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L. I. RUDAKOV and R, Z. SAGDEEY

A guasi«gz_d_ggd@mic deseription of a rarefied plasma

in & magnetic fierdt

The Boltzmenn equation describing the motion, averaged over the Larmor
revolution, of ions in a plasms in a magnetic field, in the sbsence of collisions
L1 L 1is generelised to the non-static case. The set of equations for the lower
moments of the electron and ion distribution functions is similar to the equations
of two-fluid hydrodynamics, Although the meen free path is formally infinite, it
is replaced by the Larmor radius of the ion or electron. Using the equations obtained,
the wave solutions corresponding to magnetohydrodynmamic and sound oscillations are
examined. When the pressure tensor is sufficiently'anisotmpi_c, instability srises

and the plasma ceases to be homogeneous.

The study of the motion of a fully ionised plasma in strong electromagnetic
fields, taking into account the field of the plasma and using the Boltzmann equation,
is very difficult. The usual hydrodynamical discussion is valid only for high
densities and low temperatures, when the mean free path between collisions is much
less then the characteristic dimension. Recently Chew, Goldberger and Low [23
have considered the case of a rarefied plasma in a magnetic field, neglecting
collisions. Their work has shown that an expansion of the Boltzmann equation in
powers of M/e (M being the mass of the ion and e the charge) leads %o a closed system
of equations for the lower moments of the distribution function, which is formally

analogous to the equations of magnetohydrodynemics. However, this is true only for

* Work done in 1957.




plasma motions across 4pe magnetis field.

This similerity of resulta in two seemingly opposite cases is explained by the
fact that the nagretlio Pi01d Ytorna’ the ions and so asymmeirizes their velocity
Alatribution in the plane perpendiocular 4o ‘the magnetic fisld. Tn this sense the
action of the magnetic Pield resembles the action of collisions,

In the present paper We derive the equations of the hydrodynamics of two fluids
(the ions and the electrons), starting from the Boltszmann equation which desoribes
the ion (o electron) motion aversged over she Larmor revolubien.

The Boltzmann equaiion for the stationary case has been obtained by
s, T, Belysev [1]. To derive the equations for the quesi~hydrodynemic approximation
considered, it is Pirst necessary o generalise this equation to the non-gtationary
case. '

8 4. The Bolbzmenn equation
The ‘;h@haviou:r of a system of charged particles in eleotric and magra¥ic fields,

in the absence of collisions, is desoribed by the Boltzaszn equation

E e i & -
a_ha-vo@'&df-z-m(aq-cvxla). 5 0o (1.1)

PURGRETY D
The solution of this equation is an arbitrary function of the Pirst integrals of the
sysien of characteristic equations

d% = g = 4z H
7 (Qﬂiig+vxf/c)
which glves the equatlons of mokion of a singie charged particle in the fields E
axd Bo
Ll

12 the fialdas vexy only slowly in spacs apd time, the solutien of equations

{1.2) can be obtained by expanding in powers of B/L and 1/, where R and o are

4he Lormor radius end frequency, and L gnd T are & characteristic length and vime




of the problem. Such en expavsion for the cese of static fields » @8 far as terms

4 by the of order 1/» , has been made by N, N, Bogolyubov and D. N, Zubsrev [3}

ity For our purpeses, however, it is necessary o find a similar ezpansion of the

nae the equations of motion of one particle in variable fields., To do 30, we use some
results derived by S. I. Braginski¥ (unpublished). |

w0 Fluids As the serov-order approximation we take the Larmor revolubion sbout a centre

\seribes moving with veloeity MBZ. We then go to the first ('drift') approximation,

Wie take a local orthogonal co-ordinate system (39,3 ,32) fized to the magnetio
field: 2, = & x &, & =825 8 = 8 BBy, Where g, = B/B is along the magnetic
field. In thiz system the velocity ¥ oan be written

2
¥ = cE x B/B CAS +v_‘.(g c08 & + & sin @),
Iz (1.2) we make the substitutions

>pm5vd.mationk

batu.aary

_z;=£v+v$(ﬁgcosa-fa sin @),

T,
ic fields - i - - & -
> 6=G+w(g’wea fisinu)+2(sicose+&sina}:v%m+

1 Ko Rt
(1.1) +2w(&2 c0s 26 - £, sin 2G), (1.3)
v, =%, -+ ;l{-s cos o6 + P sin no }
als of the ¥ ] w =4 ha ka »
v, =V =% I % {-G5ncoam+35nsin_m§.
(1.2) n=1
o1ds B The new varisbles R rand ¢ are called drift vardables. Omitting soms

eaay caloulations, we have the finmal result




+ umd.
WA A

These equations have an obvious significance. The first expresses the adiabatic
invariance of B o= v / 2B, The second and third describe the motion along end

across the magnetic field under the action of the force

2 o
F=eE—Mv gra.dm-u__ MV dso.
-~ ]

A ———

20 at dt
The force - Hdog‘dt - M-:v” a fo/ at is the imertie force; it appears because the

motion is considered in & moving system of curvilircsr co~oxrdinates.
Instead of making the substitution (1.3) in the Boltzmann equation, we shall
use the relation between (1.1) and (1.2). Then, in the new variables
Ty I =;J’/23, a, r, t, we have for f =1 (;', B, G I t) the equation
Z, &, G
P g:ad?+___ﬂ_ - +33 = 0.
n

Here we have used the fact that dy/at = 0. The quantities dZ-,//d‘b, d-';‘/dt;




(1)

e adiabatic

long and

.cause the

m, we shall
H

on

do/dt are determined from (1od).

In the first approximation it is reasonable o suppose that T is independent
of & (this can be justified by calculating the terms in the firsi approximation for
a'éa/at). The result is

a;." ket A e - e o - a° of - \
'§£+vg'foﬁ%§f+“mdf+fozv(ﬁﬁ, Herad o - =4 = =o. (1.5)

av"

§2. The macroscopic equation of motion of the plasma

Multiplying {1.5) by various powers of the velocities and integratiné over
veloeity space, we can obtain an infinite set of 'interlocking' equations for the
momenta, We put |

n=38/{ *? d";“ d;d?.., nu = Bf ?;?i d';" d;d;,

p =18 [F (3, - wiav, duds, ‘ ' (2.1)

b= F 7 &%, dnda. | )

To close the system of equations we sssume that

IE3 (F" -u)’ P a?“ dpda = 0,
i.e, the distributi;)n functions are symmetrical as regards the loecal Jongitudinal

velocities,

Integration of equation (1.5) snd of the drift equation, using this assumption '

t4

gives

on .
-5-%4- div n(e:u+§g) = 0, (2.2)
Cu__w » pexad B _ 4%,
M3z = -3 e:.gradw +jo_;_(e§ - a - M=, (2.3)
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(2.4)

(2.5)

o (]
i -2 de a4 - ‘ B
%g ue, +w& i( MI“S'm+u d.: +Eﬁ+ %—H(go.gad)so +l‘-‘-%—). (2.6)

The equation (2.6) describes the averaged motion of the centres of the cirsles,
and may not be the seme as thatl for the meen velociiy of a volume in the plasma,
which 1s by definition, given by ny = If(r,v,t)zd;z; In the integrand hers we
change to the variables ;ﬂ an.a.;&by formulae (1.3) and express f’(;r‘,Q in terms
of F(m\;s , ;.L’ E); the latter is mown to be independent of &, . Then we have

(cfo [2])

- Eo
ny = cuyl a0 +

oo AN

+n {ug + & x(~2E+u ﬁ(fp'md)«fo"' %%B}

= = ourl Bog,/e + NTg.e (2.7
Equations (2.2) = (2.6) for ions and electrons must be supplemented by
‘Maxwell's equations, which in the drif variables are
&ivgvao-m(na - 1),
v B =0,
e

L
ourl E = —ﬁ/c,

ize BT
curlec i ¢ ourl S go-e-nigdr

Phe latter equation is conveniently written
ourl H = Ane [niz,,&r,i - B3, o 1
BB heliy * bolfye




(2.4)

{2.5)

(2.6)

he circles,

plasme,

(2.8)

(2.9)

The physical significance of these equations mey be briafly discussed, ‘
Equations (2,9) aignify that the plamma is diamagretioc, with magnetis permeability
o=t e km (g s ug)/Be Ths motions of the ion and slectron 'fluids! (equesions
(2,3) and (2,6))are drifts under the action cf the forces

F = el - nd®@at ~ s /db - ps,.gradle, - 1 grad B,
whers %3.3/ B is the force acting on the magnetic moment in the magnetic field,
and - Mna."@'at - ¥rd’e /b = 2(zo: 5, is the inertia force, which has been
explainsd above,

Equationz (2.4) and (2.5) give the law of adiabatic compression for the
"longitudinal! (y = 3) erd 'tremsverse' (v = 2) pressures respectively,

A consideration of the motions along the linss of megnetic force, using
these equations, requires the fulfilwent of the symmeiry condifion imposed on the
distribubion function, When thisz cordition is not satisfied, equation (2.4) cannch
be uzed, and the whole system of equations (2.2), (2.3), (2.5), (2.8) czases to be
meaningful,

S 3. Instebility of  olasma with anisotropic pre:

Using these equabions;, let us disouss wave motions of the plasma with
frequencies much less then the lon Lermor frequency and wavelsngths M 2> R,
We assume that the quasi~neutralliy condition ny = 1, = n holds.
The unperturbed state of the plemma is characherised by the followlag quaniitisss
the density n,, U e = 0, the pressurs p, = Po,4 * Poye along the field B, = Bogs
the magnetic moment of uwnid volums Hy = ;.z% i ¥ Ho,es mﬁ& = Q,
The lingardsed equations for swall perturbations n, “i.,, e, B 05 gm
&n 2, & -
3% + n G

- g
Bo -k o oz

gu By _38 E _ DaB B
Mﬂ-+% (B =)+ o 2B

3t om —= = gk =0,
[~} Bo 7, dz =
] 2 n “n &13]3
p—POBO k) . e 1
AT T e,
o




divB =0, curl, E==-B8/c, n, =n
vy Lo o 1

by 4mp or

e
. B
curl B (1 + - B21=l+7t~°

BO
o]

We seek the corrections to uniform unperturbed values in the form
exp (iwt + ikg z + iky y)e Substituting in (3.1) we have, after some simple

transformations, the dispersion equation

Py 2 2.2 2
R et N S [(“'%:"‘%@(“B&z“ﬂ'%w*)}w%
[+ 0 hﬂ 8 Bc

©

2
Lp k b g,
2 Y1 +E) 4 =+ 5 21]-
k B o

B2
o s o

“’&4@9 Y 2 ? -o. (3.12)

2%

B
o

Here V" = \/'(BOZ/LnMno) is the Alfvén velocity. The solution of (3.1a) for
u)2 is 2
2 22i?i’-ié_.+[f!ig+ o +(1+l+w° <
o =7 kY {3 Boz kyz B, B, B,
K 2

% (1 2 +
+ =2 )1}




(3.1)

(3.12)

(3.1a) for

2
k
x (1 +;’=2-)1}2 -

- :
2 2
bap . k hmp L T Lap k
—To = o) 0 e
- 12 > > [ — + 5 + (1 + Bo- B%)(H—"-é)l-o-
B - k BO °© ° o k‘
(6] v J
by 2
—_—l 2 kz _
b ( B, ) . I (3.2)
M

It is seenfrom (3.1a) that aperiodic solutions (m2< 0) occur in the case

where the term independent of w is less than z‘erd, i.e. vhen

b 2 brpg L by 4y bp
(—2—) >3 B2 [—2 4+ =5 + (4+ 2 2%
() B2 BO B BZ
[+ [ o - o
k2
*(M+ =z )l (3.3)
k2
J

Assuming that k z/lcy can take any value (as it can for a homogeneous plasma on the
above assumptions), we can construct a stability diagram (Fig.1). This shows
that the instability of the plasma is due to pressure anisotropy.

To see the physical significance of the lines in Pig. 1, let us consider
the limiting cases lcz/lcy << 1, kz./ky >> 1, For the purely oscillatory branch

2 2 2,2 2
(the plus sign in (3.2)), and /e >>1, we have @= l2mp v, ky /B, = 3Bk, /oM,
which describes one-dimensional (7 = 3) longitudinal sound. The other branch, where
there are imeginary w (the mirms sign in (3.2)), for kz/k gy << 1 corresponds to
transverse mgnetohydrodynamic sound, propagated with velocity
VI(bmp, + B2/ kn n Ml

We may consider in more detail the physical significance of the instability

arising on the branch corresponding to megnetic sound. It follows from the

criterion (3,3) that, for k z/ky << 1, the aperiodic solutions lie in the range
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L bap brp, 2
== — Pl o)
B, B, B,

The development of thls type of ingtadility can be qualitetively described as fol=
lows., Let some perturbation of the uniform density be applied, Since the plasme
is Qiamagnetic, the field B is redﬁce&. where the density is increased. In a mon=
upifora field, however, a force = p % B acts om the plasma, and this incrsases
the original perturbation.

Toxr kz/xy>>1, the region of instebility is given by the inequality Ly ’O/B 0 ¢
¢ P@-Baa)/Boz. This sase corresponds to a large curvature of the lines of
magnetic force. Ience centrifugal forces are imporﬁant. This is c¢learly seen
from the condition A,;{_b/ﬁoﬁ é;-o@o,Boz for smell w, when the only force acting is
-» w)g 0= gpﬁ/}l?, where B is the radius of curvature of a line of force,

Tn this inveatigation we have used equation (2.4) which is appliceble only %o
perturbations which leave the distribution function symmetrical with respect %o
longitudinal velocitiess -

A ealoulation by means of the Boltzmamn equatlon, which has been done by

A, A, Vedenov and R, 2. Sagdeev[ 4] , gives good agreement with the results obiained

sboTee

Tn conclusion, we therk Acadenicien Mo A, Leonbovich, Profe Do A Frank-Kamenebskiy

and S. T Bragim}di for valuasble discussion and contimued interest in the work.
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A. A, VEDENOV and R. Z. SAGDEEV

Some properties of a plasma with an anisotropic

+
ion velocity distribution in a magnetic field

The possibility of instability of a plasma in a magnetic Afieid owing to

anisotropy of the ion velocity distribution is considered.

In an ordinary gas, with a non-Maxwellian velocity distribution, equilibrium
is established after a time of the same order as the collision time 1 ~ £/v.
In a plasma, long-range forces can bring about collective moti‘qns, which develop in a
time less than 1. An example of such motions is the occurrence of Langmuir
oscillations in a plasma with a non-Maxwellian electron velocity distribution [1].
The effect of an external magnetic field on these effects has been studied by
E. P. Gross [2], using the Boltzmamn equation. '

In discussing the electron oscillations of a plasma, Gross naturally neglected

the magnetic field of the wave, as being of order v/c. The situation is considerably

changed if the ion ('magnetohydrodynamic') oscillations are under discussion: the

electric fields in low-frequency oscillations are largely screened by the motion of

the électrons, and magnetic effects may be of importance. In [3] the equations for
the moments of the distribution function in the drift approximation have been used

to obtain the criteria for the appearance of a specific instability when the -
ylongitudinal and transverse temperatures are markedly different, The discussion

in [3] corresponds to the hyd.rodynamivc derivation of the dispersion equation.

In the present paper this problem is studied by using the Boltzmamn equation, and

criteria are found for instability when collisions are neglected (1/7 >>v, where

* Work done in 1957.
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'y Where

T is the characteristic time and v the collision frequency). An allowance for the
magnetic field of the wave with fairly large anisotropy of the distribution function
shows that there is a transfer of energy from transverse to longitudinal motion by
the excitation of collective motions pertaining to ion oscillations of the plasma.

We write the Boltzmann equation for ions {or electrons) in the linearised form,

retaining only the first-order terms:

of af e of e ) af
3 * 15T Yo Aisondy *p (- grad e - g 3. 2+
anr "“’a’vw
+-§c..vxcurl.ﬂ..f2.=0. (1)
ov
>

Here £, (v) is the unperturbed velocity distribution function, which we take as
L

3 2 2 2,
()= 2 /2 oV + V)20, - me, /2y

/2 2z V(21 )

f is the correction to the distribution function; ‘I‘Io is the uniform extermal magnetic
field; & and f.v are the scalar and véctor potentials of the perturbed motion,
determined from Maxwell's equations, '

Let us assume that the megnetic field is in the z-Girection, and take cylindrical

co-ordinates in velocity space: 92 =V 2

2 R
- +vy, v, =3cos§, vy:_-gs:m&,

tan § = vy/vx. We shall discuss solutions independent of ze Using a Laplace
transformation with respect to time and Fourier transformations with respect to
z and y, we can rewrite the initial equation in terms of the Fourier transforms of

the distribution function and potentials:



(p +ik3v3)?k +iky§ein6§k-§2 fﬁ{-- i?e-@k(ko -—-) -

a5 m Mvav

9 (2)

mp(w&‘a

of
°) +—-i v (kxAk). -2 = £,(0).
oL, «»
The solution of this equation which is periodic in § wlth period 2x is
ond = [k9/w.] cos b)
periky vy = imk

X

e X i
fkmn 2z

2%

ofe o 4 o 1o He 8§ %w8’
= {%ﬁ(ﬁ-;v..ﬂ)d-;‘i._(p +1v) + B g0}y o i fkyg/wgycos =8

(3)

v
Y, osns “-waw

The Fourier components of the particle density and current can be obtained by means

of (3)s To do this, we use the auxiliary parameter r:

p-:-ik;vz-inuh =z°x9[(‘9'ikzvz + ingg)e] dr (re p > 0),

and the identity ox in ¢ o
z em".‘é; £(¢) oin? { & e dg'=2(g)a(s +¥)o

n
Then, returming to Cartesiasn variables in velocity space, we hawve after sonie

calculations

2 - 2

en, o kL 2 &1, .2

Ikdv__ :O Iexp [op.r-_z-m&'y -2_!!?__%;‘%8111 '&qh't] dg x
o

2 %

= (Ty

2 -
xiﬁ(% sin wr *k:“) +%‘t(1 -cosoxﬂ‘v:)% [p +ky

i3 ‘ 2 - 2
*"';,x sin %1%[-13”2 (ry -5)] +.i%‘;sz[-1~§ﬁx_ E;_Ef.(w_,_-m“)1}+

+ F(0), (&)




(2)

by means

one easy

where
0) = Idzyg‘d's exmpf =(p + ikzvz)r; + (ik;/gﬁ) [vx(ﬁv cosﬁc.g':) - vy_simk'rj.

7.8 Adry B & 4 thes
Ty &y endj v, Iy 47y but they

Expressions cen similarly be obtained for[ v
are too cumbersome to be given here.

Yo azlsc use the three Maxwell's equatiouns for the potential:

( é’ + hyz +k,2) 8, =bwe (£, = £,) dv, stco
G the right=hend sides we substitute the values found for the Fourder {transforms
of the charge density and current demsity components, and eliminate the component
Ky of the vector potential by using Loremtz' equation

l _a_%,é, div&:oa (5)

s at

Equating to zezo the determinant of the linear system of equations obtaimed,
we obtain o characteristic equetion vwhose solution gives the growth rate
D=D (.}Q" The gemeral investigation of the roots of this equation is quite
difficult, howsver, and we shall take only the limiting case of long waves (and

therefore small D)2

2
kST /o << 2, 4
v -5“/ Eo kg T, /o <<w329 §z-*45<< % (6)

Tn the characteristic equation, we retain terms of orxder up e 16 Ez inclusive.

This corresponds to retaining terms of the following orders in the determinands

s 4 a

3 1 V“Ea 1
A 1/og Vag® Vg
A 1 1/ og 3
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For small p (taking only the linear terms) we have

(ar kzsky-i( o)
2
8mn,T, (_T__,__'_ - 8T, ) BmO’J.‘“) l:z_ )
2., BZ h B2 o kP
ky ¥ . (7
V(4n) 8., %/8,%m,
Accordingly, the criterion of instability (p > 0) :i'.s
8m, T, Ty BmoT‘ )
- >1 4+ — 8
H02 T“ Ho

In the limit H, —> 0, the condition (8) becomes T, > Ty

If k, = 0, the terms linear in p disappear from equation (5), and the quadratic
terms give
2 2
B H, 8m,T, BmngT,

- 1 + -
2 o { 7

ky

}e (9)

Equation (9) corresponds to the Alfvén magnetohydrodynamic branch. For
8!1(110'JL‘,I/H‘._,2 >4 + 8rl':n'afl‘_,_/Ho2 there is instability. For H, —» O this becomes
Tll > 1_‘1_. .

These criteria do not coincide quantitatively with those derived in [3] from
the hydrodynamical approximation. This situa,tion. is entirely analogous to the one
for longitudinal Langmuir oscillations of electrons in a plasme, where the correct
dispersion equation can be obtained only from the Boltzmann equation, |

Although there is no quantitative agreement with [3], the physical
interpretation of the appearance of instability given there remains va;id.

The whole of the above theory is linear and camnot, of course, give the

limiting amplitude of instability of an anisotropic plasma.

An investigation of the second approximation which we have made for some simple



(7)

(8)

hes

(]
%

“radratic

(9)

rcomes

a [3] from

s to the one

the correct

id,

e the

r some simple

limiting cases shows that the appsarance of the instability described abve results
in a transfer of Ikinetic emergy of the particles (in a plasme volume of dimensions
much exceeding the wavelength of the perturbation) from the transverse motion to

the longitudinal motion if the instability arises because T 'y > T“ s and conversely
in the oprosite case. Hence it is reasonable to suppose that the instability
davelops mtil the energies of longitudinal and transverse motion become equal,

i.e. until some effective equalisation of the longitudinal and transverse
'temperatures' tales placs.

Finally, we shall show that in the magnetic trap {with magnetic stoppers) for
2 high-temperature plasma proposed by G. I, Budker [4], there may be regions where
the distribution function is anisotropic which can lead to the appearance of the
instability considered,

Let £(¢) be the ion (or electron) distribution over energy of the longitudinal
motiog (alongﬁ’) in the region where the magnetic field is a minimum, For simplicity
we shall assume that the magnetic moment of every particle is the same,

In equilibrium, the function f{g¢ ) in such a trap must be cut off, i.e, must
vanish fore > epuy Vhere Sm is given by the condition e . =p(Bpax = Bpin).
The ion density varies as a function of B along a line of force, thus:

emax

£{e) Ve .(10)

= de.
w(B = Bpin) Ve -u(B -3B8]

n

The longitudinal temperature on the line of force is

&
;= Ve [e = u(B = Bup)lf(e)de.  (11)
(B=-By ) Ve - u(B - Bpin)

a =

T = 1
n

We now use the instability criterion (8), which in the present case is

22
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2
nEL 2

_feWe g%, mex s(e)e [ew(m-Bua)] ae, (12)

2
{
t-ﬂ(E-Bmx_n) ﬂg-u(B-Bm)z (BB ) Ve '}&(B‘ﬁmﬁn}]

A3 B «» By, this condition cen be approximately written
€ ox a )2
!(B-Bmin) Te(B-a))

g
=|ax

wzf( 3m)f3 max i(x

>

J ! de,
w(BBg) e~p(B-Bpin) ]

48 fxe(e ) > V(B - B)/(Boey - Bun)le o (3)

If the distribution Amction is cut off sharply, i.e. if £(Sp..) £ 0, then

the inequality (13) must elways be satisfied for B sufficiently close to B, .
0f course, the aritericn (7), and therefore (8), which have been derived for
a uniform initial density, must be applied with caution to such non-umiform inddial

density distributions as, for instance, that in a system with magnetic stoppers.
We should expect, however, that these criteria will remain valid if the characteristic

dimension of the inhomogemeity is much grester thean the wavelength of the instability
considered (the approximation of ’geometrical optics’).
One further remark should be made, In the derivati:on of the relation (7), the

Far a system

quantities T L and T, signified the true Maxwellian tenmperatures.

"
with magnetic stoppers, the temperatures are represented by the mean energies of the

random motion. This, however, does not affect the qualitative velidity of cur results.
In conclusicn, the authors express their sincere gratitude to Academician
M. A, Lecntovich znd Prof, D. A. Frank-Kamenetski¥ for valuable advice and discussion.
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