P
If one uses the estimate for & ~ o,fvr, (the most important k in the ion-
sound spectrum) one finds that
W 1/3
s e A= ( ) . (5.14)
ul,
Therefore, we have for weak turbulence that A << 1. As we shall see now,
the corrections to the first approximations, that is, to the quasi-linear
result, are larger than the result (5.14). Thus, the second approxima-
tion need not be considered. Therefore, the non-linear interactions of
ion-sound waves with electrons come from the difference between the
exact expression of the first approximation, taking into account the
turbulent collisions and the approximate one when Im g is replaced by
—nd(ex; — (k -v)). We thus find that

ot f(k o )[Im g-+ad(oop— (kD)) ] o (2“)3

o j ( T )“a(m,‘ (k-2)) (;?)3 |

where v, is an approximate growth-ratc. Using the expression for g one
ﬁnds for example, for a Maxwellian distribution

Va ,‘.= %J‘ exp (— yz)dyzj\ sin Tdt

><{ [cos (%) _sin ( kc;):y ) (g/ k;”:y )] exp( —"%Z) - 1}, (5.16)

where _ Dw
= Tt (53.17
In v there exist two essential cut-offs, namely v = 71 =~ ykvr, /o and

T = 7p & y¥3 /o3, If 75 3 7y, One can put the exponential equal to unity
and one gets

(5.13)

(5.15)

,},g.l. N W m
Vi - nl, m’

(5.18)
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This Is approximately the result of the rough estimates of Krall and Book
(1969) and of Sisonenko and Stepanov (1969).

If 75 << 71, one finds
ot WL
< o ( nTe) . (5.19)

These corrections, indeed, are larger than expression (5.14). The resuit
(5.19) shows that the non-linear corrections due to the electrons never
can reach the linear effect, if the turbulence is weak, W/nT, < 1. One
can now estimate the value of W for which 7, = 75, and one finds that

it corresponds to .
W m. \2
= (ml) . (5.20)

This is much smaller than the estimate found from equation (5.12):

W ome

One can now illustrate the result by plotting y2" /y, against W/nT, (Fig.
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The ratio of the non-linear correction ¥2* to the quasi-linear growth-rate

v, as function of the ratio of the turbulent energy W to the thermal par-

ticle energy nT.,. The solid curve takes into account the turbulent collision
broadening.
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16). If oric linearly extrapolates the resulis found for very low W, that is,

W me\ 2
<«{—], 5.22
< {m) 622)
to the value when this result is not valid, one gets the wrong answer
that the scattering by electrons is effective, that is, p2b g, = 1, when

W e (5.23)

nTe m;

This illustrates the significant role of the turbulent collisions.
TR

5.4. The Wave-Wave Interaction of Yon-sound Oscillations

This kind of interaction was supposed to play a significant role in the
formation of ion-sound turbulence by the author (Tsytovich, 1971) in
a paper written during his stay in Oxford and Culham; this was the result
of discussions on the experimental work done in the Culham Laboratory
by Janéarik and Hamberger (1970) and by Daughney et al. (1970). We
describe here only the qualitative picture of such an interaction. One can
see that, if the level of the turbulent energy is high enough, the process
(5.3) is allowed, if the correlation width is of the order

2
do (ﬁt’i) . (5.24)

w Wpi

This means that the necessary conditions can be satisfied if one goes to
lower frequencies. If such an interaction is involved, the waves created
do-not 'change their angle during the non-linear energy transfer. The
interaction (5.3) conserves the plasma energy and does not change the
angle. The nature of this interaction is to spread the energy over a larger
w-interval without changing the total energy. Therefore, it creates a broad
spectrum. But the condition (5.24) means that in frequency space there
exists a wall, because for some frequency greater than the maximum
frequency defined by equation (5.24) the process (5.3) is forbidden. Thus
the broadening can only be the process of the lowering of the frequency.
One czn see that the spectrum created in such a process is in some sense
gimilar to the ion-sound ion interactions considered by Kadomtsev:

Ww o _1.“ SHDTE
w T

7s¥(3), (5-25)
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where the quasi-linear growth-rate is written as oy,

£ = (kk—f) (5.26)

so that y; describes the non-dimensional growth-rate and ¥(%) is a loga-
tithmic-type function varying slowly with A = w_,,/e. The difference
from the Kadomtsev interaction, apart from this logarithmic function,
is a greater efficiency of the interaction (5.3) and, therefore, a lower value
of W needed to balance the growth-rate. However, the correlation width
as an effective turbulent collision described in the previous section in-
creases quickly as the frequency in the spectrum decreases. This gives an
increase in dw and, therefore, the possibility of interactions of waves

with different directions of propagation. Indeed, this is allowed by the
conservation laws for angles:

A6 =22, (5.27)

One can then estimate the time needed to transfer the turbulent energy
by a multiple change in the angle, each change having the value (5.27),
to the final result of an angle change of the order of unity.

This time can be compared with the time needed to propagate the wave
energy into lower frequencies and one finds that the highest frequency
does not much differ from c,; and the lowest frequency into which the
energy can go before the angle changes become of the order unity, is
of the order of 3+/(m,/m)w,;. When the angle is changed in the current-
driven instability, it means that the energy goes to the dissipation region
and can be absorbed. Of course, in this process the ions are involved and
the ions or electrons are heated, but mostly the electrons.The tail of the
decay interaction is the jon-sound scattering by ions. It is possible that a
multiple change in angle due to correlational broadening has a greater
probability than the change due to one step of ion-sound scattering by jons.

5.5. The Anomalous Resistivity of the Plasma

Even if the whole spectrum is not stationary, the anomalous resistivity
can obtain a stationary value, because it is determined by the highest
frequency in the spectrum. Thus, to have a stationary, or more precisely
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quasi-stationary, resistivity it is necessary only to form a spectrum near
the maximum frequency. Then one can write down the quasi-linear equa-
tion that describes in first approgimation only an elastic scattering of
particles by waves or only the change of the angular dependence of the
distribution function of the electrons. Thisfollows from c/kvy, << 1, which
is found for ion-sound waves.

If x is (p+E)/pE one finds that the quasi-lincar equation is of the form

. 1—x2) free
e 2w oh 6 ! W8 =5 )
0% _ 27 e © & ldo— % (528
o B = F e i : V== ¢
where
W =2 f W, s dt do. (5.29)

We have split the electron distribution function f™° into an isotropic
part f7°¢ and an x-dependent (anisotropic) part f7*:

o8 = fIeE e free < froE, (5.30)
On the other hand, W, . is proportional to ., which depends also on

the function f7¥:

2 V(L—&) dxy o]
pm Eag [P0 o
—/(1—88) '\/(l_xf_5 ) 9%

The self-consistent solution can be written in the form

" frog ap
[ estes, g 630

vl i

fi% = g(x) A op Vg, (5.32)
where
%) _ V=g, s =/(1-2D, a= mE 53
ox g 6m.,vswmaxj WA
0

while g(s) satisfies the equation

s _ [ emdy {sz+n21n (s+n)° } (5.34)

o® ) vA—d| & G-

The numérical solution of this equation is shown in Fig. 17.
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The result of the numerical solution of the non-linear equation for g(s).

From p(s) one can easily find the angular distribution of the turbulent
spectrum to be proportional to A(f), where

o(s) s ds

1
e =& f .

{5.35)

The result of a numerical computation of A(%} is shown in Fig. 18. To
find the comductivity it is necessary to find /™8 from equation (5.32).
One sees that then

o r . (5.36)

=3 (5.37)

5
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The angular dependence of the ion-sound spectrum.

equation (5.36) can be written in the form

ner
o= 7 N (5.38)
where
7w 000 (539)
HDmax

This value seems to be in apreement with the known data on the
thickness of shocks and the measurement of the anomalous conductivity
in an electric feld. We must bearin mind that w,,, s determined by the
correlation time or by Aw (see equation (5.24) ) and that thus the
conductivity depends on Aw as follows from equation (5.39).F

t The spectrum calculated here extends only to about wy/2. To find the con-
ductivity, the spectrum mus tbe extended to wy (afier that it drops off rapidly).
There is no experimental evidence that the spectrum beyond wy/2 produces the
major part of the conductivity, and it is therefore unlikely that the spectrum will
have a large peak between wyi/2 and wy;.

T8Y 6

e e A A AR



6. The Spectrum and Correlation Functions
of Langmuir Turbulence

TuEe Langmuir plasma oscillations are the most typical collective plasma
motion. The frequency of these oscillations in a sufficiently weak magnetic
field, when o, << ty, 18 approximately constant, with a weak wavelength
variation which is due to the thermal particle motion:
3 kWi,

Wy = wpe‘l‘j p
pe

(6.1)

There exist different types of mechanisms to excite such a motion. One
of the best known is excitation by electron beams. This excitation is
due to a population inversion of the particles if the beam is present, and
the possibility of Cherenkov resonance with the Langmuir waves. The
beam does not greatly change the dispersion law (6.1) for the waves
provided the density of the beam, n,, is sufficiently small, and the spread
in the particle velocity Jv sufficiently high:

M« (é?)—)s (6.2)

Thus, the presence of such a beam changes only the imaginary part of
@y, that is, such waves are excited. It is not always necessary to have a well
directed beam. Any anisotropy of fast particles with v > v, will produce
instability of the Langmuir waves. Analogously to the case of ion-sound
waves it is possible to have also an excitation of Langmuir waves by the
non-linear decay of waves with higher frequencies. Such waves are the
normal transverse waves. Thus one can say that a high frequency field
and laser beams can excite these turbulent motions.

Indeed, these two mechanisms of excitation of Langmuir waves by
the beam and by transverse waves are similar, as one can see from the
diagrams of Fig. 19, which describe the Cherenkov and decay resonance.
The mathematical description of these two processes of turbulent
excitation is also similar. The essential difference between iom-sound
instability and Langmuir instability is that the growth-rate of the latter
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Emission of Langmuir waves by particles (2) and by transverse waves (b).

is usually restricted to a particular k-interval, for example, near the phase

‘ vagcity of the beam. It is obvious that these velocities are less than the

velocity of light. In the case of the non-linear excitation of Langmuir
waves by a “beam’” of transverse waves one finds that the excitation
is forbidden for waves with phase velocities larger than the velocity of
light. This results from the fact that the group velocity of the transverse
waves is less than the light velocity. The higher the beam-particle velocity,
the more important the nop-linear interactions that can stabilise or lower
the growth-rate of the beam-plasma interaction. The excitation of
Langmuir waves with relatively small phase velocities is thus the most
efficient process. For the non-linear excitation the most efficient process
iz the excitation of Langmuir waves with 2 wavelength of the order of
magnitude of the wavelength of the transverse wave which produces
the excitation, so that, when w > w,.(c/vr,), the excitation by non-linear
processes becomes inefficient. The stabilisation of this kind of excitation
by transverse waves due to the non-linear Langmuir wave interactions
is more efficient than for the beam-plasma interaction, because the
growth-rate of the non-linear excitation is not very large.

There 'are the following three possible non-linear processes that can
create the turbulence spectrum:

e+l e+l (6.3)
i+1={+0, (6.4)
) P S L (6.5)

Here 1 denotes a Langmuir wave and e and i the electrons and ions of
the cold plasma, respectively. One can include also the process of the
scattering of Langmuir waves by the beam electrons in the case of a
beam-—plasma instability. However, this comes as a non-linear correction
to the quasi-linear growth-rate, which itself is already small. The reason

6.
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why the process (6.3), that is, the scattering by cold electrons, must be
considered is that the cold electrons are not in resonance with the Lang-
muir waves which are excited.

6.1. The Specirum of Small-scale Langmuir Turbulence

Estimates show that for high k-numbers (or small dimensions) the
effectiveness of the induced scattering by elecirons decreases, when &k
decreases, as k% and is most effective for the largest possible k. This
value of k cannot be larger than 1/Ap, where A5 is the Debye length. The
scattering by ions decreases, when k increases, as k™2, and, therefore,
one can estimate where the electron scattering is the dominant process
and finds

1 1 [\ 15
j; =k = k** = ﬁ._D (%1) . (6.6)

The plasmon-plasmon collisions (6.5) are negligible in the range (6.6).
Only in a plasma with sufficiently heavy ions is this interval sufficiently
broad to be considered as an important region. Also it is necessary that
the excitation of turbulence occurs very near k ~ 1/4p in order to have
a region where one can neglect the excitation and to be justified to assume
that the spectrum is due only to the balance by non-linear interactions
with the electrons. Nevertheless, one can work out the possible turbulent
gspectrum in the range (6.6) in order to have a complete picture of the
Langmuir turbulent spectrum in a plasma. If one supposed that, for
example, the distribution of Langmuir waves is isotropie, it is easy to
find from the probability for the process (6.3) the non-linear balance
equation

Wr _ = K s 12 1,2, 4,
_az"“ﬁW"{L Wkldklﬁ(kl—k)(gk1+—7—k)

F d K e b o A s
- | W@ (gk +7k1) :
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After some transformations and differentiations equation (6.7) becomes

B, 21 W, 46 dW, | 100,

2wt @ e & TR (6.8)
There are three solutions of equation (6.8):
const _ 5 _ 5E4/17
Wk = —-—kv 5 yo= '2—, Y = 2 . (6.9)

Only one of them gives non-divergent integrals in equation (6.7) and,
therefore, it is the only solution of equation (6.8):

y =% (6.10)

In many cases, the beam growth-rate is not zero in the interval consid-
ered. In those cases, it is necessary to find the quasi-linear change in the
growth-rate which is due to the quasi-linear beam relaxation. This
means that in the case of an infinite plasma and an infinite beam inter-
action the power input is not constant and one must take into account
also the change of the turbulent energy that is due to the change in input.

CTR

6.2. The Spectrum of Langmuir Turbulence in the Intermediate-scale
Region

The intermediate-scale region is defined by the inequalities

k,<k<k,, (6.11)
where
. 1 1./m

= .1 ==, A2
k* /1]) 3 mj (61 )
In this region the scattering by ions is much more efficient than the
scattering by electrons. On the other haund, the process (6.5) need
not usually be included. The exact non-linear inieraction with ions is
deseribed by the equation

% =N i wpeTe/:ri
TR ngmun(1+ T/ T

ot
Fy (kP (B (9 (@—kDuk |
PR R k—ky| P\ T8 Tk Pohel
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which can be found from the probability for ion-plasma scattering. One
can see from this equation that the non-linear growth-rate increases
with the frequency difference of the interacting waves until this difference
is less than |k —ky| vpy. If |[k—K1|is of the order of | k| (which can occur
even when | k1 |isequalto |k | in the case when the angle between & and &1
is not small) one finds the maximum k;—k = Ak for which the transfer

is most probable
Ak 1 me\ kvre
= ?l/(—mi)“ﬁ;pe - 619

Thus Ak/k<<1 when k<< k_. If then one considers Ak = k_to be a
physically infinitely small value in the interval k = k,, one can find a
differential equation for the energy transfer.

Indeed, supposing that the turbulence is isotropic and using the
approximate description of the function

P ep | =2 = aw) (6.15
- '\/(275) ks?ﬁ-i P [ Zszv%«,-] - i} ) )
one finds an equation
oW oW,
= = Vol Tt (6.16)
where
_ W,
* = HTngmokdl + TP €17

Such an equation can be applied both in the region where the excitation
exists and in the absence of excitation and damping, when 3, = 0. If
v > 0 and approximately constant in the small X-interval A% one finds
the linear growth of W, as shown in Fig. 20.

Outside Ak equation (6.16) gives W, = const. The value of this constant
is determined by the value reached in the interval Ak. Calculating the
power of the turbulent generation

0= fyka dk, (6.18)

where the integral in equation (6.18) is only over the k-interval where
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The spectrum of Langmuir turbulence created by excitation in the range
Ak and scattering by ions.,

v # 0, that is, over Ak, one can express the constant in the spectrum of

Fig. 20 in terms of @
Wi = V (3“2) (6.19)

6.3. The Spectrum of Langmuir Turbulence in the Large-scale Region

The large-scale interval is determined by the inequality
k<k,. (6.20)

In this region the turbulent energy can be transferred direcily to very
small k-values. As all the plasmons are pushed into a very small phase-
volume, the plasmon-plasmon scattering (6.5) becomes very important.
This ihteraction is accompanied by the scattering of plasmons by ions.
Therefore, in the formation of the turbulent spectrum both processes (6.4)
and (6.5) are involved. It must be mentioned that the probability for
the process (6.5) increases steeply when k < k«. In the region k<=kea
power-type solution for the turbulence spectrum was found by Pikel’ner
and Tsytovich (1968):

Wi = 0, (621)
where v satisfies the equation:
1 11 1 1
F(—z- yil, = p = =1, 3) =Tty To = 2(1 _-5). (6.22)
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where Fis the hypergeometric function. If @ is sufficiently large, one can
neglect I'y (which describes the contribution from the process (6.4)),
and the solution of equation (6.22) is:

y = 2-84. (6.23)

This solution is found as the intersection when the right-hand side and
the left-hand side of equation (6.22) are plotted as functions of » as
shown in Fig. 21. From Fig. 21 one can sce that an appreciable change
in I" does not greatly change v. If I'y is much larger than I, one sees
from Fig. 21 that » will tend to the value 4.

F I

P
Fi1aG. 21.

The left-hand side (curve 1) and right-hand side (curve 2) of equation
(6.22).

The analytical result was checked by computer analysis of the same
equation. In the asymptotic region good agreement with the analytical
solution is found and this is illustrated in Fig. 21.
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(a) The spectrum of Langmuir turbulence in the large-scale region. The

solid curve represents the results of numerical calculations, and the

dashed curve the approximate solution put on the computer. {b) Com-

parison of the analytical asymptotic solution (dashed curve) and the

numerical solution including the energy-containing region. The coinci-

dence between the analytical and the numerical solution starts at
k ~(4 1o Vo3 KBY™ is the numerical value of k.

For the computed value of the turbulent energy the analytical solution
gives the experimental index
y = 3-86, (6.24)

while the result of the computer calculations gives

v = 3-89, (6.25)
The calculations give the whole curve of the turbulent spectrum, including
the energy-containing region k = ko. The value ko must be much smaller

than k,. The analytical solution makes it possible to estimate ko by
joining tk > spectrum in the different k-intervals. In this way one finds
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that
Q' \ 1/2=1) . 202k
ko = k*(-Q-) , o= (6.26)

This result was used for the approximating initial curve in the computer
calculation and the resulting curve of the turbulent spectrum has a
maximum very close to that of the initial curve (see Fig. 22).

6.4. The Spectrum of Langmuir Turbulence in a Non-isothermal Plasma

If the temperature of electrons is much higher than the ion temperature,

Te= T, (6.27)
a new non-linear process is involved in the formation of the spectrum:
1=1+s. (6.28)
This process is allowed only when
k=K, (6.29)
where
kK =k Te (6.30)
£ * Ti . u

The decay process (6.28) dominates over both the plasmon-ion scattering
and the electron-plasmon scattering, that is, both the processes (6.3) and
(6.4). This is a result of the fact that the scattering processes always are
the tails of the resonance decay process, if such a process is allowed.

Therefore, the region W, ~ k—5%2 disappears in the case when T, = T,.
If k = ki, the energy transfer in the process (6.28) again is described by
a differential equation, while

Ak k

% “E (6.31)
The equation that describes the energy transfer due to the decay (6.28)
is the same as equation (6.16) with a change of the constant « to &', given
by the relation

2
o = oc(l +—;—) : (6.32)
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This means that for the same power @ the constant value on the turbulent
spectrum is smaller by a factor 2 in a non-isothermal plasma with
T. > T, than in an isothermal plasma, where T, = T;.

In the region
ke = k< K (6.33)

the decay is forbidden and the scattering by ions is the most important,
The turbulent energy in this interval thus increases steeply, because of the
difference of a factor (7, /T;)? between the constants « and .

In the region where k < k, the same solution as that found for an
isothermal plasma occurs. The value of ko which describes the position
of the maximum of the spectrum is in the case when T, > T} larger than
for the case where T, = T;. This is illustrated by Fig. 23.

Wk J_
k

const. 1

Fic. 23.

Sketch of Langmuir turbulence spectra. Curves 1 and 2 are given for the
same (2, but curve 1 corresponds to 7, = T and curve 2 {o T, > T\

6.5. The Radiative Type of Langmuir Turbulence Specira

In the previous conmsiderations the turbulent energy in the energy-
containing region was damped by ordinary damping due to binary
collisions with the plasma waves. This can be the case when the plasma
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is (i) optically thin for the radiation processes and they do not play any
essential role in energy transfer or (ii) optically thick where the radiation
emitted by turbulent motion is reabsorbed and converted back into
plasma waves, and, therefore, the energy in the transverse waves is
negligible and they do not change the turbulent spectrum.

The optical thickness L, of the plasma for the non-linear emission

1+ = t (6.34)
can be estimated as follows:

c‘.! L wncnUTc
= A o _EY. 6.
L= ron V( m 0 ) (6.35)

=

If the plasma characteristic dimension L is much larger than L., the
process (6.34) is unimportant in the formation of Langmuir turbulence.
Tf L << L. and Q = 03, where

2 i)
m P ¢
d € e
Qia -~ wpe”OTe T I ) (636)
"y e UTe

the radiation losses dominate over the collision damping, Thus, under
such conditions most of the energy that is put into turbulent motion goes
into the radiation, and the turbulence is of a radiative type. The change
in the spectrum is different in the case where the radiation losses are
able to damp the turbulent motion before they reach the maximum of
the spectrum in Fig. 22 from the case where this damping becomes
essential when the turbulent oscillations are able to reach this maximum.
In the first case, the spectrum is flat: W), = const for &k = k,, and
exactly the same as if the radiation losses were absent (that is, the expres-
sion (6.19)) up to the maximum k,,, for which the radiation losses
give an exponential cut-off of the spectrum (see Fig. 24; Tsytovich, 1969a)
The ratio k, to k, is of the order of

k, m; vk T,\2
Fmex o qe P VT (14 fe)" _
R R (1 + ) (6.37)

* i,
The situation shown in Fig. 24 occurs when ko, /k. = 1. 0 k. ke <1,
the energy reaches a maximum and the exponential cut-off disappears.
A maximum is formed which depends weakly on (3. However, the energy
loss is due to the emission. One finds that the damping due to emission
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FIG. 24.
TR

The Langmuir turbulence spectrum for the case when the turbulent energy
is dissipated into radiation (T, = T3).

is described by the equation

AWy
dr

3 \/ﬂ 'v:%e Te Qmi 6 39
Ve = 7 ‘\/_2- - Ope = (1+7~1—) —_—wpenﬁTeme . 6.39)

Thus, if one neglects the turbulent energy outside the energy-containing
region connected with the maximum in the spectrum, one can pui

_ —-'yeﬁ‘Wk . (638)

where

W = £ . (6.40)
Veff

* The “dependence of v, on the energy input Q changes the picture of the

turbulent spectrum, that is, increasing Q increases yes and it, therefore,
can be shown that the maximum in the spectrum does not change Wl}en
Q increases. The position of this maximum is determined by the relation

Te 4 . 1/2(x—1)
2’7(1 +-1'{) V7.
I’z—" - o . 641)

If the condition km../k, << 1 is satisfied, as we have assum-ec_l, we have
%o smeller, but not very much smaller, than k,. Thus, the position of the
maximum is not very far from k,.
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Another possible emission mechanism may be due to the processes

14 = t41, (6.42)
or
l4+s = t. (6.43)

‘The first process may be essential in an isothermal plasma when
T, = T;, and the second one dominates over the first one in a non-iso-
thermal plasma when T, 5> 7;. Both mechanisms give emission near the
plasma frequency ¢y, but the power emitted depends in a very essential
way on the plasma inhomogeneity. In a2 homogeneous plasma both
process (6.4) and the processes (6.42) and (6.43) transfer the emergy
of the 1-waves as well as of the t-waves to small k-values, that is, to the
region where the dielectric constant is zero and, therefore, such waves
have difficulties in getting out of the plasma. For very small k the trans-
verse waves have a frequency

1 k22

O = Opetoy —, (6.44)
pe

which is very close to w,,, and then can be considered to be transverse
plasmons in the sense that they are more like the eigen-oscillations of a
plasma than like external electromagnetic waves. The optical depth for
the processes (6.42) and (6.43) depends in an essential way on which
part of the spectrum the waves come from which take part in the process.
At the maximum value of k in the plateau region of the spectrum the
optical depth of the processes (6.42) and (6.43) is of the same order of
magnitude (we denoted it by L2**)

max ., C (M 10 wpenDTe
maa ) V) e
and at the minimum %-value on the plateau we have:
12
Lmin s c (me WpetioT e
e (m,) V(—Q . (6.46)

Both of them can be less than the value L,, given by equation (6.33).
If the plasma is optically thick for the processes (6.42) and (6.43), the
turbulent energy on the plateau is of the same order of magnitude as in
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the case when these processes are not present, but when there is a sub-
sequent energy exchange between the longitudinal and transverse plas-
mons, In the region of the maximum this kind of exchange does not change
the total énergy of longitudinal and transverse plasmons: .
W = W'+ W* = constant. (6.47)

6.6. Stochastic Plasma Heating in the Case of Langmuir Turbulence

. - e established in the general theory that the stochastic heating of a
plasma is due to the induced scattering of ions and electrons by the

turbulent oscillations. The turbulent heating is due to the energy transfer
in the region of damping. In the case of Langmuir turbulence, the energy
is transferred from the region of Landau damping. Therefore, there is
no turbulent heating in 2 homogeneous plasma. A change in the direction
of the energy transfer is possible, if the plasma particles have an aniso-
tropic distribution. This might be possible in magnetic mirror machines
or in O machines when the longitudinal plasma dimension is larger than
the perpendicular dimension and the waves propagating in the perpen-
dicular direction experience a density gradient which can change the
direction of energy transfer.

In an isotropic homogeneous plasma only stochastic heating is possible
for Langmuir turbulence. Because the scattering by electrons is effective
only in a very small k-interval, the jons are mostly heated stochastically.
The largest growth-rate of heating is due to the largest k-value in the
flat part of the turbulent spectrum. One finds that (Q.. is given below

by (6.49))

aTi mﬁ 215 Q 1 7 lf Q << ch;

ﬁ’”’”(ﬁ) n_o(”TT:)Q “%V(Q%)’ if 0 Qu.
(6.48)

The result (6.48) is valid for 7, $ 37;. In the opposite case, the factor

2] ()

is not present when Q> Q.: the stochastic heating of ions is much
larger than for the case when Q << Q,,; the quantity Q.. given by the
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equation
.\ B/5
O =_VLvenoT,(~g’—) , (6.49)

Wpe e

is rather small and usually Q = 0.,.

6.7. Stochastic Acceleration of Fast Particles

Particles with velocities much larger than the thermal electron velocity
can be resonant with the Langmuir oscillations, and therefore gain energy
from them (Tsytovich, 1962). The non-linear effect on these particles is
unimportant unless the resonance is allowed. This indeed becomes
possible for waves with phase velocities larger than the velocity of light.
Mostly they correspond to oscillations in the region of the maximum, Thus,
generally speaking, resonant particle acceleration is due to the plateau
part of the turbulent plasma spectrum. Sometimes in a sufficiently cold
plasma (T, < 25 eV for hydrogen) the tail of the spectral maximum can
contribute to the particle accelerations. For non-relativistic particles with
a kinetic energy g, the acceleration by the plateau region is described
by the equation (s, = ¢— mc?)

dexin [
R (6.50)
where
_ 34/(37) o mPmiZ? T. o
P== ot G (147) Y (Gnam) - 09

(m is the mass of the particle which is accelerated). In the region of the
tail of the maximum, one finds an acceleration which increases rapidly
with increasing energy. When the energy of the particle reaches the rest
mass energy (that is, when the particle reaches relativistic energies), the
diffusion coefficient in energy space becomes constant, and the accelera-
tion follows from the equation & = 4D¢, or ¢ft = 4D/e; one finds that
the energy growth-rate de/dt decreases with increasing energy as ¢~ 1. The
characteristic e-dependence of de/dt is shown in Fig. 25.

If the energy gain given by equation (6.50) is balanced by the collisions
of the fast particles with the cold plasma, one finds for fast particles a
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de
dt
i a: ions, v <<1
b’/ \ a': jons, 7 >>1 1
- b: electrons, 1 <<
1- T, b electrons, 731

Fi1G. 25.

Sketch of the acceleration rate de/dt as a function of & for electrons and
for fons in Langmuir turbulence (5 = 3v./cvm). The part proportional
to €34 i3 due to the spectrum % —5* The part proportional £~ is due to
the plaﬁeau region of the spectrum, and the part proportional to g»—14*
s due to the tail of the main maximum in the spectrum. If & = mc?, the
acceleration rate does not depend on the particle mass and is proportional
to s~ Theregion de/ds ~ &*~ /% disappears when n > 1 (dashed curves
a’ and b") and the region defdt ~ £ when T, = T, (curves a and b).

relativistic Maxwellian distribution with a temperature

Te = me? V ( Q%_), (6.52)

8m2v2n,T,
2771 +(Te/T3) Proetmstoge

where

Qwe=

(6.53)

Usually ¢ = Q,,, which means that T, > mc?. Thus the Langmuir
TSY 7
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turbulence acting for a long enough time creates relativistic particles,
which in cosmic conditions can be identified as cosmic rays. In laboratory
conditions the maximum particle energy is determined by the possibility
of their confinement by magnetic fields, or, in other words, the maximum
energy is of the order of the energy for which the gyro-radius of the
accelerated particles is of the order of the characteristic installation dimen-
sions.

The number of particles accelerated is determined by the injection that
can take place from the tails of the Maxwellian distribution. The most
important role is played by low-frequency magnetic-type oscillations as
injection mechanisms which can give preferential heavy-ion injection.
‘When the number of accelerated particles is sufficiently high, the damping
of the turbulent motion due to the acceleration can be important. This
damping can exist approximately only on the plateau region, or more
precisely for oscillations with phase velocities less than ¢. The turbulence
can come 1o a stage in which practically the whole power is dissipated by
fast particles. Under these conditions the maximum of the turbulent
spectrum must disappear, because the turbulent energy must be absorbed
by fast particles until it comes to the region where such absorption is not
possible. The subsequent changes in the turbulent spectrum when the
density of the accelerated particles is increased is shown in Fig. 26.
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Fic. 26.
Change in the Lapgmuir spectrum as the density #* of accelerated par-

ticles increases; rp < ny < nj.
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6.8. Correlation Effects for Langmuir Oscillations

If there is a maximum in the spectrum, the correlation effects for
Langmuir oscillations are mainly determined by the plasmon-plasmon
scattering and the correlation width is given by the estimate -~

1 wi, (W2
o ~ 5 e = (E) . 6.54)

This width is the half-width of the correlation curve near resonance.

* Very far from the resonance the correlation tail has the form shown in

Fig. 27.
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The correlations in Lapngmuir turbulence at low frequencies;
Oy = 3kP05, 20y,

In this spectrum there is no relation between w and %, but the mazimum
frequency in the plateau region of this spectrum is equal to

3% s (6.55)

- 3t pe
that is, the difference of two Langmuir frequencies. Such an effect was
observed by Fainberg and coworkers (see Fainberg, 1967) in the beam-—
plasma interaction.
The relation

max

Ammax ~ kU
~ s
Wmax k

(6.56)

and the existence of a maximum in the curve of the correlation function
is due to the maximum in the turbulent spectrum, This maximum disap-
pears when there is no maximnm on the spectrum.

7"
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Fic. 28.

Results of a numerical computation of the correlation curve near & = wy.

The different curves correspond to different %-values in the spectrum;

k <<k, ; the parameters used in the computation are the same as for Fig.

22, The non-linear shift in « of the cnrves is small compared to the
thermal one described by equation (6.1).

In Fig. 28 we show the results of numerical computation of the correla-
tion curve near @ = ey for Langmuir turbulence. This figure represents
the computation by Makhankov and Shchinov (1970) of the non-linear
integral equation for the correlation function given above in Chapter 4.

7. Electromagnetic Properties of a Turbulent Plasma

THE presence of turbulent collisions has an important influence on the
electromagnetic properties of the turbulent plasma response, when a

. weak field acts on the plasma. This means also that the growth-rate of

several plasma instabilities can be changed by exciting turbulence in a
plasma, This kind of change may lead to some stabilisation properties,
as well as to new kinds of instabilities. One expects that this change in
the electromagnetic properties can be essential for perturbations or for
an external field with frequencies much less than the characteristic fre-
quency of the turbulent collisions. This effect can be described by a
dielectric constant depending on the turbulent energy. If the frequency
is less than the turbulent collision frequency, one may expect that the
dielectric constant cannot be expanded in terms of the turbulent energy.

To show how such a theory can be developed, let us return to the
general description of the turbulent state, introducing the stochastic and
regular variables

L gt vfres)+e(Ef°E- aj;:g) =—e<(Esmh- A s;mh)>, a.n

af sach stoch toch , af re f stoeh
o g T @S )+e(ES°° o )+e(E o )

stoch stoch
e L) ol (s LN o

Let us assume that in the stationary turbulent state the regular field
E™8 i3 absent. Denote all quantities for this state by an index “0”. Thus

we have h
6}‘8’3 ey — / stoch , H,aﬁ;;i \
+(o-VfE) = e\ (En o ) 7.3)

)

stoch
af;) ——“|‘(U vfstoch)_l_e(Estoch af‘.;’ )
stoch toch
+e( Egoch, af%p ) _e< (Egtocn. afsoa_p)> 0. (14

93
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Suppose now that there exists a small perturbation connected with the
field E™8, that is,

reg .. freg Teg stoch _ fstoch stoch
o8 = fif+ 1%, f oo,
Estosh Egtoch +Elstnch s (7.5)

where [ < fit8; ftoch o futoch, pitoch o pstoch and all quantities with
index “1” are proportional to E™E,
From equations (7.1) and (7.2) we get the system of equations

Y +(U-V13)+B(E g"—‘ap—)

= — (aip . <Eistochfdstoch +Egtochfi_stoch>) = Il s (76)

toch stoch e
“ajis +(U_vﬁtoch)+e(Ereg. L ) _I_E(Egtoch_ Effi)

0
ot ap ap
3tocC. aﬁeg a StocC) OC)
+ B(Elt h, al;’ ) + e(@ R {Elt hﬁ)st h _[_Egtochflstoch
_< Eftochﬁtocb + Egtochﬁtoch)}) =0, (7_7)

One must add to these equations the Maxwell equations (for the sake of
simplicity we have assumed that the fields are longitudinal)

d' reg reg, « dap

ivE™¢ =4n zra €y fﬁ ' (2‘.?1)3 H (78)
; stoch stoch, dsp

div Ef=s = 4u T e, J ftoeh, Tk (1.9)

These equations are exact equations which describe the perturbations
from the stationary state. Various approaches similar to the ones which
we used earlier to describe the stationary state can be used here for the
perturbations.
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7.1. Expansion of Turbulent CoBlision Integrals in Terms of the Turbulent
Energy

The collisions with the turbulent oscillations are, for the perturbation,
represented by the right-hand side of equation (7.6), which we denote
by 7. Let us use an expansion in the turbulent field E5o%8 and calculate
the first term of this integral which is proportional to (ES°REZFO™) =
L8(x+x"). Thus in this case we consider only. the first-order turbulent
collisions, which are proportional to the turbulent energy, that is, the
firstwterm in the expansion in terms of W/nT. To calculate this integral
one needs only the first-order term, that is, the term which is proportional
to the turbulent field in EJ©°h, £51°8, and fytech.

Firstly, from equation (4.10) it follows that fitoch can be written in the
form

stoch — e stoch | aforeg
f,x - i[ﬂ)—"(k'U)] (E,x ap )! (.7‘10)

where f3° js the Fourier transform of f7°®, and % = (k, w).
Secondly, neglecting the non-linearity in the stochastic field term in
equation (7.7), one finds for the Fourier transform of 3" the equation

SLOC) — e Stoc! . afbte;s e
A= [0 —{k~v)] (El't“h op )+ ifw—(k-0)]

y (_g? . f_d%ﬂ B Bt — ) (B S ELSR F, ) 7.11)

On tﬂe other hand, from equation (7.9) we have

dme d®p
stoch 'stoch
Efish = —— f el =l (7.12)

We have, for the sake of simplicity, taken into account only one kind
of charge (say, the electrons) assuming that the average charge density
is compensated by a neutralising background (of ions) and that this
constant component does not contribute to the higher Fourier components
considered in equation (7.12). It is easy to take other charge species into
account in a similar way. '
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Iaserting expression (7.11) into equation (7.12) one finds that

4:rze2
E;:‘ifh - J\d%al d* %2 O —21— o) -7 (2 )3
G - ék v) ( [E:g stoch sfc;:h lmsgez ) (713)

where ¢, is determined by equation (4.21). Two points need to be im-
proved in this analysis. Firstly, one cannot in general divide by «o—(k-v),
if it is possible that w can be equal to (k -v). Secondly, one cannot divide
by e, if &, is close to zero. These are the same singularities as in the
description of the usual turbulent state.

Nevertheless, if one introduces expressions {7.10) and (7.11) into the
right-hand side ope finds that

Il,x =__e(aap fdti ' d4 i ("_K’ —R <Eftzchjbstzch+Eostc;‘ch stcu:h )

o a '[ 4 7 4 1 r 1y / stoch 1
=—&Y — | d'% d% 6lx—x — By
g;_ apj o4 (,c ®—x ) {\( 1, 1[0) --(k -U)]
stoch .afgeg stoch 1 stoch .ajgcg
X(EO. ®" )J apj +(ED, w Ji [ u_(krr I‘J)] ('El 3" ).i' a ;

10
" —(k"~v)] 3p;

Teg atoch af stochy _ere;
x By S E B (EE ] 08

Bearing in mind that

+(ESS); f 'y dbuy 8(n” —st1—ntn)

= kk 1
CESSN (B = gt B+, (7.15)
and defining I by the equation
(BB = 991, (7.16)

we can rewrite the collision integral (7.14) in the form

afreE e O = reg 8 s
-y 2 O pm " Z sl 'D!:ﬂ +Z D(O) f1
57 opi ~ Op;

»(7.17)

YE By i o op
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where
S(e—n"—2"") kik;’ Kkl
(1) 9 @y iRy 7 14,0 JA 0
DU: = ie f Kk Ix,x’ [wn__(kn.v)-l" Cl)’—(k"ﬂ) ]d% d% ]
(7.18)
ki ; %
(0) = g2 1] 1
B R B [ T AT (7.19)
P = e kyiky; A1 8 1
"= B otw,—(k+k] o)+ 8pr [w1—(ky-0)—38]
TR (7‘20)

To finisk these calculations, it is necessary to find I$#,.. Multiplying
equation i7.13) by Eg*%™ and using equation (7.10), one finds that

el 1
(1) TE L
IR' o = 1;1; . (2 )3 6(915 %1+7‘ﬂ ) wr__(kr_u)

B eE::S (ku afgcg) ) reg]
X(@‘[i[w".-(k".n)_ia] 7 op ) T e [ Fe (2D

Introducing expression (7.21) into equation (7.19), one finds that

DY, = ¥ (EX®). D + D%, (71.22)
7
where
o | Ly A% [ Eeaf(lei—Kas) 1 kyille;— ki)
(1) — 0, 1 1 17 J
Diys = dmict | =~ [k%|k1—k|2 o1y, D) I | G 1h—Fey [°
O\ e
« 1 dp ("1'5) fux
—([k—kl]-v)+z'6] 273 o—w;—(k—Fki]-v)’
(7.23)
ar 4o [ Tad kulkiyy—k)  kylku—k)
Dy« = —dme J Biosy [cu——col—([k—kl]-v) e — (k1-0)+id

5 1 J‘d3 1
K \k—k 2 ) 2np [0—w—([k—k,]-0)]

8 1 8\ res
" 51 Tor— 0] (k o ap) : (124)
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Finally the equation which describes the perturbation (7.6) can be
written in the form

eg
— ileo— (k-0)] 7+ e (E,E_“S- %) =1 . (1.25)
where the collision integral has the form

8 v ’a T8,
z[ap, iR 2 p Sy ()

L

- rr 6
X Dy R} I (7.26)
i op;
This equation is not as simple as it seems, because the DY, contain

the perturbation f{°%. Therefore, equation (7.25) is an integro-differentijal
equation for fi*8, The physical meaning of each term in equation (7.26)
can be easily understood: the first term describes the change of the quasi-
linear interaction, if such an interaction is possible. The other terms are
negligible if the resonance w = (k-o) is possible. If w # (k-0) the third
term describes the change in the non-linear scatiering and in the decay
process.

Because the w and k of the wave considered are now arbitrary, one
can say that &, is close to zero, that is, one can consider the frequencies
which are close to differences in the frequencies of the turbulent oscilla-
tions. This shows that the contribution from the non-linear and Compton
scattering is small. Thus one must consider mainly the case of resonant
turbulence with coefficients D® and non-resonant  turbulence with
coefficients D@,

Before starting on a detailed analysis of equation (7.25) let us emphasise
one important feature of this equation, that is, that even if we expand
the I, in terms of the turbulent energy we find that the dielectric constant
of a turbulent plasma cannot be expanded in terms of the turbulent
energy. Indeed, if the frequency o {or more correctly @ —(k-v)) is less
than the turbulent collision frequency, which can be estimated from the
right-hand side of equation (7.25), the plasma response to the field is
determined by the turbulent collisions which appear in the denominator
in the dielectric constant. This also can be illustrated by the well-known
dielectric comstant due to the ordinary collisions in the region where the
perturbing frequency is less than the collision frequency:

Cl)2

g 1 ——F 7.27
O Vol ( )
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Very roughly speaking, an equation like equation (7.27) occurs mow
where instead of »,y an effective turbulent collision frequency appears,
which depends on W, so that equation (7.25) is proportional to the
turbulent energy, Thus, ¢ of a turbulent plasma cannot be expanded in
terms of the turbulent energy.

7.2. Efiects of Turbulent Resonance Broadening

The broadening due to the wave-particle interactions in f3°® has
alréddy been discussed and thus instead of equation (7.10) one finds

fstoch — _;eg(w (k.v)) ( EStoch 6.’% ) (728)

A similar technique can be applied to equation (7.7). Because the non-
linear terms occur only in e([8/0p]-[E§E f5108 o (E§PP f509M])  the
interaction procedure leads to the same substitution of g for [w— (k+v)]™?
in equation (7.13). Other interaction terms are of higher order in the
stochastic fields. For small @ and k the factor &, in equation (7.23)
becomes large because g, =z 0. One needs to take into account the non-
linear corrections proportional to W, This was done by the author
(Tsytovich, 1969b). Roughly speaking, the result of such a consideration
is to change ¢, to &,+ &2

7.3. The Dielectric Constant for Ion-sound Turbulence

The most important interaction for the case of ion-sound turbulence
comes from D{P, (see equation (7.19)). One can consider two limits.
First, the case when w << @y and k < ki, that is, the perturbation with
frequencies much less than the turbulent frequency, and wavelengths
much longer than the turbulent wavelength. In that case, the diffusion
coefficient,
kaike1;

k3

DY = e L, 8(w;— (kys0)) di%, (7.29)
does not depend on « and & and is the usual quasi-linear diffusion coef-
ficient. This means that at low frequencies the turbulent collisions act
as real collisions,




100 THE THEORY OF PLASMA TURBULENCE

Secondly, the case of high frequencies and short wavelengths, e = oy,
k > ky; in that case, the diffusion coefficient is proportional to 8(w— (k-z))
which means that, if for certain values of w and % the resonance condition
is not fulfilled, that is, 0 # (k-v), as for example happens for the trans-
verse waves, the diffusion coefficient is zero. (Of course for transverse
waves it is necessary to generalise equation (7.19) to take into account
the transverse field, but the conclusion is the same,) Thus the high-
frequency waves do not “feel” these turbulent collisions. This shows the
difference between the turbulent and ordinary collisions.t

Equation (7.25) can be written for the case of small w and & in the form

_ reg reg , af (u) af‘r 2
ilco— (fe~0)] £ u—l—e(E L ) > aplD . (130
The é-function in equation (7.29) is only an approximation of the g-func-
tion which broadened the resonance.

The presence of the collision term in equation (7.30) rather changes
the electromagnetic properties of a plasma in the low-frequency region.
One can say the turbulent Ohmic heating changes the properties of the
drift waves. If the spectrum of the turbulence depends only on | k3] and
on X1, which is the cosine of the angle ki makes with some chosen
direction (for example, the direction of the electric field), then the
diffusion coefficients D$’ can depend only on |p| and on & which is the
cosine of the angle p makes with the same direction. Because angular
scattering is the most important effect for ion-sound turbulence, in the
right-hand side of equation (7.30) only 8/8£ appears:

_i[w.,(k.nme%e(w )

L ;Enezf 3, O((Kkyev)) dhs, fl’ . (7.31)

Equation (7.31) can be rewritten as follows:

~ilo—(k-2)] ﬁ’°§+e(E;es. 5{3_1))

2mely, V-8 x2 dx W
~ Pooy; aff «/(1—&2—‘»«"2)‘[ ’

One finds thus that the collision integral is just the same as the one which

afgf. (7.32)

t For high frequency waves there still exist anomalous collisions, but they are
less important than the quasi-linear ones.
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describes th: collisions of the unperturbed electrons with the ion-sound
waves. The difference lies in the possible polarisation of the field E;°®
which can be non-longitudinal. Because f;°® is approximately isotropic

we have
124 2
af;i - v%' (7.33)

If the turbulent collisions occur often enough, one can neglect cw— (k+v)
on the left-hand side, and then by averaging over the angles perpendicular
to the, z-axis one finds clearly for EI® the same anomalous conductivity
as for the longitudinal field. Thus we have

( ](1) — f ev fre.” (2 )3 turb( Ereg) (7_34)

where o' is the turbulent conductivity. The other components are
slightly different, but of the same order of magnitude. One obtains the
following estimate for the skin-depth for an electromagnetic wave entering
the turbulent plasma:

¢

= ) (7.35)

7.4. Electromagnetic Properties of Langmuir Turbulence

Neglecting the renormalisation of the plasma Green function one
finds the dielectric constant which describes the plasma response to the
field E'® as follows:
w3

BRI+ o/l (7:36)

g, = ¥

where o < kg, ® < oy, k < ky, while £ is a normal linear response.
The coefficient 4 has the following form:

.
d=- 4mza)peno ‘oG- E;,)( T2 )W"l’ (@.37)

where ¥, == dw, [dk, is the group velocity of the Langmuir waves. The
instability found from this dieleciric constant corresponds to the result
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first found by Rudakov and Vedenov (1964) and by Gailitis (1966).
Such an instability can exist only if one can neglect the non-linear
renormalisation of the plasma Green function. Analysis shows that it is
usually difficult to satisfy the conditions for the neglect of this non-linear
renormalisation. For example, the total turbulent energy must be con-
centrated in a very narrow interval of the turbulent energy. For the distri-
bution found above for the Langmuir turbulence spectrum, it is very
difficult to satisfy these conditions in practice (Tsytovich, 1969b). There
still exists the possibility to have a transverse perturbation described by
the transverse diclectric constant &'

If || =1, we have |H| ~ +/(|¢'|) |[E| = |E| which means that the
magnetic field is excited, if the plasma becomes unstable.

This kind of instability is similar to that of magnetic field excitation
by a conducting turbulent liquid. The growth-rate v for the excitation
of a magnetic type perturbation by Langmuir turbulence was found to
be (Tsytovich, 1968b):

I S

1 TN Up w2
= e PR W 3 pe
o 12 l/( 2) nBj”;czf k. d kl k%v%‘e ’ (739)

Some inequalities must also be satisfied which give the range of para-
meters for which this instability can be developed.

One can find also the skin-depth for a low-frequency wave penetrating
into a semi-infinite plasma which in the case of @ << ¥4 is described by

where

SRR VAL S
8~ on | o (7.40)
where
Voir = @ Wiy dher0%se 7.41
o = e | ) T2hegnT, ) 740

Usually the increase of 8 by turbulence is more efficient for ion-sound
turbulence than for Langmuir turbulence.

One can thus see that the turbulent collisions give plasma characteris-
tics, which can easily be measured.

The Langmuir turbulence oscillations were shown earlier to be con-
verted into transverse waves with frequencies very close to the plasma

8T

-

sound (Tsytovich, 1969¢):
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frequency, This looks like a transverse plasmon. The presence of a trans-

verse plasmon can give rise to an instability which is similar to second

v == kv, (7.42)

v ~oze V(%T:) (7.43)

This type of instability can be excited also by external transveise waves,

if their spectrum is sufficiently broad. Usually, some frequency broad-

ening arises even if the initial signal is narrow in frequency. This can
be the case when the wave propagates in the direction in which the mean
plasma density is increasing until it reaches o,.. On the other hand, a
high-fred[uency field excites Langmwuir waves. When its frequency
reaches the region where it can be equal to the Langmuir frequency,
wpe+ Sk feoye, the excitation starts from k close to Ap', when the
Landau damping becomes unimportant. This is the frequency which is
approximately equal to (1+4+4)wp.. Then, if the development of the
instability is faster than the characteristic time for a frequency change
due to the wave propagation in the direction of the density gradient, an
appropriate amount of the wave energy can be transferred into Langmuir
waves. This energy then comes back into transverse waves, and so on.
This process gives a subsequent non-linear lowering of the electromagnetic
wave frequency, In order that transverse plasmons are present, it is neces-
sary that the plasma is optically thick. The presence of Langmuir waves
and especially transverse plasmons can change the properties of drift waves
(Krivorutskii, Makhankov, and Tsytovich, 1969). This can lead to some
kind of drift-wave stabilisation. For example, one can find that kinetic
drift instabilities can disappear when

_ 8T, _

=gt =2 (7.44)

This type of stabilisation is different from the high-frequency stabilisation
only in the sense that the high-frequency field has a stochastic nature,
and, therefore, a broad spectrum, and also the distribution of this field
is not arbitrary, but corresponds to the self-consistent picture of the
plasma turbulent spectrum.

It is also possible to stabilise some of the hydrodynamic drift-wave
instabilities.
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For ion-sound turbulence the presence of turbulent collisions plays a
role similar to ordinary Coulomb collisions, as they have the same
velocity dependence. But the corresponding .5 is, of course, very much
larger then the Coulomb collision frequency and is also anisotropic, if
the ion-sound turbulence is anisotropic (as in the case of a current-driven
instability). As a rough approximation, one can estimate the drift
instability growth-rate in the presence of ion-sound turbulence by
putting #.g instead of #_y. Usually dissipative drift instabilities develop
when ion-sound turbulence is present.

We thus see that the presence of turbulence can have an essential
infiuence on plasma confinement,

8. The Cosmic-ray Spectrum

THE plasma that can be found in cosmic conditions is often turbulent,
.ang.the turbulent plasma state may be assumed to be a natural one in
the universe, The great efforts which are being applied to trying to
stabilise plasmas only emphasise this statement, One can then ask the
question: what kind of consequences can be deduced from this point
of view? The most important of these seems to be a production (or,
rather acceleration) of fast particles. From the theoretical treatment
given above, it follows that the presence of fast particles in the turbulent
regime is « consequence of the presence of turbulence, This means from
the point of view of energetics that the creation of cosmic rays (or
relativistic narticles) by a turbulent plasma does not meet with any essential
difficnlties. Tt is also well known that in galaxies there are enough turbu-
lent energetic sources which can give energy to the cosmic rays (see Ginz-
burg and Syrovatskii, 1964). Such sources may be supernova explosions,
active nuclei of galaxies, and so on. It is also known that cosmic rays
are produced by solar flares, which represent an example of an explosion
on a small scale. The problem of cosmic rays is thus not so much the
problem of energy being transferred to fast particles, but the problem

~of the distribution of this energy between them, or the problem of the

cosmic-Tay spectrum. The spectrum of cosmic rays produced by solar
flares is different from that produced by radio sources such as supernova
reranants and radio galaxies. The solar flares have a very steep spectrum
which can be represented by ¢~* where v (~ 7 to 8) is a large number, or
by an exponential spectrum e—#%, The last spectrum exactly corresponds
to the predictions from Langmuir turbulence, which creates a relativistic
Maxwell distribution of fast particles. The radio sources have a power
spectrum &~* where  usually lies in the range 1 < ¥ < 3 with an average
value of ¢ of 2-5 to 2-6. These are the cosmic electrons. The cosmic
ions—mostly protons—have a power-type spectrum near the earth, with
9 ~ 2-7. Thus the mean energy of the particles lies near m¢2, but there are
a large number of very energetic particles. The question is then how the

TSY 8 105
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energy of the particles can be distributed in such a way that a power-type
spectrum is created and why the spectrum of solar-flare cosmic rays is $0
different from the spectrum of radio sources. One may assume that the
difference is connected with the dimensions of the sources, and we shall
see later that it could be connected with the optical thickness for the
plasma emission mechanisms,

8.1. Energy-dependence of the Acceleration Rate

Let us consider the energy dependence of the acceleration rate. Suppose
for simplicity that

ds
Tt = ﬁE‘u . (8.].)
The three different cases, u = 1, g = 1, and p < 1, are shown in Fig. 29.
de :
dt w>1

p=1

u<t

E
FiG. 25.

The acceleration rate as function of the particle energy.

The characteristic acceleration time T can be defined as

ot 1
T dejdt B

If u = 1, the larger the energy, the longer the time needed for accelera-
tion. Thus, a particle injected with £y, into the acceleration regime and
reaching &, needs to be accelerated in a time that is determined by epgy.

The opposite occurs for 4 > 1. In this case, the larger the energy, the
shorter the time peeded for acceleration. This means that the maximum
possible energy is reached in a time determined by the injection energy.

gtk (8.2)
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The case w = l—which, for example, corresponds to the Fermi
acceleration—is intermediate. In this case, the time is independent of the
energy (more precisely, logarithmically dependent).

The difference between the case 4 < 1 and u > | plays an important
role in the formation of the particle spectrum. When u = 1 the particle
spectrum, that is, the dependence of the particle distribution function
f. on the energy &, must have a very important cut-off at sufficiently high
energies. For example, in the case of the Lapgmuir turbulence considered
above, the law for the acceleration of relativistic particles is de/dt = e/e,

. and: if this acceleration is compensated by ionisation losses, the distri-

bution function f, has an exponential cut-off. Indeed, as was shown
above, the distribution of fast particles forms a relativistic Maxwell
distribution with a temperature

T 5> mc2. (8.3)

This T, plays the role of a cut-off factor in the distribution function.
We shall normalise the distribution function of the relativistic particles
as follows:

f “fde=n, 8.4)

where 7 is the total density of fast particles. Because these particles have a
maximum energy much higher than mc? the non-relativistic part of the
distribution function is sometimes of no interest. In this case, € = ¢p
and the phase volume p? dp is proportional to &2 de. Thus, the distribution
function with 7" = T can be written in the form:

[~ e, (8.9

This distribution function seems to be different from that which
corresponds to the radio-emission in radio sources. This is the case,
because the power-type emission I, ~ @~ seems to be possible only for
a power-type particle distribution. To form a power-type distribution
from the distribution (8.5) is difficult. Indeed, the conditions in different
parts of the source must be different. The radiation observed is the super-
position of the radiation arising in different conditions. Thus, one can
average expression (8.5) over a distribution of T.g-values. In order o
have a power-type distribution one needs to have a power-type distri-
bution for T,z which seems to be quite an artificial assumption.

8*
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This is one example of the consequences of the case when ¢ < 1. In
other examples which can be worked out, the distribution function cannot
be exactly of the type (8.5), but it is difficult to believe that in every case
with a strong cut-off the distribution of these will be such as to give a
power-type spectrum,

The sharp cut-off is perhaps consistent with the cosmic-ray spectrum
produced by solar flares, but not with the cosmic electron and cosmic
ion spectrum. It is also necessary to emphasise that in the case of Lang-
muir turbulence the spectrum (8.5) arises only in rather dense plasmas
with rather small values of T.g. As we shall see later, Langmuir turbu-
lence creates a power-type spectrum for sufficiently high particle energies.

In the case when p = 1,the well-known example of the Fermi accelera-
tion leads to similar difficulties. Indeed, it is known that if the time of
acceleration is 7z, Fermi acceleration leads to a power-type spectrum
with

1
y = 1+E , (8.6)
where
v 1 de
=— - 3.7
Both the parameters « and T can vary in broad intervals so that
<y <o, (8.8)
This contradicts observations which give approximately
l<y=23. (8.9

This fact is normally the basis for rejecting the use of the Fermi accelera-
tion to explain the cosmic-ray spectrum. We want to emphasise here
that the greatest difficulty is that the average spectrum will not be a
power-type one at all. Indeed, the real spectrum is due to the super-
position of different types of spectrum produced in different regions with
different o and ©. Thus

fo= [ S5 FO) @, (8.10)

whe;e F(y) is determined by the distribution of « and 7. Only for very
special choices of F(y) will f, be a power-type function. Thus the Fermi
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acceleratic 1, as well as any other process with y = 1, meets a difficuity
similar to'the p < 1 case.

One of the reasons that y varies in such a broad interval as given by
equation (4.8) is that the acceleration and energy-loss mechanisms are
quite diffetent.

Thus we see that neither 2 < 1 nor u = 1 are approptiate for explaining
the power-type spectrum. Thus only the u = 1 case seems to be possible.
Of course, u = 1 is very effective for small energies, and can, therefore,
be considered as a good mechanism for the injection. We shall see that
the case p = 1 canstart only at rather high energies, & > &,, where &, can

‘besealled the injection energy. If this happens the lowest acceleration rate

is for & ~ &,. One of the interesting points of the acceleration for the
case when u = 1 and & > &, is that the highest energies of the cosmic
rays are created very rapidly, and ome can expect even now to have an
acceleration of particles to the highest energies. This question is connected
with the problem of forming the highest energies in the cosmic spectrum,
which are of the order of 1020 V. One can estimate that if the particles
are protons the friction produced by the 3°K black-body radiation
essentially reduces their energy on a time scale of 10° years. The question
is then whether such particles can be accelerated in some regions on a
very short time-scale. To have an answer to this question, one does not
need a precise model of the source of the cosmic rays. If g > 1, one need
only assume that cosmic-ray creation exists at afl, that is, that the rate
of acceleration is sufficiently high to compete with the energy losses at ¢,.
If this is the case, one can also ask what is the highest possible energy
€, Tor which g remains larger than unity. One can ask what the plasma
density, temperature, the dimensions of the source, and so on, will be,
suck that e, is very high. After this one can ask whether in cosmic
conditions these requirements can be met near very epergetic sources
such as pulsars, quasars or galactic nuclei. Thus the problem of the cosmic
ray spectrum becomes of a kind such that jt can in principle be answered
simply by theoretical considerations.

8.2. Energy-dependence of Resonant Wave-particle Interactions
The rapid rise with energy of the acceleration rate can only come from

the rapic rise of the particle-energy diffusion coefficient. This takes place
if the larg ar the particle energy, the larger the spectral interval of turbulent
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waves interacting with the particles. Thus, for 4 = 1 it is necessary first
of all to have a broad spectrum of turbulent waves, and secondly to
have an essential dependence on particle-energy of the resonant wave-
particle interaction. We are now interested in the interaction of ultra-
relativistic particles with turbulent oscillations. When

£ 3 me?, (8.11)

it is necessary to have an erergy-dependence of the wave-particle inter-
action. This provides two important possibilities for finding such a de-
pendence. One comes from the energy dependence of the gyro-frequency:

eHe

Wy = (8.12)

The resonance condition,
CD—kz’b’z = Wy, (813)

can be considered in two limits: o > kv, and o < k,v,. In the first case,
equation (8.13) is reduced to w = wy and only one frequency interacts
with the particles. If the particle energy increases, w;, decreases; it is thus
only possible to have this resonance over a broad energy interval for a
branch of the turbulent oscillations in which the frequency varies over
a broad interval. These are mainly only the magnetodynamic and Alfvén
waves. For them though, w = kv, only, if v < ¢ and if the angles the
particles and waves make with the magnetic ficld lines are of the order
of unity,
In the opposite case, w <« k,v,, we have

k. = oy, (8.14)
or

¢ = eHJk, (8.15)

and this means that the higher the energy, the smaller the ¥ which can
interact with the particles. Therefore, if the turbulent energy inereases
when k is lowered, one can find the growth of the acceleration rate as
function of the particle energy.

Another possibility for the energy-dependence of the wave-particle
resopance is an interaction due to the scattering of turbulent oscillations
by particles, leading to conversion in a relatively small magnetic field,
These resonance conditions have the form

0 —(k0) = 7 — (&%), (8.16)
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where ¢ denotes the turbulent wave. In the high-frequency region, one
can write k = w/e, and

_ @°—{(k°p) o = w?—(k%0)
~ 1—{w/c) cos 8 max T 1 —(w/c)
= Ti_j%; of — (k) i & met. (8.17)

There are also two possibilities as in the case considered above, n?_lmely
o’ 2 k5S¢ or o << k°c. The first case means that. tl?e phase veloc'lty of
the turbulent oscillations is larger than ¢, while it is less than ¢ in the
second case. All turbulent oscillations, except Langmuir waves, have a
phase velocity less than c. o .

In this case, only the first-order resonance wave-particle interaction
is of interest (see equation (8.13)), as it can be proved that the second-
order effect is always small, if the broadening of the resonance is taken
into account. .

On the other hand, it was shown that the energy of the Langmuir
oscillations is mainly concentrated in the region where the phase velocity
is larger than c.

The condition (8.17) then has the form:

2
o < 2(%) . (8.18)
 mc
This means that the higher the particle energy, the higher the frequency
of the transverse waves that can interact with the particles. In order to
have u'> 1, it is necessary that the energy of the transverse waves
increases rapidly with frequency. We shall see that this naturally arises
because of a re-absorption of high-frequency radiation by fast particles.

8.3. Acceleration by Low-frequency Turbulence

Let us start by analysing the lowest possible frequencies of turbll!el_lt
oscillations, which are due to magnetohydrodynamic and Alfvén oscilla-
tions. Most of the energy of such oscillations is contained in the cold
plasma, but not in the electric field. This leads to the _conclusion Fhat
only magnetic types of turbulent motion can give an effective acceleration.,




112 THE THEORY OF PLASMA TURBULENCE

Indeed, the diffusion coefficient for the sound wave & = kv, cos 0 (v <
@y;) is approximately constant, if the particle velocity is near to c.
Therefore, ¢ = Dt = const ¢ or &/t = const/¢, and u = —1. Thus, the
most interesting case is v, > v,. The two types of turbulent waves (Alfvén
waves, @ = kv, cos 6, and fast magnetohydrodynamic waves, w = kv,)
accelerate in the same way. The distribution of these waves in k or in
o = kv, 1s shown in Fig. 30.

Wo

El-

W= kOVA Wy [}
Fic. 30.
The spectrum of collisionless magnetohydrodynamic turbulence; &, ~
1/L,, where L, corresponds to the characteristic scale in the energy-

containing region. Here kv, is of the order the ion—ion collision fre-
quency »;.

The value ko corresponds to the energy-containing region. The drop
NEAr wy; is due to theion cyclotron-resonance absorption. In the collision-
less region the energy flows in the direction of lower frequencies. The
value ko may correspond to 1/L§, where IZ is a dimension of the plasma,
or to @, = #;, where ¥, is the ion—ion binary collision frequency, provided
va/L§ << v. In the region w << ¥ the ordinary collision-dominated mag-
netohydrodynamics lead to energy transfer to the highest frequencies.
Therefore, one can expect for sufficiently large astrophysical objects that
ko == vifvs. If v, is of the order of the ion thermal velocity, k5t is of
the order of the mean free path of cold ions in the plasma. The accelera-
tion of particles due to the spectrum of Fig. 30 is shown in Fig. 31. Here
&s4 15 Of the order of the energy for which the gyro-radius of the accel-
erated particle reaches Lo; we find thus from equation (8.15):

g, =—Pa. (8.19)
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de
dt

FiG. 31.

The acceleration rate of particles which are accelerated by collisionless
magretohydrodynamic turbulence.

The rise of the acceleration rate with increasing particle energy is due
to the fact that the resonant condition (8.15) raises the number of waves
interacting with the particles. The decrease of de/dt when & > ¢,, is
due to the fact that all the waves in the spectrum are already included in
the acceleration of the particles. The coefficient « is of the order of

5 w
*£ = L_oc —HT/% ] (820)

* where W'is the turbulent energy and is of the order of (H2 [8=) where H..

is the turbulent magnetic field associated with the Alfvén and magneto-
hydrodynamic waves.
One can compare equation (8.20) with the Fermi acceleration coef-
ficient;
wp = utfLc, 8.21)

where u is the velocity of the magnetic clouds and L the distance between
them. One can see that v, playsthe role of », and L, the role of L in this
comparison, and there is an extra factor (H2)/H? which is usually << 1.

The acceleration by magnetohydrodynamic and Alfvén waves can,
therefore, be considered equivalent to the Fermi acceleration in modern




114 THE THEORY OF PLASMA TURBULENCE

turbulent plasma theory. One concludes then that this type of acceleration
is always weaker than the Fermi type. This is so because of the factor
(H2y/H?® and also the factor (e/e,)* ™, if v < 2. If » > 2, we have u < 1
and this does not seem to be a case of interest. The case v < 1 can be
shown to be unstable for the formation of a turbulent spectrum (Lifshitz
and Tsytovich, 1970). If 1 < » < 2, we have 2 > u = 1, If u = I, that
is, v = 2, the factor (z/e,)®>~* is always small, except when ¢ ~ &,, and
the acceleration rate is less than for the Fermi case. The essential point
is that L, is very large, of the order of v, /%, and, therefore, the = of
equation (8.20) is rather small. There exists some speculation in the
literature about the possibility of raising « in collisionless regions by
decreasing L. In all these estimates, it is necessary to consider more
carefully the possible time that such a spectrum with small Lq can exist.
This time can be determined by: (i) non-linear spreading of the turbulent
energy which raises Lo, (if) absorption of the turbulent energy by cold
plasma particles, (i} absorption due to fast particle acceleration. The last
possibility was considered by Tverskoi (1968) and can only occur when
the first two possibilities do not work. One can estimate the characteristic
time of the non-linear interaction to be of the order of

1 HE
If one substitutes here for k the minimum value which corresponds to
equation (8.15), one finds

1 vy myet HE
-;:H = Wpi _C% T F B (8.23)

The non-linear interaction which raises Lo is unimportant only if the
characteristic time of the non-linear interaction is greater than the
acceleration time. Overestimating the last one as 1/x (for & = 2,) we
find the following inequality, which shows when one can neglect the
non-linear interactions:

[+ £
Wpi micz )

Lo =

(8.24)

However, the minimum Ly is ¢/ay,; (0 ~ o) and this means s/m;c® = 1.
The last condition can be satisfied only for ultra-relativistic or heavy ions.
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On the other hand, ¢ of the accelerated particles cannot be very high,
because their Larmor radius must not exceed Lo if they are to be efficiently
accelerated. This gives:

£ - LoCz)Hi

e < (8.25)
which together with equation (8.24) gives
e Va (8.26)
Wi [5 .

b v e

This last relation needs extremely high magnetic fields. This means that
one can find a turbulent spectrum where L is determined by the fast
particle acceleration, only in the extremely peculiar cases of very high
magnetic fields, and high particle energies. Even under these conditions,
efficient acceleration can exist only in a very narrow particle energy
interval, and the spectrum produced is not a power-type spectrum,
Therefore, one cannot apply the results found from the theory of a
spectrum determined by fast-particle acceleration to explain both the
acceleration of non-relativistic particles in the interplanetary space and
the cosmic particles in the galaxy.

To be certain that the other processes cannot diminish Lo, one needs
also to estimate the damping of the oscillations by the cold particles.
This occurs mainly for the magnetohydrodynamic oscillations. However,
the non-linear interactions very rapidly exchange the energy between
the magnetohydrodynamic and the Alfvén oscillations. Both the damping
and the non-linear interactions are proportional to e and this means
that if the non-linear transfer exceeds the damping for one o, it exceeds
it also for others. Thus the damping cannot form a cut-off of the turbulent
spectrum at a particular value of @ or be responsible for shortening L.
The inequality which shows when the non-linear interactions are stronger
than the damping has approximately the following form:

2 2
2 V Mo U5 8.27)

m vy

If equation (8.17) is satisfied one can compare the fast-particle accelera-
tion rate with the non-linear interactions and this gives relation (8.24).
If equation (8.27) is not satisfied, the damping exceeds the non-linear
interactions and the turbulent spectrum is not formed, One can, of
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course, have an instability in a broad frequency interval, but then the
energy of the turbulent oscillations is increased to the value for which
the non-linear interactions become important.

These estimates show that the spectrum of turbulence is mainly
determined by the non-linear interactions and not by the particle accelera-
tion. This means that Lo is rather large and excludes any speculations
about diminishing Lo in the collisionless region. This means that we
return to the results found in the paper by Ginzburg, Pikelner, and
Shklovskii (1955) who estimated the acceleration of particles in supernova
remnants; in this paper the Lo in the Fermi acceleration was taken as
the mean free path of the cold particles (¥, ~ vy in this case). There is no
possibility of applying the results of low-frequency magnetohydrodynamic
turbulence to cosmicray acceleration in the interstellar medioum. Thus,
from the modern theory of plasma turbulence it looks as if Fermi-type
acceleration mechanisms are rather unlikely. The conclusion that this
acceleration is impossible in the interstellar medium, which one can find
in the book by Ginzburg and Syrovatskii (1964), is even more conclusive.

However, these types of turbulence, regulated by non-linearity, can
give an efficient injection especially of heavy ious (that is, they give pref-
erential jon acceleration) as was shown by Melrose (196%).

The spectrum of the accelerated particles can be shown never to be
a power-type spectrum, except in the peculiar case where » = 2. In this
case, the acceleration is of the Fermi type and all the difficulties connected
with it were already discussed.

The reason why the spectrum is not a power-type one can be under-
stood if we mention that the acceleration is due to the induced emission
and absorption of magnetohydrodynamic waves, as the spontaneous
emission is always negligible compared to the fast particle ionisation
energy losses. Thus the acceleration and epergy losses are due to quite
different physical processes.

If the acceleration by magnetohydrodynamic motion is not very
efficient, one can ask what happens if one considers the different branches,
or raises an effective L by considering the turbulent excitations of higher
frequencies. The first of them is the whistler mode. Indeed such motions
are known to be excited in the magnetosphere of the Earth, or in mirror
magnetic confinement installations. One can find that at least these
motions can give effective accelerations of non-relativistic particles, and
for the ultra-relativistic particles the diffusion coefficient is approximately
constant (Tsytovich and Chikhachev, 1969} and therefore y = -1,
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8.4. Accele-ation by High-frequency Turbulent Oscillations

As was aiready mentioned, even the v, < ¢ part of the Langmuir
turbulence spectrum gives an efficient acceleration of particles. The
effective temperature of the particles easily reaches ultra-relativistic
values. However, the spectrum of the accelerated particles is not a power-
type one for & <« Ty

- fe== conste&?; exp (—z/Teg) = L. {8.28)

Al TR

The normalisation of expression (8.28) is

f fode =n. (8.29)

The cut-off of the spectrum at 7.g is due to ionisation losses. There exist
conditions for which the change of the spectrum of the fast particles
arises at energies much less than Tz, so that the ionisation losses do
not become essential at all. We shall see that this change leads to a power-
type specirum.

First of all, we mention that the high acceleration rate by Langmuir
turbulence oscillations is due to the fact that their frequency is rather
high. We have already shown that the most effective acceleration by
magnetohydrodynamic oscillations occurs at a frequency w of the order
of »,. On the other hand, the plasma frequency wy, is larger than that by
at least a factor 4/(m;/m.) Np, Where Np is the number of particles in the
Debye sphere, which in astrophysical conditions is very high. An idea
of the order of magnitude of Np is given by the values in Table 8.1
The Fermi acceleration is due to the reflection of the particles from the
magnetic clouds. The acceleration by magnetohydrodynamic waves is due
to the change of the particle energy in the case when the particle is not
reflected, but propagated through a layer with an increasing magnetic
field. This effect is smaller than that due to reflection by a factor HZ [H?.
The less the distances between these layers, the more frequent are the
“collisions” of particles with the magnetic waves and the larger the
acceleration rate. The same is true for Langmuir waves, which can be
considered as consecutive charged layers with opposite signs of the charge.
Asin the cas: of magnetohydrodynamic turbulence, the non-linear effects
increase the wavelength and decrease the acceleration. There exists,
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TaBLE 8.1. NUMBER OF PARTICLES IN A DEBYE SPHERE FOR VARIOUS PHYSICAL SYSTEMS

Type of plasma 7 in ¢m™? TeineV Np
Thermonuclear 10w Sx 104 109
Tokomak 2% 10 1500 13107
Laser 1072 104 10t
Stellarator 1038 100 IxI10%
Radiation beit 108 4 2-6x108
Solar corona 108 100 108
Interstellar mediom 0-03 1 510
Photosphere 105 05 10
Cosmic rays 10-7 108 1636
Puisars 1010 108 3x10%7

however, an essential difference between Langmuir and magneto-
hydrodynamic turbulence in that this acceleration does not decrease
indefinitely. This is the result of increasing the phase-velocity of the
waves which becomes greater than the light velocity. If this happens, the
turbulent oscillations become non-resonant with the particles or, more
exactly, Cherenkov resonance is not possible for them. In the region
vy 3 ¢, where most of the turbulent energy is concentrated, another
process of scattering which is described by equation (8.17) becomes
important. For the resonance Cherenkov interaction the minimum wave-
length is thus the order of

¢
Lyyin 7= . (8.30)
compared to
_ta v gfm e
Ly = e . Np (8.31)

for the magnetohydrodynamic turbulence. The increase of the power
input Q0 in the Langmuir spectrum raises the Ly of this spectrum that
determines the position of the maximum k¢ ~ 1/, (sometimes ko is not
changed, as was already noticed). This does not affect the resonance
Cherenkov interaction, though, because in most cases the phase-velocity

of Langmuir waves which corresponds to ko is much higher than the

velocity of light.

1
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One must mention also that if the plasma has very large dimensions
so that it is optically thick for the non-linear transformation of Langmuir
waves into transverse waves, the conversion of longitudinal into transverse
waves becomes important. This mainly happens when the frequencies of

the transverse and of the longitudinal waves are equal, that is, o' = @, or

k2%c? 3 k%

Opet = Oty Wi’*’ , (8-32)
so that the frequency of the transverse waves are very close to the plasma
frequency. In this process of conversion the frequency is slightly lowered.
The energy converted into transverse waves is again converted into
longitudinall waves, This subsequent oscillation of the energy between
transverse and longitudinal oscillations for v, < ¢ was investigated
numerically by Kaplan and Tsytovich (1967). An essential point is that
these transverse motions usually have frequencies which are lower than
those of the longitudinal modes, and they thus take part in the process
of the frequency lowering. Therefore, they are so closely connected with
the plasma properties that one needs to consider them as special trans-
verse plasmons which are present in the plasma. The Compton scattering
by longitudinal and by transverse plasmons does not depend on their
distribution in k-space, as is obvious from the fact that the resonance
condition (8.18) is independent of % for k < w,./c. Moreover, the prob-
abilities for both Compton effects are equal and the result is independent
of the subsequent transformation of the energy from longitudinal to
transverse plasmons and back, in the region vy, > ¢, and depends on
the sum of their energies,

W =W+t (8.33)

only, and this sum is constant. The relativistic particles suffering Compton
scattering while condition (8.33) holds are limited to high frequencies
@ = W, as follows from relation (8.17). Their emissivity was found for
power-type particle spectra, f, = const ™7, in a paper by Tsytovich and
Chikhachev (1970). If Q,, is the spectral density of the power emitted, O,

0= f 0., do, (8.34)
and if
fo= ——"(’;_ D (i;ﬂ)y (8.35)
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we have
0, = Do (20T T gy ety WG L)
© 6m ( ® ) Y ( & ) G+DO+HE+D

(8.36)

This emissivity has the same dependence on the frequency as in the case
of synchrotron radiation. Both effects are similar—synchrotron radiation
is due to the curvature of the particle in an external magnetic field and
this gives an emission with a frequency of the order of

o= (8—)2 (837)

me \ mec?

while the plasma mechanism gives an oscillation with e, and emission at

& 2
© = Wpe (W) : (8.38)
In the general case, both mechanisms must be taken into account. The
curvature of the particle is not essential in the plasma mechanism if the
wavelength is less than the gyro-radius, or

ko> % . (8.39)

Only at this point does the Lo of Langmuir turbulence appear. The
condition (8.39) can be written in the form

B g pe M
i C cke m (8.40)
el 1
&= Fnzc_ o (8.41)

As we shall see, this condition is usually fulfilled if £ =< 1, as is normally
the case under astrophysical conditions. This results also from the fact
that a power-type spectrum is formed at rather high energies.

The next problem is that of the re-absorption coefficient for this high-
frequency radiation which is emitted. The emission considered above is
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due to spontaneous emission. The balance of the induced emission and

absorption leads, for an isotropic particle disiribution, to a positive
re-absorption coefficient:

© [20m nyly —1) W%+ 6y +16) mf"“)”"z_ 8.42)

{v+4)/2
”"’“'27( 2 ) Pre ™ 2e (¥ +4) (7 +6) (e,‘

If the synchrotron emission is also taken into account, one must add
the two re-absorption coefficients which are due to the plasma and to
the synchrotron mechanism. If W is of the order of A?/8x the plasma
mechawigm gives much larger re-absorption, if § =< 1. The equation of
radiation transfer has in stationary conditions the form:

dr,

% +en-vl,) = Qu—Yolu s {8.43)

where I, is the spectral density of the radiation. Therefore, we find (see
Tsytovich and Chikhachev, 1969b) as a stationary and homogeneous
solution

I, = awd?, 3.44)
where
WP+ dp-+ 1) +-E0-9% ax(y)
4 [ 1 \se W8
R ( = ) . (6849)
e/ WP+ 6p+16)+ECP @m(y) o

This kind of spectrum in the re-absorption region is well known for
synchrotron mechanisms of emission and arises when both the plasma and
synchrotron mechanisms are taken into account. The meaning of this
is very simple. One can write I, ~ @*Teg; Ter~ € ~ 4/to. Thus intensive
sransverse waves with frequencies much higher than o, are created.
As we have ‘seen, the shorter the wavelength, the larger the acceleration
rate. One can then consider the transverse-waves acceleration. The
wavelength of the trapsverse wave is

A = clo. (8.46)

It is obvious that the higher the frequency the smaller A, but the spectrum
(8.44) cannot be true up to infinitely high @ because the total energy of
the transverse waves then diverges. There are three possibilities for
changing equation (8.44). Firstly, relation (8.44) is not satisfied for

TSY 9
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w = w,, if the region becomes optically thin. If L is a ch-aractcristic
dimension of the system, this @, can be found from equation (8.42):

¢/yor = L. (8.47)

The scattering of the transverse waves by the turbulent waves decreases the
optical depth and leads to the system being optically thick for higher
frequencies. The y,,, of equation (8.47) must be replaced by (see Kaplan
and Tsytovich, 1967)

?’fufg = '\/(‘}’m*aw*)! (8‘48)

for the case when g, > y,,. Here g, isa scattering CI_'OSS.-SCCtion which
is approximately constant up to @ == (¢/vre)0pe and which is of the order

of . 0
IRV C e 8.49
g = 4 V me c3 CDP: V( Cl)pennTe )’ ( )

while it decreases with increasing frequency as w™4, when & > (c/vTe)m_pe.
The second possibility for changing equation (8.44) at high frequencies
lies in quantum corrections. These are important when % is of the
order of &, or when

2 2
® Nmpe(_‘a—z) L i .- 8.50)

piela mes ﬁa)pe ’
or .
W > w, = mpe(;;—;) . (851)

The quantum corrections are essential only if @, < @, which can happ.en
only in a very dense, large-sized and turbulent region. Usually the restric-
tions on equation (8.44) are under astrophysical conditions due to the
effect of the optical thickness; however, one cannot exclude the other
possibility in the central core of galaxies or quasars.

" 'The third possibility is the non-linear interaction of transverse waves
with one another which may become important as the spectral density
I, increases with frequency. This non-linear interaction has the form

of,
ot

oty O L

— = 8.52
nm “ 0w o @.52)

—_ yan).].Iw =
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Introducing into y2" the I,, from equation (8.44), we have

3
e

1/2
VB~ cpe (i) . (8.53)

Wpe

Comparing this relation with equation (8.42), we find the critical @ = @™}
for which expression (8.53) dominates: C

(8.54)

n W ¢ N 2/ +8) ¢ pael  2-Diy-+5)
D .
o noTe Vre *

ol o
3} R Cﬂpe[— s
1R
This quantity ™" is rather large, because of the factor Ny which is
usually very large, When w = o™ we have I, ~ o, and thereisno longer
a rapid acceleration.

The very rapid increase of energy of the transverse waves with frequency
given by equation (8.44) in regions where it is valid leads to a very rapid
increase of the acceleration rate with particle energy. Indeed, correspond-
ing to relation (8.18) the higher the particle energy, the higher the fre-
quency interval of the spectrum (8.44) which is involved in the accelera-
tion process. This acceleration is due to the gain of energy by particles
when the waves are re-absorbed.

The spontaneous process and induced process of scattering of particles
by the turbulence W must be taken into account; this was done already
for the emitted radiation in equation (8.43). The same effect changes the
distribution function of the particles:

of.
ot

0 8 f. ©
R = g DE L Tt

Af = 0. (8.55)
The second term on the right-hand side of equation (8.52) corresponds

to the spontaneous emission. One can calculate the energy change of the
particles due to this term:

o fgaafds =fsa—a€Aﬂds=_ fAﬁdezz 56
&1 J.fsds ffsds fﬂds

Thus we have

Ay ="NL =T & % g . (857)

g%
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These losses have the same energy-dependence as the synchrotron losses
and must be considered together with them:

8n &+ & H?
Aot Aupan = A = 5 (W+6Er—). (8.59)
This term is balanced by spontaneous emission, that is, by the first term
on the right-hand side of equation (8.43):

A+ f 0, dow = 0. (8.59)
The induced processes which in equation (8.43) are represented by the
second term are balanced by the diffusion term in equation (8.52). If one

calculates the quantity D in equation (8.52), one finds it proportional
to &8, which results from the rapid increase in frequency of Z, given by

equation (8.44). The quantity D is proportional to &2 J I, do]w, which

is proportional to €%, if one takes into account that @ ~ &2 This e-depend-
ence of D leads to an acceleration rate which is proportional to £2:

% = fe?. (8.60)

The same type of acceleration arises for synchrotron re-absorption, which
was not considered properly earlier (more precisely speaking, the influ-
ence of the re-absorption on the particle distribution). Both the synchro-
tron and the plasma effects must be taken into account in equation (8.60).
The stationary solution of equation (8.52) for the particle distribution
function gives a spectrum of particles. If D ~ e2and 4 ~ &2 this spectrum
has the form =~7. Because all the coefficients included depend on y (see,
for example, equation (8.45)) y must satisfy an equation of the form

F& p,x) =0, (8.61)

where x = —In (W/nmc?). The solution of this gives y as a function of
& and y. The result is shown in Fig. 32.

All values of ylie in the interval 0-9 < y < 3 which corresponds to the
observed values in radio-sources. There exists a special value of ¥ which
is of the order of 2+6 to 2-7, for which the change of W over 2 or 3 orders
of magnitude does not appreciably change y.
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Results of a numerical solation giving y as a function of x and £

The reason why p is found to lie in a small interval is that both the
energy losses and the particle acceleration are due to the same (sponta-
neous and induced) process. One can expect under these conditions that
the super-position of the spectra from different regions leaves the power-
type character of the spectrum largely unchanged. In these caleulations,
the results were averaged over the directions of the magnetic field,
assuming that it changes over distances which are large compared to the
gyro=radirs. The change of y from 09 to 3 corresponds to a greater and
greater domination of the plasma mechanisms. Nevertheless, the »
produced by the mechanism considered lie in the range corresponding
to observ=tion.

Many piroblems must still be solved in order that the results can be
applied to constructing radio-source models. The first of these is to take
into account the particle anisotropy and to find a self-consistent solution
in the presence of regular magnetic fields. This may also give a maser
effect and polarisation of the emitted radiation.

The second problem is to take into account the resonance diffusion
coefficient due to particle acceleration by waves with e /k < e. This gives
the connection of the distribution function (8.28) with a power-type
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distribution function. The energy corresponding to this junction can be
called an injection energy &, in this acceleration mechanism. An estimate
for &y can be found from the intersection of the curves for the acceleration
rates de/dt due to resonance (w/k << c¢) and due to non-resonance
plasmons, as shown in Fig. 33.

de

dt
1
!
i
|
i
i
%

0 £, €
FiG. 33.

Acceleration rates caused by resonant (~ ) and by non-resonant { ~ &%)
plasma oscillations. The intersection point € = &, corresponds to the in-
jection energy into the fast-acceleration region (~ &2},

Usually & > mc? so that condition (8.40) is satisfied. The power-type
spectrum disappears if ¢« > T, or if e« > min {e, &g 1), as we
saw earlier. Thus one can find conditions for which a particle spectrum
with a fast cut-off can be produced. In any case, to produce a power-type
spectrum it seems necessary to have the system optically thick for relativ-
istic-particle emission. This is not the case for solar flares and this may
lead to a possibility for an explanation why the cosmic-ray spectrum
produced by solar flares is very steep.

The third problem is to take into account the effect that the refractive
index n = [l —{wf,/**® is not equal to unity for the synchrotron
mechanisms (the plasma mechanisms are not affected by n = 1, if

The fourth problem is to take into account the exchange of energy
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between cosmic electrons and cosmic jons. If only beavy ions are injected,
by low-frequency oscillations, they can in a dense and turbulent plasma
have the same power-type spectrum if &> (myc®) (). o

The last problem, which is the most important one for astrophysical
applications, is to construct a model in which the particle and tur]?ulence
disiributions ‘are spatially dependent. Some of thes'c mo@els can include
in the centre a very turbulent and dense region in which h1.gh-en?rgy
electrons and ions with power-type spectra are formed. They diffuse into
the outer régions, excite the turbulent motions, then scaiiter off them,
change the distribution function and penetrate to lg,rger distances from
the senfral regions. This picture, in principle, can give ap answer to the
spectrum of particles and waves emitted by this region and .connect. the
spectrum of particles produced in the inner, optically thick, regions
with the spectrum of particles leaving the source. One can expect 1:1_1at
through this diffusion to outer regions the e of the particle dls.tnb_uuon
is lowered and forms a distribution with relatively small e,. If this picture
is constructed, one must face the problem of the energy source of t];e
central region, and this, of course, poses other pure%y astrophysical and
more general questions. We must emphasise one pom"t. We can say that
we know that it seems that an acceleration by the mfluced Compton
effect can lead to a narrow p-distribution of the particles accelerated
in the range that corresponds to the values observe:d. Furt]_ler developm_ent
of the theory must produce answers to the questions which we have just
stated.




Conclusions

THE preceding text can only represent the present state of the development
of the theory of plasma turbulence. The author has tried to follow the
logic, but not the history of this field and, therefore, the references are
very fragmented and not by any means complete. The essential physical
statements that the author wants to emphasise finally are:

1. The plasma properties in the turbulent region are mostly non-linear.
This raises the possibility of universal plasma properties like a universal
spectrum that can be independent of the type of instability.

2. Nevertheless, the turbulence is often weak: W/nT << 1, and when
describing the properties of the turbulent oscillation interactions it is
not possible to expand the non-linear interactions in terms of the turbu-
lent energy. The elementary excitations such as plasmons and “dressed”
particles have thus a finite lifetime which is connected with their non-
linear interactions.

3. The small low-frequency perturbations in a turbulent plasma have
quite a different nature because of the frequent turbulent collisions, and
the dielectric comstant that describes such perturbations cannot be
expanded in terms of the turbulent energy,

4. The development of a turbulent state is very probable for a plasma
as a result of the fact that the energy applied has a tendency to disperse
to the greatest possible degree of freedom. ITnnumerable numbers of
different plasma instabilities can bring the plasma to a turbulent state.
The plasmas in astrophysical conditions must, therefore, often be
turbulent. This can lead to a way of explaining cosmic-ray origins with
a universal power-type spectrum.

5. The development of plasma turbulence can occur as a result of
development, firstly, of one or a small number of collective modes, with
a subsequent spread of the energy to other modes by non-linear inter-
actions as well as by the excitation of many modes at the first stage. For
the case of the excitation of one mode, the first stage is not turbulent
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and the twbulence develops as the energy is spread, if the system is
ergodic. The plasma collective motions seem to be the best test for an
investigation of the general problems of the development of the random-
isation process, as well as of the general problems of the possibility of
a statistical description of a systern.

Further experimental and theoretical developments of this problem
seem to be one of the future interests in this field.

L N A
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