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& C = \8 The problem of communicating in a coherent fashion the recent devel-
opments in the most exciting and active elds of physics seems particularly
S D : pressing today. The enormous growth in the number of physicists has tended
A ‘ to make the familiar channels of communication considerably less effective.
] Cf o , It has become increasingly difficult for experts in a given field to keep up

with the current literature; the novice can only be confused. What isneeded
is both a consistent account of a field and the presentation of 2 definite
F P L > “point of view” concerning it. Formal monographs cannot meet such a need
Reg ~ in a rapidly developing field, and, perbaps more important, the review
article seems to have fallen into disfavor. Indeed, it would seem that the
people most actively engaged in developing a' given field are the people
<. o : least likely to write at length about it.

Fhh v S “Frontiers in Physics” has been conceived in an effort to improve the
situation in several ways. First, to take advantage of the fact that the lead-
ing physicists today frequently give a series of lectures, a graduate seminar,
or & graduate course in their special fields of interest, Such lectures serve to
summarize the present status of a rapidly developing field and may well

" constitute the only coherent account available at the time, Often, notes on
lectures exist ( prepared by the lecturer himself, by graduate students, or by
postdoctoral fellows) and have been distributed in mimeographed form on
a limited basis. One of the principal purposes of the “Frontiers in Physics”
series is to make such notes available to a wider audience of physicists.

It should be emphasized that lecture notes are necessarily rough and
informal, both in style and content, and those in the series will prove no
exception. This is as it should be. The point of the series is to offer new,
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viii Editor's Foreword

rapid, more informal, and, it is hoped, more effective ways for physicists
to teach one another. The point is lost if only elegant notes qualify.

A second way to improve communication in very active fields of physics
is by the publication of collections of reprints of recent articles. Such collec-
tions are themselves useful to people working in the field. The value of the
reprints would, however, seem much enhanced if the collection would be
accompanied by an introduction of moderate length, which would serve to
tie the collection together and, necessarily, constitute a brief survey of the
present status of the field. Again, it is appropriate that such an introduction
be informal, in keeping with the active character of the field.

A third possibility for the series might be called an informal monograph,
to connote the fact that it represents an intermediate step between lecture
nates and formal monographs, It would offer the author an opportunity to
present his views of a field that has developed to the point at which a
summation might prove extracrdinarily fruitful, but for which a formal
monograph might not be feasible or desirable.

Fourth, there are the contemporary classics—papers or lectures which
constitute a particularly valuable approach to the teaching and learning of
physics today. Here one thinks of fields that lie at the heart of much of
present-day research, but whose essentials are by now well understood.
such as quantum electrodynamics or magnetic resonance. In such fields
some of the best pedagogical material is not readily available, either be-
cause it consists of papers long out of print or lectures that have never
been published.

“Frontiers in Physics” is designed to be flexible in editorial format. Au-
thors are encouraged to use as many of the foregoing approaches as seem
desirable for the project at hand. The publishing format for the series is in
keeping with its intentions. In most cases, both paperbound and elothbound
editions of each book are available. ,

Finally, suggestions from interested readers as to format, contributors,
and contributions will be most welcome. :

Davio Pines:

Urbana, Illincis
August 1964

PREFACE

This monograph originally derives from a series of lectures given by
R. Z. Sagdeev and A. A. Galeev at the International Centre for Theoretical
Physics in Trieste, Italy. The editors’ notes from these lectures were cor-
rected and revised by Sagdeev and Galeev and then issued as an I.C.T.P.
report (IC/66/64). To make this report more useful for students and non-
specialists, the editors have added an introduction and extended and revised
those sections of the text dealing with the foundations of the theory.

Although the text presents a self-contained exposition of nonlinear theory,
it does assume some knowledge of linear theory. For example, it assumes the
reader is familiar with such things as electron plasma waves (or Langmuir
waves), ion acoustic waves, Alfvén waves, and Landau damping. A student
having completed a graduate level introductory course in plasma theory
would certainly be adequately prepared.

As mentioned in the Introduction, the general plan of this monograph is
to explain nonlinear plasma theory in terms of three basic interactions: non-
linear wave-wave interaction, wave-particle interaction, and wave-particle
nonlinear interaction. One chapter is devoted to each interaction. The basic
mechanism and simple properties of each interaction are discussed in the
early sections of each chapter, and the application of the interaction to
realistic problems, which usually involve considerable mathematical com-
plexity, is relegated to later sections. These later sections may be omitted
in a first reading without loss of continuity.

The editors are indebted to Kim In Ku and Wei Chau-Chin for help in
recording the original Trieste notes and to Nancy Robeck, Rita Yorio, and
Jacqueline Morrow for typing the manuseript. It is also a pleasure to acknowl-
edge the hospitality of the International Centre for Theoretical Physics and
the hospitality of Gulf General Atomic, where the final editing was com-
pleted.
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x : Preface

From a personal point of view, the editors would like to express their
warmest thaoks to Doctors Sagdeev and Galeev, whose patient explana-
tions of the difficult points have added greatly to the editor’s understanding
of nonlinear plasma theory,
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Introduction

An essential simplification of linear plasma theory derives from the fact that
arbitrary perturbgtions can be. expressed as a superposition.of eigenmodes, with
each eigenmode éwlﬁng independently of the others. In this Book, we extend this
gystematic approach to weakly nonlinear plasmas. Arbitrary perturbations are
still expressed as a superposition of linear eigenmodes, but the norlinearity
provides a weak interaction between the modes. Consequently, the coefficients
in the superposition of modes become slowly varying functions of time and
eventually assume values quite different from those predicted by linear theory.

This approach to nonlinear plasma theory is usually referred to as the theory
of weak turbulence. It can be justified by a perturbation expansion of the Viasov -
(or fluid) equation when the encrgy in the excited spectrum of modes is small
compared with the total plasma energy. Of course, the energy in the excited
spectrum must be larger than thermal noise to be of any interest. In other words,
the theory of weak turbulence can appropriately describe the evolution of an
initially unstable plasma if the free energy liberated by the instability is small
cornpared to the total plasma enérgy and large compared to thermal noise.

When the energy in the excited modes is of the same order as the total plasma
energy, the plasma is said to be strongly turbulent and the weak turbulence
perturbation expansion fails. Since there is no satisfactory theory of strong
turbulence at the present time, our consideration is limited to weak turbulence.

This theory can be discussed in terms of three basic interactions: the nonlinear
wave-wave interaction, the linear (or quasilinear) wave-particle interaction, and
the nonlinear wave-particle interaction. The plan of this book is to devote one
chapter to each of these basic interactions, and the examples given in each
chapter are chosen to illustrate some aspect of the particular interaction under
consideration,

The first interaction treated is the nonlinear wave-wave interaction, which is
sometimes called resonant wave-wave scattering or the decay instability, The
resonance conditions for this interaction can be written as w; = ¢y  w, and
k3 =ky * ky, where (wy, ws, w3) and (ky, ki, k) are the frequencies and wave
numbers of the three waves involved in the interaction. As might be guessed from
the resonance conditions, the basic mechanism behind this interaction is the
strong nonlinear coupling that can oceur when two waves beat together such
that their sum or difference frequency and wavelength just match the frequency
and wavelength of a third wave. Since the interaction does not involve resonant
particles, it ¢can be derived from fluid equations (i.e., it is not necessary to use the
Vlasov equation). By interpreting w and k as the energy and momentum of a
single quantum associated with the kih wave, it can be seen that the resonance

1



2 INTRODUCTION .

conditions for this interaction merely guarantee conservation of energy and
momentum for the elementary process in which a single quantum decays into

two other quanta or two quanta combine and form a third quantum. Consequently,
it is not surprising that this interaction conserves the total energy and momentum
in the waves. '

The second interaction treated is the linear (or quasilinear) wave-particle
interaction. It is associated ‘with the resonance condition ¢ = k-v, where v is
the velocity of the particle involved in the interaction. When a particle and wave
satisfy this resonance condition, the particle maintains a constant phase relative
to the wave and is very effectively accelerated by the essentially constant electric
field the wave exerts on it. Since the interaction involves resonant particles, it
cannot be derived from fluid equations (i.e., it is necessary to use the Vlasov
equation). From a quantum point of view, the resonance condition for this inter-
action is a necessary condition for conservation of energy and momentum in the
¢lementary process in which a particle of velocity v emits or absorbs a quantum of
energy w and momentum k. Consequently, it is not surprising that this interaction
conserves the totaf energy and momentum in the waves and particles, not the
energy and momentum in the waves alone. The change in the amplitude of the
waves caused by this interaction is called Landau damping (or growth), and the
corresponding change in the particle distribution is called quasilinear diffusion.
Quasilinear theory, which treats these two effects simultaneously, is a nonlinear
theory, in that the rate of change of the wave amplitudes depends on the
distribution function, and the rate of change of the distribution function in tum
depends on the wave amplitudes.

The third interaction treated is the nonlinear wave-particle interaction, which
is often called nonlinear Landau damping. This interaction 2nd the nonlinear
wave-wave interagtion are also referred to collectively as mode coupling. The
resonance condition associated with this interaction is (e, * wy) = (ky £k v,
and the basic mechanism behind it is the same as that behind the linear wave-
particle interaction, except that the particle now maintains a constant phase
relative to the beats of two waves. Since the interaction involves resonant
particles, it can only be derived from the Viasov equation. Taken with the plus
signs, this resonance condition describes the elementary process in which a particle
of velocity v simultaneously emits or absorbs two quanta, one of momentum
and energy (ky, w,) and the other of momentum and energy (kz, w;). Taken with
minus signs, this resonance condition represents the elemnentary process in which
a particle emits one quanta and absorbs another (i.e., a scattering process). Taken
with either choice of signs in the resonance condition, the interaction conserves
the totel ensrgy and momentum in the waves and particles. In addition, the
interaction permits another conservation theorem, when taken with minus signs
in the resonance condition. Then, since the interaction can be described as a

INTRODUCTION

scattering process, we can also say that the total number of wave quanta will be
conserved. Here the number of quanta associated with the kth wave is defined as
the energy in the kth wave divided by the frequency of the kth wave (i.e.,
ny = action far, the kth wave). O .
Of course, in a real plasma the three interactions occur simultaneously, and it
is their combined effect that determines the evolution of the plasma. Also, it is
sometimes necessary to take into account ordinary collisions, especiaily to
determine the time-asymptotic state of the plasma,



Chapter I

Nonlinear Wave—Wave Interadtion

In this chapter we shall consider the nonlinear wave-wave interaction, As
mentioned in the Introduction, the basic mechanism behind this interaction is
the strong nonlinear coupling that can oceur when the beats between two waves
resonantly drive a third wave, or vice varsa.

1. RESONANT INTERACTION BETWEEN THREE OSCILLATORS

Before considering this interaction for the case of plasma waves, we consider
the relatively simple case of three interacting harmonic oscillators. The Hamiltonian
for these interacting oscillators can be written as

3 2 2
H- %+w§%‘+ VX, X3 X3, (1-1)
Im]

where V' is a small coupling constant between the three oscillators. The equations
of motion for the three oscillators can be written as

2 +wlx, =—Vxx,
.f; -+ w%xz = —Vx] X3 (1'2)
I+ wlxy=—VFx,x,.

We want to investigate the conditions that are necessary for effective transfer
of energy, from the first oscillator to the other two oscillators, when the first
oscillator has been excited initially to a much larger amplitude than the other
two oscillators. Consequently, we start by linearizing Eq. (I-2) with respect to
x3 and x3 but not with respect to x,:

3'C.1 +w%x1 =0
.fz +r.u’2'x2 ="in Xy (1'3)
)IC-J +w§x3=—Vx[x2.

Since we have assumed that the coupling is small (i.e., Ix,} | V] < w3, w}), we canr
also express the oscillator coordinates as the product of a slowly varying amplitude
and a rapidly oscillating exponential,

x; = CA{1) explics; 1) +CH(1 Y expl—ico, ). (1-4)
5



6 MNONLINEAR PLASMA THEORY

Substituting this expression into Eq. (1.3) vields the equations:

C) = constant,

2 . dC , d*C% . dC3
dd_rczz -+ ZIwZ—Z} = —eXp(=~2iew, f)(Tz - thzf)
—-VC Cyexpli(w, + wy; — w,y)t]
—~VCE Ciexpli{w; — wy — wy)f]
*‘“VC] C"fexp[."(w, —wy - wz)f]
—VC¥ C¥exp[—i(w; + wy + ws3)t]
(1-5)
42y C, d*C¥ a’C}‘)

. d . ] .
drz + 2[0)37 = wexp(—leJ I)( dtz - 2“&)3—‘?

—VC, Coexpli{fw; + wy —ws} 1]
—VC} Clexpli(w; — w — wy)1]
—VC, C¥expli{w, ~ wy — wy)r]
—VCT Cexpl~ifa) + wy + wy)t]

These equations can be simplified by averaging them over the fast time scale
associated with the oscillator frequencies, since the emplitudes C; may be con-
sidered constants in such an average. In general, this averaging procedure will
make all of the terms on the right-hand side of Eq. (I-5) vanish and will yield the
result Cy, Oy, €5 = constant. However, when the three oscillator frequencies
satisfy a resonance condition that reduces the oscillation rate of one of the
exponentials on the right-hand side of Eq. (I-5) to the time scale associated with
the amplitudes, this exponential will survive the averaging process. For example,
when the frequencies satisfy the resonance condition Wy = w; + wy, averaging
Eq. (I-5) yields

d* . dC,
Wg—z + 2iw, _aT‘ =—~VC, C,

(1-6)
ar dC,

75 2im3? =—VC¥(,,
where C is to be considered a constant.

To solve these two equations, we try a solution of the form Gy, C3 = ef¥t,
Working only to lowest order in the small parameter v/ew; yields the dispersion

relation
(o] 4 (1-7)

(ws 0y O
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Consequently, C; and C; can have growing solutions only when the product

wat3 is negative. The condition that w3 be negative, taken together with the
resonance condition w; = ey + w; is equivalent to the cofidition that

leor] > lesql, leosl! Consequently, we conclude that when one oscillator is initially
excited to a much larger energy than two other oscillators it can transfer its energy
to the other two oscillators only if it has a higher frequency than the other two
oscillators. If we argue that the transfer of energy from the first oscillator to the
other two oscillators must occur in elementary quantum steps, then this conclusion
has an obvious interpretation in terms of conservation of energy for the elementary
quantum process involved,

12, RESONANT INTERACTION BETWEEN PLASMA WAVES.

In this section we consider the nonlinear wave-wave interaction between three
Plasma waves. The main difference that we find between this case and the case of
three interacting oscillators is that here the interacting plasma waves have to

DIRECTION OF PROPAGATION

1 >\
el — /3\“
o> -

FIGURE I-1. Steepening wave frort of a large-amplitude acoustic wave,

-7

satisfy a resonance condition in wave number (i.e., ks =k, tk,) as well as fre-
quency (i.¢., wa = e * wy). [3] OF course, the frequency and wave number for
each wave must also satisfy the linear dispersion relation for the system ¢ = w (k).
Obviously, this dispersion relation plays an important role in deciding which
nonlinear resonances are possible.

To illustrate this point we draw a distinction between the nonlinear resonances
that dominate ordinary gas dynamics and those that dominate plasma physics.
When a large-amplitude monochromatic acoustical wave is excited, the theory of
ordinary gas dynamics predicts that the main nonlinear distortion of this wave
will be a steepening of the wave fronts (see Figure I-1). This steepening can be
understood in terms of resonant-harmonic generation. If the initial large-
amplitude wave has frequency and wave number (e, %), then this wave will beat
together with itself and drive harmonics at (2o, 2k). Since the acoustical disper-
sion relation is of the form w = ¢k, the harmonics will 2lso be normal modes of
the system, and, being driven resonantly, they will grow in time. Higher harmonics
will grow in a similar manner, and the higher & values (i.c., shorter wavelengths)
will then permit steepening of the wave front.




8 NONLINEAR PLASMA THEORY

On the other hand, plasma dispersion relations are usually highly dispersive
(i.e., t is usually not linearly related to &), so the harmonics of a normal mode
are usually not normal modes themselves. Consequently, the harmonics of a
large-amplitude plasma wave usually remain at a low amplitude and, cause little
nonlinear distortion. It is important to note, however, that this does not mean
that such & plasma wave can propagate free of any distortion. Even though it
cannot interact resonantiy with its own harmonics, it may still be able to interact
resonantly with two other waves.

Resonant-harmonic generation can also be avoided by choosing the polariza-
tion of the large-amplitude wave to be such that the matrix element coupling the
wave to its harmonics identically vanishes. For example, it is well known that the
circularly polarized Alfvén wave is an exact solution of the nonlinear magneto-
hydrodynamics (MHD) equations, even though it has the dispersion relation
=k V4. [1] As mentioned earlier, however, this does not mean that a large-
amplitude Alfvén wave can persist in a real plasma.

To illustrate this point, we consider the wave=wave interaction between a
large-amplitude Alfvén wave, a small-amplitude Alfvén wave, and a sound
wave. [2] The calculation is similar to the one presented in the previous section,
sinu .ve are again looking for the conditions necessary for effective transfer of
energy from the large-amplitude wave to the other two waves.

We express the magnetic field, velocity flow, and density as

H=H,+8H,(z.1) +h,(z,¢),
V=38V (z,1)+ v (z,0) 4+ v,(z.1), (1-8)
p=po+ pz, 1)

where H, is 2 constant field in the z direction, H ,(z, £} and 8V, (z, ¢} are used
to describe the large-amplitude Alfvén wave, h, (z, 1) and v, (z, 1) are used to
describe the small-emplitude Alfvén wave, and p(z, £) and v (z, £) are used to
describe the sound wave. Note that all three waves are assumed to propagate in
the z direction paralle] to the constant field Hy and that both Alfvén waves are
assumed to have transverse polarization.

We will solve the MHD equations by an expansion scheme, treating Hg, po. 6H,,
and & Vi as zero-order quantities and h,, v, , v, and p as first-order quantities.
Aware that the large Alfvén wave is circularly polarized, we find the following
zero-order equations:

a Hy 2 8H,
3"+ pp 8z 4w
{1-9

2 ?
79H. = Hom-(3V,).
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Consequently, the large Alfvén wave can be described by a solution of the form

Sl-[l(z, 1) =8H explilkoz — wo )] + SH¥ exp[—i(kgz — wy 1)]
& ‘ (1-10)
t.'_i _Hy ko N
sv,'= prr— —3H (z,1),
where wi = (H}/dnpo ¥ = VY k% and y(6H -6H,) = constant. The first-order
MHD equations can be written as

E R (1-11)
g,+P°aaLz"=0 . (1-12)

% 2o az(%‘)ﬁ“”N%(‘Wﬁ H°pa(SHL) (I-13)
a_;]f* oa%"f—ga;(v"ﬁm). (1-14)

The left-hand side of Egs. (I-11) and (1-12) describes the sound wave, and the
right-hand side of these equations couples this sound wave to the two Alfvén
waves. In a similar manner, the lefthand side of Eqs. (I-13) and (I-14) describes
the smali Alfvén wave and the right-hand side couples this Alfvén wave to the
sound wave and the other Alfvén wave.

To simplify Egs. (I-13) and (1-14) we make the additional assumption that
8=2ci/V?% < 1. We can estimate the effectiveness of the coupling terms on the
right-hand side of these equations by comparing them with the linear terms

é Hy @ "";)] v 8Vipg
=l Lesyal| Po ot _i8¥ipa
Ry l:vuaz(8 J‘)][po 32(417 Hyh,

-1
Ro= |22 2 (o1 |[2 2] - 5
P P

o o 0z pofy
? 2 bop 8H
R3=[§E(UuSH¢)](HO$UJ.) ~ v, Hy

Using the left-hand side of Eqs. (I-11)«(1-14) fo express v, and v, in terms of
pand k|, we can rewrite the foregoing ratios as

G pdH, _ ¢

R1~R3~7AP0’1¢ B Va

R, < R,.
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Consequently, in Eqs. (I-13) and (I-14) we need only retain the coupling term
corresponding ta R, [i.e., the term (Hop/4nmp) (8/82) (8H.) in Eq. (I-13)].

If we alse assume that the two remairing coupling terms are small compared
to the linear terms, then we cazn express the solutions of Eqs. (I- 11)-(1-14) as the
product of slowly varying amplitudes times rapidly oscillating exponentmls [3]

vy(z, 1) = v, explifk;z — wr)] + vFexp[—i(k;t — w,t)]

P(z’t)mpfu_k,vu(zst) w?=cik? (I-15)
v (z,1) = v, explilk z — wi )} + v*exp[—ik z — w4 1)] ‘
Hyk (1-16)
hJ_:-. :UAVJ_(Z,I) mi:ijj,

A

where v, and v, zare slowly varying functions of time. Substituting these solutions
and the solution for 8H . into Egs. (I-11) and (I-13) yields -

du, _ dut Hok, (0H v
o "exp[ —2i(k,z — e t)]+z(kn+kA) g “( yo J-)
[t
xexp{i(kﬁk,,mk,)z—f(mo+mA—w,)z]+f(kn—kA)M(S—H‘H%)
Po vy T
. " N g EHJ_ Vi )
x expli(ko & — kg)z — g — wy— s t)]+ilk, — ko) R ,
* i
xﬂmmh—kr-)bdwd—%—w)ﬂ~mh+komﬁfgz;q |
" A
x eXp[—i(k + ko + k) 2 4 i{w, — wo + w5 1], (I-17) '
I
ov, _ ovi ,
e exp[—2ilk 4z —wy 1)}
Hoks 05 e -+ e — K 0) 2 — i + wy = @) 7]
- wpow,zko H, v, explitko + ks — ka)z — i{wy + w, —~ wy
+4H0k ik 8HY v explilk, — kg — k) z — i{w; — wy — w ) ]
T g W
(I-18)
Hok,ik , .
437P0w08HJ. vi\.: exp[’(ko - ks - kA.)Z - ’(ws — Wy — Wy — .w.-l)t}
: r
Ho fko " . .
+ == 0 H* v¥expl—i(ko + ko + k) z + i{wy + ws + w )]

4 pg e,

NONLINEAR WAVE-WAVE INTERACTION 11

Averaging these equations over the rapid oscillations in space and time obviously
yields vy, v, = constant (unless the three frequencies and the three wave numbers
satisfy resonance conditions).

If the three waves satisfy the resonance conditions « 4% = wy + wo and
kg =kg+ kg, thehl the averaging process yields A

8oy .o o Hoka anm) :

T =il ko) S S (1-19)
v, _ _ iHokko, , SHL, (1-20)
ot 47rpocu

Trying a solution of the form v,, v, ~ ¥ yields the dispersion relation

_(ka— ko) Hik ks ko

= |6H, |?
4 L 4 (dr)? .
wpg wyw 4(4T) a-21)
o KikakoVE SHL
N Wy 4”TP0

To interpret this result, we first note that the resonance conditions demand
that

ko= kot k, (1-22)

wy=wy+w, (1-23)

where wi= V3 k3, w4 = V3 k%, and w? = C2k2. Because of the form of the

dispersion relations, all terms in these equations can be written with either a

plus or minus sign. For convenience, let us specify that wes =k V4 > 0. Since we

have assumed that C; € V4, it follows that the cheice w4 = V4 k4 implies

k; = 0and v = 0, For the choice w 4= V4 k4. the above equations demand that
ko~ k4 and k, ~ —2k,. Consequently, Eq. (I-21) implies v > 0 (ie., instability)

only when w; < 0. In other words, the energy of a quantum of the initial wave

must be larger than the energy of a gquantum of the perturbing waves (i.e.,

o> Wy , feagl).

I.3. INTERACTION BETWEEN WAVES OF FINITE AMPLITUDE

The problem of the stability of Alfvén waves of small amplitude was considered
in Section I-2. For disturbances in the form of a sum of sound and Alfvén waves,
we can write two coupled equations for the perturbed longitudinal velocity and
transverse magnetic field, These equations describe the coupling between sound
and Alfvén waves. We found that the frequency rule for the decay instability
corresponds to the usual energy conservation law of quantum mechanics. Con-
sequently, it can be seen more directly by writing the wave equations in the
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Hamiltonian form using quantum parameters, such as the energy of the wave !

quantum and the number of waves.

To this end, let us rewrite the wave equations, We replace v, and # , by
[v, (), 2. (2)] exp(—icot + ikz), where v, () and A, (¢) are slowly varying, and
w and & satisfy the sound dispersion relation in the longitudinal equation and
the Alfvén dispersion relation in the transverse equation. If we label transverse
quantities with an index (1) and longitudinal quantities with an index (2),

— = 2
=V, kdzkl, w;=k%V},

h=h, k=k, wi=kic

Then, trom Egs. (I-15), (I-16), (I-19), and (1-20), we find

[0y __kySH*
ar 47pg

A expl—ifw, — wy — wy)?], (I-24)

f%_koklkl VAZSH

3 P U3 EXP[—i{wy — wy + wo)t]. (1-25)

Let us define the number of quanta n,, as the total energy in a mode divided by -
the frequency of that mode,

2 2 2 2 .2
m=wit( 32k HEL L i) (1-26)
- Po

Then we can write Eqs. (1-24) and (I-25) in a symmetric form by introducing
probability amplitudes (i.e., IC}I“’ = n;). For the present case these amplitudes
are
SH h v
Colt) = miers ) C)y=r—r=>~t— = (1227
olt) (4.,,.[w0|)1f2 () (4W|w,|)“2’ Cz(f) (|w2|l’Po)”2 { )

In terms of these variables, Eqs. (1-24) and (I-25) can be written in a form
similar to the Schrédinger equation in the interaction representation [4]

f%ct—i = Vi oty Cop Cz _ (1-28)
3
e R v (1:29)
where
I/2
Vi, b= Vit Sign oy ) = _('LP‘”_w_J) sign i,
(L]

Wy =GJO+6U1.
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We see that the matrix elements of the interaction operators differ only by a sign
for the two modes. This is due to the Hamiltonian form of the hydromagnetic
equations. Starting from this point we would like to introduce an important
generalization: for any kind of plasma waves (not only: fpr Alfvén waves), if it is
possible to represent the three-wave interaction in a Hamiltonian form {as was done
here for MHD Alfvén waves), and the same symmetry rules should exist for the
decay-type instability. Actually, this holds for any fluid approximation (including
rultifluid cases). Moreover, in such arbitrary cases we may expect to have, for

1

w‘r 5

[
FIGURE I-2, Different types of wave spectra,

the probability amplitude variables, the same type of equations as Eqs. (1-28)
and (I-29). Of course, the matrix elements and normalizations should be specified
in a different way for the various cases. Besides, in each case it is necessary to
fulfill the resonance conditions,

In Figure I-2 various possible forms of spectra are represented. Using the
vector inequality [k +ky| < |k;| + |kql, we can easily show that the resonance
conditions can be satisfied by waves having spectra similar to curves I and 4
but that the resonance conditions cannot be satisfied by waves having spectra
similar to curves 2 and 3. When the dispersion relation has more than one branch,
the resonance conditions may be satisfied by waves corresponding to different
branches. In general, the resonance conditions can be satisfied when it is possible
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to draw a curve similar to 1 or 4 through the three points corresponding to the
oscillations ey, wy, w, (these three points may be on different branches). For
waves on different branches, however, prohibitions may arise from the polariza-
tions of the waves. Also, the fulfillment of the resonance conditions does not in
itself signify instability with regard to decay. '

By solving Eqs. (I-28) and (I-29) we find an exponential behavior [i.e.,
IC;|* = exp(2wr)] . In the general case the growth rate of the perturbing waves is
given by

v == Vi, kg, |2 51BN (&) 2} Col %

From this expression we find that the decay-type instability oceurs only when
the frequencies of both perturbing waves are smaller than that of the large-
amplitude wave, [4] that is, [coy], ol < |yl

In the case when the resonance conditions for the frequencies and wave
vectors cannot be satisfied among three waves, we may include in our considera-

tion a fourth wave. In order to have a finite growth rate, this fourth wave obviously

must be a finite amplitude wave. Therefore, we should consider the stability of
the second harmonic of finite amplitude waves. The resonance conditions now
have the form

2w(ke) = wik;) + wlky)
2ko =k, + ks

Using the decay rule [2|c{&o)l > [eo(k;)l, [ex(k3)|] and these resonance conditions,
it may be shown that, in the second order, spectrum 3 of Figure I-2 is unstable
and spectrum 2 is stable. The instability of pravity waves on the ocean surface
and ion sound waves of the second order was considered as an example of this
kind of instability. [5] We expect that the diagram of the unstable regions in
the frequency versus wave amplitude plane looks qualitatively like the same
kind of diagram for the parametric resonarce problem (Figure I-3).

The width of the unstable region near the rth harmonic is of the order of the
growth rate and proportional to the nth power of the amplitude. Of course, we
must satisfy the decay conditions

nw(ke) = w(k,) + w(k,)
.”tko = kl + kg.

An interesting example of this type of higher-order decay is the instability of a
sawtooth Alfvén wave with respect to perturbations of frequency wy and ¢,
where max(ew, wy) > ¥, /A and A is the wavelength associated with the saw-
toothed Alfvén wave. [6]
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Wy +w A

-
>

A

FIGURE I-3. Stability diagram in frequency versus wave amplitude plane, Shaded areas are
unstable,

So far we have obtained only equations describing the growth of the distur-
bing waves and have not considered the reaction of these waves on the primary
(or decaying) wave. To describe the relaxation of the primary wave we need to
consider the effect of the finite amplitude disturbances in the nonlinear terms of
the equation for the primary wave. When Cy, C,, and C; are all of the same
order, one would expect to find the following equation:

,8C,

152 = Vig,. -4,Ci C1. (1-30)

Of course, we can derive this equation from the same MHD equations we used
to derive Eqs. (I-28) and (I-29).
To solve the coupled set of equations given in Eqs. (1-28)-(1-30), we make
the further substitution
C (1) =at) e, Ima;=Im®,;=0. (1-31)
In the case in which wg=> w; > |4l and w4, <0, the symmetry rules of the Vs
imply
Vk,.kn.nz =-H
Viego-icoue, = Vi kgoky Sign (w), wy) = H
Vigiy =ky = Vi, gk SIEN (g, ) = —H.
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Taking the real and imaginary parts of Eqs, (J-228)~(I-30) and using the variables
a;(r) and 8 = ¢, —p, —¢; gives us the following equations: [7]

da,

5= Haya,sin 8 J

a—gf = Haya,5in @

aai;’w— Huoya,sin @

Z—f = (a‘;fl + a;:’ - a;:h) cosf =ctg Ba—a;ln (apayay).  (1-32)

Integrating the last of these equations, we find
dpayarcosf =T = const. (1-33)

Using the frequency rule, we can sasily find a first integral of the remaining
equations:

a% w) + a’%[w2| + a% g = const, (1'34)

Integrating ao(9ae/8t) +a,(da,/31), ete., we can also find the following con-
stants of the motion:

m| = ng + 1y = const

My = N + Ny = const

My = H) — ny = const,_ (1-35)
They are known in the theory of parametric amplifiers [8] as the vectorial
Manley-Rowe relations taken in the direction of propagation. They may be
understood in terms of the diagram for the thres-wave decay process (see
Figure I-4} by stating that, when a quantum disappears from the Wy, mode,

quanta appear in each of wy, and wy, ;50 Ang=—1, An; =1 = An,. Come
bining relations (I-33) and (I-35) we have

d
ar e = 2H [no(m) — no) (mz — ng) — T'2)4/2, (I-36)

If the three roots of
nglmy — ng)my —mp) — 2 =0,

are labeled as
nz=m=n20,
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FIGURE I-4. Three-wave decay process

then Bq. (I-36) can be transformed into the equation

Half)
1 h dﬂo .
Hie=10=3 | o= n)(no— np) (g — )2

myleg)
This can be transformed to an elliptic integral by the change of variables

POE [——-—”"(r) — ""]w, y= [u]m' (I-37)

Ry — N, Re— Ry

If we define the time £, in such a way that y(zo) = 0, then

¥t}

d
H{t—r)~n.~—n, =f (=0 i Sy : (1-38)

0
Therefore,
y(t) = sn[H ~n. — n{t ~ t0), v1,
and, by definition of y, we have the general solution
no(t) = n, + (1, — n)s*(H N, —~ n, (1 — ), 7). (1-39)
Let us consider two simple cases: [7]

Cuase A: Attime r = 0, n(0) = 0, n;{0) > n,{0). Without loss of generality we
can put I' = 0 in Eq. (I-36). Then the three roots of Eq. ([-36) are simple:

m=Em0)=n.m=n0=n,>0=n,

We can simplify the solution by neglecting vy? in Eq. (I-38), since in this case
v < 1, Thus
no(t) = my(0) sin® [Ht ~'ny(0)],

my(t} = n,(0) — n5(0) sin?[Hr v, (0)],
na(t) = nx(0) cos? [Hr vn, (0}].
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The time variation of the occupation number is shown in Figure I-5. The situation
described by this figure is the case in which the frequency of the finite amplitude
wave is smaller than the frequency of the perturbations, and, hence, it is stable to
the decay-type instability. The small periodic variation in its amplitude is due to
the small amount of energy initially in the perturbations.

ﬁ\

n;(t)

no(t) nz(t)
/’_4\ -~
- ~_ - o

—m— B

nzto) [ ~——

T~

FIGURE I-5. Three waves that are stable to the decay instability.

Case B: Let us now consider the decay of finite amplitude waves, when at
time ¢ = 0, rg{0) = 0, ngo(0) 3 ny(0) > 0. Putting I = 0 again, we find the
constants

n.=m, = np{0) 4 n,(0) > n, = my = ng(0) > n, =G
Thus from Eqs. (1-39) and (I-35) we obtain
nolt) = no(0) sn2[H (t — 10} V., )
m(t) = ny(0) + nglOH1 — s [H {1 — 1) Ve, v}
na(t) = ng(ON1 — s [H{t = to) 'ns v (1-40)

where

1 m@ (1-41)

EAETOEET O

Since ;= 0 at ¢t = 0, we can write

1 — sn*(Hto N y) = 0.

——
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Therefore, Htg\/n, is one-fourth of the period of sn,
Hio~n = K(y). (1-42)
With 7' =</1377, we have N
K(p) ==y 12)* + 0y )] + In (4/y") [1 + (¢'[2° + Oy ). (I-43)
Therefore, from Egs. (I-41)-{1-45) we find

L)
°¥2H Iy mi(0)

(1-44)

During this time the ampltude of the initial steady wave nq decreases to zero,
so we can say that it is the time of decay. The inverse of 7, differs from the

ﬂh

nl(t)

nO(O)

n](O)

»
t

FIGURE I-6. Three waves that are unstable to the decay instability.

linear growth rate » = Hy/ng only by a logarithmic factor. We need this factor
when the amplitudes of the disturbances are comparable to the amplitude of the
initial wave. The behavior of the relative number of wave quanta is shown in
Figure I-6. It turns out that the amplitude of the two perturbing modes for
long times drop to zero again. Thus, the decay found in this problem is not really
irreversible.

This type of problem was considered first in 1954 by Pierce. [8] He discussed

 the use of such resonant three-wave interaction in high-frequency electronics.

Now it is a highly developed part of the radio-frequency electzonics in which
these nonlinear methods are used for the production of mixing frequencies and
parametric amplification.
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Another illustration of these methods is nonlinear optics. Here the non-
linearity usually comes in terms of the current dependence on the electric
field. [9] Also, all optical media have dispersive properties. In the simplest
approximation the dielectric function is given in terms of the resonant frequen-
cies—at least far from these resonances—by

2

w
= —pi__|,
E_Zacl(l qwz—aﬁ)

Such a dispersion makes it possible to satisfy the resonance relations wq = wy + wa,

ko =k; +ks. Thus, if a ruby laser beam is transmitted through quartz, a smaller
amount of the second harmonic is generated. However, if two lasers are passed
through quartz at the appropriate angle with respect to one another in order to
satisfy the conditions w, + ¢y = w3, k; + ko =k3, a considerable amount of energy
can be converted into harmonics.

I-4. MANY-WAVE INTERACTION IN RANDOM PHASE APPROXIMATION

In plasmas we generally do not deal with highly ordered phenomena, since
many modes are avaijable to satisfy the resonance conditions. Consequently, the

1L

np{0)
0 TN gl

Tt
FIGURE I-7, Decay instability for many waves.

Manly-Rowe type of behavior (see Figure 1-6) usually does not occur in a plasma.
Instead, the recurrent character of the evolution is destroyed (for incommen-
surable frequencies) (see Figure I-7).

We can treat this situation by using the random phase approximation (RPA)
(ie., we look only at the modulus of the wave amplitude and average over the
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phases). There is no way to distinguish the primary wave from the others, and
this is reflected in the notation used in the equation for the wave amplitude

.dC T w
= 3 View acCiel) G olt)e s jne e =0, (1-45)

With a particular choice of normalization, the amplitudes Cx play the role of
prebability amplitudes, so the mode occupation number is equal to the square of
this amplitude:

A= [Cklz- (1'46)

Within this normalization the matrix elements have the following symmetry
properties {compare with the ones for the interaction of the Alfvén and sound
waves):

Ve = Vi w. ik SIBN (i -x )

(1-47)

Ve o= Vik e = Voo, -k sk
Since we are interested only in the time variation of the occupation numbers
1y, we seek an equation in terms of #, alone. To this end we treat the equation
for the wave amplitudes by the method of time-dependent perturbation theory
from quantum mechanics. [4} Expanding C, (¢} in powers of the interaction
I/;Lk'.k -k'»
C(y=CP+CP+C@+ -

and substituting in Eq. (I-43) yields the solutions

k' k-

T
C=—i 3 CPCE [ Vewa(t)dt’
¢

H r
C= -3 CECOCP[d [ d" Viea () Ve () (-48)
0 0

k.km.q.q”

H t
~ 3 CECPCE [dr [ dt" Vs () Vewo )
o 1]

kkaa
Ve (1) = Vi - expi—i(%-‘+‘ wy e — o) 1] 8k -k
1, k=K

8 s = . (1-49)
0, k#k'

The quantities Ce’® are time-independent and correspond to the solutjons in
the absence of interaction between the modes. They can be written as a positive
amplitude times a phase factor ¢’?¥. Although the phases ¢, are fixed by initial
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conditions in any one experiment, it is reasonable to assume that they are distri-
buted randemly when one considers an ensemble of experiments (i.e.,
€ ¢ L0, =10, 025, _.). We now use this property to caleulate the
ensemble average of the change in occupation number [i.e., G (ME=IC (o)I*].
That the ensemble average of the change in occupation nufnber is a good approxi-
mation of the actual change in any one experiment is, of course, a statistical
assumption based on the large number of modes.

To the lowest order we find

ACk (D Yar = [Cu0)? + V2, + (| CLO CR*3,, + (CO*CDY,,. (1-50)

Substituting Eq. (I-48) into Eq. (1-50) yields

|CL (N2 —|C, (ta)?

. |
s [imi@fﬁ”cﬁ”fﬂxxavm'Innfoqm:
’ o

k.k"q.q"

prm——— m = - H
1 v H
1 '

H t T
—ReT.&“’* DCOCE 2 | Vpere (1)t | Viengege 27y "
(lj_l ¢ oj J o
e — BT ! ' o
—ReCO*COCOCO2 {ar v @ v on | (151
e j“ J ki*()J e 07 [ (151

After averaging this equation over random phases, the product of the four

Cy {9 on the right-hand side can be reduced to the product of two occupation
numbers. The two possible combinations of the €.(%s are indicated in Eq. (I-51)
by dashed and straight lines. In the first term, the Gy ‘®)*s combine as

D PRC O P= . 1, and in the last two terms the C,(9%5 combine as

IC L2100 =y mye and 1C,(VIC,. )2 = 1, p,... Application of the sym-
metry relations between the matrix elernents ¥, ;- shows that the product of
iwo matrix elements can always be written as

2

T
§ Hoeaclt
fy

times a sign depending on the signs of Wy, Wy, and .. For times longer than
a wave period, the time integrals can be evaluated as

—
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2
{4sin® [(wy — wir — wi)(r = 10)/2]}
= (:uk— :)k. - :Jk_)z : [Verar ) Sk ok

13
[
fo

t 2

,{

Consequently, the change in occupation number can be written as

Loy e
b |
I{:'k'.k' @Ndt"| =2md(ew, — ey — )l Vi:.k'.k"i(t — t) 8k ks

Aﬁk = 4ndt z | Vk_k-.k-P[nﬁg’n‘,?) - Sig'ﬂ (wk wk~)n‘k°’ ?’!(ko-)
kLk*

—sign(wew }nP n@8w, —we— o )8 e (1-52)

We now make the additional assumption that as the system evolves in time the
amplitudes C, remain uncorrelated in phase, at least to the lowest order. With
this assumption in mind we can rewrite Eq. (1-52) as a differential equation,
imagining that the above calculation is repeated in many consecutive time
intervals Ar. In other words, we set An, [Ar = dn /df and 1n,¢®) =n, (7). This
procedure yields the kinetic equation for waves (including only the wave-wave
interaction) [4, 10—14]

—r =41 2 Ve I me — sign{w, g} nye
Kk
— sign (wrwie M- 18wy — o — ©4.) Sk ke 1-53)

We can go from Eq. (I-45) directly to this result, written in terms of positive
frequencies only, by using time-dependent perturbation theory and the golden
rule, Let us consider only that part of the nonlinear process with w, > wy., wy- > 0,
which corresponds to the decay process of the high-frequency mode ¢, and the
combination process of the two low-frequency modes wy., wy.. We can write the
rate of change of the occupation number #,, due to these processes as
dn,

dr =—dn 3 [Woew P + Din- + 1)
f k.k”

= Ryt (1 + 1)]0(0y — we— @03 ) i e - (1-54)

In the classical limit, n, 3 1, we recover the appropriate part of the previous
result, From this derivation it follows that the *collisional term’ for the four-
wave interaction is proportional to the third power of the occupation number.
In the absence of resonance interaction among three waves (as, for example,
for the electron plasma waves [14] or shallow water waves [15] the mode
coupling then is of the third order in the wave energy.
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The kinetic equation written in the form given in Eq, (I-54) is used in the
physics of solids for the description of the phonon interaction due to lattice
irregularities. [9] There is, however, a qualitative difference between applications
of this equation to phonon and plasma turbulence. In solids we usually deal with
a state not far from thermzl aquilibrium. Thus, nonlinear phenoinena produce
small corrections only. In a plasma, however, nonlinear phenomena are very
important, The mean free path for a wave in a turbulent plasma can be quite
short, and squipartition of energy between modes does not hold for a-plasma. We
see this in detail in the next section.

I-5.  PLASMA TURBULENCE IN TERMS OF THE KINETIC EQUATION FOR
WAVES

In the previous section we derived a kinetic equation for waves using the
random phase approximation (RPA). Now we investigate some of the properties
of this equation and apply it to several problems,

Investigation of plasma stability in magnetic confinement shows that oftern,
under the influence of various small disturbances, the plasma arrives at a state of
disordered motion. In general we must describe this motion by means of all of
the plasma characteristics—velocity, temperature, etc.—(in the fluid-type
description of the plasma) at each point in space and time. If the deviation from
steady state Is slight (or the total turbulent energy is small), we can represent this
turbulent motion by a superposition of linear eigenmodes.

vr,2) = 2 vgexp[—iwt + k1], etc., (I-53)
k

where the frequencies are determined from the dispersion relation ¢ = wi(k).
Now the state may be described in terms of the amplitudes of the eigenmodes.
The problem is to determine these amplitudes as a function of k and ¢,

The distribution of energy between different scales of turbulence can be
found on the basis of wave-wave interactions. These interactions are easily
treated within the framework of the RPA, which is probably valid for the case
of many interacting waves. This kind of approach is called weak turbulence
theory.

If we wish, we can write the results of this treatment either in terms of mode
energy of the number of waves #, in the kth mode. In the latter representation,
the wave kinetic equation becomes

an

#“2'}’k”k+5t(”m’?k), (1-56)

where the form of the collision term, St(rn,, n, ), was derived in the previous
lecture. In problems of nonlinear stability, it is necessary to consider the sources
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of instability and dissipation. This accounts for the inclusion of the first term on
the right-hand side. In steady state, we can drop 8n, /8¢ and just consider the
right-hand side of Eq. (}-56) equated to zero.

Letus b'cagip a preliminary examination of the relaignship of weak plasma
turbulence to Kolmogoreff’s treatment in conventional hydrodynamic turbulence,
1t Is very difficult to find a rigorous description of the energy transfer among
different scales of hydrodynamic turbulence, becanse we cannot express strong
turbulence in terms of eigenoscillations (waves), and we have no rigorous statis-
tical equivalent of the equation corresponding to the wave kinetic equation’

4 (k)

Tk
FIGURE I-8. Dissipation of strong turbulence according to the Kolmogoroff-Obukhov

theory. Region 1 is the scale on which turbulence is created and region 2 is the scale on
which ordinary viscosity dissipates the turbulence.

above. In conventional hydrodynamics the most reliable procedure is the use of
dimensional arguments.

Imagine a situation where the source of large-scale (small k) turbulent motion
(region 1 of Figure I-8) is separated from the region in which the turbulent
motion damps rapidly due to viscosity in small-scale motion (region 2), Energy
passes from large scales to small continuously in % space. In the intermediate
region (between 1 and 2) the weliknown dimensional arguments lead to the
spectrum

&y~ k303 (Kolmogoroff-Obukhov law)

where &) is the energy per wave number per unit volume. In deriving this it was
assumed that the turbulence is isotropic and that it may be described in terms
of local characteristics. Energy is transferred from small k to large in a resonant
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manner, passing through each decreasing seale in succession (see, for example,
[16]).

It is interesting to find an analogy with Kolmogoroff’s spectrum for a weakly
turbulent plasma since in this case we have an equation for the spectral density
derived from first principles. In the plasma, however, we can imagine a great
variety of different waves, so there is probably no universal type of spectrum
with simple power dependence nx ~ k~°. However, for any given type of plasma
waves we hope to have a simple spectrum.

Let us consider an idealized mode! investigated by Zakharov. [17] We deal
with the nonlinear dispersive (therefore, plasma-like) media described by the
wave equation

Fu 2 o2
a—rl-‘—(v — €V V)N=V2M2 (E>0), (1—57)
where V2 is the Laplacian.

When we Fouriertransform, we find

Fu,
ar’

~ whue=k* [ K wetruoie (1-58)
with
Wk = k? + ek*, (1-59)

which corresponds to a decay-type spectrum. We can introduce the mode
amplitudes Cy. defined by

2k )
u(t)=C(1) W P-Lid (1-60)

In terms of C, we can write Eq. (I-58) in a canonical form:
; aC,

o

i

V;c.ic'.k' Cp- () Cilexplifew, — W — @, )t

X0k -k kK d K, (1-61)
where
. kl k'Z k”l 1/2
Vk.k'.k‘ = —SIgNwy, ( m) .

Let us note here that the wave kinetic equation was derived in Section I-3
for the case of a set of discrete modes. In the continuum limit, Vi 4 ~ L(E3Cit)
(instead of 1/Cy#) and the kinetic equation seems to lack & dimensionality factor of &°
in the right-hand side. Therefore, in the derivation, instead of § Lk Wwe will have
& functions: 8, + (1/V}8(1k), where V is a normalization volume. Thus we
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should really define n, = (1/¥) |Cy|*, whereupon everything is correct.

We will take w =k for all modes (i.e., € = 0) except in evaluating resonant
denominators; this imposes a restriction on the magnitude of the amplitudes
for which the analysis applies, namely, |C, | <€ 4ek. Al modes would interact
strongly if e = 0 exactly.

In terms of n, we have

dn,

k2 krz kuz
-'aT = 2yknk —_— 4#]——

[8(ewy ~ w, — wye )
Wy Uy, oy -

x 8(k ~ k' — k") (men k= 21} + 28(ewy e — )

xSk + K —K")nune+mm. — mem )] d3k d3k". (1-62)

To avoid difficulty with signs, we have made all frequencies positive (e, = k= |k[).
The term 2y, 1y has been added to represent a source and sink of wave energy.

Since we are interested in isotropic solutions, we average the wave equation
over angles. First we integrate out the k" dependence, replacing k” by + k — k'
aceording to the frequency rule. Then we write

d*k' =k gk’ sin 8 d dgh
(6 measured from k direction)
By, — wy, — oy ) = S[k ~ k' — (k* — 2Kk’ cos 8 + k'2)112],

(in the first term) and integrate with respect to cos 8 from — 1 to + 1. As a result
the & function is replaced by

kk.' —I
(=)
Integration with respect to ¢ gives a factor of 2. The second term can be treated
similarly.

In the first term, the condition w,.< w, means that the integration over the
modulus of k' is only aver the interval 0 — k. In the second term, however, this
restriction is lifted and the upper limit is o=,

We can put the wave kinetic equation in a more convenient form by intro-
ducing a new variable. If we define

Ne= mck?, (1-63)
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the result is

8N, : k ®
a_rk.=2’yka+8W2k2(fdkrNk-—k'Nk' _4NRJ‘Nk'dk,+2J.Nk'Nk+k'ko
¢ 0 1]

k @
-4%fk'2 Ny.dk' — s%"-fk' Nk.dk’). (164
0 12

One solution in the form of a power law can be found (for 15 = 0) by
inspection, in the form

N, = z ko~ Tk,
@y
Le., mg ~ 1/ewy. This is just the Rayleigh-Jeans law for equipartition of energy
among all modes. However, it is clear that for the turbulence problem this law is
useless, and some of the integrals taken separately in Eq. (I-64) diverge at large k.
1t is clear that we must seek a solution of the form iV, ~ k=, s> 2, to avoid
this ultraviolet catastrophe. The proportionality constant will be determined by |
requiring that the result be connected with the regions of growth and dissipation.
It might appear that a similar divergence now occurs at & -+ Q. That this is not
s0 may be seen by combining terms in the previous equation:
k
I (N Ngwr = 4Ny N + 2N, Ny ) di’
0
k/2
~ f{ZN,c_,‘.r — 4Ny + 2N, ) Ny d’
6

kf2
L 82 Nk
~ 2;{#( k Nk‘—ﬁi—'

Note that the first term diverges in the same way at both X’ =0 and &’ = k. The
result is convergent if Ny, ~ k™%, where 5 < 3.

Now substitute V; = A/k* into ihe collision term and look for solutions with
2 <5< 3. Using the relation
[
f kM e — kY dk = kTN B(m, m), |

[
where

By < LD T

Ctm+n)’
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we find
St{nt = A*F(s)=0,

THl~s) 4 21"(1—.9)1"(257_1).L 4
TR 35 i-s' TGy ' 3-s

From the behavior of the I'" functions and the last two terms, it is clear that
F(s) ~ooat =3 and — ecat 5§ = 2, and so we expect to find a root near the
middle of this interval. In fact, s = 2.5 is a solution, as may be verified by
substitution.

Let us apply this analysis to the problem in which a source of instability and
damping are present. Ordinarily we can estimate /V, simply by

yldmiky ~ N, (I1-66)

Fld)= -3 f 5 (1.65)

where k, is a characteristic magnitude in k space over which y varies. This is
incorrect if regions of damping and growth are separated by a transparent region.
Let the damping be described by

y = —pk®/4m? (x=>1), (I-67)

and the instability by Eq. (I-66) with v =v.
For sufficiently large k, the damping must end. The intermediate region is
described (for small enough v) by

N, = Bk™*5, (1-68)
The boundary of the damping region is given by &y, where

1
Bye—0.5
vk 25 B~ B2 kit or ki~ (;) . . (.1-69)

Integrating the steady-state equation, we obtain the conservation law

J Jey, Ny dk = 0.
From this follows °

13
vk(%}% ~yB [ ks,
~0

where the lower bound of the integration of the right-hand side is taken at some
k ® ky. We use Eq. (J-69) to solve for B

e —0.5)

B~ ki

(1-70)
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Thus Eq. (I-68) is approximately valid if the transparent region is sufficiently
broad and the damping sets in sufficiently abruptly. Then a spectrum similar in
appearance to the Kolmogoroff spectrum holds, although the mechanics involved
are quite different. In our case, this spectrum is a direct result of wave-wave
processes; in the Kolmogoroff case, the modes are vortices whose statistical
interaction we cannot deduce using the weak turbulence approach.

I-6. NEGATIVE ENERGY INSTABILITY

There is much wider scope for dynamical phencmena in a plasma than in
fluid mechanics. For example, in a nonequilibrium plasma there can be waves
with negative energy. This means that the total of wave kinetic and electromagnetic
energy decreases as the wave amplitudes grow. This phenomenon was first
investigated by Kadomtsev., Mikhailovskii, and Timofeev. [18]

We start with the well-known formula for the energy of a monochromatic
wave of frequency cw in a dispersive isotropic medium {{} means an average over
a wave period):

U= Sw[ (ew) (2 +—(,uw)<H2>] (I-71)

where € and u are the dielectric and magnetic permeabilities. If we consider only
electrostatic waves, we see that the sign of the energy depends only on that of
9¢/0¢s and can be negative in thermodynamically nonequilibrium media (in
equilibrium this is ruled out by the Kramers-Kronig relations). We can consider
nonisotropic (having beams present)} or nonuniform media.

As an example, we take a plasma with anisotropic ion velocity distribution
(with T, /T, = 0). Near the nth harmonic of the jon gyrofrequency §2z = eH/Mc,
the dielectric constant is

wh ki Qp0, k2.

=l R T Gy R
here
2
w%:iﬂ"-ﬁ'—-ﬂ) Qg:w%—Mm’

Fn = I"(DCJZ_) e—ac_'f 3

where I, is the modified Bessel function of nth order and &2 = (k*> T.)/(MQg2).

In linear theory such waves already have peculiar properties. Thus, the
amplitude A, of 2 wave reflected by the boundary of a region with negative
dispersion {dw/dk < 0) is larger than that of the incident wave A4;.
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It is well known in hydrodynarmmics that a wave reflects from a boundary
moving with supersonic velocity (v > Cy) with increased amplitude in similar
fashion. And, for v > 2C, there exists an angle of incidence such that the
incident wavé hag zero amplitude, but the reflected and yansmitted waves are
finite. (This, of course, is just the familiar Cherenkov radiation.)

An effect related to this anomalous reflection is the observation that absorp-
tion of ensrgy from the wave by the medium in which it is propagating leads to
an increase in amplitude,

Ancther effect which is explicable from the point of view of negative wave
energy is 2 form of instability in turbulent plasmas. If a wave propagates with
negative energy, then its amplitude increases as the energy decreases (magnitude
of energy increases). If a negative energy wave gives energy up to a positive
energy wave, both increase in amplitude with accompanying increases in fields.
Likewise, the simple decay of a nepative energy wave into two waves, one of each
type, results in a final state with a larger-amplitude negative energy wave. We can
easily find the appropriate kinetic equation from the one previously derived by
the substitution '

K2l?,

8= °

: . e(iw, k) . B
SIgN wy, — Slgn[w,‘—a;k— Wy | = srgnﬂ .

Be

Il = Ow

Note that this definition yields positive occupation numbers. So the wave kinetic-
equation becomes

¢
é}‘nk‘ =2 [ Vesrr |23(°-’k — Wy — wy-)
kL k"

’ o a a
w8 =k = K Imlimed  sign( 2 25 ) |

 sign( 2 2 imin .

Including the sign of the energy in the definition of the occupation number,
o= Iyl sign -
Bewy
we have the more symmetrical form

de de Oe 5
Z g (a aw aw )Ink’k'l

x &wy — wp — e )8k — K — K"y (e - — e — ). (1-72)
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The negative energy instability can be seen as follows, Suppose the existence of
an equilibrium described by the Rayleigh-Jeans law (g, =~ T, T > Q). Take ny, to
have ane sign, and n,., 7. to have the other (for certainty, choose the signs+- - ).
Then zll terms in the right-hand side of Eq. (I-72) are the same sign as ny, i.e.,
3ny /3 ~ yny, where v > 0. Thus the assumed form of the equmbnum is actually
unstable.

I.7. THE ADIABATIC APPROXIMATION (COUPLING BETWEEN
RIGH-FREQUENCY AND LOW-FREQUENCY MODES)

The simple form of the turbujence spectrum found in Section |5 corres-
ponds to that of the kernsl of the wave-wave collision integral for the
idealized model described in Eq. (I-57). In a more realistic situation, this
kernel usually has 2 complicated form. Even the procedure for its derivation
is quite cumbersome, especially in the cases of interaction of different
modes. It is, therefore, very important to find some additional simplifications
of this problem.

Let us show how it can be simplified if the interacting modes have very
different dispersive properties. If we have two modes (characterized by
frequencies cw) and ) such that cw, > {2, we may treat the problem
adiabatically. In this context “adiabatic’” means that one mode is treated as
propagating in a slowly varying, weakly inhomogeneous background; the
changes in the background are just those produced by the passage of the
second (low-frequency) mode. The latter in turn experiences a reaction from
the high-frequency mode, It sees effects averaged over many periods of the
rapid oscillation. For example, let us consider the interaction between high-
frequency, short-wave, longitudinal, plasma oscillations

T,
wi e wl + 3K
m
and low-frequency, long-wave, ion-zcoustic vibrations

T,
Qf =g C, C}ﬁﬁ’
with & » ¢ This problem was first considered by Vedenov and Rudakov. [19]
We start from the Liouville equation for the number of electron plasma
oscillations {plasmons) in the six-dimensional space of coordinates and wave
vectors:

aNk awk awk
a[ -+ = ak V,.Nk'— —a—r—-kak =0
_ |Ek|2_ 1-73
L (1-73)
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In a uniform plasma, changes in the frequency wy 2s a function of position
arise only from the ion-acoustic vibration that we describe by the hydro-
magnetic equations:

v

(WA ap noei" +* ."lE |2
_—— - ) -
HM[ -+ (V- V)V] ar S V% s (1-74)
(@rfar) + V-(aV)=0, (I-75)
p=MC2n, (1-76)

where the last term on the right-hand side of Eq. (1-74) is obtained by
averaging the electron term —mm(v-V)v over many plasma oscillation periods,
and just represents a gradient of the radiation pressure:

eEk
—w m

Y =

— (v Vv =—ngm 3 e™ (v Vv e™"
Kk

nomz
mz

nget g E 2
xexp[i(k+k’)-r]=—-2—°m—§z| L

[’(k ‘B B+ i(k-Ep) Ey]

Eq. (I-76) is just the adiabatic equation of state.
Using the definjtion of the plasma frequency

4mne? kT,
2 2], R
w? = (l+3mw§8) (17D

and linearizing Eq. (I-75), we can write Eq. (I-73) in the form
oN, Buwy, 8N,

aN
Gy | Fox T v 2
% ok o TV R =0

where we have used 5= wp,f2 and

(1-78)

daw,, wpe 1
e Tk Vn=sV(V:
or 2 ng n=sV(V-£).

I]l a S]I[ular manner, Eq. (I‘ i4) becoﬂles
P C; ; : E 5 Z ‘zk' ( )

In Eqs. (1-78) and (I-79), § is the fluid displacement.
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In order to see that this set of equations is useful to work with, let us apply
it to some specific problems.

Damping of an ion acoustic wave in a gas of Langmuir plasmons
3

Let us assume a dependence of N, and E on r and ¢, of the form exp[—i§2t +ig- r]

Linearizing Eq. (I-78), we obtain the correction to the plasmon distribution
function:

is N
BN, = —’g;(q-a)(q--a—;)- (1-80)
Q—q — ‘

ok

Substituting in Eq. (I-79) and dotting with q we find the dispersion relation
connecting the frequency £ and wave vector q of an jon-acoustic wave:

52 d’k aN
2 2002 a2 Lk -
—-q- _Bk ie

Por §2 having a small imaginary part Iy <€ Q, we find
Q=44C,+il';,

+ qu 3. ﬂ'ﬁ) ( —_ a_cf.]i)
F“‘”""zpc, Ja‘ k (q =) 8| £9C:— a5 (1-82)

We can see a direct analogy with the usual Landau damping (growth) of waves

on particles. Here, ion sound waves damp on'quasiparticles with velocity

deoy /8k and distribution function Ny. And, of course, under the reciprocal

influence of the ion sound wave spectrum, this plasmon distribution will relax.
For this relaxation process we have, from Eqs. (I-78) and (1-82),

O N =p 2
a_[<Nk> _mﬂuﬁ akﬁ<Nk>v
3
Dup=m3 s*q.q5/0°8f* S(Q q a:) (1-83)

where (y means an average over the fast (plasma) oscillations.

Instability of a plasmon gas

Another interesting problem which we can solve within this framework is the
instability of a gas of plasmons due to coupling with sound waves.
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Under suitable conditions, a narrow spectrum of Langmuir oscillations is
formed, which we can regard as excitation of a single mode:

Ny = k3 Ny 8(k — ko). (I-84)
E. . ’ it l‘ .
After substitution in Eq. (I-81) and integration by parts, we obtain
2
Qo214 |,
dnomf o _ )
3K,

where w = [ w, N, d°k = Nufcoo.)pe is the total energy in the spectrum and the
dispersion equation Eq. (1-77) has been used again in calculation q-(dw/dk).
If g-(8ew/dk) & C, this equation has the solution

| dw
2913,

I dew 2 | Sew )2,.,, 3wq2 2 2
(i" E”) (2“ & ) Rangm? ©

1w\ (3 w M)”z
2 _[—_pq— e et — 2 z
v "(2“ Bko) ’—L(4n0n ) 1Cs

From this it is clear that the criterion for instability is

Qezq- L4y

A O (Ikl l‘:n)

The growth rate is

w M )m (1-85)

VNQ'C(HOT m

It can also be shown that the plasmon gas is unstable with respect to the decay
mode discussed in the second section in connection with Aifvén waves. A steady-
state plasma oscillation (cwy, Ko) decays into another plasmon (w, k) and an ion
sound wave (€2, q). [3, 20]
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Chapter II

Wave=Particle Interaction

In this chapter, we consider the linear (or quasilinedr) Wave—particle interaction
thet is associated with the resonance condition w = k-v. When a particle and
wave satisfy this resonance condition, the particle maintains a constant phase
relative to the wave and is very effectively accelerated by the essentially constant
glectric field it then experiences. Since the interaction involves resonant particles,
it cannot be derived from the MHD equations; instead the Vlasov equation and
Maxwell’s equations must be used.

II-1. WAVE-PARTICLE INTERACTION FOR A SINGLE WAVE

It is convenient to start with the relatively simple problem of the resonant
interaction between electrons and a monochromatic Langmuir wave in one
dimension. Of course, this system is described by the equations

o o edpdf
at+vax—E§;55—~0 (”-l)

aasz=4vme (1 —fduf), (11-2)

where fx, v, t) is the electron distribution function and ¢(x, £) = ¢ cos(kx-twi)
is the electric potential associated with the monochromatic wave.

The oniy nonlinear term in these equations is the third term of the Vlasov
equation, {3¢/dx)(3f/dv). One can linearize this term by holding 3//8v constant
(i.e., replacing 8f/dv by 8f,/dv) or by holding the amplitude of the wave constant
(i.e., replacing ¢ cos(kx-cot) by ¢g cos(kx-cof). Landau followed the first inearization
procedure (i.e., replacing 3f79v by afo/0v) and obtained the well-known result that the
amplitude of the wave damps or grows as e}, where vy = n/2cowsp /k*(3f/8v)|wo/k.
In this section we follow the second linearization procedure [i.e., replacing ¢
cos(kx-ct) by ¢g cos(kx-cwt)]and find that the distribution function is strongly
modified in the resonant region. As might be expected, the time scale for this
modification is the oscillation period for a resonant electron in a trough of the
wave, 7 =/mjepok’

It is reasonable to follow Landau’s linearization procedure when the amplitude
of the wave changes much faster than does 8f/dv. In terms of the two time scales,
v, and 7, this condition can be expressed as [y, r] 2 1. Note that this condition
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requires the initial amplitude of the wave to be smaller than a certain value
li.e., ldol € (v} m/fekD)]. On the other hand, one should follow the second
linearization procedure when 3ffdv changes much faster than the amplitude of
the wave. This condition can be expressed as lyyr{ €1 or lqbol > (vim/ek?).
Of course, when [y, 7! is of the order of unity, the problem i is essentially non-
linear and neither linearization procedure can be used.

To investigate the modification in the distribution function, we examine the
electron phase space trajectories in a coordinate system moving with the wave,

b v UNTRAPPED
TRAPFED

??

FIGURE II-]1. Phase space trajectories in coordinate system moving-with the monochromatic
wave,

¢ = ¢y cos(kx-cor) (see Figure II-1). These trajectories are governed by the
equation W= 1/2mu?—ledy| cos(kx). Electrons on trajectories with W < 0 are
trapped in a trough of the wave and electrons with W >> 0 are untrapped.

It is convenient to introduce energy angle variables (W, 8), where W defines a
particular trajectory and € a point along that trajectory, and to express the
distribution functior in terms of these variables, f= A8, W). As is well-known,
fcan be time4ndependent only if it does not depend on @ (i.e., f must be con-
stant along particle trajectories). By making such distributions self-consistent with
the electric field, one can construct steady state (i.e., nondamped) wave-like
solutions of the Vlasov-Poisson equations. These solutions are called BGK
solutions. [1] In the present problem, f is initially a function of both & and W,
but it tends toward a particular BGK solution in the time-asymptotic limit.
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To see this, we first consider the evolution of the trapped particles. Two
particles on neighboring trajectories (i.e., two particles with slightly different
energies W) have slightly different frequenc1es of rotation in phase space (see
Figure H41): O

0
wy = wy = 2 (W — W),

If the particles start out with the same phase 8, then after a time  ~ 1 /{wyw;)
the particles will be separated in phase by Af ~ 1. In this way the phases become
scrambled and fbecomes constant along a particle trajectory, whern looked at
from a &6%re g?mnﬁ?grl time average) point of view. Similar arguments can be
applied to the untrapped particles, so long as fis initially periodic in space.

In a real plasma, collisions will pexform the coarse grain average in a natural
manner. As the phases become scrambled the actual distribution becomes a very
jagged function of W or v. For long enough times, the scale of this jaggedness
becomes so [ine that it is no longer justified to neglect the 3%/8v? term in the
collision operator, so even in a collisionless plasma, collisions will eventually
smooth out f so that it approaches the coarse grain average value. The time scale
for this process will be finite and quite insensitive to the collision frequency v.
Landau used this point to show how entropy can change in a collisionless plasma
(such an entropy production was discussed in [2, 3] as a dissipation mechanism
for collisionless shocks).

This situation is similar to that in MHD turbulence theory, in which turbulsnce
first develops on the scale of large wavelengths and then degrades into smaller
wavelengths. For sufficiently small wavelengths, real damping (i.e., viscosity)
finally dissipates the turbulence,

To obtain the value of the coarse grain distribution on any trajectory, we
need only average the initial distribution over this trajectory. In the resonant
region, we may also approximate the.initial distribution by

fn

S0} = folwfk) + —— | (v —wik). (11-3)

]} -terfh

Since the average of the second term vanishes for trajectories corresponding to
trapped electrons, it is apparent that the coarse grain distribution f(W) has the
same value for all these trajectories [ie.,f=f(cw/k)]. In other words, a plateau is
formed in the region of phase space corresponding to trapped electrons (see
Figure II-2). The formation of such a plateau is a general characteristic of the
wave particle interaction and we encounter it again in the many-wave

problem. '
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A F V)

FIGURE II-2. The coarse grain distribution function,

For trajectories corresponding to untrapped electrons, the coarse grain
distribution can be written as

A
ffg(v) An(x)dx
f=
f Ap(x)dx
[}
A
" Df [0(x) — w/k] Av(x) dx
= folewlk) + . : (11-4)

2
wlk f Ap(x)dx
8

where constant = AW = (3W/9v) Lv(x) = m{v—w/k) Av(x). Using the transforma-
tions
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= wlk) = | 2 W+ 2eguimien)]

I

e e —Plfl:mol §'=&25’ (11-5)

Eq. (Il-4) can be rewritten as

JS=folwik) +

)
= (11-6)

™

w1k F(x) ’

wik
mf2
where F(k) = Uf d&(1—«?sin®)~* is the complete elliptic integral of the first
kind.
So far, we have treated the amplitude of the wave as constant and calculated

the change in the distribution produced by that wave. However, we can now use

F(X) &

¥

FIGURE II-3. Squaretooth wave.

this change in the distribution to calculate a small correction to the wave
amplitude. We find that this correction is of the order of Ago~ (v.7)¢e; 50 one
may consider this procedure to be an expansion in terms of the small parameter

Ive7l-
It is convenient to introduce a time-dependent damping coefficient

1 d
w(t) = ma}(g’(l‘), (11-7)

where

A
E(t) = j dx{MBp|3x)24m,
]
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To evaluate d £/dr we use the conservation of energy equation

A 4
df dxdq&j‘
- = ~ 5 d s Uyl ) -
" nej?\dx vuf(x,0,1) . - (11-8)
o -

The time-dependent expression for f{x, v, £}, needed to evatuate the above
integral, has been found for two forms of the wave potential. In the first case,
[3] the potential was assumed to be a squaretooth wave (see Figure I1-3).

The damping coefficient for this potential was found to be of the form shown
in Figure 114, The damping coefficient starts at the value predicted by Landau,
YL = ﬁ]2ww§/k2 aff9u | w/k, but then oscillates with a period of the order of 7,

y(t) &

/\ o N
N~ t

FIGURE H-4. Time-dependent damping coefficient.

the average period of oscillation for an electron in a trough of the wave. Finally
the damping coefficient approaches zero, as the phases of the oscillating electrons
become scrambled in phase space.

The case of a sinusoidal wave was treated by O’Neil. [4] He obtained the

damping coefficient
. nt
2n7* sin (1—-)

2. 64 F.
wo=r.> = o o
s &5 FH1 +g*) (1 +¢7")

. [@r-+ Dot
2 —
@rn+ D)= rcsm[ TFr ]

+ , (11-9)
FZ(] + q?_n-H)(I + q—ln—-l)

where F' = F[(1—«%)", 1/2] and g = e™ /€. We easily can show that this
damping coefficient has qualitatively the same behavior as the damping co-
efficient for the squaretooth wave.
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The BGK solution predicted by the above theory as the time-asymptotic
limit of a large-amplitude wave will eventually be destroyed by effects not
included in this theory. For example, the BGK solution might decay (via
the nonlinear wave-wave interaction) into another plasmypa wave and an ion-
acoustic wave. The time scale for this process would be the ion plasma frequency.
Alternatively, the BGK solution can be destroyed by ordinary collisions. This
possibility was considered by Zakharov and Karpman, [5] who found that
collisions make the BGK solution damp away at the rate

kU; 270::
7=B( ") =

[<1]

Vs (11-10)

Teol

where  ~ 3, v,y is the Landau damping coefficient for a Maxwellian, 745

= \/m/et,bkf is the oscillation period for an electron in a trough of the wave, and
Teo IS the time it would take collisions to establish local equilibrium in the
resonarnce region {i.e., Teon is reduced from the ordinary collision period by the
factor (Av)2 /(w/k)? = (edo/m)(w/k)?] . Viewing Eq. (11-10} in the light of the
Landau damping formula, v, = n/2ww? /K 8f/0v| w/k, indicates that the BGK
solution damps away as if the slope of the distribution were reduced from that
of a Maxwellian by the ratio {Tose/Tcoul € 1. In other words, the slope of the
distribution seems to be determined by a competition between collisions that
try to make it into a Maxwellian and particle phase mixing that tries to maintain
the BGK plateau (at the expense of wave energy).

I1-2. THE MANY-WAVES CASE

Let us now turn to a problem with two waves. If the waves have well-
separated phase velocities (w/k) |, 7, then they will not interact and we simply can
superpose the results for the trapped particles of a single wave. However, if the

Waves are Close tOgether,
( ) e¢
k "

where qus the wave potential, then the situation becomes completely different.
We expect to find overlapping or collectivization of the trapped particles. We can
continue by looking for solutions with 3, 4, etc., waves present, but the analysis
is hopelessly complicated and only rough qualitative conclusions can be drawn.
However, with a very large number of waves present, we can introduce the RPA
and the statistical approach used before in these lectures.

Suppose that there is a velocity interval, {w/&)min <? < (/%) max, with
waves present having phase velocities throughout this interval such that between
any two neighboring waves there is a collectivization of the resonant particles.
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If the phases of these waves are random, particles undergo Brownian motion

in their velocity coordinate. In phase space, this Brownian motion in velocity

is superposed on the streaming motion, so that sample particle trajectories appsar .
as shown in Figure 1I-5.

In the previous section we found that the time-asymptobic distribution
function was constant along particle trajectories, at least when the smoothing
effect of small angle coulemb collisions had been taken into account. Extending
this conclusion to the present case implies that the time-asymptotic distribution
is constant (i.e., flattened off) in the strip of phase space between v = (w/k)}min
and v = (k) max, because particle trajectories can wander throughout this
region (see Figure 11-3). Note that except for the smoothing effect of the small

VA

A

(w/k)yax

(w/k) N

=¥

FIGURE II-5. Brownian motion of electrons in phase space,

angle coulomb cellisions, the distribution would be a very cornplicated and
jagged function, smocth only in a course grain average (or time average) sense.
Of course, the jagged function conserves entropy and the smooth one does not.
The temporal evolution of the smooth {or averaged) distribution is governed
by the quasilinear diffusion equation. [6-8] The most rigorous way of obtaining
the quasilinear equation, as well as the criterion for overlapping between
neighboring monochromatic waves, was given by Al'tshul’ and Karpman [9] and
by Dupree. [10] We content ourselves here with a simpler derivation.
We start by Fourier-transforming the spatial dependence of the one-dimensicnal
Vlasov equation

ﬁ: il

+ ivkfy — :kqﬁk————z ik - q)sék_..,a (11-11)
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where the prime on the sigma indicates that the g = 0 term is not included in
the summation. For k£ =0, this equation can be written as

L af“ Z ¢-q (11-12)

“

For k # 0, the terms on the right-hand side of Eq. (II-11) presumably represent
the coupling between different plasma modes (i.e., nonlinear wave-wave inter-
actions and nonlinear wave-particle interactions) and we need not include them

in a theory that considers only the linear (or quasilinear) wave-particle interaction,
Consequently, for & # 0, we use the linear equation

&

5 T kfk———-:qukaf" (11-13)

The Green’s function solution of this equation can be written as
flp, 1) = —rkfdr expliku(t’ — £} el ) (v £, (11-14)
To calculate ¢, (#) we substitute this solution into Poisson’s equation
k2 (1) = dome f dufi(v,1), (11-15)

and use a WKB approximation in time [i.e., we assume fy (v, ¢} changes only
slightly in one period of oscillation ¢, ']. This procedure yields

$ilt) = 4u(0) exp [ [T+ 7t dr'}
o (1i-16)

a
we=a,(1 +3[2k2 L) vdt) =g“’k w%fkl(%)mk.

To obtain the time dependence of fy(v, £), which determines the time
dependence of y,{¢}, we substitute Egs. (II-14) and (I[-16} into Eq. (11-12):

2?_{? ED [J'dr ( ) Zkzlqﬂk(t)lzexp[;(ky_wk)(t — )]

f°(u t") exp[fy,,(s")dr ] (11-17)
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If we assumne that the width of the excited spectrum is large enough that

Alkv—wy) ® v, TR ™! [where 7 is the relaxation time for fo(p, £)],then the
sum over k,

%kwr)szexp ko — wi) (' = 1],

will phase mix to zero for (') Z ¥, g, and we may set folv, £) = foly, 1) and
Yt = 1,(2) in the above mtegral Carrymg out the ¢ integral yields

g 9 (kv —
ﬁw_( )zkzlqﬁ(t)lz —explitke w,Jt-l-y,,t]%_ (11-18)

ar ov ilkv — wy) + yelt) ov

Taking into account the time-asymptotic relationship

1 —explikv—w)t+yet) P
itho — w) + ikt — wy) + i

+ w8k — wy),

and the reality conditions w_ = —wy, and y; = y_;, one can rewrite Eq. (II-18)
as

%2 w2

t  Bv
2

D& = (2} S RIAO [ Vet s — )|, (1119
m) £ Fo—w) 7 )

Of course, this diffusion equation must be supplemented with the equation for
wave growth

F] .
é}!ﬁﬁkp =2‘)”k|¢'k|2

7 w, afo

LA Rt A Y

(11-20)

WJ:

The two terms in the diffusion coefficient (i.e., the delta function term and
the principle part term) are of very different character. The delta function term
is positive definite and describes the flattening of the distribution in the resonant
region. As expected, this is an irreversible process. On the other hand, the
principle part term describes a reversible process (i.e., 2 |¢xl*= 01 ¢, 12 /31
changes sign under time reversal). This “fake diffusion™ (or adiabatic diffusion)
describes the adjustment of the nonresonant particles to changes in wave
amplitude. As the amplitude of the wave increases, for example, the oscillatory
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kinetic energy associated with the wave also increases and the nonresonant
particles appear to be heated (see Section IE-5). Of course, there is no change in
entropy associated with this apparent heating.

The k = 0 Fourier component of the distribution Jofv, 1) played a special role
in the above the(’bry in that it was used as the zero order ta.pp1'ox.1matmn to
flx, v, t). This is physically reasonable, since fo(v, £) is the average of f{x, v, 1)
taken along unperturbed particle trajectories, and particle streaming actually
tends to average f{x, v, £) along these trajectories. Of course, when there is an
external electrostatic field present and the unperturbed trajectories are curved
lines in the phase space, one must use for the zero order approximation to
F(x, v, £} its average along the actual trajectories, not the &k = 0 Fourier com-
ponent of the distribution.

Taking into account the Doppler shift in frequency, one can see that the
"condition on the width of the excited spectrum, Atkv—wy) >y, 77", is equiva-
lent to the condition that the field and motion as seen by each electron be
distinguishable into a rapidly varying part and a slowly varying part.) An
alternative derivation of quasilinear theory, mathematically similar to the van
der Pol method, can be based on the existence of these two time scales. We
express the distribution as the sum of a slowly varying part and a rapidly varying
part

f=r+r. (11-21)
For the rapidly varying part we use the linearized form
AP Y _ e, (11-22)

2x mox ov
neglecting the product of the two rapidly varying parts (3¢'/3x)(3f"/3v). During
a single period, fchanges only slightly so we can use 2 WKB approximation in
time to solve for f* (see Eq. II-16). For f we just average the Vlasov equation

over the fast motion
of  of <a¢ of

ax. m\dv 9v/,

Br ax (11-23)

' Using the diffusion equation to estimate 7, for an excited spectrum of width A(w/k),

L)’ [k

R Dlwik) ﬂ(i)zz K2 |¢k|2

we can also see that the condition A(kv—wk) p 7! is equivalent to the condition that
the trapping width be much less than the spread i in phase velocity

[ (;i)zzk Iml’]z < A(/R.
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Substituting forf* and averaging the result over unperturbed trajectories reduces
this squation 1o Eq. (I1I-19), To aveid confusion between fo(v, £) and the initial
distribution we use the notation (v, £) rather than fo(v, £)

The first problem considered with Eqs. (1I-19) and (I1-20) was the relaxation
of the unstable distribution shown in Figure [I-6(a). {6, 7T We assume that the
spectrum is initially some smooth function of thermal velocity [ses Figure

47y (v, =0)

{a) v
2
4 QSK = w/V¥
THERMAL LEVEL
Y

(b)
FIGURE {I-6. Initial {a) distribution and (b} spectrum,

I1-6{b)]. The waves that have phase velocities for which 3f/dv > 0 will grow and
after a few e folding times the spectrum will be large enough to flatten off the
distribution in this region [see Figures [1-7(a} and 11-7(b)]. This process will
continue until the distribution is completely flattened off and the spectrum
stops growing [see Figures II{8a) and IL8(b)]. Note that in the time-asymptotic
limit, the nonresonant (or main part) or the distribution has been shifted
siightly to the right in order to conserve momentum. Momentum initially
associated with the gentle bump is now asseciated with the oscillatory wave
motion,
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In the resonant region, the time-asymptotic distribution is uniquely defined
by conservation of particle number

[Fe1=0dv=ft= )7 20,

Lo 1 (11-24)
f01,t=0)=f(vs, 1 =0) = f(t = ).
“FD (v, t)
{a) v
A‘#K = w/V(t)
(b) v

FIGURE II.7. Distribution (aj and spectrum (b) at intermediate time.

To obtain the asymptotic spectrum, we substitute Eq. (1I-20) into Eq. (11-19) and
retain only the delta function term '

2ren-2 (&) > & 00 wldl]. s

Assuming that the initial energy in the spectrum is small compared to the energy
in the bump, the integral of this equation yields

S ldatt = ) 3060 — ) = w3 (2 ) [l F (6= ) 0 = 01 1126)
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Of course, this is not really a steady state spectrum; in deriving the quasilinear
equations we neglected mode coupling terms (i.e., the nonlinear wave-wave
interaction and the nonlinear wave-particle interaction), and these terms
eventually distort the above spectrum. Since the quasilinear relaxation time and
the mode coupling time are both inversely proportional to the first power of
wave energy, we must order other parameters in the system to ensure that mode
coupling is negligible during the quasilinear relaxation.

AT {(V,t =o0)

<Y

{a)

Py = m/\a'(t =o2)

<V

(bl
FIGURE II-8, Time-asymptotic (a} distribution and (b} spectrur,

So far we have considered quasilinear theory in only one dimension. In two
or three dimensions, the diffusion equation is similar to its ons-dimensional
cousin,

& 3 of
5~ 2.5 P 5,
@B (11-27)

. 2 P'Yk
Dyg Z|¢k(f)| kykg [m+ﬁ5(k'v"wk)],

e At e s n e e

s
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but its solution is more complicated. The one-dimensional problem is in 2 sense
degenerate, the resonant particles occupying only a restricted region in velocity
space, In higher-dimensional cases, even for a wave packet that is localized in

k space, we ﬂqd a broadening of the resonance region. .

Let us consider a two-dimensional problem. The initi4l level curves of f
{characteristics), which are, for example, circles centered on the origin, are
plotted in Figure I1-9. Let us introduce a fairly narrow wave packet propagating
in the v, direction. Because of the formation of a quasilinear plateau, a new
system of level curves parallel to v, will be established inside this narrow bard,

by
Y l |

-
\

FIGURE IF-9, Initial and final curves of f{vs, t y).

v, ~ w/k. These, of course, connect with the circles in the part of velocity space
outside the resonant band. It is easy to see that only a finite amount of enerpy is
needed to reconstruct fin this way.

Suppose we have many such wave packets present propagating in different
directions. In Figure II-9 each will be traversed by its own set of level curves.
Since these curves will intersect in some domain extending to infinity, an
infinite amount of energy is now needed to make F constant along all these level
curves.? If, for example, all directions of propagation are present this domain

% Since the quasilinear plateau is no longer an exact steady state in the two-dimensional

case {even for quite narrow wave packets) it is necessary to understand its meaning by considering

it as an approximation (Le., a “quasiplateau™).
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fills all of velocity space outside of the circle, v2 +v? = (w/k)?, because every
part of this region is common to at least two d1fferent resonance bands. Since f
is constant out to infinity, it is obvious that an infinite amount of energy is
involved. This means that any steady state, corresponding to finite wave packet
energy, is impossible, and the wave spectrum must damp tb zero. [11]

To see what will actually happen to the distribution function, let us suppose
that we have a two-dimensional wave packet that has cylindrical symmetry in
% space. Then f will be isotropic,

F=Fwk+ ko),
and on substitution in Eq. (11-27) we find

Y _fgpest 1Y
ar v 9u (07 — (w/k)2]V? v op (11-28)
=i+ z:,,,

where we have replaced the summation over k by an integral and taken a very
narrow spectrum, |¢x 1% = |¢|° 6{k—ko). (Quasilinear theory is still valid because
this distribution gets smeared out when the spread in angles is taken into account.)
For w/k > v we have 8f7ar = 0. Together with Eq. (11-20), Eq. (11-28) has an

exact solution if we make one additional simplification. If initially there is a large
amount of energy in the wave packet, then we obtain a reconstruction of f in the
form of an outwara expansion, so that finally for most of the distribution function
we can neglect w/k in comparison with v. Now it is quite easy to solve the
equations. As an example of a case in which it is valid to neglect co/k without
restrictions, we point to the interaction between electrons and ion sound waves,

since
w T, < T,
k M m ’

For Langmuir oscillations this will be velid only after a considerable time, when
the distribution has spread a loag way.
Now let us introduce a new variable in place of time

T

'r_géi w?|d2(r ) dr’ “JD(I’)dt’.
4t :

0
Using this variable Eq. (11-28) can be rewritten as
of 4 of

—Ji——i(l f) (11-29)

v duv?
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To solve Eq. (II-29) for a given initial distribution f, we can Laplace-transform
and obtain the solution in terms of the Green’s function for fusing modified
Bessel functions of the order of —3/5.

This is npt a very convenient solution to work with, but we can go to r ==,
where fno lonéer depends on f, and write the sumlan{y-solutmn of Eq. (II- 29)
as [12]

5 ' -2/5
f=Cexp - -“Dd{'] , (I1-30)
[oyar| Lo
@
where
w
C= 1_,(2!5) J}B(v)vdv v>}c~-
ek

Ta find vy, we use the formula

w? af
Y= %w“ﬁ J‘ k'é}j:s(wk“k'v)dzv'

For the asymptotic form Eq. (11-30), we find [12]
__ B
T s’
“D(r’) dr‘]
o
d|¢klz - _ 2ﬁk|¢kl2 . (11_31)

dt ! 343
[_[D(:)dr]

0

w? wl, T(2/5)

=C
A 10k3

V==

Note that «/k drops out of expression (1I-31) for v, , because the main contribu-
tion to 7y, comes from v ¥ w/k.

The original system of equations has now been reduced to Eq. (II-31} alone,
which. can be transformed to a second-order nonlinear differential equation and
solved, though this is a cumbersome procedure. The qualitative behavior is
obvious, Starting with some initial value, the energy will damp and eventually go
1o zero. Initially we have Landau damping, after some finite time &(t) = 0. There
is no energy available for further reconstruction of f] and 7 tends to a constant
value. The results are clearly different from the one-dimensional ¢ase in which a
plateau is formed.
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The picture we have obtained has obvious applications to so-called turbulent
heating. Suppose that we have a system in which turbulent heating is being
employed; usually this means that the plesma is carrying a current that drives
some instability, so we have relative motion of the electrons and ions. If this
drift velocity is slightly greater than cw/k, ion sound waves are unstable.’
mentioned above, w/k drops out of the problem and the results can be applied
directly. So even without knowing the wave spectrum we know that, after heating,
the electron spectrum wili not be Maxwellian but will have the form just seen.
The actual form of the tail of the distribution will come not from quasilinear
theory but from other considerations, perhaps wave-wave interactions.

However, it must be remarked that, in the calculation just completed, we
assumed an isotropic wave spectrum; for ion sound turbulent heating this is
certainly not satisfied. Suppose a current to be directed perpendicular to the
magnetic field (the usual situation): j is in the x direction, A is in the z
directiorn.

For a small but finite value of the magnetic field, this problem is exactly the
one just considered. Since particles gyrate about the direction of the field,
particles are mixed in the v,-v,, plane. We can regard this as a rotation of the
wave packet instead of a rotation of particles, and the distribution function will
depend on (vy, vy) through v +v3 only, even for a one-dimensional wave
packet.

We thus find that there is also a difference between the one-dimensional case
with and without a magnetic field. Of course, H must not be too large, because
the simple picture of plasma dynamics used here then gets drastically modified.
H is used only to contain the particles. We can neglect it in considering longitudinal

electron wave properties because wie > why, is usvally the case in turbulent
heating situations.

II-3.  QUASILINEAR THEORY OF THE ELECTROMAGNETIC MODES

In this section we apply quasilinear theory to ¢lectromagnetic modes propa-
gating through a plasma immersed in a uniform magnetic field Hy. We consider
the simplest cases of these modes, namely, ion and electron whistlers propagating
parallel ta the field Ho. [6] The limitation to parallel propagation simplifies the
algebra but does not significantly change the results,

The basic equations for the problem are the kinetic equation

Lipv Sy
or m,c

a
vay%—l-::[ +— (vaJ_)] ?I-J-=0

? The nontinear theory of this kind of instability is discussed in Chapter III,

ELtiiod

T e
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and Maxwell’s equations. If we divide the distribution into slowly varying and
rapidly varying parts, the equation for the slowly varying part takes the form

(o Sl (i) L2
!.'.5,!—_(;1: Zk Wy avz+ l+w-k' flu.'.aUJ.vJ'

y FAR [(] kv,)afj fcv_._é’_fJ
du,

(—fw;, =+ I.CUHJ -+ f‘kuz) Wy wy avz

], (11-32)

into which we have introduced cylindrical coordinates in velocity space. The
* sign in the resonant denominator refers to right- and left-hand circularly
polarized waves. In the resonant region this equation becomes

of; & ( kv,)_ d kv, 0 ]E 5
EF‘F%Z b= viava o wy, v, |Ed
k

kv 2 kv, 9] .
x 8w, — kv, + wy)) l:(l - w,c)é"a?fw_,,auz]f” (11-33)

the resonance condition now picking out particles with velocity

w =+ CIJHJ'
v, = 3
The frequency of the field as seen in a coordinate system moving with this
velocity has been Doppler-shifted to the gyrofrequency. The resonant particles
therefore rotate around the field Hy at the same rate as the electric vector E,
and they are accelerated very effectively by this field.

As a first application of Eq. (II-33), we assume a large-amplitude wave packet
is impressed on a Maxwellian plasma, the resonant region for the wave packet
being as shown in Figure II-10. It lies in the left-hand plane because w—wgy; s
negative for the whistler modes. The solid circles in this figure are the level
curves for the Maxwellian. As in the quasilinear theory of Langmuir oscillations,
the resonant particles diffuse until a quasistatic state is reached, and from
Eq. (1I-33) one can see that for a sufficiently narrow wave packet {i.e.,

Alw/k) € wfk), this quasistatic state will be such that

[(I a wﬁ v )aiL o " ]ﬂ (11-34)

This condition is completely equivalent to the condition that 3f{du = 0 in the
quasilinear theory of Langmuir oscillations. From Eq. (11-34) it follows that the
level curves of the quasistatic distribution are given by

2 2
';_L -+ %‘. - -Lkﬂ v, = const. (11-35)
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These curves are circles but their origin has been displaced to the right by w/k
(see the dashed curves in Figure II-10). Since the marginal stability condition for
the whistler mode is just Eq. (II-34) integrated over v, ,

jdﬂ;vi[(l—%)_ai.pﬂa_ﬁ]

dv, w dr,

v wg} =0 (11-36)

we find that the damping coefficient goes to zero in the time-asymptotic limit,
just as it did in the analogous case for Langmuir oscillations.
In order to continue this analogy, we can reduce the two-dimensional

quasilinear diffusion operator in Eq. (1I-33) to 2 one-dimensional form. Indeed,
if we introduce

w=—24Z oy, (11-37)

as one of the new varables, 3/9w derivatives cancel, and Eq. (II-33) with the
new variables w and, for example, v = v, have the form*

A [ RN TP
k

gt wly, w dvlm? w Gy

af  e* B H* @) af

7551"25;{“*(”!@]—%%}' (11-38)
YT

Also integral (I1-36), which determines the imaginary part of the frequency,
can easily be written in a one-dimensional form, [6, 13]

Imcu~J'du_L-uf_[(l - ku,)é‘_f +£U—J'-a—f]

w /8y, w du

W wy
= &

o

37
= J v2{w, v) ¥ aw. (11-39)
dv
Wanin &Y
In a plasma with a nonisotropic velocity distribution, the integral given in
Eqs. (1I-36) and (11-39) might be negative, implying instability. One of the most
interesting examples of a nonisotropic velocity distribution is the loss-cone
distribution, This distribution is found in laboratory plasmas confined by a mirror
machine and in space plasmas. The loss-cone distribution is of the form

[=folvd+ o2y (vl —02), (11-40)

4 In the original paper [6] the one-dimensional form of the quasilinear equation for
whistlers was written inaccurately, It was corrected in {13]. But the one-dimensional
whistler case is also degenerate in some respects; there is no exact plateau in a multi-
dimensional case. So actually we can have only a quasiplateau. [14]
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FIGURE 11-10, Resonant region for the whistler mode. Solid curves are level curves for
Maxwellian and dashed lines are level curves for the quesilinear plateau.
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FIGUREHI-11. Plotof nix} for loss-cone distribution.

whare
Hmux - H

H
and 7i(x) is shown in Figure 1I-11. For a given  the level curves appear as shown
in Figure 11-12. Substituting this distribution into the stability criterion for
whistlers gives

fﬁ[o—ﬁﬁyiUbﬂ+£ﬁ%50MﬂﬁL<& {1141)
[+]

w =

w [ oe,
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where

e, =muif2,

Integrating the first term by parts and carrying out the differentiation on the
other two terms gives '

ko, [ (o B
me')dg_ oy .[e (3{)-0 'é%.f)dEJ-
b z
kv,
—Z (e + l) deJ‘eJ_‘qfo<0 (11-42)

4y,

tan"! Ciaa ) \\\\\\\

z NO PARTICLES

AN |

k4

FIGURE [1-12. Level curves for a loss-cone distribution,

The second term in this equation vanishes 1dent1ca1!y, and, prowded the range
over which n changes is small compared to v, we can replace n'(x) by 6(x) in
the third term. Consequently we find [14]
kevd(a 4+ 1
—fov,z,u[l +—2~"l;'"'—)j|<0

wWot” Drpy

(11-43)

where v, = (e — wyy/k. Since v, is negative, this criterion gives instability for
large enough {v, | or small enough .

At the end of a mirror maching, & goes to zero so there is always a small
unstable region. However, the viclation of the local stability criteriom in a small
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region AZ does not mean that the plasma is unstable as a whole. This would
require the wave to grow through many e foldings before it left the unstable
region

[ lmw g e
Yyt ‘ : " ] -
! f di 5o > (11-44)
Carrying out this integration gives the following nonlocal criterion for instability:

Az»—S-F(g), (11-45)
i

where §; = 811’1’!1}/!‘]2 and F(f;) goes to infinity as §; goes to zero. In present
machines this condition cannot be satisfied by fon whistlers, but it can be
satisfied by electron whistlers if . is not too small.
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FIGURE II-13. Quasilinear depletion of particles in loss cone,

According to Eq. (1I-43) the plasma will also be unstable when the resonant
velocity is much larger than the thermal velocity. In any thermalized laboratory
plasma there will, of course, be very few particles so far out on the tail of the
distribution, and the instability will be slow. Particles therefore are swept into
the loss cone (Figure I[-13) when the plasma tries to form the quasilinear plateau,
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but very slowly. Kennell and Petschek [15] successfully applied this basic
mechanism of diffusion into the loss cone to the plasma in the magnetosphere in
which the necessary high-energy particles exist in large enough numbers to make
this instability an important mechanism for particle untrapping,

The importance of the whistler-type loss-cone instability-is often decreased
by the competition of another instability due to the loss cone—the Post-
Rosenbluth instability. This instability is a pure electrostatic mode with a more
complicated kind of polarization. Since this is very important we discuss it in
detail.

II-4. QUASILINEAR THEORY OF THE POST-ROSENBLUTH LOSS-CONE
INSTABILITY

We should like to consider in detail the Post-Rosenbluth instability [16] for
the case in which the volume of the loss cone is very small (for example, it may
correspond to 2 large mirror ratio). In this case, we can treat the relative volume
of the loss cone as a small expansion parameter. Further, in real traps of finite
length L, the time of escape through the magnetic mirrors is finite and s of the
order of L/u, wherey, is the ion velocity along magnetic field lines, Here we
consider the highly idealized situation in which this time is much greater than
the time of the quasilinear diffusion into the loss cone 7y, (ie., L > 7v;). If we
neglect the particle escape through the mirrors, the loss cone will be filled
during the time 77, and then instability will disappear. The relaxation of the jon
distribution function can be described in terms of quasilinear theory. In the cage
of a large mirror ratio it turns out that the level of the turbulence is sufficiently
small that we can neglect mode-mode coupling,

As in [16] we assume that the unstable oscillations are electrostatic and that
the perturbation scale is sufficlently small for the plasma to be regarded as homo-
geneous, Consequently, the electric field potential ¢ can be expanded in a sum
of individual harmonic oscillations:

b =2 by, eXp{—~iwt + ik, z + ik, - 1), (11-46)
(177}

where &, and k| are the components of the wave vector along and transverse to
the unperturbed magnetic field Ho ={0, 0, H}. We also assume that the electrons
are cold and that the frequency and wavelength of the oscillations are within the
intervals

wy, = Imlw) > w,, kory»1>kory, (11-47)
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where wyy, is the gyrofrequency of the fth species and ry, is the average Larmor
radius of the ith species. Development of instability within this frequency
interval is possible only in a dense plasma,

Lo dmeln
m;

12 g
) = wpy > cuH',.‘- ) (11-48)

Under assumptions (11-47) we may neglect the influence of the magnetic field on
the ion motion and use the drift approximation for description of the electron
motion. Consequently, the kinetic equations for the jons and electrons can be
written in the form

? < a
[5;+V-V—%V¢(r,r)-§]ﬁ(r, v,1)=0, (11-49)

(a 5 VéxH, 8 edb 2

FrRCE H} or meaz'avz)ﬂ(r’M’v”r.):O’ (01-50)

where M is the magnetic moment of the electron (i.e., M = m,v, * /2H = constant).
The complete system of equations contains, besides Eqs. (11-49) and (11.50), the
equation for the electrical field potential

Ap=—dx 2 ﬂ;efff,r(v)a”v. (11-51)
Jmi, e

In the linear approximation we can reduce Eqs. (1I-49)(11-51) to the dispersion

relation
A
""nze w%e ? dy,

E(m'k)§l+wf;,+ ki? w—Fk, v, + e dv.
ad
ke == Jo
S ov _
v JZJ‘——]{T-FT‘ =0 (11-52)

In a very dense plasma, wp, > wg,, we must take into account in Eq. (II-50) the
inertial drift of the electrons, which corresponds to the additional term w},/wj,
in Eq. (T1-52). We omit this term in the following calculations because it changes
only the definition of the plasma frequencies,

m?.v -1/2
w,, —_ C!Jp[ l + ; 3 etc.
Whe
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Insofar as k, <€ &, we neglect the ion motion along magnetic field lines. Then
the unperturbed ion distribution does not depend on the azimuthal angle in
velocity space, end we can easily integrate over this angle:

=

1
2 j av,

—-m

k v, cosg
w—kKk, v, c0S¢ vJ_au

i
U_LdDJ_ j dqf: fi(uJ.:v:)

o

C:L____IH

_ % [\F(O) + F(,!cl u,,,i)]
) (11-53)

\P'( W) = Urzp,( j ﬂ(vi; Uz) dUz

o AW
F(y)=26[dWa_W.

Here ¥ (x) is the ion distribution as a function of the dimensionless velocity,

W =7 ju3y;, and it satisfies the normalization condition. The desired root of the
integrand in F(y) corresponds to taking the integrals in Eq. (II-53) for ¢ in the
upper half plane; so that fory =y, +ie

(1 — Wiy 12 = —jy (W y2)~12, W=yl (11-54)

Finally, we neglect the electron thermal motion according to the third assumption
and rewrite the dispersion equation in the form

2
wh k2 k= [\F(omﬁ(kuml)]ﬁo. (11-55)

2 kZ
When the plasma is near the marginally stable state, one may expand Eq. (Il-55)
with respe¢t to Im w =+ <€ w, and show that

o)
~ cw, lmF(“‘*—kvm )
VI T2 A + FO0) + Flw k)]

[ [‘P(O)-I—F(k? )]}'”1
-z L - (11-56)

The solution with Im cw > 0, corresponding to growing disturbances, appears only
if

eowk)y=1— +

jdwg Y s, (11-57)
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By averaging the kinetic equation over the period of the rapid oscillations in
coordinate space, we derive the quasilinear equation for the averaged distribution
function fo;

E>i' ﬁ afbl Z ¢* g ket afkw(v)ll (”'58)

Under our first assumption L > v;7p (7p is the diffusion time into the loss cone)
no loss of the particles from the trap appears during the relaxation of the ion
distribution, Due to the small volume of the loss cone (our second assumption),
the wave energy is small. Hence, we can neglect mode-mode coupling and use the
rapidly oscillating part of the distribution function fi.. and the electric field
potential ¢, derived from the linear approximation

a ri
. kJ_-vimﬂo(U;, b,)
My (CIJ —kJ_'VJ_-%-fG)
¢kw = ‘}Sksw.wk!

where cs, is the frequency of the eigenoscillation with wave vector k and amplitude

bus

kam. wh

fk'r.u=—

1, W=ty
8 ey
0, wFEwW,.
Within this approximation we can reduce Eq. (I1-58) to the usual form of the
quasilinear diffusion equation (which is valid in this case even for «y ~ ¢ since
v < kogpy)
(w,t) 0 lwyle? |2 @F(wr)

[1-59
ot w - mod (wiyi— 13172 3w ( )
¥ w

Y= andk oy U

We used here the axial symmetry of the distribution function in velocity space

to average Eq. (1I-58) over the azimuthal and longitudinal components of the

ion velocity.
The quasilinear diffusion equation (11-59) and the equation for wave growth

d
“‘l"%‘"l" = 27[:“;61:'2: (11-60)

where 7, is determined in terms of f(v) by expression (II-56), comprise the basic
system, which we have to solve to find the time evolution of a plasma that
initially has a loss-cone distribution. This is actually a very complicated system.
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However, we can simplify Eq. (1-59), as we did in Section II-2, with Eq. (I11-27).
This procedure is right if the main contribution to the integral (II 57)

[(8ffu, dv,)dv, comes from that domain of velocity space where v, > wik, If
we take the initial distribution function in form () shown quahtatwely in
Figure II-14, the condition v ® w/k would mean that w/k<’ vp, where v, is the
plateau size. Actually, any kind of initial distribution, even, for example, of type
(b) very soon will have form (a), since the quasilinear diffusion is very high for
smaller v.

4 Y{v))

1 - P
Gl Ll

Vo (vp)

FIGURE H-14, Initial loss-cone diswibution,

Thus, Eq. (I1-59) may be rewritien in the approximate form [17,18]

O 4 0 Y,
4D 25 dw W

D__Z f " ezwm

!M

(11-61)

where

This equation can be easily solved using the Laplace transfoim. The result is [18)]

(W, D) = J' AW (W) G(W, W'; D), ©(H-62)

0
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where Wo(W) is the initial ion distribution and
GW. WD) = %ae -t 32 e 8 2)1_3!5(205”;5/4 WISIAY e peare

is the Green ] fpnctmn of Eq. (II-61) witha=D"?, qu we can find the growth
rate yy in terms of (W, D), and substitute it in Eq. (11-60):

dl(ﬁklz Yy J\ dI’F(I‘F] D) -1
= AW 17 Uiz, |2 [i-63
dt kM + P(0) |4 (11-63)

Let us consider an idealized initial ion distribution for which we can evaluate
the integrals of Eq. (II-62) exactly:

v WS\ e
o(W)=A|1—Aexp-—- — )| , (11-64)
where :

5([ + ES."Z)Z."E
AT/ [T + <275 — Aq]

is the normalization constant and 1 2 A 2 0 [A = 1 corresponds to the case of
empty loss cone: Wo(0) = 0]. Then the solution for the distribution function and
the equation for the wave amplitude can be written in the form

A=

512
(W, D) = Aexp — (K—D){ (1 + Dy25 — A(i + D + Djesi2)25

siz
x exp[_esll(l + D){(1 + D+'D/55/2)]} (I1-65)

d|¢kl2 : Y2k || 4 [ Ae-112 i ] -
dt P1k21\2+1}v(0 D)Ar(g) (1 + D27 —(l T D)3” . (11-66)

From the last expression we see that, if initially A >/, the growing oscillations
cause turbulent diffusion of ions into the loss cone. As we can see from expression
(11-65), for the particular choice of the initial ion distribution {11-64), the
quasilinear relaxation of the turbulent spectrum can be described by changing in
time the parameters A(f), €(r), and the effective “temperature” of the main body
of the ion distribution only. This change can be obtained by using formula
(I1-65):

A(ty=A[l + D + D/e%?)

e(t)=¢€f(1 + D)1+ D+ Dfe')]¥5 {I1-67)
T(r)y=T,1 + DPs.
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Now it is easy to describe the solution of Eq. (I1-66) qualitatively. At some
moment Iy we reach the marginally stable point A(fy) =+/€(7,) and the oscil-
lations stop growing. However, the ions continue to diffuse into the loss cone
{see Bg. (II-61)] and the oscillations become damped. It is obvious that the
relaxation process stops only when the oscillation amplitude reaches the zero
level, when ¢ = ==,

The final ion distribution has a margin of stability with respect to the
perturbations considered (i.e., v < 0 for arbitrary wave vector k). Tha para-
meters of this distribution depend on D_ only and can be found from the
energy conservation law®

0o

f‘}”g(W) WdW = flf"(w, D,)Waw, (11-68)
Q 0
where '
De = lim D(r). (11-69)

From Eqgs. (11-65) and (11-68) we immediately obtain

At

N B Ae"'(] + D+ Dm/ES,'z)Z/S(] -+ Dﬁ)Z/s
(1+ 6512)4/5 )

[] + 651'2(] + Dm o+ Dw[€5.’2]4.’5
(11-70)

In the limit of large mirror ratio the parameter ¢ is small and the amplitudes of
the oscillations remain small during the relaxation process (i.e.,D <€ 1). On the
other hand, by reducing the quasilinear equation (1I-59) to the form of Eq.
(II-61) we suppose that the width of the sink on the distribution function
essentially increases due to the quasilinear diffusion, Hence, we can apply result
(11-70) only to the case of initially strong instability

=(1+D,,)2’5{I

A /€ (11-71)
Expanding Eq. (II-70) in the small parameters ¢, D_,Ve[A<€1, we obtain
D, 5A \5/3
W_(zv‘) > 1. (11-72)

Using Eqs. (11-67), (1I-68), and (11-72) we see directly that the sink on the fon
distribution under condition (1I-71) becomes wider and less deep after relaxation,

m [18] it was proposed to use for this purpose the equation 1Dy, ) = 0 because, after
the first state of relaxation to the quasisteady state (II-68), the partlcle loss through the
mirrers supports the instability on a very low level. But in that case we must add to the
right-hand side of Eq. (II-61) a term describing this particle loss and change the expression
for the growth rate. (This was not donein [18].)
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and we can justify approximation (II-61). The main part of the distribution
function is only slightly disturbed by quasilinear diffusion.

In this section we introduced many idealizations in order to get soluble

equations, Of course, in a realistic situation, the development and nonlinear
relaxation of the loss-cone instability have a more dothplicated nature, due, for
example, to the continuous loss of particles through the mirrors, which we did
not take into account, In these circumstances, the nonlinear mode-mode
coupling becomes very important, as was shown in [18].

II-5, NONRESONANT WAVE-PARTICLE INTERACTION

So far we have considered only the resonant interaction of waves and particles.
For their nonresonant (or adiabatic) interaction we must take into account the
principal part term in the quasilinear diffusion equation [see Eq. (I1-19)]. As
mentioned in the discussion following Eq. (1I-20), this term in the diffusion
equation describes, for Langmuir waves, the participation of the main body of
the plasma distribution in the plasma oscillations. For example, the oscillatory
kinetic energy associated with a wave increases as the amplitude of the wave
increases and the main body of the distribution appears to be heated. To see this
quantitatively, we first write the nonresonant part of Eq. (II-19) as

af_(f_)z_a_ vr E} ar
ot \m [(kv—wk)2+'yk]av

by

P

(11-73)

where we have approximated [(kv—wg)*+ v#] by wj. Using the equation for
wave growth, one can rewrite this equation as

o _ 9 1 (d<- E}\3f
o ov nm(drz-g:r_)am (11-74)

Multiplying both sides of this equation by mv®/2 and integrating over velocity
yields

+m
d m 2 7oy = L5 LB -
E?J dvy f(v,t)——gt-z - (11-75)

In other words, the kinetic energy associated with electrons in the main body of

" the distribution changes at the same rate as the electrostatic energy. Of course,

this is just a result of the well-known fact that the total energy in a plasma wave
is composed of equal parts of electrostatic energy and kinetic energy of oscillation.
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To see that this change in kinetic energy can glso be looked upon as an
effective heating of the plasma, we change coordinates in Eq. (1I-73) from ¢ to
7=3 \E |2 J4mn,

3= 2m Bt ) (11-76)

For the initial conditions

_ m mu?
Jlo.r=0)= [ 5mexp = 5 (11-77)

This equation has the solution

(11-78)

- m 12 mu?
Fen=|zrrs] eommrey

In other words, the main bedy of the plasma is effectively heated by the
temperature increment 7 = EE & [4mn. Of course, quasilinear theory is not valid
unless 1 <€ T,

In a similar manper, we could show that the main body of the distribution also
carries the momentum associated with the waves. However, we would have to
retain the velocity dependence of the denominator 1/ [(kv—cog)® + %] in Eq.
(I1-73). This velocity dependerce would shift the peak of the distribution in
the direction of wave propagation and thereby account for wave momentum.

As opposed to those considered thus far in this chapter, many instabilities ars
algebraic in nature and have nothing to do with a wave-particle resonance. In
such cases the nonresonant diffusion does more than account for wave energy
and momentum; it describes the relaxation of the instability.

To illustrate this point, we consider the firehose instability [20, 22]. In this
instability, ¢ is zero but v is given by

T, =T
Vi = kb "—T** (11-79)

when 33 1. If the plasma is not far from marginal stability (i.e., AT/T < 1) then
vy will be much less than ku.p;, and we can apply quasilinear theory. Note that
quasilinear theory does not always require v <€ ¢s; as mentioned above, ¢ is in fact
zero for this instability. Since kv.p; < cwyyy for the firehose instability there will

be no resonant particles; the instability itself is algebraic in nature and does not
require resonant particles. To get the diffusion equation, we replace «w; in

Eq. (1I-32) by #y; and use the reality condition y_z =y This procedure yields

2ms et why v, du,

3 e? L7, 3 af\ d
"53‘;{'=‘“T“i,__2“(u EJ*U:J’U‘__”*E{J zviau =af)dzZiH“Jz’ (11-80)
k
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where we have used

|EJ* = IH 2. (11-81)

k?. 2
We camsol\ie Eq. (11-80) by the following approximate procedure. Since the

plasma is near marginal stability (i.e., AT/T <€ 1), the distribution can be expressed
as

AT
S fut T S,
where fir is & Maxwellian and f; Is a corrective term producing the anisotropy.

If we neglect this small corrective term when evaluating the right-hand side of
Eq. (1I-80) we obtain

o, ef  (W-2} 4 N
i . z = E H 2, [1-82
Bt 2micied, o3, f”dt . |l (11-82)
The solution of this equation is
r e% ( :) 2
= . H |2 11-83
Ji=hot 2ml et wi, Oy fM 3 1 (11-83)

This function can now be used to calculate the growth rate

o=k ”dvf,(vi—vf/Z)]”z

zkv,m[(g) mzczw ZIHIZJ , (11-84)

The maximum growth rate in linear theory is found for k= Llrg: AT/T. [23]
If we are willing to use this value of % for the coefficient in Eq. (11-84), we
obtain a tractable nonlinear equation for the growth of the waves,

2|4, '
dtZlHkJ “leRI wm[(ﬂ;,T)o H J (I1-85)

The solution to this equation is of the form shown in Figure II-15.
We can give a simple physical interpretation for the removal of the tempera-
ture anisotropy. The instability is low frequency so the integral

J=fv,dl (11-86)
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should be constant. At first the field lines are straight, but, as the amplitude of
the wave builds up, the field lines become very wiggly. Since the path of integra-
tion in Eq. (II-86) becomes longer, v, must become smaller, and this presumably
reduces T,

Although the nonresonant diffusion describes a wave's thteraction with 2ll
particles, the strength of this interaction can be quite different for different
domains in velocity space. In such sitvations the quasilinear distribution function
can, in the process of relaxation, have a quite peculiar form.

4 > IH, 1
k

A

O(TJD

4

> IH, (r=0)i?
k

\

FIGURE II-13. Nonlinear evolution of the firehose instability.

An example of such a situation is the case of the “whistler” mode with no
(iritial} magnetic field. [24, 25] If we have a nonisotropic distribution function,
it is usually unstable against whistler-type perturbations.

Let us consider such 2n anisotropic distribution f(v2, v2). As indicated in
Figure 11-16, the effective temperature in the x direction is greater than that in
the z direction. We can show easily that a pure transverse perturbation (E1k)
will be unstable for any arbitrarily small anisotropy. Te do this, we use the

linearized VYlasov equation, where the first-order quantities contain the factor
ellkzz—w1) ,

d
—i(w—kzuz)fj+i'£’-‘£°-i——£‘i-ﬂyvz%i
m; dv, myc dv,
. (1187)
g Tug i,

myc T 8y,
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and two of Maxwell’s equations,

41
ik, H, = Tej(f, —f) v d® o (11-88)
Voo N
)t ' o
ik, E, ='7“’ H,. (11-89)
A
V)(

FIGURE I[1-16, Level curves for an anisotropic velocity distribution.

So we have four equations for fj, fo, Hy, £y, We get (expressing the fields in
terms of H,,)

I [eJHy( o, afw) L ‘%J]. (11-90)

fj:r’(m—k,v,) me\"Fdu, " au,) mkec Yo,

Suppose now that the ion distribution is anisotropic. (If fp; were isotropic, the
magnetic field terms in the Lorentz force would cancel.) Substituting in expres-
sion (11-88) for the current, we find

. 4reieH, d’y ( 2w )
e H, = — c Mic¢Jw—k,v,+ie uzﬁ+u,,avz k,f‘

+ similar electron contribution. (I-91)
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The dispersion relation now has 2 simple form

4re ko o, )
2 . 2%y S ~
k ijcz(_[ m—k,v,+fe avz 1) (” 92)

If the plasma is isotropic, this becomes the usual dispersioh relation for
waves In a plasma in the absence of a magnetic field. When we have an anisotropic
distribution, we can look for a new root of this equation. It arises as a very
low-frequency mode. Let us suppose that f ~ exp[—(mwv3 /27 }—(mv?/2T,)].
Taking <« <€ kzv.;, we find, from Bq. (11-92),

2z

,_ ¢ wiof Tyy "
“”“’w'fzwge[z CZ(T,J ) kz] T. &2 Ve (11-93)
J

Now we can see that this wave is unstable for sufficiently small &2 if
1-T,/T. <0. [In terms of a more general distribution function f{vZ, v2), the
stability condition would be [ (v2fv.)(8f/v;) dv + 1 < 0]. There is no real part
of ¢, and therefore it describes an aperiodic instability.

Suppose we have the opposite situation, 7, < T,. Then instability results if .
the direction of propagation is rotated by 90° (i.e., by interchanging the roles of
x and z). So this situation is absolutely unstable, even for very small anisotropy.

If we look at the imaginary part of w, we see that it increases with increasing
wave number; but we cannot take k, very large because the additional term
becomes significant and gives stabilization. Thus there exists a critical wave
number below which waves are unstable:

2 AT w%e
R P

Let us see how quasilinear theory may be applied to such a wave. The equation

for f has the form
er eE’ , o
54- [ + H xv] 3 >=0 (11-94)

where the prime denotes rapidly varying functions. Next we substitute the
expression found in linear theory for the rapidly varying functions and average
the quadratic expression over many cycles. The resulting equation is

f e 8 i w ., ™ of

at —‘mmzcz<("’<“>am'[aﬁ +‘”‘H]>a'v (11-95)
where the bracket () indicates the average We can represent if{w + kv, ) as
(d/dr)/(w? + kZv2) and neglect w?® in the denominator since ® € k2,2,
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Now we can easily go through the same sort of calculation as that just com-
pleted for the firehose instability. Finally, the quasilinear equation becomes

R S Vd ol 8 )vx of
o é?_mchZFE?IH"I (”’"av,_ ’av, 2 av (11-96)

The physical meaning of the quasilinear diffusion is clear, The instability creates
magnetic flutes, produting a chaotic magnetic field. This chaotic field influences
the motion of the particles, and we have scattering of particles due to small-scale
fluctuations in the magnetic field.

Although this represents an adiabatic interaction of modes with all particles,
we can see from Eq. (1I-96) that quasilinear diffusion for the particles with small
v, 18 much greater than for the main body of the distribution. Therefore one
can expect considerable modification of the particle distribution to occur only
for v, €vepy.

II-6. QUASILINEAR THEORY OF DRIFT INSTABILITY

One of the most important plasria instabilities is the drift instability of non-
uniform plasma, which leads to an increase in the particle and heat loss due to
turbulent transport. Therefore, careful attention should be paid to the influence
of such instabilities on plasma confinement and to the nonlinear stage of their
development.

Linear theory of drift waves

Let us considei'in detail the l6w-frequency (i.e., t < wgy) “universal drift
instability” of a plane slab of low 3 plasma in a strong magnetic field H={0, O, H}
[26-29]

me _ dang(T; + T.)-
My H?

We assume that the plasma has no temperature gradient but has a small densjty
gradient

=f<l. (11-97)

r,”%’f < % (11-98)

For simplicity we put T; = T, and w}; » why;, so the perturbation can be

considered as quasineutral. Then the plasma is unstable with respect to an
electrostatic perturbation with phase velocity in the interval

Hy

@My (I1-99)

Uppy <4 ‘< by =

k,
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The electric field potential ¢ is written here as the sum of propagating plane
waves,

p= Z dlkw)exp[—iwt — k)] (11-100)
k.o
L]
Generally speaking, the equation for the x dependence of the wave dis-
turbance has the form of an integrodifferential equation [30-32] that has, in
the WKB approximation, a solution of the usual type:

$(x) = exr:[ ir’f ky(x, w, k,,,kz)de- (11-101)

Here k. is 2 complex function, but with a small imaginary part for an instability
with 2 small growth rate. Then the square of this function —2 (x, w, k) =

U, o x) +iV,, | &x) plays a role analogous to the complex potential of the
Schrddinger equation. The turning points of the real part of —k2 restrict the
region of coordinate space where the wave packet can propagate. The description
of an unstable perturbation by wave packets is justified if they grow in the time
between reflection from the turning points up to a level at which we cannot
neglect the nonlinear mode coupling. [33] Therefore, by choosing a perturbation
of the form of Eq. (11-100), we suppose that ¢ [18]

i
¢krh

where ¢ 4% is the amplitude of the wave in the guasistationary turbulent state
and @4y, is the amplitude of the electric field fluctuation at time r = 0 (for a
quiet plasma ¢y, is the amplitude of the thermal fluctuation).

We start by deriving the linear dispersion refation for the drift instability. [35]
The equilibrium distribution function depends only on the constants of motion,
o, X=x+ vy/'ij.

v, Ax|(Bwidk,) > A = In

(11-102)

Joy=rofed vy, X). (11-103)

In the linear approximation we can write the Boltzmann equation with an
electrostatic perturbation in the form

[5* = J“XH““J/“’ “V¢W“ (11-104)

® Conwvection of the wave packets in the nenuniform plasma was considered in [34].
The stability condition found there is similar to Eq. (IFF102),
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On the left-hand side we have a derivative taken along the unperturbed particle
trajectories in a magnetic field:

%,(17) = X (1) == {Sin[0,(r) — wp,(t” — 1)] — sin B,(r)}
el “Hy E B8

Pt =y + ;”;{ cos[0,(t) — (" — 1)] — cos 8,(¢)}
z(tY=z{t)+uv, (1" — 1), (11-105)

where v, and v, are the velocities of the particle across and along the magnetic
ﬁeld and §; is the angle the velocity vector makes with the vy axis at the instant
r'=t We wnte these in vector form using the unit vector h = H/H:

P X ' (11-106)

L
Wy}

Integrating Eq. (II-104) along unperturbed trajectories and using Eqs. (1I-103)
and (11-105), we obtain the first order correction to foz

Ak v)h]

CUHJ

LY o
wuagmm[<rkw

4 2 k, @
xjd:'[ 0 v, (1) + kemr ]fo;

v, Ov, *an,(1") wHJax
) % ()] 'h
xexp{—i(wk—kzu,)(t —r)——iT}’ (11-107M)

where all quantities that do not depend on the time ¢’ following the trajectory
have been carried outside the integral.
Now we use the fact that the total time derivative along a particle trajectory is

d_@

= = —iw, + ik ¥(1) (F1-108)

—_—t ¥ g
or

and use the Bessel function expansion

exp[_(l‘_ﬂ)_‘l] E’J[(k*v‘)exp[ﬂ(g+9 —wy,t )] (11-109)
wHJ’

Why F—
k = (—k sin ¥y, &k, cos ¥, k.). (T1-110)

where
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Then we can do the time integration in Eq. (II-107) and obtain the Fourier
component of the perturbed distribution function,

é d a k, @
o W—e—t kv ——— Ly 7
afu:_, ¢k +§: vl_av_‘_-’_ zvz(l’zavz UJ_|av_J_)+ijaX
kI UJ.BUJ. ol Cw—k, v, Floy;—ie
koo TGxvb (0w
XL(‘”HJ)EXP[I Wy +d(€"+5_ Fk)]
X folv?, v, X)exp [—i(wt—k-1)]. (I-111)

Here the smail additional term /e has been inserted te make the integral conver-
gent, and corresponds to the adiabatic switching on of the perturbation at

=00,

Let us now consider the stability of the local Maxwellian distribution

372 mJUZ)
= expl —=Z—),
Jor=my (2 T) P( 37,

where ngj, Ty are the density and temperature of the ji# species. For low-
frequengy waves (w < wgy), we neglect in Eq. (I1-111) all terms with { # 0.
Also, by Eq. (11-99) we may drop the &, », term for ions, which describes
resonant wave-ion interaction. Then on integrating with respect to velocity we
find the perturbed ion density

wefopl ‘
nk,=—-§_l‘-no[l —‘“Ty””r‘o(k;rm)], (I1-112)

Here the function

Tola) = I(e?/2) &7, =k, ry

describes the weakening of the effective glectric field experienced by the ions,
averaged over their circular Larmor orbits. In the limits of small and large
Larmor radius, respectively,

Tom =42 +0(af), =<l

1
Lo =1+ 0], a1

CT ”u

vi=—L
EJHO no

(I1-113)
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The Larmor radius of the electrons is very small and for them Eq. (II-111)
corresponds to the usual drift approximation. Expanding the electron term in

w/kz'-’rhe yields

L ~—¢En [1 PPV Chad ‘:“)] (11-114)

bk = Urhe
In the Limit of quasineutrality (k*A} <€ 1, A} = T/4mnqe?) the frequency and the
growth rate are given by

@, + iy, = ALY : (I1-115)
) * 2- I‘ol-!-f';r”z[k——-yﬂﬁ(rm— 1)]
I ul Urhe

We seg that the instability arises as a result of finite ion Larmor radivs and that
the growth rate goes to zero simultaneously with the ion Larmor radius. In order
to see more clearly what can happen near this marginally stable case, we write the
expression for the growih rate in terms of the eleciron distribution

wlwy a k 0
2[k,Im, (”“ 5o, )f‘(””x)

In the approximation of small ion Larmor radius, the two terms on the right-hand
side almost cancel for-a Maxwellian electron distzibution and instability is very
weak. (This cancellation takes place also for different temperatures of the

species Ty 7 T.) Therefore, even small deviations from linear theory may strongly
change the stability with respect to finite amplitude waves. There are two effects
of this type.

If the amplitude of a monochromatic drift wave is layge enough the resonance
region is broadened by a considerable amount, Aw, ..~ \/2e¢/m. As we show in
the next paragraph this broadening can stabilize a large amplitude drift wave.
Subsgquently we consider the stabilization accompanying the quasilinear relaxa-
tion of the elactron distribution,

Y, ¥ — (11-1186)

vy =ik,

Nonlinear stability of the monochromatic drift wave

We choose the following form for the electric potential of the monochromatic
drift wave,

‘i”(y,z,t)=—‘¢g[cos(kyy+k z—w?)-l-()(e%)] (11-117)

setting & = Q for simplicity. If we work in a coordinate system moving with the
wave, the rate of increase in resonant electron kinetic energy, which must equal
the rate of decrease in wave energy, can be written as
f\ 12 +m
df  nm, ) ‘
2o f fdu,(u,+w/k ye & (11-118)

“Agr2 @
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In the drift approximation, the general solution for the distribution function
can be written as

.fe(rs Yz, t) =.fe[r0(r! Upy f), U:D(rs Vzy f),o],

where £, (ro, v;,, C) is the initial distribution and (r,, vz, I§ the initial position
of the particle. We can divide the distribution into two parts

fe(rOs Uz0, I) =.ﬁ)(x0a Uzo) +.fl(x0, Uz, OJ ¢os (kyJ’o + kzzo): (”'1 [9)

where the first part is the local Maxwellian and the second part is a perturbation
due to the wave. The second part only makes a contribution to the harmonic
generation and we can reglect it while we evaluate the rate of change of kinetic
energy. Consequently, we find

i)r_e - afﬂz(x0= Uz0, 0) % a.fOe(xU-t Uz, 0) E_E_z_g

gt axo a! aUzo at
. 5 e 3 (11-120)
=— o sinlk, vy + &, —
m. qSO ( y¥o ZO) (kz auzo + Gre axo).ﬁ]e-
The particle equations of motion in the drift approximation,

y=0
. k .
Xx=¢c ’¢°sun(kyy+k=2) (11-121)

0

. ek .
1= T% sin(k, y + k, 2),

have a solution in the form of elliptic integrals, First we introduce a new variable,
kyy +k,z = 2, and rewrite the equation for conservation of energy
mz*

Tu epgcostk,y + k,2) = W
in the form

£ =12 73] — &2 5in? §), (11-122)
where k% = 2e¢q /(W + e¢o) and 7= (m,/epokZ)”. For the case whers k* < I,
we can write the solution of Eq. ([1-122) as

Flue, &0} = Flx, &) — tficr. (11-123)
When % > 1, it is convenient to introduce the new variable ¢, defined as

«sing = sinf, = 1/r2(1 — 12 sin? ).

This equation has the solution

F(le, Loy =F(l/x, 1)~ ¢}7. (I1-124)
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To get the time dependence of the growth rate we need only put these
solutions into Eqs. (1I-118) and (II-120). This problem was solved by O'Neil [4]
in the approximation that reduces to the linear growth rate at z = 0 (see Section
[3-1). We would now like to take into account nonlinear le,ffects that are present
initially, so we rust include more terms than O'Neil did: After substituting
Eq. (1I-120) into Eq. (I1I-118), we obtain

-]

d_T=16new¢vofdf-]fzdgé[(kz%i_l_&aﬁe
]

30:0 Wie axo )

dt k2 s
0 (I1-123)
R e . Kk, Ofpe o]
95, Goe Ky Goe 2,
+ du? (kz 9020 + e 3% )| 227 £2/4k2 | sin(2€q)

where we have dropped even functions of £ by symmetry arguments.
Carrying out the integration in Eq. (II-125) gives us the following expression
for the growth rate:

= Te dT
7 T onge?| gl dt

o

8 2
> ({2t | &

n=0

72

1
2
= dx
kz Ushe f
o
. mn!
) 2nm? sin—

. i(wznz B 1)— K_]} Py (11-126)
3\ 3F2 3 R0+ + 47
8x? 4 (#*2n+ 1) ?
2.2 — - — —
*{""L’”‘*kiuae# [” 3( 16F2 1) 3]}

. [@Cr+1)ae
2, Sl
(2n+ 1w :csm[ SFr

FZ(I + q2u+1)(1 +q—2n—l)

where F(kn/2) =F, q = exp(nF'/F), and F' = F[(1—«*)*%, n/2].
In the limit in which #/7 <€ 1, the main contribution to the growth rate comes
from the n = 1 term in the first sum; so we find

e - equ/,Te:

J ~ uzL2 2 2_,.4345"). -
V(t)_w |k:|vrhe kJ-rHt Te (II 127)

Consequently, a wave with finite amplitude can be stable in the nonlinear regime
if the linear growth rate is small enough. Here we took into account only finite
Larmor radivs effects, but the same idea can also be applied to the current- or
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gravity-driven drift instabilities in an inhomogeneous plasma. Therefore, we can
use this expression to estimate the amplitude of the separate drift waves observed
by Buchelnileova in a potassium plasma.
Since the amplitude we obtained from Eq. (11-127),

edo .

?-': = &'ki r.slis
is very small, we can obtain the level of harmonic generation by expanding the
Vlasov equation in the small parameter ego/Tp. For example, the amplitude of the
second harmenic is given by

eqﬁ(zz,.(’ _ (e%\? w—k, Uc;f ‘ 2k, v,
7. _( T, ) : w . I_Jo( Whe )]
0

kovi) d (koo my v* | (e — K, v))
" J"(wm ) dv, “'°( wm ) P 2T) T Pa(zkﬁ")]’

where we have chosen T, = T;. In the lirnit of small Larmor radius this can be
written as

#R e
r 2L F

We can expect that the amplitude of the nth harmonic will be proportional to the
nth power of the main harmanic

Consequently, we find that the amplitude of the harmonic decreases expongntially
as a function of the frequency.

The picture drawn here is valid onty for a narrow wave packet in which the
phasg velocities of the different waves are very close,

A (_ta) < (ejf_o)”z.
k: ",
But during an experiment, instability can arise in a wids range of phase velogities

and this condition is violated. Then the main stabilization effect comes from the
quasilinear relaxation of the electron distribution.
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Quasilinear relaxation of the particle distribution and transport processes
(36, 37]

As usual, we express the distribution as the sum of a slowly and a rapidly
varying part (i.e.if; = JS; +8f;) and obtain an equation fokthe slowly varying part
by averaging the Vlasov equation over the rapid oscillations

) 8 e, g ] = e anJ> -

— ¥ =0 Lge =L Y= 8 F). (11-128
6r+v 3r+m_,C(VXH°) av i mquS oy Ui )
Expanding ¢ and &f; in Fourier components allows us to express the ﬁght-hand
side of Eq. (I1-128) as

= e; {dlx) 3 ... @
SH(f) = Z E-J( e B kg )y, (1129)
k
where the ¢ross terms have vanished in the averaging process and we explicitly
have made allowance for a slow x dependence in ¢, (x) and 8f,;(x, v).
In accord with the philosophy of quasilinear theory, we assume that the

distribution can be written in the form
Y v,
i =fi| 0L, 0, X+ ——, eX, €l
Wyt

where the dependence on the last two variables is slow enough to be ignored
while evaluating 8f, ;. With this point in mind, we can easily generalize expression
(1I-111) for 8 ;.

2y 1 @ (k x v}h kv
afkf {x!v)= _f?"l_-f_,u¢k(x+ Uy/CUHJ) [U_J_EE_-I—CXP[I o ]Jo( a:'LHJ.L)
w 2 L2 12, k2]
4 [ZE-’_IQ vs (Dz dv, vJ.aU_L)+ij dx
(kzvz_wk__)

- Dy
x f:,v (UJZ_, U,x+'_"s €X, EZ) .
Wy

We neglect here the contribution to the integral from the second term of the
expansion in the slow coordinate,

,(t") ddilx + v,ewr,) .
Wy dx

Bulx(t)] = il + vyfowpy;) +
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Substituting this expression into Eq. (II-129) and averaging the result over the
azimuthal angle in velocity space yields

_{ay ? -k_y_a_.)
- (2 S(eted)

) lsﬁk(x)|2,rg(";;¢) (k _3_+_’€,»____)f;. (11-130)

By,  wy, 0x

’(kz Uy — wk)

Since Kyvpn; < w < kv, the interaction of the waves with the ions is primarily
adiabatic end the interaction with the electrons primarily resonant. Also, we may
drop finite Larmor radius effects in the electron equation but not in the ion
equation. Consequently, the electron and ion equations become

o e\ ? k, @ N
Ve - sy = (;;) > (kzgﬁw—m < )18
k S s (11-131)
¥ ro.
Xwa(kzvz_wk)(kza_llz+m_m5;)ﬂ
and
Yo sy = (VS (k.2 _kli)
5 SV = (E) 2, ("=au, t o 3%
k (11-132)

k. v\ v 2 k, 8\ <
x |g ()5 (“‘w—m‘)w—i (kz T 'w—ma)ﬁ
Of course, the electron equation could have been derived more simply from the
drift approximation,

Next we investigate the formation of the quasilinear “plateau”. For this purpose
it will be canvenient to evaluate the k dependence of the electron diffusion
coefficient at that value of k that cotresponds to the largest growth rate (i.e.,

k =k, where &, ~ w, /v, and Ey can be found by taking into account the
competition.between quasilinear plateau formation and collisions, as is showr
later). The waves with ky <k, are damped. If we introduce the new variables,

7=t §=_§+wEwH’e

Wire -1
: T (11-133)

we can reduce the differential operators in Eq. (1I-131) to

_3_ = (._]_ _a + k” _a_
0 \v, v, wiwy,ox
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Consequently, the level curves of the plateau are described by the equation
o2
X - —k"-gf— = £ = const
2y, Wi ‘

Since v, %u,‘hé in the resonant region, the level curvestof the original Maxwellian
can be described by the equation .
‘ _ k1?2

2"-’Heé.v g
where v =—(cT./eHo{n'o/ng). Since wy = kyvg [[o/2—o)], it follows that
the two sets of curves differ only by finite Larmor radius effects (see Figure

~

x = const

RESONANT REGION

QUASTLINEAR "PLATEAU"

MAXWELL AN

r‘-‘rVZ

|
. th. VA
FIGURE [I-17, Level curves for Muxwellian and quusilinear plateau.

1I-17). The energy gain we receive after relaxation of the electron distribution is
consequently small for small ion Larmor radius.

If we plot the distribution as a function of v, for constant x (see Figure
11-18), we find that the slope in the resonant region becomes very steep so that
the enhanced Landau damping can stabilize the waves. During this process the
electrons lose energy of motion along the field lines. Therefore, we can say that
the energy that the unstable waves gain comes from the longitudinal motion of 3
the electrons.

We can also use the constancy of £ to estimate the change in an electron’s
position [36]

—

I 2
S = —K»_ Bz, (11-134)

Wiy, 2
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Since 8v2 < v% the displacement of the resonance electrons is much smaller than
the plasma radius » = n/(3n/3x) = nfn':

e A ————

Thus the instability inhibits itself rapidly and the change in electron density is
small.

k J

v

Z
FIGURE II-18. Steepening of the electron velocity distribution.

One easily can see that the electrons and ions diffuse across the magnetic field
at the same rate. Inteprating Eq, {II-131) over velocity coordinates gives the
following diffusion equation for the electrons: i

on, e\? k, B 2 ( d k, )
={— — —k e o Y
Bt (me) — wy, 0% [ fdes(wk = v:) | ov, - Wye OX Se
(6 z ﬁ_a__lqé |z 'yk(z—l—‘l})ne ane
dx 'k

me D2 0y (01,/0X) Ox |

(11-135)

where we have introduced the growth rate v, and multiplied and divided by
on/dx. Using Eq. (II-132), we find a similar equation for the ions

om_ (e~ (kN2 oy loldm 11-136
() D) wse i f oo

One can easily see from the dispersion relation {ie., wy = (1'/n) % (vire/wre)

k,To/(2—-Ty)] that the diffusion coefficients in these two equations are identical.

Since the collisionless theory gave only negligible diffusion across the
magnetic field, we modify the previous work by adding a small collision term to
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the right-hand side of Eq. (II-128). The collisions try to make the distribution
take the form of a local Maxwellian and thereby prevent the formation of the
quasilinear plateau. Consequently, we should find enhanced diffusion in this
case. The elf:::'_:r?n equation now is of the form o

aa-—j:e = Stq;_(_f-;) + Sfco!l (f_‘e)s

where
- 3 -
Srcoll (.f:z) =E v, Ut%’le 5? (.f;? _fMe)'

Since we are treating the case where St_,p{f.} < Stor (72}, we can solve Eq.
(1I-131) by successive approximations. [37] We express the distribution as
fe=£.° +f,' and then demand that

St f#]=0 (T1-137)
and that
Stoul fE + St [F] = 0. (11-138) -
Equation (1I-137) has the solution
1ok o®
;;: v, _"w,;w,,e ax (I1-139)

To solve Eq. (II-138), we integrate it with respect to v,

ey 3 k@
fdvz (E) 2 (kz'a_v; +;’;;i'§) |¢‘k[2773(wk_ kz Uz)
0

d k ‘
x (k23—+ 2 i)ff,”=ven,%,e aivz(fue _fe(O))_

v, e 0%

(11-140)

Since f! is more strongly dependent on v, than on x, we can neglect the
derivative with respect to x in the first parentheses in Eq. (II-140). If we alsc

use Eq. (JI-139) to evaluate the second term on the right-hand side of Eq. (11-140)
we find

z  WHe ox

e \Z 2 3 k, 2 -
() S i6erston koo ke o 22 2)
k k (11-141)
=, Vppe (l....a_+ ky i)
= Ve Uthe Uy v, Bv, Wi e ax fMe-

Integrating this expression over v, gives

e \2
(g) z el KA mdlk, v, — @) = v vhey M (11-142)
k
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where we have introduced the actual growth rate (7, ') and the growth rate for a
Maxwellian plasma (7,™} [see Eq. (1I-116)].

Although this expression cannot be used to evaluate either the growth rate or
the field amplitude separately, it can be used to evaluate the diffusion coefficient,
which depends on the product of these two quantities. From Eq. (Il-135) we can
see that the diffusion coefficient is given by

~ lelen, 7y
DL”‘THonézkky—cIngkl .
By using Bqg. (1}-142) we can sxpress this as

u,'yi"‘)k,,ne}

wHek%H;

(11-143)

D, = (I1-144)

where

YO _plizg, ) y Ui
Evaluating this expression at k, ~ ooy fvq and k_rg; ~ 1, gives [36, 37]

{ m, 32 _a.ﬂ 3
o

Of course, this formula is only valid when St 7 (fine) ® Stapn £}, Later we
investigate the wave amplitude and rewrite this condition in a concrete way.

{11-145)
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Chapter 111

Wave—Particle Nonlinear Intgraction

Let us now turn to the last of the three principal mechanisms for nonlinear
interaction between waves and plasma. We start with the simple case in which
there is no magnetic field.

11I-1. ELECTRON-PLASMA OSCILLATION TURBULENCE

If we impress two waves on a plasma, then these waves beat with the mixed
frequency (w; % w,) and mixed wavelength (k; *k,). We already have con-
sidered the resonance of this beating with a third wave (w3, k3) in the decay-type
interaction. But, in analogy with the linear theory, these beats can also resonate
with particles moving at the velocity v, where

(k; £ ky) v = () = w3). (I111-1)

This type of process was included for the first time in the theory of weak
turbulence by Drummond and Pines [1] for a one-dimensional wave packet, and
by Kadomtsev and Petviashvili (2] for the general case (see also [31). In cur
derivation we follow the review article. {4] Of course, the rate of energy increase
(or decrease) due to this process is proportional to the product of the energy in
the two primary waves. Consequently, it is a higher-order correction in the
expansion in wave amplitude. But very often the linear growth rate is small,
because only a few particles can resonate with the wave, and the nonlinear
correction to the damping coefficient can be important.

To illustrate this effect, we consider a wave packet of random-phased
Langmuir oscillations. The frequency for Langmuir oscillations is essentially
constant [i.e., w* = wl,(1 + 3/2k*A}) where %*23 < 1]. Consequently, it
takes at least four waves to satisfy the frequency resonance condition

Wy, + Wiy, = Wyt Wi,

and wave-wave scattering cannot enter the problem until the third order in the
wave energy. On the other hand, in the second order we can satisfy the resonance
condition for nonlinear interaction with the particles

Wy, — wy,= (& =~ k). (111-2)

First we Fourier-transform the potential ¢(x, £} in both space and time
variables. The latter is possible only if ¢ is well behaved for |¢| = co. Although
89
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this assumption does not hold in the linear case if either growth or damping is
present, inclusion of nonlinear effects is taken to be sufficient to justify it in the

present case. As usual, we expand the distribution in powers of the wave amplitude

by using the iteration formula

Sk o) = 5 Fkw,v)
rml

3
Fin _'eJ I A ua Fin— v w
Tt =it S [ gk g At

k <k
W Wt w

Heref f;”) and $(k, w) are the Fourier transforms multiplied by exp [i(k-r—w1)] .
Substituting this expression into Poisson’s equation gives the dynamic equation
for the waves '

el w) Mk, w) + . :kz N € (0, w) k', w) k", ™)

W oy
TS e (@ @ B, @) S ) ST, ) e =
ct.»ls -1:— ’ :‘u"-wkw ([ 1 1'3)

where ¢k, w) is the transformed potential and

2 .
e w) =1 +z%v[dvﬂm

w—Kkv+n
1~ wl e ]
2y '™ = e o LA
i’y ) 24, k2 mjfde'+w”—(k'+k”)—v+fv
J
.8 ! w8 a0 ] , @
"(" o SR h e v X gy for (111-4)

The positive infinitesimal quantity » is inserted to provide a prescription for
carrying out the velocity integral. It does not arise naturally as in the linear
treztment, in which a Laplace transform with respect to time is employed, but is
simply invoked to supply a definition of causality, that is, to distinguish ¢ = + o

from ¢ = — =, We sclve Eq. ([11-3) by treating yu/co ~ |$/* as a small parameter.

It is clear that ¢(w, k) is peaked around w = w(k), the peak having width
~ v = Imwlk), so that

Pk, w) = Ok, w) = ¢i) 3[w — w(k)] (111-5)
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where (k) is the solution of Re [osf‘1 )(w)] = 0. One easily can see that the
second-order solution is
ek K(w,w")

¢k, w) = — “w) $8 L 8w — wy — ) (111-6)

el e 8

To derive the wave kinetic equation, we first multiply Eq. (III-3) by
@*(k, ()e’(® @I and integrate over deo dé. The first term in the resulting
expression is of the form

[ doo| dse () Bk, w) $*(k, @) @ (111-7)

Since ¢k, ) is peaked around oy, we can rewrite the imaginary part of this
termas

Im [ J.dwf dae{P(w) Pk, w) $*(k, @) e —w)l]

1 3¢, d|d () .
gié_i_kk_lj%lmk LR CMIf-ME

where
el (w) = ) {w) + i {w). (ITI-8)

if we use Egs. (1I1-5) and (III~62 to evaluate the remaining two terms and then
ensemble average [i.e., < gbf‘l )4),3) > = [¢3?126 ], we find the well-known

wave kinetic equation [2, 4-6] , in which the superscript in ¢{!) can be omitted
(since all terms in the equation are second order in the small parameter ~ [p1):

l aef‘“' a|¢lﬁ|2 {1y 2
575;—37—— e ()| $el

i S Aol gl gl
" i el + @y
Kk

1y

+Im Z 4@ (@, @y — 0 ) € (Wio— @)
4 e (wy — @)

36y n (s mk)] b2 I, (11L9)

where we have dropped terms that are higher than fourth order in the field
amplitude.! The first term on the right-hand side of this equation is just the

I Singularities of type 1/e(l)(w, k) near w = w(k) must be treated in Eq. (H{I-9)
according to the rule (see Chapter I}

1/[e® (w, &)= 1/[e W (0, k) +iv].
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quasilinear growth rate. The second term gives the rate at which the modes Gy
and ¢y- decay into-¢«. The third term gives the rate at which ¢, and @, decay
into ¢ -, but it also gives a contribution due to the nonlinear interaction of the
waves and particles,

For Langmuir oscillations the decay-type interactions make no contribution,
since we cannot satisfy the frequency condition w . .x =y + w,.. fwe
restrict our considerations to the case of 4 narrow spherical wave packet with
width (A pe € (v i/kApevsme)?/? then we can also drop the nonlinear
interaction of the waves with the electrons. With these points in mind, one can
easily see that the main contributior to the right-hand side of Eq. (I1[-9) comes
from the third term and that in this term, ), is determined by the electrons and
€' by the ions. To evaluate e{*},. (e, —w,) we expand the integral in Eq.
(III-4) in terms of the small parameter (¢, —w . )/ (k—k Yo g :

(2) lwg, ¢

1
— ) = 3
e (W, — @) = 2k m ffd w,—w,—{k—k')v
[ k 'k k_aﬂ kk 9

€

ok V2" 30 (op K VP

wy—w,—(k—k)-v AYO)

(e, —k-v)(wk-—k'-v)("'é\?)(" a—v)f]
o) @ fds (k— k') (3%./3v) kk‘N_e_k-k’_
T2 m wi—we—(k—k)y wl "T, k2

+

(111-10)

In a similar way, we find that
@ . e kK k=kY(3f/)d’y _ e k-k

o~

ek'.k-k'w;n":(k__kr)z wk“wk—(k k,) v ‘j‘.:(k_k,)z (”I"]l)
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E(k'l) o 1 i Wy — Wy W 2y
: W T R TR, R KA, k= KTy, Ik klvm
where
, “+w 2d
LA (A
Wiz) =— JZ_HI.E (111-12)

—w

Consequently, Eq. (111-9) becomes

delly
cE k"‘w] fm 2 2O g 4l

T nT,

7 (Wi — wy) ( wy — Wy )]"‘
1+ —imliz w Phad. -
[ T, ]k k' | Ui [k —k ‘ Py (I11-13)
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We can see from Eq. (III-]13) that the number of waves is conserved in this
process:

0
o Eg atz wkaw Sy k(@ )w] |¢k| -

This is easy to understand if we look at the resonance condition as an equation
determining the energy 2 particle receives when wave ¢, scatters from it into

wkT w
k

/
// \\

FIGURE III-1. Langmuir plasmon scattering off an electron from state w # 0w kg

wave ¢x,. A Langmuir plasmon wx, scatters off an electron into state w,
(Figure 111-1) with energy change

oF
AE=$'A}9=(,C1 —kz)'vE wkl—wkz:

there is no net change in the number of plasmons, hence the total number of
waves must be conserved. Let us note that in the limit in which the phase
velocity is much larger than the thermal velocity the condition w + wq = (k; +ka)-v
cannot be satisfied and the wave number conservation law can be found for
arbitrary waves using the symmetry properties of the coefficients /%) and (3
in Eq. (II1-9). [7]
Equation (ITI-13) can be solved easily in the case in which the spread of the
wave packet is much larger than the ion thermal velocity
Ak fm V2
L2 (H’)
In this iimit, Eq. (III-13) can be reduced to the following differential equation
(which represents a kind of shock propagation in k space):

N,
or

(111-14)

N,
- Nka_xk'=—6d2N%
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where
47Tk3 kzlfﬁ |2 - ﬂmew e, T Tg
= 7§ BT, T 9aim; (T, + Ti)
e

o = (ko AK)2 Ape, ' (111-15)

e
The right-hand side of this equation describes decrease in energy due to the
scattering of waves to longer wavelengths, The left-hand side of the equation
describes the steepening of the wave packet in k space. The equation was derjved
and analyzed in [4]. The general solution was given there as

No=ePX FIB7[1 — e X (1 — 78N)]}

where § = 602, and F[8~' (1 —e~#*)] is the initial energy distribution in the wave
vacket.

In the time-asymptotic limit the solution can be written in the simpler
form [8]

No(£) ]
Mo TR @y Emxtglosll+ENe)

[lI-:2.  CURRENT-DRIVEN ION SOUND TURBULENCE

Now we discuss current-driven ion sound turbulence in the limit in which
T, > T; and Ay = 0. Because the instability is ¢lectrostatic in nature, we can use
the wave kinetic equation derived in the previous section [Le., Eq. {II-9}].

For waves with phase velocities between the ion and electron thermal velocities
the linear dispersion relation takes the form

-t _ o wh f”m‘-’(___w LS 9)] I1-16
D= ek, w =1 +k3C2|:1+I 2m \HC. Cscos ( )

where C; =+/T,/m; is the sound velocity, u is the electron drift velocity, and 6
is the angle between u and k. In the long wavelength limit, the phase velocity of
the oscillation is equal to the ion sound velocity w = |k [Cy, and in the short
wavelength limit the frequency is equal to the jon plasma frequency (see Figure
111-2).

We need

u> C, (111-17)

for the existence of the instability in the limit of long wavelength perturbations.

For short waves the critical current is less (for small ion temperature, 73 €T,).
Since the ion sound instability is a resonance-type weak instability, we

may use quasilinear theory for the description of the current relaxation in a
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collisiorless plasma. To this end we consider the particle distribution in a plasma
with a current.

Figure I1I-3 depicts the equipotentials (characteristics) of the electron and
fon veiocﬂy distribution functions. The two species are dlsplaced by the electron
drift veloeity u. “t

Let us take a narrow wave packet propagating paraliel to u as shown in

Figure ITI-3. The interval between the resonant region and the origin is of the

wpi ___________ J— —_

=~

FIGURE HI-2. Real part of ion sound dispersion relation,

Vy

-/

FIGURE IIi-3. Region of resonant interaction for ion sound waves. The level curves for the
ion distribution are shown displaced in the negative v direction by the amount u,
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o
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same order as the ion sound velocity, because the ion sound velocity is calculated
in the ion rest frame. We can expect a plateau with electron equipotentials to
arise in the resonant region (Figure [1I-3). If we look for waves with k not
parallel to the current velocity u,, then for u 2 C; we can expect these waves
also to be unstable. So we have a resonant region in the forth of a cone as shown
in Figure III-3 by dashed lines, inside which all waves are unstable,

The angle of the vertex of this cone of eourse depends on the ratio of the
drift velocity to the critical velocity. If the drift velocity is much larger than Cj,
almost all angles of propagation will be unstable: only waves within a very small
angle with respect to v, will be stable, and this angle ¢ will approximately
satisfy

¢ ~ Cju,

Therefore only ¢lectrons moving within a small angle ~ ¢ of y,, 2re not in
resonance with the wave spectrum. Some small part of the electrons are always
out of resonance with the wave spectrum because the projections of their
velocities in the direction of the current are much larger than C.

If we now have a magnetic field in the », direction, then, as was mentioned in
Chapter II, it will play the role of a mixer; all electrons will rotate around the »,
axis, and in this case the small cone of stable electrons has no important effect.
So we can consider this problem as if all electrons are resonant with waves.

If we have a magnetic field not of this sort, however (i.e., if we have H || vy),
then the electrons in the stable cone will not be in resonance. The only possibility
is that they can resonate with waves (jon sound or other) arising through
wave-wave interactions.

If we now look at the simplest experiment, we have a magnetic field in the
5 direction and apply an electric field paralle] to H, producing a current velocity
which satisfies Eq. (IFI-17). We find a quasilinear interaction between the ion
sound waves and the electrons outside the stable cone. In other words, all
electrons outside the stable cone take energy from the electric field, accelerate,
and then give up energy to the ion sound waves due to the quasilinear interaction.
So there is some kind of balance between the electric field acceleration and the
retarding force due to radiation of ion sound phonons,

A fraction of the electrons is accelerated just as in the usual runaway processes
when this happens. But if ¢ < 1 (i.e., the electric field is much above the critical
value) only a small number of electrons run away. The simplest expenmental
evidence of such phenomena ¢an be expected to arise as follows: first, if the
number of electrons in the stable cone is small, then for such high eleetric fields
we find that the electricel conductivity is much lower than classical values.
Secondly, runaway electrons are observed. Both of these effects have been
observed already in discharges with high electric fields.
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In the opposite case, if we have a magnetic field perpendicular to E, all the
particles rotate and we have no runaways. Now we expect to observe only the
first effect that is, an anomalously low ¢. This also has been confirmed by
expenment In this case, the anomalous conductmty should be even smaller,
because when E was parallel to H, some current was carried by the runaway
electrons. Every electron is resonant at some phase of its rotation about the
magnetic field. This kind of geometry has been produced in the fast §-pinch .
experiments at Novosibirsk. Electrical conductivities are found up to five orders
of magnitude lower than the classical conductivity (see Figure 111-4).

' 34

TeLASS ICAL

EcriTicaL

. FIGURE [i[-4, Turbulent resistivity {decrease in conductivity observed in presence of
unstable ion sound waves).

Let us look again at the first case, in which H = 0. For strong electric fields we
can consider almost all electrons resonant, and we find runaway phenomena that
are closely analogous to the runaways for the case of a Lorentz gas in which
electron~jon interactions are retained. For a Lorentz gas, the collision integral
depends dimensionally on velocity as the inverse fifth power for large velocities.
We know that if a Lorentz gas is subjected to an electric field, the acceleration
due to the field becomes greater than the collisional retarding force for suf-
ficiently high velocities. This problem was solved by Kruskal and Bernstein.
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(The Lorentz gas is a soluble model for the runaway problem in a collisional plasma.)
We now recall that the quasilinear collision term that was written in Chapter

IT has the form % 3 (13

o Eé‘u(???)
and has the same power dependence on velocity as the Lorentz collisional term.
Thus the rather unreatistic Lorentz gas model of Kruskal and Bernstein can now
be given the physical interpretation of collisions between electrons and electro-
static waves. (This analogy was suggested by Rudakoy [9], who applied the
resuits of Kruskal and Bernstein to this problem and found that for sufficiently
lurge electric fields, even neglecting the cone of stable electrons, runaways result;
in other words, over a sufficiently long time, the ion sound instability cannot
prevent the runaway process from occurring.) We may inquire what happens after
these electrons run away. There exist other instabilities, stronger than this one;
for example, two-stream instabilities, with critical velocities of the order of the
electron thermal velocity, may play a role,

The following is the situation in twa- or three-dimensional quasilinear theory,
To calculate any kind of concrete expressions (for example, electrical con-
ductivity) we can use the quasilinear collision term, following the usual pro-
cedure starting with the transport equation. To do this, we need to know the
quasilinear diffusion coefficient, which is proportional to the square of the
electric field. Sometimes this can be done within the framework of pure
quasilinear theory, as in the example of a spherically symmetric problem con-
sidered in Chapter II [10]; but for the ion wave instability, it is necessary to
consider higher order processes like wave—wave scattering, et¢. So we now turn
to the consideration of mode coupling for this problem.

In Chapter |, it was shown that the dispersion relation of the type drawn in
Figure [H-1 (concave downward) cannot satisfy the resonance condition for the
decay-type interaction, Consequently, the main contribution to the mode
coupling comes from the nonlinear wave-particle interaction, which is described
by the last two terms in Eq. (I1I9). The electron contribution to these terms is
negligible, because only a few electrons can satisfy the resonance condition
(87 ~no(ew & )/Ik—k' vy, €np]. Since the wave phase velocity is much
larger than the ion thermal velocity, the jons only scatter the waves, and the
number of waves is conserved. -

H we set " = wy—cwy ~ kugy; and 1k”| = [k—k'| ~ [k), then to lowest order
in the small parameter e” /¢ we find

wﬁij k" (3F;/av)d3 v

e‘l)(k”, w”) =171 wu — k”'v

2 et
e, = ke = KMo e kk
k'k Kk k. k e(kkr) X, my Wiy

W’ k"), (I11-18)
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However, if we substitute these expressions into the wave kinetic equation we
see that the nonlinear terms cancel. Consequently, we must take into account
terms of higher order in the small parameter co” /e ~ k-v/w. For ¢ we find

P
}."‘ f o

(N
! 2 20 . 1y2 4k - k- vi2] af, .
Im e, o= k] .e(l;#fd:‘v[l + 41; M + IO(TV) ]k”'a—JES(w"— kv,

PE)
(111-19)

To perform the integration we separate k-v into two parts:

(k" v)(k-Kk") [k x v][k" x K]
= +
kuz k”Z
The value of the first part is obvious from the argument of the delta function

and the second part is independent of the delta function. Consequently, we
find

k-v

(1T1-20)

N

wl eZ(k-k')l[] N Ak k)"

e T ke (-2t
k-k"Pw? 10k x k") v2 v
o - o i i 00, ),
in an analogous way we find
; Kk ff 2k-k"w”
240 gy € KK, LR W
k e'k"k'_ k E‘k. % P wﬁ w‘m{[l"‘ k"zwk )
(111-22)

+3(k-k)1 w"? . 3(k x k") vﬁ,i] J‘k”‘-(@ﬁ/ﬁv)ﬂ v}_

PR 7o o — K%

Using Bqs. (111-21) and {111-22) we can write the kinetic equation in the form
[11,12]

wza?ltﬁklz_ ‘*’31 ,wme(._fi, __"ﬂk_) 2
Ifi"-a‘(-w,;;)‘kﬂcg«/ Sm\G, %0~ .19

o2efn 5 (k) (k x k)" vd, i
+ k2 Z PR 2 1 A vé(wy, —w — k" v)
3
R AN (111-23)

As expected, the mode coupling term vonserves wave nirmber
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Consequently, the mode coupling cannot stop the increase in the number of
waves produced by the linear instability, and we need to take into account some
additional process if we want to find a stationary spectrum. The energy flows
from the high-frequency short-wavelength oscillations to the low-frequency
long-wavelength oscillations; so we assume, as Kadomtsev [12] did, that ion-ion
collisions produce a turbulence sink in the long-wavelength region. Consequently,
we can cut off the spectrum in this region and construct a stationary solution in
the rest of phase space by balancing the linear growth rate with the nonlinear
flow of energy to long wavelengths.

As an example of this kind of solution, we first assume that the turbulence is
limited to two lines in k space and consider the long-wavelength turbulence.
After going from discrete to continuous wave vector variables [see discussion
following Eq. (I-61)], we have

Ii|? = 1(k) 8($) 8(cos § —cosby), kX, <1

where (k, 8, ¢) are spherical coordinates in k space with the polar axis along the
direction of the current.

When w is only slightly larger than C, the linear instability produces waves
propagating at small angles with respect to the current (f.e., 85 <€ 1). In this case,
we can reduce Eq, (H-23) to the form

e A2
(ﬂ) (Ciscos 8y — l)l(k) e — E_ 7 I(k)k [k3 I(k)] cos(26,) sin?(26,)

2m, Tia
(lil-24)
where we have put

for g

Jarvir 22 8w, — @, ~ K ov) ==k s S )

and replaced the summation over k' by

ka’k

3= jdqusmedﬂ ok

The general solution of Eq, (I11-24) is

T U
2T2 Iy =— tzm:’(acosﬂo )T P In(k D) (}1-25)

where we have demanded that I(X) = O at some very long wavelength D,

This solution is, of course, not unique. Moreover, the solution is unstable,
because any wave propagating along the direction of the current has a larger
linear growth rate and smaller mode coupling term than the wave propagating at

Cr O AT R e wEe

2 fon
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the same angle 8. From this argument we conclude that the spectrum tends to
collapse to a line parallel to the current.

Akhiezer [13] has shown that it is possible to construct a self-similar oscillatory
solut1on!m, the long-wavelength region (khp <€ 1) ‘Hgre-we only follow his
arguments qualitatively. For an axially symmetric solution [L.e., |9, |2 = 1(k, 8, )],
we can write Eq. (III-23) in the form

1 dI(k,0,1) ﬂme(l ___“_cose) Ik, 0,1)

kG o TNTIm\'TC
(I11-26)
_& T‘ I(k b1k or f(l — cos?8 cos? 8 kY Ik, #, 1) d(cos B).
c',,m
One can see that this equation is invarant under the transformation
I -, k — ak, tsoly, (111-27)

where « is an arbitrary parameter. Therefore, we can reduce the number of

variables by introducing Ik® and x = (wm,/2m;)" ukt, which are invariant under
the above transformations. In the linear stage, the function J%* depends only on
x like exp{2ve) where vt ~ x. Consequently, J/&* should depend only on x in the
later stages. Regarding the angular dependence of the turbulent spectrum,
Akhiezer found that the energy oscillates between the Cherenkov cone [i.e.,
[(8) ~ 8(cos8 —C,/4)] and the current line [i.e., f(8) ~ §(1—cosd)] with a
period of oscillation proportional to the energy in the spectrum. Consequently,
most of the time the energy is distributed throughout the Cherenkov cone
(see Figure [I1-5).

In the short-wavelength limit (kAp 2 1) we can reduce Eq. (111-23) for the
wave amplitude to an integro-differential equation of the same type as Eq.
(I11-26):

A0, wl (%)“2 u
a(wp,t) _kzc_? .'Zm; CS kC

)](k .1}

i 1

2 -+
Wy e I(ket)Tl 06 9 ' ]
+ o S RO T pos k oqus_jldcose

k2 C2 4T2
(I11-28)

x I(k, 0', 1) cos @ cos§’ + sinf sin§’ cos (¢’ — ¢)])
x{l — [cosfcos® +sindsiné cos (¢’ — S}

There is no rigorous solution like Eq. (I1I-27} for this equation. However, we
can find, as we did for the wave-wave interaction in Chapter 1, a power-type
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solution, at least for the k dependence. The natural sink in the short-wavelength
region is due to the linear jon Landau damping. From Eq. (1I1-28) we find that
the spectral enezgy of waves very rapidly decreases toward short lengths,
&2 I{k) l(wme V2ly Swyy T

a7z~ 5\2m,) \G % 5xc,)FmAp eT, “”‘@
The power of this solution is completely different from that found in Chapter I.
Evidently there is no universal power solution for plasma turbulence like the
Kolmogoroff spectrum in hydrodynamic turbulence.

A kX el/u

Y

FIGURE HI.5, Angular dependence of turbulent ion sound spectrum. Energy oscillates
within the limits of the Cherenkoy cone fcost = ¢sfu).

Now with the help of the expressions found for the spectral energy of waves
in the limits of targe [Eq. (E11-25)] and short [Eq. (III-28)] scales, we estimate
the turbulent resistivity. Multiplying the quasilinear equation for the electrons,

A A 71 " 9. d°k

o ) R @kt OV (2w

by mgv and integrating the result over velocity space, we obtain the electron
momentum loss due to radiation of ion sound waves,

Ak ez|¢'k , .5 10
G kjd vrd(w — k- V) k-~a

Introducing the effective electron-ion collision frequency as

I.)r:n:t

d
e My V:fr..“(t) = E?[me g ll(t)],
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with the help of Eq. (III-16), we obtain from this expression

a3k 9ei(wy) k2i¢kl
. (27 Ve aWﬁ . 8=

On the nght-hand side of Eq. (III-30) is the wave momentum density radiated by
electrons per unit time (i.e., =P, 4). Equation (IIl-30) implies that all the waves
radiated by electrons are absorbed by ions. The main contribution to the integral
on the right-hand side of Eq. (I1I-30) corresponds to wavelengths of the order of
the Debye length, kAp ~ 1. Forthe case of large current velocity, u & C,, we find
from Egs. (I11-25) and (111-29)

M Ny Ver U(L) =— (I11-30)

Ver ~ @y Ci% (T1-31)
Therefore the effective collision frequency is larger than the growth rate,

As in the usual Joule heating, the turbulent heating changes mostly the
electron temperature, [14] if u is greater than the fon thermal velocity. The
heating rate of the ions is always much smaller than the heating rate of the
electrons. In fact, the rate of change of energy due to scattering of electrons by
jon sound waves is equal to [see Eq. (IIE-30)]

.. a*k k'u
T, = vey mengu® = —(271-)3 'Yké’rw—,
where €, = wy (9/8w, ) (k, w) (k| Py 2 /87) is the wave energy.

Then, even if we suppose that the total energy of the waves is absorbed by
ions, the ratio of the heating rates for the two species is limnited by the inequality
(14}

Pk £
T, Q) Yk%x C,
. Q TPE o ku w (II1-32)
J @my Ty,

This ratio is small if the current velocity is not close to the eritical value,

III-3. NONLINEAR THEORY OF THE DRIFT INSTABILITY

In concluding consideration of anomalous transport processes in nonuniform
plasma, we try to describe in detail the nonlinear stage of the low-frequency
“universal drift instability.” {15, 16] The nonlinear Eq, (II1-9) for the spectral
energy of the electrostatic waves is written in terms of the coefficients of the
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particle distribution expanded in powers of the wave amplitude. These coefficients
are defined by the iteration formulz

f{i’:nlz"k(n) (w,:w”: el ¥y r)

t
) 'fdrlgak.w. (VK 2 FET 0y (@, . ix v 1), (111-33)
my av’

Here (see Section III-I} the quantities marked ~ satisfy
‘Egk'.m' (T, 1) = o, W10 00
fJ(l)(mI.r v.1) = fj(l)(v)er'[k"rtll wi)

fj(2)(w w” T, Y, f) _”fJ(.Z) i((k FRT TUY =t 4w , ete.

and

-/;g.(.n.?.k‘"): W w!™ =Jr‘l;i‘.":r,..:.=:F
k' 4k ek ?
@t Fw ™ ey

where f;‘:("z’, is the Fourier transform of /) (r, v, £), and ¢, , is the Fourier
transform of ¢(r, £)

We can describe the mode coupling of drift waves in a nonuniform plasma
with the help of this equation so long as

A,%(k, 55) < ¥, (111-34)

This inequality just states that the difference between the eigenfrequencies in a
nonuniform plasma is much less than the growth rate. In other words, the
difference between the energy levels is much smaller than the energy of interaction.

The dispersion relation in the linear approximation was found in Chapter II.
Now let us proceed to the next step: the derivation of the nonlinear equation for
the wave energy. Substituting the linear approximation [Eq. (II-107)] in Eq.
(I11-33), we get
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In Eq. (III-3) the velocity derivative gives several terms; however, we recall that
in the first-order calculation, the contribution from differentiation of the
argument of the Maxwellian cancelled up to a small term, and the same thing
happens hare; also, if we assume k, 3 n'/n, the tery arising from differentiation
of the dens1ty in f; is negligible. So the main contribution eomes from the rapid
veloc:ty dependence of the exponential, expfk x v- h/wpy] , in the second term
of f . Carrying out the time integration and symmetrizing with respect to k'
and k , we have

ie; ¢ klv kiv
J(2)=_ o k’xk”-h.](‘*).f(;ﬁ)
f TJ-H kl;_k( ) 0 Wy 0 wy,

xv-h[ (w' — ki o) (@' — k, v') ]
wy; o ko, +8) (@0 ~k v, + i) Jo,

951(5'51‘ exp[—i{w’ + w' —w)t]
fw' +w” — (kL + kD v, + ]

=
x expl/

(I11-36)

Using this expression in the same approximations, we obtain the third-order
correction to the distribution function.
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(I111-37)
In Eq. (II1-9) for the wave amplitude, the main nonlinear contribution comes
from the jon terms, until k, rg; <+/mBfm,. We also use the fact that the phase

velocity along the lines is much larger than the thermal velocity for most unstable
waves, so the dielectric constant for the beats can be written in the form*

ey, — ey~ (hy — &5) 3] fo
N2 32 4 d L. 3y.
k—KPA e w, ~ w,k—k)x -k —k |rm)f P -, vy fvd A

(I11-38)

2 The approximation [Eq. (ITE-38)] breaks down if k2 "m < /B, But for such a long
wave the interaction through beats is very small and we can neglect it.
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If we keep only the ion contribution to €(2) and {3), Eq. (I11]-9) becomes
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The additional terms appearing on the left-hand side of Eq. (I11-39) are related to
the slow time variation and weak spatial dependence in ¢,. We can take account
of this behavior by expanding frequency, x component of the wave vector, and

x coordinate near the position of the wave packet in the configuration space
{wy, &y, x). This may be done by employing the WKB formalism to describe the
wave packet, or by introducing variation on fast and slow time scales. The result
is to replace Ime™ (i, k, x) by

el 8¢, Be{‘“’ 9, FellY 39,

{1y
ek ) but S S~ H— 5y ax Bk

This we casily reduce to the convective derivative in configuration space with the
help of the relations

?fi _ ae“’(mk,x)/ 36‘”(wk,x) a_wE dell? [ el

ox A T i

Another way to see the origin of these terms is to construct a wave packet of
general form:

45,1 = [ dc,explith, x — wy)] e

where &, and wy satisfy the dispersion relation, €, (k, w, ¥} =0. In a homo-
geneous system (no x dependence), it is easy to see that for a nearly mono-
chromatic packet {for example, f;, ~ a exp [—(ky—ko)?a?] , koa > 1}, the
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maximum of the packet moves with the group velocity, x = dcy, [0k, Similarly,
by Fourier-transforming,

qs(x 1) = | diyexplith, x - wkt)]\/-exp[—(k ko)?a?].

In the presence of a weak spatial dependence in ¢, we find that the characteristic
wave number of the packet changes in time according to
feoy,
=%
The result is that the frequency wy, characteristic of the packet is unchanged as
the packet propagates through space:

dﬂ_awk . aw,,k —0,

dt dx ak
a result that is of course required on physical grounds. We ¢an surmarize this
discussion by saying that the waves propagate in configuration space as if they
satisfy a Hamiltonian formulation with w, (%, x) taking the part of the Hamiltonian.
The time variation of |¢, [* is described by Eq. (111-39) as the sum of the Poissan
bracket of |¢ |* with cw(k, x), plus the nonlinear interaction terms and a linear
source term with vy, derived from the anti-Hermitian part of (1),

The three terms on the right-hand side of Eq. (II1-39) describe respectively
linear growth, mode coupling due to wave scattering by ions, and decay-type
interaction, which can be written in symmetrical form with the proper normaliza-
tion (see Chapter I).

Let us first consider long-wavelength drift turbulence (i.e., k2r%,; < 1). In this
limit we neglect the wave scattering by ions, which is small by k2%, in com-
parison with the decay-type interaction.

As we go to the limit of zero ion Larmor radius, the phase velocity of the
wave becomes very close to the electron drift velocity

By = wy — k, 0§ < wy. (I11-40)
Therefore, the waves are propagating almost in phase with each other for a long
time At ~ 8oy !, and the interaction becomes stronger. This is reflected in the

fact that the integrand of the nonlinear decay-type term goes to zero as |§w 2.
But the argument of the § function in Eq. (11I-39) vanishes also. Thus

Aw=wy—w —wp  =08w,— 8w, — Sy | .
Then the nonlinear term is of the order of

c?| y/? ewf Ak’ Xk x K)? k)2
e J(z 33 a2 (e x WP 58 8(8w) ~ B | j(z S e L




112

NONLINEAR PLASMA THEQRY

N

The recoil effect in the quasilinear equation for the distribution function is
derived in the following way:

o VS 25/
NG SI (152

m

where V8¢ is the contribution to the electric field from the spontansous fluc-
tuations. Averaging 8¢ 8, using Eqs. (I11-47) and (111-48), we derive this
additional term in the kinetic equation:

ai%"i‘)_yf FOk o (¥) qLl-53)

AN ane“fdk ,
e HESAVE

These additional terms fin the wave kinetic equation, Eq. (I1I-51)] and (in the
quasilinear equation Eq. (III-53)] are not significant in the.case of an unstable
plasma. In a stable plasma the competition between term (III-51) and Landau
damping determines the equilibrium level of the thermal fluid fluctuation. This
equilibrium background of plasma waves, after substitution into the quasilinear
collision term gives

Combining terms (I1I-53) and (I1I-54) gives the Lenard-Balescu equation. [18, 19]
This might appear to be a surprising result, since the basic equations from

\  gne 2 8k v—k-¥) ..o I )
(aT)QLA__I;le fd k= By ff(k k)P Fik oy (v) (I11-54)

which we started were the Vlasov-Poisson system, which includes none of the

two-particle ¢ffects contained in the binary distribution f,. However, an additional

assuraption has been made in Eq. (III-47) and we have invoked the principle of

detailed balance in combining Eqs. (11I-53) and (I1[-54). This suffices to reproduce

the usual kinetic equation, valid for stable plasmas.
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Chapter IV
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e

L

In order to establish the relationship among the different parts of the weak
turbulence approach, it is useful now to summarize what we have done in the

form of a symbolic tree.

I¥-1 THE GENERAL SCHEME OF WEAK TURBULENCE THEORY

Vlasov equation
{for each species
of charged particles)

Maxwell equations

Particle kinetic equation

Quasiparticle (wave) kinetic

+
N ya
Using
statistical
approach
4 N\
+

equation (for each
“species” of plasma waves)

These kinetic equations have the form

LAV
5= St/ml

+

dN(K)
=St W]

where the collision terms may be written as follows:

in the Ist approximation

5t(f)= QLA

|

|
.|

StHIN(E)] = 2Im w, [F (W] N (&)
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This is the quasilinear approximation (QLA);see Chapter II. Im wy [f(¥)]
means the imaginary part of wy as a functional of f{v) (from the linear dispersion
relation).

This approximation takes into account only the mutual interaction between
particle and waves, according to the resonance condition

wy— Kk vy=0;

in the Znd approximation

(a) Wave-wave (three-wave) interaction (Chapter I),
Wy Wy = w;

k!. +k2=k3.

The collisional term in the particle
kinetic equation describes the
adiabatic interaction of particles
with waves, since the particles
participate in the oscillations.

St (V) = N-V: symbolic notation
in order to stress the quadratic
character of three-wave inter-
action term {Chapter I).

(b) Nonlinear wave-particle interaction {Chapter III),

wy —w; ={k; — k;}¥

The contribution of this process NN

to the collision term is cumber-

some and we did not consider it in order to show that the particles
in the lectures (see [4, 11] of also participate; see the details in

Chapter I) Chapter IIL
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in the 3rd approximation

four-wave interaction

U
b

Wy b wy = wy + Wy
yo b K +k; =k + k4

NNN

Since this collision term is
cubic, it can be important only
in the decay-free cases. We did
not consider it.

Again, only adiabatic interaction
between particles and waves.

as well as higher-order effects, which we also did not consider.

In the case of stfong turbulence this approximation procedure breaks down,
since higher-order wave interactions yield contributions of the same order of
magnitude. In other words, in the strong coupling limit there is no closure of the
equations. Here we do not discuss the various attempts to make nonlinear
estimates in the strong turbulence cases.

In the case of weak turbulence, the statement of concrete problems in terms
of, generally speaking, quite complicated nonlinear integro-differential kinetic
equations for particles and waves naturally does not lead to easy interpretation.
But, at least, there exist a finite number of equations. In the various limiting
cases one can obtain a solution using realistic.approximations, as we have tried
to demonstrate.
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