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Equations are obtained for the changes in the longitudinal and transverse ion thermal ener-
gies and also the energy of an electromagnetic fieid in an instability due to anisotropy of the

distribution function. Conditions are obtained for the applicabil ity of the equations, and re-

duce to the requirement of smallness of the deviation of the init ial plasma parameters from

the crit ical values at which instabil ity sets in. The equations are employed to determine the

state which the plasma finally assumes as a result of development of the instabil itv.

OLLECTIVE motion connected with the

ion oscil lation mode [1] is excited in a coll ision-

free plasma placed in a magnetic field when the

anisotropy of the temperatures (longitudinal and

transverse ) is su-fficiently large. The excitation

of the collective motions is accompanied by an in-

crease in the longitudinal thermal enerry in the

plasma at the expense of the transverse one (or

vice versa), until the plasma reaches a state

which is stable relative to the collective interac-

tion. In the present paper we analyze this process

in the quasilinear approximation.
A very important feature of the instabilities

under consideration is the fact that they are aperi-

odic (the real part of the frequency c.rr vanishes ).
Usually (see for example, tzJ; the quasllinear

theory is used when the condition that the incre-
ment be small compared with the frequency (7p

.. ,f ) is satisfied. However, as shown in the
present paper, the quasillnear theory can be ap-
plied also to aperiodic instabilities, provided the
condition yk << kzvTl, is satisfied (v1,, -longi-

tudinal thermal velocity of the ions ). The latter
condition, as applied to the instabilities connected
with the anisotropy of the distribution function,
signifies that in the initial state the plasma pa-
rameters deviate little from the critical values
at which instabiiity sets in. Under this assump-
tion, we obtain here the plasma temperature that
sets in during the saturation stage and the collec-
tive-interaction energy of the magnetic field gen-
erated in the plasma.

1. According to [3J, the dispersion equation for
the ion oscillation mode takes when lar | < c,tgi the
form

cosz pna - (err f e* cos2 q) nt + trrezz * er', : 0, (1)

n= ck/uk, rp -angle between k and Hs, and ky
= 0 .

We confine ourselves henceforth to excitation of
the low-frequency part of the spectrum I o I << ,Hi,
when e 1, - ( | c,.r l/cu1t)ezz 11 €22t and consider col-
lective motions in which the electric fieid is per-
pendicular to the plane containing k and H6. In
this case we have from (1) >Gt-"t-otln ;lJl.

,

substituting ,r, ,"oI'rf,i l;u;"",r,orng the ,"rr;il
ing conditions to be satisfied

k!a2, ,t 4o,zn,, k\o', tK thr, (3)

we reduce (2) to the form
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Following[11, w€ sonsider separately two cases.
(a) kr = 0. We have for cop from (4)

h 2  T u - r t - H f , l a n N

(4)

to't : -

Here
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When Y << 1 (we henceforth confine ourselves to
this case ) we have | ,t l' .. U?"u',rr. The condition
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for the occurrence of instability (coi< < 0 ) reduces

to T11 > TI + Ufr/+zrN.
(b) kf * 0. In this case it is sufficient to retain

in the dispersion equation only the terms that are

linear in c,.rL. Calculating the integral with respect

Lo v7 in (4) under the assumption that I c.rgl

<< kzvTll, we obtain

. , f M i u a t  d f ^  H 3
au -- ik,Lrtr \ j it ou + rr * 3"h

L 2  /  u z  \ lf t z  l r  
, , n _ _ f , , ) l

-  
2 1  \ ' r r  4 n N  / l
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up the ion velocity distribution function, which is

a solution of the nonlinear Boltzmann-Vlasov equa-
tion, into two parts-one oscillating in space and
characterizing the collective motions of the plasma

excited during the instability, and one homogeneous
and monotonically time-varying, characterizing the
"background" against which these motions occur:

f  :  f o  ( 1 ,  v )  *  f 1 ( t , r , v ) .

If all the quantities characterizing the collective
motions of the plasma are represented in the form

of a superposition of Fourier harmonics

f  n M (  a  d 2 f o ,  '  I  r
" L;r) ' iA(0r '  u) dvrl

Since for any function fs which has a maximum

v z = 0 w e h a v e
( l  r  i r t

\ , i  i* (c,1, 0) dv1( 0,
. ,  ou|

the condition for the occurrenee of instability in

this case reduces to

- 4_�i iL jL dvlr, + .oi,.
8N )  u '  d t t .  

" '  ' '  '  L  t  8 f iN '

The instability arises thus, unlike in case (a), only

when the transverse temperature is sufficiently

large.
The condition 7k << kzvTr' as follows from (6),

is satisfied when

L r , + : L l  l # \ j l  * a u < t .. r  I  8 n N ) l  8 , '  s  ' "  u u z

It also follows from (6) that when Y* << 1, the
greatest growth occurs in the oscillations with

k" << kj $?r,/k|- Y*). In the case when the dis-

tribution function fn is Maxwellian with two differ-

ent temperatures

fo-ru . '= ' '  =- , .*pf-  I  -  +3],  (7)
(2rr \ " ' ' r t r ' f i "  

'  
L  2Tt  " ' l l  J

the increments obtained from (5) and (6) coincide

with those obtained i.n tll. We retain in the dis-

persion equation only the terms of lowest order

ktvTt /ugi. Account of the finite Larmor radius

shows[4,5] that when klv21 Jr?tti lY* the inves-

tigated instability becomes stabilized. Thus, in

our case, when Y* << 1, we have klvfo, /rki.. L
for the entire unstable part of the spectrum.

2. We now turn to the derivation of the equa-
tion of the quasilinear approximation. We break

By averaging the Boltzmann-Vlasov equation over

distances that are large compared with the oscilla-

tion wavelength we obtain for f6 : (f ) the follow-
ing equation (in the averaging it is necessary to

take it into account that (E) = 0, (H) = Hs ll Oz,

and that f6 does not depend on $ - the azimuthal

angle in velocity space ):

*  c . c .
(8)

(6)

" r \ l
l t : T Z - l Y e " ' l c . c . ,

k

dE, ,
- r u k L k '

ot

E :  + I E u r ' u '  *  c . c . ,
k

H k :  - l  t k E ; 1 .
a k

i
I
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+ :  - + : { e i  i  r  - g ) 1 4 t ' e i r  ! d l- "  k  [  \  . o ; /  
'  t o u  t ' " " ' I  d v

v.: [#\+$;a,

h this equation it is convenient to go over to the
polar coordinates yI, yz and 9; 0 = '9 - iD; J and

O are the azimuth angles of the vectors v1 and kg'

In this case, when E6 does not depend on O, inte-

gration with respect to O in the right half of (8) is

equivalent to averaging over g. The dependence

on J in the diffusion coefficients of (8) then drops

out, and the axial symmetry is time-invariant.
Equation (8) is reduced to the form

a f o  l d  ,  1 \-a- :  
fa{ .  -  \  )4(J1cosgf  

J2s in  o\++4J, '

.  t  k , a ,  .  \
J L -- - lr ( --'l=g Er.fr. sin 0 .F c.c' | '

c)L l

,  ?  l l ,  u , ? _ 3 # r . o r e ) r i l u * c . c . l ,
r z - -  l i r l \ ' - - r u  - k  /  t

J t :  - : - ( L + r i l r s i n o - 1 -  c . c . ) .  ( e )
. t v t  

\  Ok  I

We have used here the fact that Ep is perpendicu-

lar to k and Hs; f6 in (9) depends on the "back-

ground" distribution function fs. To find the spe-

cific form of this dependence \Me use two assump-

tions that are customary in the quasilinear theory.

A. We assume that the variation of fs is adia-

batic:

-il



lsee 
t6J;. In the case under consideration, when

the instability is aperiodic (cor = 0) and the ther-

mal scatter is the small (kzvTtt << cdHi) we ob-

tain the strongest condi.tion when n = 0. Inasmuch

as lfo 
I af"g/at I s 7, this condition can be written

in the form r) 
7 << kzvTll. From (5) and (6) it fol-

lows that this condition is satisfied when Y or Y*

<< I, i.e., when the deviation from the critical

plasma parameters at which the instability sets

in is small.
B. We also assume that we can confine our-

selves to the linear approximation in the descrip-

tion of the plasma collective motions. In Sec. 5 we

shall clarify the condition under which we can neg-

lect the nonlinear interaction between the different

harmonics of the collective motions,

Under these assumptions we have for fL the

usual formula of the linear theory

Q U A S I L I N E A R  T H E O R Y  O F

I  i . f o l  o ,  . .  ^  |  r

6=Fj ;T"%n # J<t '  
n :o '  +  1 .  "  '

ot  :  ro ' *  iT

S  r  r t  ,  t ,  , t .  € x p i ( n - n ' \ O  ^  r  d l o
A r "' \hz) r n \^z) ;;_t-- + ,_ E* | di,

n , n '  "  
L  r
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, kztklaat Tp \ at' l l-  \ ^ r  
" t  

, r n  
- r  
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3. To solve (11) we consider separately, as in
the solution of the dispersion equation, the two
cases kl = 0; kl tt kr.

When kf = O the instability is connected with
all the plasma particles and not with some pre-
ferred group of resonant frequencies: the incre-
ment is determined by the average quantities T11
and T1 [see (5)] while the diffusion coefficients in
(11) are smooth functions of v2 and v1 when k1
= 0. For this reason it is suffieient to confine the
analysis of this case to the change in the quantities
averaged over the velocities, i.e., the moments of
the distribution functions relative to the velocities.
From (11-) we have

\ * a u :  o ,  \ o .  _ $ d v : 0 ,
. ) d t  j  o t

i.e., as expected fs remains in time an even func-
tion of v2.

For the second-order moments we have from
(11) for kt = O the following equations

N o '+ :  (  4L+  d " :  !&7 ,yo t  H ,1 ,  k ' rn  [ ! i r t r
d t  )  2  A l  

* '  
O n  r r n / ) t R t " e t  c 2 k 2

'J

J

l x  -  i n

k, l u" 9- - o, iL\l-  
, ,  l " '  a '  t  

- t  o ' ' ,  )  I '
(10)

Substituting (10) in (9), averaging over 0, and sim-
plifying the obtained expression by using the fact
that cor = 0 and conditions (3) are satisfied, we
reduce (9) to the form2)

0 l o  e 2  ( l  A  1 . .  S l H r l '
at :  2NP i{71, L"t  ? ,w

t l l  /  t 2 , ' 2  \
x  ( + ( k ' , o ' , * . i b +  

* t " L  
|  g t o

\ - H  \  
r x  I  2  f  d a ,

h" f t  ' I1  
t2  - .  a f .  \ - l  ,  d  ;  IHr  I '- ' h  

4 4 +  f i -  
" '  u '  a %  )  I  -  - A C  

?  
- V e -

1)It is assumed here that the essential region of the quan-
tities averaged over the velocities is v" - v1,,, This is sat-
isfied for all the averages with the exception of

\ iLP ao,
J Oz OAz

in which the region V, - VT (W')% is significant as t - F

lsee (28)]. However, as can be readily seen, when t - - the
condit ion v")) yy/k" is satisi fed also for these v" '

aln the derivation of (11) we have neglected the resonant
particles witi velocitieS V.es = (a + r,o;,3,)/k" ) v1,,. An ac-
count of these particles in the dispersion equation leads to a
new type of anisotropic plasma instability, considered in [7].
However, since the number of resonant particles is small
(v."= )) v1,,), these instabilities cannot lead to any ap-
pteciable cii"ng. in the plasma parameters.

:  ^/> ",r:{  (rru -r,-#),

N +* : \ rwu2 # o" : - +A ; r et H a t2 Tr-aLL;

-  -  4N7,r , ! { ( r ,  -+)
n  n 6  \

The change in the enersr of the electromagnetic
(rr/ fieid is determined from

a  ;  l t 1 r  l ' *  l  E r  l '  :  1  5 .  v , t  H , t2
d l  

?  
8 1  4 f I t ^  t ' - x I

/  * 2 \

\ t  *  r :*)

(r2l

(L2")

( r2 ' )

From (L2)-(L2") we get the law of energy conser-
vation

N dr , , ,  +  +++ +> rn( lH a l ,  +  I  s* l ' )
d l  = ' ,  

e

: r  r t ,  y r T r l H r l ' � l " l ( r .  H t  \- 
4n rzn, X k2c2 L 

tR[ I  AnNMcz 
- 
l

* n, r t- r n-! Htra"N 
f 

:0. (13)

The electrons make no contribution in this prob-
lem to the energy conservation law, because the
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67T: 6?T - Y?1. (15 ' � )

From (14) and (15') we have for 6Tfi and 6Ti

ro2 2T0,, QTot' - Tot)

drT:  Y #;  6rT :  -Y 'q: ' \
o t r - L ' l  '  

( 1 6 )

Analogously as t -* o, w€ have from (12") for W'

.w* - r- _3-=- (12)- 
4fr STott - 2T'L

maximum electron current is in a directi'on per-

pendicular to the electric field (and in this direc-

tion the electron current cancels the ion current )'

The electron current in the direction of the elec-

tric field is p = tt'{s /Mi times smaller than the

ion "ot""nt.3) Therefore the enerry absorbed by

the electron in the case of instabil ity is smaller by

a factor p than the variation of the ion energy'

From (12)-(L2") we can easily find the varia-

tions of Tg1, T1, and

W : f ,n- ' )n; ' lnul '

during the instability. Dividing (12) by (12') and

replacing T 1 and d,f UV their initlal values Tl

""i rf1 i" ti" right halves of the obtained equa-

tions, *itl"tt is equivalent to neglecting terms

- Y, we obtain

dT r I dT | = - To| /2 (2Tott - 7i)'

From this we have a relation between the changes

of the longitudinal and transverse temperatures in

the instabilitY: 
au

o r r : - 6 ? 1 5 v i , : T , ,  $ 4 )

On the other hand, for saturatlo"' *t'u" 76 -- 0' we

have

TT:rT+H'�J4nN' (15)

From this we get one more relation between the

total changes in the longitudinal and transverse

temperatures:
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Solving (18) with the conditions T1 = Tl when Ttl

= ff1 urra using the f.act that (15) is satisfied when

t *'o, we obtain for the transverse temperature

during the saturation stage the following equation:

H2 rT l9H3l  2otrN
Ti - 

ao nru 
tn 

rF=T - H,o I zo'tN

: l t f l  * 2 T o t - H i l 4 n N . l .

From this we get for the change in the ion trans-

verse temPerature

N+: \ *# r " :  ?  r . t f f ( \  u , i  l . an
L 2 - ,  \

* * jr,i #-,#!) 
('

The last integral in (21) is equal to

(  . .  d  k1 u,  dfo ,  iMunt  dfo , , ,

\ r t , t r t :A i tou : \  * ; ,o '

- Ii \ uuot u#t-,I: ou
J  K z v z - T  t k

(1e)

When Y << 1 we obtain from (19) formula (16)

for 6Ti, but we must note that (16) and (19) gives

results*that are quite close when Y - 1' Thus' for

""t-nf", for Tl = o's rlr and Y = 0l the vafue of

6Ti ietermine-d from (19) i,s 0'12Til and that de-

tertinea from (16) is 0'1Tfl '

4. We now consider an instabllity with k7 * 0'

which arises when the transverse temperature is

sufficiently high' Confining ourselves in the dif-

fusion coefficients of (11) to the contribution from

the most unstable part of the spectrum' for which

k, <. kl - klkL- t 1-y*, see (6)1, we obtain an 
v

e[uation for the time variation of fs:

d / o  1 5 l H t l ' J t a  I  l .  u ' r  d / o

i : z 4 Hi \,. ;i, ft'r 1ru 
-- T"L

( lEr12 =  ̂ 1 'y/u2"2lHr l ' *  0 r : . . ,  *  - . rvhen 7k- 0) '  :  \+L *ou -"+ \  t , i  
af t  tut '0)  dvl . '

As already noted, the quasiiinear theory does not 
- 

J "' d" -- Rz J - ou;

f:t-}fi# h"J;lT::'##:x":l*""i?:,ri' *u rhus obtain uitimatelv for r1 the equation

late the-solut ions of (12) and (12')  to the region , ,  dT t  lH, l ' t  f  ( I jL }oau
y - 1.  In this case we have from (12) and'  (12')  N +: )ru ? (2Nrr r  I  J. ' .  d ' ,  - '

W: =, *ff2;,^*. (18) -++!r,i !;t" ' ,ovrrv1). Qz)
Z  R z J  -  

t t u i

tln" "*.,In"d that the electron velocity distribution is Analogously' for the time variation of the longi-

isotropic. 

the electron veloclty ors 
tudinar temperature we have from (20)
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N #:- 2!  ?"#1 t \Yj t*
-  "+\" , \  

# 
(o1,0)  dv1).

From (22) and (23) we obtain the law of energr
conservation-the change in the ion thermal energy
is equal to the enerry of the magnetic field gener_
ated during the instability:

^ , d T L ,  N d T l  ,  d  5 l H 1  l ' �
. .  d t  , Z  d l  I  d t z )  I r r

: '?*#(rr,*+\+#*n #
- + t\m,ldfu{ut, oyavl).

Substituting in (24) 76 fro3n (^6) and neglecting the
termsa) proportional io t?"t{l we find that the in-
tegral in the right half ot (24)Tanishes. Neglect
of the change in the eners/ of the electric field

)l Er l'� : )r?, h-'c-, 1 11 u1,

in (24) is equivalent to neglecting in the dispersion
equation the terms quadratic i. yk Isee (16) ].

We now proceed to solve (20). When vz - vTll
we can solve (20) by suceessive approximations.
Substituting fs in the form fs(v) + dfo(t,v), where
fi(v) = f6(0,v) is determined by (T), and assum_
ing I 0fo/f6 | << 1 we obtain for 6fs the relation

6 fo :2nw l -13 l+ -+ \ -  I  d  L lMun ,  r2 .
|  
' r  dur 

\r1, 2r\ ) 2ro,, du, , l  
l" '" t , tr)

In the case considered, when y* <( 1, W << 1, and

o z - 0 r  r * y u  1  k ,

we have

dl'll'< t.

. When vz << vTl the last term - t/vL in eS)
becomes large and this method cannot be used to
solve (20), because the third term of (20) has a
sharp maximum when v2 << vTlF so that in the
reg"ion of small v" the vaLue of'fs can change ap_
preciably, although the values of T11 and T1, av_
eraged over the velocities, vary little when y*
<< 1. In the region of small v7 e0) must be solved
exactly with only the highest-order third term re_

a)An account of these terms would correspond to an ac-
count of small corrections,- klk\- }/. in the equations for
\ ""d T1 .

O F  I N S T A B I L I T Y  O F  A  P  L A S M A r  1 1 3

(23)

tained. In this case we have for 6fo the equations)

+ - I )'r, fi{ -q- ( *\'ot av,\
d t  4  7 ' u  H t  du ,  \ k ! z ,+T?  d% I

- -r1', 
q 4\4417., /3(c'-L,o)'  (26)

We shall henceforth be interested in the solution of
(26) as t - * when 7L * 0. Substituting 6f6 as
t .* - in the form

6l' : 
? 

| Hul' H;'P (or, o,),

we obtain for F(v1, v7) the equation

d z F  2 A F  1  a 2 ,  M
,;Z 

- 
% a% - "*- + I' : - 

8".*13(rr, o). (27)

From (27) we have

r r  Mr" ! ,  n l4  ro  I  I  r - ,  -  o? \ol': z,r ,E6413(u_1,0)ir-* (V iir"i)*.(a1, a,)

.  /  /  r _ o - \  )- ' * \V  i * - t ) r - (o ro , )1 ,
az

( D + ( u r , ' , \  : I  l - , ,  | /  1 /  
l  "  \ d "_r \_r,  _, t  _ 

, \  , r" .  
\  y anVf* 4 l i j

'|
l2a1$nV(*)'^V+(a). e8)

Here Ir1(z-) :ig the modified Bessel function, v+
= tl a v1./ 4trW* , and a an arbitrary large con_
stant; for a >> 1 we have for V*(a) and !I,_(o)
the asymptotic expaasions

4 t @vt (o) = i lt *',.@) 4W r r+",,(") I $|I)
The constaats in the solution (2g) are chosen such
that for sufficiently Large v" [v, ,, v1(W-)t/a],
the value of df6 given by (28) goes over into the
highest-order term in (25), equal to
,ty-(Mvl /tl1vl)f8(vt, 0). This can be readily
verified by noting that when z >> L

f - tiz'

\ I+nG' )  
-n :  y+  (z )  -  y+  (a ) ,

a "

Td.by 
using for l#hk) or \ya(z) with targe z

the known asymptotic expansions Isee, for exam-
Ple ,  L8J1 '

I, () : 
#(ez I s-^i(n+t/,)r,l 

| +O (L)) .

s)Equation (26) can be used for small  o"4pr,,  ,  and we
have therefore replaced ff;@r, o") in the right haii of this
equation by f$ (ur, 0).
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All the remaining terms in (25) remain small also

when v, * 0, provided W* << 1. Therefore, com-

bining (25) and (28), we obtain for 6f6 a relation

valid for aIL v2(0 <vz 5 v1 ) with W* << 1:

o;o:  {2 'w* ++(+ -* ) r , l  ++[r#
I ur ,rt \ Ilr 2Tut / u T\l

f  t  t \
I  I  /  I  t J :  \* L,  , .  \ f  ^*-q)*- (uL'  a,)

+,*({-n**fr)-
Now, having a solution of (20), we can determine

the variation of T1, T;1, and W during the insta-

biiity. Replacing in ttre right half of. (22) fs by f$,

which corresponds to iimitation to the highest-

order terms in Y*, and discarding the last term
- 7k' we get

+ :z I ru lHr l ,  Ho,?i( t -  2To11Top. (Bo)

For the time vaiation of W we have the equation

d V  _  |  T -  t s  r z r r - z
d r  

-  
4 1 r  4 t k l "  k l ' r o

k
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where G is a constant equal to
@ 6

G - \ .tue ,'d"\ i '- 
* ,, -,,, iz) rD, (z) - I' , (r) tD (e)l

d  6 ' , ' o  ,
@+ (z) : l \ ' r , ,5 f  va (a)]z ' r . .

We have used a = 3 ;" the calculations.
It must be noted that in the i.ntegrai with re-

spect to v, in (32), the most essential region is
that  of  smal l  vr lvy -  v l (W-)1/a l ,  which makes

a contribution - (W-;tUl. The region of. large v7
(vz - vT ) makes a small contribution - W-, which
we neglect. With the same accuracy we can neg-
Iect the first term in (33). We then obtain for W*
the formula

w* - +v'" f a)'. ,rn,n r '  \ r i l '

Using (31), we obtain for the total variation of the
transverse temperature

6r*: -14v'n'\t  ( l i  -'  1 '  r i \ r : l
(34'�)

Analogously we have from (23) for the totaf varia-

tion of the longitudi.nal temperature

6?T: T ' -^ ' \ , , (34'�)
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(30')

- 1,, , , , i ] )rgr"r. (2s)

I  ) .

Dividing (30) by (30') we obtain a relation between
the variation of the transverse temperature and
the magnetic field enerry in the instability:

dTL/dvl  :8nT\(t-2TI/TgD, r .  e.  6[

: sntv 7i (1- 2r\/r\)). (31)

On the other hand, as t * -, when 7p- 0, we
have

4\*#ov f  Nrf +//Bi8'r :0.6  ) u z  o L z

Substituting here ff, : f$ + 6f6 and Ti = Tl + 6Ti,
we obtain one more equation relating OTf and W*:

^roe r -4L f {-+- dv : y'(T1'),lTor. Bz)u r  1 - f  g N  
. \  , ,  d o ,  

* '  -  ,  \ .  _ L , r  / .

Subsituting in (32) the value of 6T1 from (31) and
6f6 from (29), and going over in the integral with
respect to v to the dimensionless variables

o l  t  I  I M' :  "7 l /  rui '* '  rc: 
Y ryot '

we obtain the following equation for W-:

8nU/* Tol Q- 2T\/To11)

+ i {i Qol r\r 1'/" Tot 116nv/- )% c : r'(?!)'/?"n, (33)

5. In order to justify the possibility of using the
quasilinear approximation in the problem under

consideration, we must demonstrate that the linea.r

interaction between the harmonics is insignificant

at the saturation amplitudes Hf , determined by

relations (17) and (3a). Thls interaction will be

considered in the present section. We start from

the nonlinear kinetic equation for the electrons
and ions (a = e, i )  in  the form

dri df r
# + i(ft1ol cos o I k,a,)l[ - orr. uf

,  co  -  l a t t  ( ,  k , r . \  ,  f t , , r  d I f f  It  ^ , " *  L a ,  l ' -  %  ) - ; ; T r ; l
' " 1 (  d  ,  {  \ -  |  _ ( h , - k ' , ) u , \:  -  
-"1\r ,  *  d f  

Eu-u' f i 's ine \1-  ok_k. t

+  - ! -  g ) r ' , , . t r .  f .o ,  e  (  t  -G ' -  h ' ' )u ' \
, u_, d0 f, l"u_r..t 

n, 1,"" 
'  

\ 
- ok_k. I

-  I  t<r -  k- ,  t  u t ' l  
*  3) r . . , . f r .s in  0 ! . -  9 : t \ .-  

, rk- l /  l -  U% ? 
lk-k ' rk 'Jr r r  v  ot -k ,  J  i r r l

For simplicity we assume that k, k' and Hs lie in

one plane 6).

oSince our problem reduces to an ordet of magnitude esti-
mate of the interaction between the harmonics, this assump-
tion does not limit its generality.
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In this case of aperiodic instability the interac-

tion between the harmonics leads to a change in

the time dependence of the amplitude Hp even in
the second order of the oscillati.on amplitude. In
order to find Hg(t) in this approximation, we sub-
stitute fff from (10) in the nonlinear terms of (35),

which we transfer to the right side. Solving the
resultant equation and simplifying the result under
the assumption that lrk-k, l, lrk, | << c.rgl and
that conditions (3) are satisfied for k and k', we
obtain after straightforward but laborious ca-lcu-
lations the following expression for the nonlinear
addition to the ion distribution function f6:

lr2\ - :,t y - 4 ? n i e ' l k _ k , t  [ i
f 5 Hu u,Hx' .lS t!t"n,

T  #  Hr "k ' l k -k j  \1  k ,%-+. , - ru - , ' , .  r-  ok -k ' -  0k '

ok_k, - (kr- kr,) a,

,ou' - h'ru.
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be noted that the terms proportional to e+io van-
ish from ff) when kf : 0. In this case only one
component, jnoru - j}otu, differs from zero, i.e.,
when k1 = 0 the interaction between two trans-
verse modes can lead only to the occurrence of
longitudinal oscillations with E ll H0 8). However,
as already noted, in view of the fact that e33 is
large at low frequencies, the magnitude of the
field in these oscillations is negligibly small. Thus,
in the second approximation in the amplitude Hp,
interaction between harmonics actually appears
only when k1 ;* 0, i.e., for the instability due to
the high transverse temperature. In this case we
have from (37)

r ' a
x  f z t t r - k r l + k t 6 f t o 1 + #5 + t , , )  l+\*,#@1,0) dv1;
-  d  ( h . - � k ' r \ k ' , u 2 , 1
-f -----------=- |' o0, tou, - hru, J

t  
[ t+, '  

(av' - h'.r,) * k,at 
#]*

We do not present here the very cumbersome ex-
pressions for As, since tliey make no contribution
to j ;  or jy ?).

Using Maxwell's equations, we obtain the fol-
lowing equations for the determination of Hp

. 4n ^ dHt^
t  " z o z z  d t :

.  4n  ^  }H r ,  4n  . ,  
7 ,eo Ic , , cos  L f f . av .t  "z  6n -da :  

,  t * ,  
!e*  )  

u-L cos ' , t ; ; ;

Here Hg is the amplitude of the magnetic field in
a plane containing k and Hs, arising during the
instability, Hp is the amplitude of the magnetic
field perpendicular to this plane, resulting from
the interaction of the harmonics, while &11, and
d22 are the components of the electric conductivity
tensor in the linear theory, in which c.rp must be
replaced by iA/&.

Substituting ff2) trom (36), we calculate the in-
tegrals with respect to v in the right half of (3?),
under the assumption that lrkl <. krtTll. We as-
sume that the electron velocity distribution func-
tion is isotropic. Then the contribution ro
jlonl, lnonl is made only by the ions. It must also

DWe note that the presence in (36) of a term with s = 0
denotes that the interaction between harmonics leads in the
approximatiort under consideration to the occurrence of j", and
consequently also EllHo. However, in view of the fact that
r, ,  is large at low frequencies, E,, is small .

u#:,uou-#t*;,Hu,H+

d " H u l ,  H 3  \  , ^ T r - r t - H \ t 4 n N --"' 
\ 

t 'T 
4nN M", ) + o: ----ffi n u

. . ro  \ .  f t l  r  Hk-k '  T  L -T  t l:  ' " ;  
f  i ,  

t ' t ' '  
Ho M '

(38)

I ,4,rt" \ .
s:0,+2 J

- * tnZr" \ or sin olf;  d v,
"  -  J *

(36)

I  d H u  ,  , r u ,
c  d l ,  

- r  n  r r k

1 d'Er, ,  ,2; i
e dp t Rznt

(3e)

The quantity 7p in (38) is determined by (6). tn
the quasilinear theory account is taken only of the
first term in the right half of (38), the magnitude
of which is of the order of k2v1,,Y+Hg. The sec-
ond term of the right half of (38) is connected with
the interaction of the harmonics. For ampiitudes
Hf determined by relation (34) this term is small,
of the order of

k,a, ,,kl1zu1k'LH o - h;t7 ,,Y'3Hy.

Thus, the interaction of the harmonics cannot be
appreciable after a time - I/y and can be neg-
lected in the analysis of the establishment of the
stationary amplitudes (34).

It follows from (39) that the interaction between
the harmonics leads aLso to the occurrence of a
magnetic field perpendicular to the (k, Ho) plane,
but the amplitude H6 of this field is small com-
pared with Hp:

fiu- h,n?/ntHo - Y."/,Hu.

Thus, when k1 * 0 we can neglect the interaction
of the harmonics if Y* << 1.

When kl = O the interaction of the harmonics
appears only i.n the third order in the amplitude
Hp. Carrying out calculations in accordance with
the usual scheme (obtaining the nonlinear addition

e

B ] \
L ) ) .

8)In accordance with the previously obtained results (see
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to the distribution function ff;), determining with

its aid the values of ilotl uia i}ott, and substi-

tuting the result in Maxwell's equations ), we find

that in this case the nonlinear interaction of the

harmoniss is more appreciable than when k1 * 0'

The reason is that although when k1 = 0 the inter-

action of the harmonics appears only in the third

order and H6, the small terms - f26 in the left

half of (3?) are significant in this case' The con-

dition under which the nonlinearity of the collec-

tive motions in the plasma can be neglected when

kt = 0 reduces to | (( Ttt - Tt )/Ttt I << 1' This is

ef,uivatent to the requirement Y << 1 only for small

magnetic fields H6, when nfr/+rNt << r' The con-

ditions for the appiicabiiity of the quasilinear the-

ory of instabitity for kl = 0 thus reduce to Y << 1

and Hfrl4rNT << 1.
In conclusion the authors consider it their

pleasant duty to thank Ya. B. Fainberg for valuable

advice and A. A. Vedenov for a discussion of the

results.
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