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The Lagrangian and Hamiltonian formulations of classical dynamics are applied to the motion
of an infinitely conductive plasma with a frozen-in magnetic field. Two separate cases are considered,

one with a scalar plasma pressure and o
conventional hydromagnetic equations,

e with a tensor. The treatment of the former is based on the

and that of the latter on the modified hydromagnetic

equations of Chew, Goldberger, and Low. In each case the plasma equation of motion is derived,
in either the Lagrangian or the Eulerian form, from a variational principle, with the other hydro-
magnetic equations functioning as holonomic constraints. :

The general formalism is applied, for purposes of illustration, to the solution of hydromagnetic

stability problems. A simple and concise

derivation of the hydromagnetic energy principle is given,

and then the energy principle is adapted to steady flows of a certain special type. (It was originally
designed only for static equilibria.) Specifically, it is adapted to purely azimuthal steady flows around
& symmetry axis, with the frozen-in field either purely toroidal or purely poloidal; and for these it
will give the hecessary and sufficient eondition for m — 0 stability (stability against small pertur-
bations that do not destroy the symmetry). This type of steady flow is a hydromagnetic analogue
of Couette flow, and the stability conditions are generalizations of Rayleigh’s condition.

1. Intreduction

As is well known, the nonviscous hydrodynamic
equations of motion can be brought into the general
scheme of classical mechanics by deriving them from
a variational principle [1]. This subject has recently
been treated in some detaj] by Ecrart [2], and it
has been extended by Karz [3] to the case of a charged
fluid interacting with an electromagnetic field. In
Katz’s treatment there js no conduction current, but
only a displacement current 0E/ot, where E is the
electric field, and a convection current %v, where 7
is the charge density and v is the fluid velocity. Here
we shall treat the opposite case of a perfectly-conduct-
ing fluid governed by the conventional hydromagnetic
equations, a case in which the displacement and con-
vection currents are negligible under most conditions

of interest. We shall first develop the general theory

from the Lagrangian and Hamiltonian points of view
and then illustrate the usefulness of this approach by
solving a few representative problems in hydromagnet-
ic stability theory.

In doing stability problems one examines the behav-
ior of small perturbations away from some specified
time-independent state of the system, either a static
equilibrium state or a steady flow. For static equilib-
Tia the stability criterion is already known: It is the
familiar hydromagnetic energy principle [4, 5]. For
steady flows, on the other hand, the energy principle
is not applicable in general. In fact, we do not know of
any general condition that is both necessary and suffi-
clent, although Frreman and RoTENBERG have found
one that is sufficient but not necessary [6]. (It reduces
to the energy principle when the flow velocity van-
ishes.) There are, however, special cases where the

e

necessary and sufficient condition is given by some
simple modification of the energy principle. One
example of this has long been known in the field of
hydrodynamics—the Couette flow of an incompress-
ible fluid without viscosity, for which the stability
condition was first given by Lord Rayvretes [7].
What we shall do is consider steady hydromagnetic
flows around an axis of Symmetry, assuming that the
unperturbed magnetic field is either purely toroidal
(Br=B.=0) or purely poloidal (Bp=0), and ask

whether they are stable against those perturbations -

that maintain the azimuthal symmetry. As we shall
see, the answer is given in each case by a modified
energy principle. In the toroidal case the energy prin-
ciple will be derived by eliminating an ignorable
coordinate, which will reduce the steady-flow problem
to one of static equilibrium; and in the poloidal case
the same result will be achieved by means of an appro-
priate contact transformation.

Returning to the general theory, we shall now state
our physical assumptions and write down the basie
equations. First, we shall assume that the dissipative
effects (viscosity, heat conduction, and finite electri-
cal conductivity) may be neglected. Second, we shall
neglect all terms of order v?/c%, where v may be either
the fluid velocity, the speed of sound, or the Alfvén
speed, and where ¢ is the speed of light. Finally, we
shall assume that the fluid is a plasma governed by the
ideal-gas law with a scalar plasma pressure. (The
scalar-pressure requirement will be relaxed later on.)
These assumptions lead to the following system of
hydromagnetic equations, in which the electromag-
netic quantities are expressed in rationalized units
with py=g,=1:
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2
._8.3_ +V.(QV)=O, (1.1)
_aa_lti +v-VP49yPV.y=0, (1.2)
O Vx(vxB)=0, (1.3)
V.-B=0, (1.4)

o2 VYLV 4 V(P4 7 5Y)-B.-VB=o,
(1.5)

where g is the mass density, v is the plasma velocity,

® is the gravitational potential, P is the plasma pres- .

sure, B is the magnetic field, and y is the adiabatic
index (the ratio of specific heats). Equation (1.2) may
also be written in the form

< (Pe=1)=0, (1.6)

which is simply the adiabatic ideal-gas law. The time
derivative d/df refers to a point moving with the plas-
ma and is related as follows to the time derivative
at a fixed point: "

d F2j

Equation (1.3) is a direct consequence of Ohm’s law
with infinite conductivity, as we can see by writing

B VxE=0, (1.8)

E+4+vxB=0. (1.9)

(Note that E4+vx B is simply the electric field in &
frame of reference moving with the plasma.) The
physical content. of this equation is that the plasma
motion is flux-preserving. That is to say, if C is any
closed curve moving with the plasma, then the magnet-
ic flux through Cis a constant of the motion. This fact
enables us to picture the magnetic field lines as moving
with the fluid [8, 9]. We note, incidentally, that the
other magnetic-field equation, Eq. (1.4), is not entirely
independent of Eq. (1.3), since it must obviously be
satisfied for all time whenever it is satisfied initially.

The electrostatic force B has been neglected in
Eq. (1.5), the equation of motion, and so has the dis-
placement current since the magnetic force was evalu-
ated by substituting V xB for.the plasma current J:

JXB=(VxB)xB= ——V(%BZ)ﬁ-B .VB. (L10)

To justify the neglect of these terms, let us write
down the complete expression for the electromagnetic
force. (At this point it is convenient to introduce the
tensor notation, which we shall use from now on.)
Observing the usual convention whereby repeated
indices are summed, and making use of all four of
Maxwell’s equations, we obtain

2 o (1 1
IXB)t 0 Bi=— 5 (BxB)— 5 (‘2‘ Bty BZ)
+ ——aa. (E;Ej+B; B)), (L.11)
Tj
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which is simply the law of conservation of electro.
magnetic momentum. The terms involving K, siney 1|
E+4+vxB=0, are of order B0 in comparison with the |
inertial term o (8v/2t +v-Vv) in Eq. (1.5); and the |
remaining terms, since V- B=0, reduce to the expres.
sion (1.10). But since B?*p is simply the Alfvén speed |
squared, it follows that our system of hydromagn:
equations is correct to lowest order in the ratio _,
Alfvén speed to light speed.

The assumption of a scalar plasma pressure requires
& collision frequency large enough to maintain isc.
tropy, which requirement might appear at first sigh
to be incompatible with that of infinite conductivity,
It can be shown, however, that a physically interesting
regime exists in which the collision frequency is large
enough to maintain a scalar pressure, and at the same
time so small that the electrical resistance is negligible
[10]. The best examples of this regime are in the field
of astrophysics, where characteristic lengths are
much larger than the collision mean free path and
characteristic times much shorter than the time s
for resistive diffusion [8]. On the other hand, there 5.,
many important terrestrial applications, especially
thermonuclear-reactor technology, where the mean frc.
path is extremely large, so that collisions are negli-
gible and a tensor plasma pressure is allowed. But if,
at the same time, the mean Larmor radius is small
compared with the characteristic dimensions, the situa-
tion is again relatively simple: The pressure tensor hag
only two independent components. In fact, it has the
simple form

Pi=P, (0j—7;%)+ Py 7j, (L.12)

where Tt is a unit vector along the field, and where
dij is the unit tensor:

1, if i=j

P00, if s
CeEW, GOLDBERGER, and Low, the authors of this last
result [11], were able, by making the further assump-

tion of zero heat flow, to derive a pair of equations
analogous to the adiabatic law (1.6):

(113

d (P1\ .
di (—eB ) =0, (11471
d [ B*Py _

By using these equations instead of Eq. (1.6) one ob-
tains another complete system of hydromagnetic
equations. At the same time, of course, one must
replace the pressure gradient in Eq. (1.5) with the
divergence of the tensor pressure:

0P 9Py  aP;

a
Cwi oy T am e G (A—POl. (115)

There is one more qualification to be made: The
assumption of zero heat flow is not a very good one,
except when the heat flow is required to vanish on
grounds of symmetry, because there is nothing to
hinder the free transport of thermal energy along the
field [9]. It has nonetheless been possible, without
making this assumption, to construct an essentially




complete theory of plasma dynamics in the regime we
pave just described, that of small Larmor radius and
Jarge mean free path [10, 12, 13, 14, 15].

Our first task will be to derive Eq. (1.5), the hydro-
magnetic equation of motion, from a variational prin-
ciple. Now there are many different variational prin-
ciples in classical mechanics, and the one we have
chosen is Hamilton’s principle: The time integral of
the Lagrangian is stationary with respect to all varia-
fjons in the path leaving the initial and final configura-
tions fixed. The equation of motion will appear as the
condition for stationarity, and the remaining equa-
tions, Egs. (1.1)—(1.4), will function as holonomic
constraints. It will also be possible to treat the tensor-
pressure case in accordance with the Chew-Goldberger-
Low theory.

9, The variational prineiple in its Lagrangian form

In the Lagrangian description of a fluid, one consid-
ers the position vector X of a fluid element as a func-

tion of time ¢ and initial position X,:

; = Z; (Xo, t)';. (2.1)

and one specifies the initial configuration of the system
by giving the mass density, the pressure, and the
magnetic field as functions of x,:

%0 = 00 (X0 , @9
P0== Po (Xo) y (23)
Boi = Boi (Xo) . (24)

These functions are completely arbitrary, except
that B, must be divergence-free:

' 9Bg;

Oz

=0.. (2.5)

We shall write &; for the generalized velocity of the
system in configuration space, which is simply the
partial derivative of z; with respect to {. The deriv-
ative is taken, of course, with x, held fixed and should
therefore be ideutified with the time derivative d/df
of Section 1:

%; (Xo, t) == da;fdt . (2.6)

Before proceeding to the variational principle, we
must go through a few geometrical preliminaries.
Let z; be an abbreviation for dxi/éxej, let J be the
Jacobian determinant of x with respect to x,, let &
be the unit alternating tensor, and let 4j; be the
cofactor of zy in J: ’
oxi
“Buej ’

J = det (zy); (2.8)

-+ 1, if the subscripts form an even
permutation of 1, 2,3~

zij (%o, £) = (27

i = ‘l»-—l, if they form an odd permutation
0, if any two of them are equal; (2.9)

1
4= g Eikl &jmn Lkm Lin - (2.10)
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We then have the following identities:

J Oij==Ari xrj, (2.11)

which is simply the standard rule for the expansion

of determinants,
oJ

dxij

= Ay, (2.12)

which follows from the preceding equation because zj
is not contained in any cofactor 4 of the jth column,
and
A
dxoj )

=0, (2.13)

which is obtained by differentiating Eq. (2.10) and
making use of the antisymmetry of ;. Now let
dsz, do;, and dz; be elements of volume, area, and
length moving with the fluid. (The vector doi is equal
in magnitude to the area of the surface element, and
its direction is along the normal.) The time-dependence
of these elements is given by

a2z = Jd3x, , (2.14)
do; = Aijdoy;, (2.15)
dz; = zijday; . (2.16)

The first and third of these relations are obvious, and
the second follows from them because of Eq. (2.10):
One simply considers the cylindrical volume element
A3z ==do; dz:.

As was pointed out in Section 1, the system is sub-
ject to holonomic constraints given by Eqgs. (1.1)—(1.3).
We can easily integrate these constraints by observing
that the following quantities are constants of the
motion: the mass enclosed within an arbitrary element
of volume, the quantity Pp~?, and the magnetic
flux through an arbitrary element of area. We may
therefore write

pdPx =g d®x,, (2.17)
Po=7=Pygy™7, (2.18)
Bido; = Bgidoy; . (2.19)
Using Eqgs. (2.11), (2.14), and (2.15), we obtain
o =007, (2:20)
P =Py, (2.21)
B; == xjj BojfJ . (2.22)

We have thus succeeded in expressing g, P, and B
as functionals of X (X,). (The integration of the magnet-
ic-field constraint was first carried out by Warx [16].)
Hamilton’s variational principle states that a cer-
tain integral is stationary for all variations in the path
leaving the initial and final configurations fixed:

iy
by f d f Ld*z, =0, (2.23)
h
where the variation satisfies
8 (%o, &) = 82; (%o 1) =0, (2.24)
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and where L, the Lagrangian density, is some function
of the generalized coordinates and velocities. We shall
guess the form of L by analogy with classical mechan-
ics, and then prove it to be the correct form by show-

ing that the variational principle leads to the correct -

equation of motion. In classical mechanics the Lagran-
gian has the form
L=T-V, (2.25)

where T' and V are generalized kinetic and potential
energies. Here T is simply the kinetic energy of mass
flow, whereas V is the sum of three terms—the gravi-
tational energy, the internal thermodynamic energy
of the fluid, and the magnetic energy:

T— %Qa &, (2.26)

o B2
V=eolot ooy o)
Using Egs. (2.20)—(2.22), we express the Lagrangian
density in terms of i, xy, and %: .

: 1., P 1
L= 90[‘§$'-1P(X)]_*(y'——‘—_ l)onj—- 5 Tij ik Boj Bog. .
(2.28)

Note that L has an explicit dependence on X, through
the functions p,, P,, and B,.

Carrying out the variation in Eqs. (2.23), integrating
by parts, and using the initial and final conditions
(2.24), we obtain '

tidt d3x08x,-’(x0,t) 4 ~a—£ + (9L %L1 .
‘f f de \ 92;

(2.27)

Oxoj \ Oxyj ox;

(2.29)

(We are assuming the boundary conditions to be such
as to make the surface term vanish in the integration
by parts with respect to x,.) Since dz; is arbitrary
except for the condition (2.24), it is clear that the
bracketed expression must vanish identically. In this
manner we obtain the hydromagnetic equation of
motion in Lagrangian form,

d [oL 7] oL oL
ﬁzhﬂ '&;E@J Tz —0»  (2:30)
or more explicitly,
" 2 I7] 1
@O(xi =+ ‘a‘{‘) — By Fo (7— Tik Bok)
0 1
+Aii%(PoJ"" + 3 7% Tkl Them By Bom) =0,
‘ (2.31)

where use has been made of Egs. (2.5), (2.12), and
(2.13). An alternative form of this equation is readily
obtained with the help of Eq. (2.11):

[Qo (zj + Ecq'}) — B £ ("j i Bol)] %ji
Il
T (P 0 J~7+ < 75 23 31 Bog Bor) =0. (2.32)

In the more usual Eulerian description of a fluid,
the one that was used in Section 1, we look at a fixed
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point in space instead of following a fluid element. We
can therefore transform the equation of motion from
Lagrangian to Eulerian form by changing the independ.
ent variable from x, to x. For this it will be convenient
to have another symbol for the fluid velocity when it
is expressed as a function of x. We thus distingy’
between the Eulerian velocity v and the Lagrang,.._,
velocity X:

V; (X, t) = :1.3,' (Xo, t) . (2.33)
Let us write down the identity
. Oxe; Ok _ Omoi 5
0 = ox Owo;  dwk i » (2:34)

and compare it with Eq. (2.11). In this manner we
obtain the expression for dwo;/dxx:

3:60,‘ _i_ . 9
i';k— =7 Akx- (../35)

The Eulerian gradient operator is then given by
8 omy @ 1 i

R T ra s U el B CX
Another useful operator is obtained by combining
Eqgs. (2.22) and (2.36), and again making use of Eq.
(2.11):
o 1 % 1

= 5 ij Aik Boj o = o Dok

= 3 (2.37)

Z
With the help of these relations we can easily put
Eq. {2.31) into the Eulerian form:

do; dp _9B; ] 1 2\
which is the same as Eq. (1.5). This completes {
proof that the variational principle (2.23), with the
Lagrangian density (2.28), leads to the correct equa-
tion of motion.

3. Extension of the variational principle to fluids of
other types -

In this section we shall extend the work of the pr-
ceding section to fluids of various types that do n.
obey the ideal-gas law (1.6). Not every possibility will
be considered, but only these three: (1) an arbitrary
compressible fluid with a scalar pressure, (2) an in-
compressible fluid, and (3) a collisionless plasma with
a tensor pressure governed by the Chew-Goldberger-
Low equations. As before, dissipative processes will
be neglected.

Starting with the compressible fluid, let us suppose
that the flow takes place adiabatically, in which case

we have

S50, ors(xo,)=s0(xo), (3.1)
where s is the entropy per unit mass. (This reduces, of
course, to Eq. (2.18) when the fluid is an ideal gas.)
Now let U be the internal energy per unit mass ex-
pressed as a function of s and p—1:

U=U (s,07). (3.2)




The corresponding terms in the Lagrangian density
(2.28) and in the Lagrangian equation of motion
(2.31) are then modified as follows:

P
- (y—l)on—"‘-1 = —0o U (80, [go) » (3.3)
Ny - - oU
i (PoJ=7) = — A e [———a (J/Qo)]' (3.4)

This is still the pressure gradient, as is evident from
the thermodynamic relation

oU

P=—ZGy

(3.5)
Equations (3.1)—(3.5) are applicable, incidentally, to
jsothermal as well as adiabatic flow, provided that U
and s are reinterpreted as the Helmholtz free energy
and the temperature.

The above procedure breaks down when the fluid is
incompressible, since the partial derivative in Eq. (3.5)
is no longer meaningful; but it can easily be fixed up.
'We have only to drop the internal-energy term from

the Lagrangian and treat the incompressibility as an -

added constraint. The variational principle is then
restricted to variations that satisfy this new constraint
condition as well as the initial and final conditions
(2.24). The constraint condition is simply

J=1, (3.6)

and the variational principle may be written as
follows:

ty '
sfdtfdsxo[Ll+z(xo,t) J]=0, (3.7
ty '
where A is an undetermined multiplier and L, is the

Lagrangian density without the internal-energy term.
The Lagrangian equation of motion is then

d (0L, , @ [0L;\ 9L, _ ., 0 _
'?1?(696;)+ Baoj (%ij)* oz T ATy =0 (3:8)

. from which we see that A is simply the pressure. Equa-

tions (3.6) and (3.8) together form a complete system.
. We shall now treat the tensor-pressure case. Let

be the unit vector along B, and let 4 be defined as
follows:

A=2ij Tike Toj Tok - - (8.9)

Using Egs. (2.20) and (2.22), we can solve Egs. (1.14)
for P, and P}, obtaining two equations in the place
of Eq. (2.21):

P = —‘%‘iPw, (3.10a)
1
Pﬁ == —j.d_ P”O' : (3.10b)

It will also be convenient to have an expression for the
vector T:

T; = @i Tos ’ (3.11)

1
V73
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which is readily obtained from Eq. (2.22). The internal
energy per unit mass is given by

1 1
U:‘—"Q'(P.L‘*‘EP[I): (3.12)
from which we obtain the Lagrangian density
1. 1
L=go [”2“ & —g (X)] — <55 @i Tik Boj Bok
V4 1
—_—-TP.LO—‘E‘A‘PHO. (313)

The Lagrangian equation of motion again has the
general form (2.30), which reduces in the present
case to

.. de d 1 \
@o (CGH- %‘-) — By Ty (—J— Tike B()k)

8 [v4 4
—l—Ab—aj—[—j{‘ Prot+ 577 Boz]
+——?~—[x-t~1: (lP ——"‘L—‘P )] =0
axoj ik Toj Tok ‘Az ilo J‘\/A 1of} =Y.
- (3.14)

Let us make use of Egs. (2.11) and (2.13) to write the
last term in the more symmetrical form

2 1 1 4
Ajm—axom [—A—x,'k Zj TokTo)(-’j—A—-P”o——-\;——;Pio)}, (315)

from which the Eulerian equation of motion is obtain-
able by inspection. It is simply

dy; o oB; 2 1
o[+ )~ B+ (Pt 5B

oxj
<
+ s |wE(B— Py] =0, @16)

which agrees with Eq. (1.15).

4. The variational principle in its Eulerian form

In this section we shall state the variational princi-
ple in a form that will lead directly to the Eulerian
equation of motion, restricting ourselves to the scalar-
pressure case treated in Section 2. By analogy with
Eq. (2.33), we introduce the Eulerian virtual displace-
ment €.

& (X, ) = 8z (X, 1) - 4.1)

We change the variables of integration from x,, ¢ to
X, ¢; and we require the integral of the Lagrangian to be
stationary for every Eulerian displacement leaving
the initial and final configurations fixed. Thus,

29

§ 1 P 1
Sfdtfdﬁx (?sz_g (p“—)l—:i—_.-é‘ B2) == () ) (4:.2)
1

where the variation satisfies

& (X, b)) =& (%, t) =0. 4.3)

The next step, of course, is to express the variations in
o, P, B and v in terms of the Eulerian displacement.
Holding x, fixed, let us take the variation of
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Eq. (2.33) and the time derivative of Eq. (4.1). The
results are

;i .
Svi—{——a\%Ej:—‘Sm, (4.4)

@5,

Returning now to the vector notation, we obtain the
expression for 3v as a functional of e:

Sv="2¢ {v.Ve—e Vv. (4.6)

The corresponding expressions for 8¢, 3P, and 8B are
obvious:

S =-—V-(g€), 4.7)
3P=-—yPV.e—¢€-VP, (4.8)
3B=Vx{exB). (4.9)

The variational principle now takes on the explicit
form

fdtfdsz[gvﬁv—l—(; ——~cp)8g——-——-B SBJ
5}
=ffdtfd3x[gv- _aé% +ov-Ve.-v—pe V(’;f 1)2)
1

-(“%‘?Z“W)V'(QG)-F%V'G

+ yil € VP—B.Vx (exB)] —0.(4.10)

Because of the initial and final conditions (4.3), we
can integrate by parts to obtain

f:itfd3xe(x,t) . [——
" —oVp—VP4(VxB)xBl=0. (411)

The integral vanishes for arbitrary € if and only if the
bracketed expression vanishes identically. We thus
obtain the Eulerian equation of motion in the form

2 (oM —V-(evV)

2 @V +V (evV) +oVp+VP—(VxB)XB=0,

(4.12)
which is obviously equivalent to Eq. (1.5).

b. The Hamiltonian equations of motion

We now return to the Lagrangian description and
introduce the generalized momentum conjugate to x:

oL .
Jti (XO’ t) = —5-/”:‘ == QO xi. (5.1)

The Hamiltonian density, a functional of x and =,
is then defined in the usual manner:

H=mi—L. (5.2)
This reduces with a scalar pressure to
P,
H=_— + Qo‘P(X) W + 2J mx]xxLBOJBOk
(5.3)
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+ v a g (4.5)°

and with a tensor pressure to
2 '\/(T 1
H= 5= +op® + Y Pro+ 51 Py
1 ~
-+ 57 il Tt Boj Bop. (5.4)

The Hamiltonian equations of motions are simply

: oH ¢ [eH V
_— e —— NS B, 4 “"
™ RS + e (ax,j)’ (5.5a)
. 2H
By o= (5.5b)
c n

(They would, of course, be completely symmetrical
if H depended on the gradient of 7.) We have

d °H . .
—d—t-fHd‘*xozfd"xo( - L )
) oH o [6H\]. dH .
= [z, {[”z’a?{ kT (“a?.-;)]*’“ + om ”‘}
:fdaxo(—fti:fti—{‘ii‘iﬁi)=0- (G

Thus the integrated Hamiltonian is a constant of,
motion.

6. The bydromagnetic energy principle

Let us now suppose that the fluid is in a static equi-
librium state (one where X and 7t vanish identically)
and ask whether the equilibrium is stable. The condi-
tions for equilibrium are obtained directly from the
Hamiltonian equations of motion. The first of these
equations gives

[ — o ()]0 e
;i Owoj \Ozij [ x=x,

which reduces with a scalar pressure to
00 () oy B0 G+ g (Po 3 B) = 0.
and with a tensor pressure to
00(5Z). _, — Boi Gae + 5oz (Pro + 3 Be)

+ -3-% [7oi Toj (Pyo— P1o)] = 0. (6.3)

The other Hamiltonian equation gives only a trivial
result, =0,

To get a stability criterion it is necessary to exam-
ine the behavior of small displacements from the
equilibrium state. We accordingly write

xi = woi + &, (6.4) -

treat 7t and E as small quantities, and expand the
Hamiltonian out to second order. The zero-order part
will be dropped, since it has no effect on the Hamilton-
ian equations of motion; and the first-order part,
because of the equilibrium condition, will vanish
when integrated over d3xz,. The second-order part is
obviously the sum of two terms, a kinetic energy de-




pending only on 7, and a potential energy depending
only on §

. 1 a2
[Ba*z, = —2—f-d3x0 + W(EE). (6.5)
&
Each term is a quadratic form in its respective vari-
ables, and the kinetic emergy is obviously positive-
definite. Under these conditions, the equilibrium is
stable if and only if the potential energy is also posi-
tive-definite (i.e., positive for any nontrivial choice
of £ as a function of x,.) This result, which is due to
BERNSTEIN, FRIEMAN, Krusgar and Kuisrup [4],
is known as the hydromagnetic energy principle.
To find specific expressions for W we write

zij = 0ij + &ij, (6.6)
J=1+4&i+ % (Eii)z———% Eibii,  (6.7)
A=1+4 270v0; &5 + Toj Tor & Eik - (6.8)

Substituting these formulas into Egs. (5.3) and (5.4)
we obtain, in the case of a scalar pressure. ~

+ (P0+ —%— Boz) (&3 &ii— (&a)?]

+(y Py + Be?) (£i)2+ Boj Bok (& £ — 2 &i Ejk)} ,
' (6.9)
and in that of a tensor pressure,

W= e anola ), b6
+ (Pro+ 5 Bo?) tey i + (607
+(B? + Pro— Pyp) voj Tk b be—2 (P o+ By?)
X T0j Tok &k &ii + (4 Pyg— P o) (voi Tok 5.k)2}. (6.10)

Expressions of this type for the energy integrals were
first given by Harn, Lusr, and ScHLUTER [5], but
without gravity, and with Pj,=P), (There is a
mistake, though, in their version of Eq. (6.10): They
have, as the coefficient of (&;)2, + B? alone instead
of P, ,+1 By2) One can, by a rather long and te-
dious calculation, transform the expressions (6.9)
and (6.10) into the more familiar ones given by BERN-
STEIN ef al. [4].

Suppose that the plasma pressure is isotropic in the
equilibrium state (P,,=Py,). Unless the collision
frequency is large, this does not mean that the iso-
tropy will be maintained by a small displacement
away from equilibrium; and for this reason we need
not expect the two energy integrals (6.9) and (6.10)
to be equal in this case. In fact, if we set y equal to
5/3, the appropriate value for a monoatomic gas, then
the tensor-pressure integral will always be larger, and
by the amount

1 1
—‘Z-fd‘*xo—g Po (5{1’““3101' Tﬂjffj)z- (6'11)
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Thus the tensor-pressure energy principle gives a less
stringent stability criterion, when the equilibrium
pressure is a scalar, than the scalar-pressure energy
principle. This result, which again is due to BErw-
STEIN e gl. [4], may be interpreted as follows: Take
two equilibrium states, each with a scalar pressure,
and differing only in scale. Suppose that their charac-
teristic dimensions are, respectively, large and small
compared with the collision mean free path. Then the
large system will conform to the scalar-pressure theory,
and the small one to the Chew-Goldberger-Low. We
may conclude that if the large system is stable, then
so is the small. This conclusion, by the way, does not
depend on the assumption of zero heat flow in the
small system; it remains valid when the Chew-CGold-
berger-Low theory is replaced by the more elaborate
one mentioned in Section 1 [10, 14, 15].

The question of stability is not restricted to static
equilibria, but arises in connection with steady flows
also. Now in the Eulerian deseription a steady flow is
obviously independent of time; but in the Lagrangian
description this is not so, since the position of each
fluid element is changing. For this reason the energy
principle is not usually applicable to steady flows,
and the stability can only be determined by a calcula-
tion of the characteristic frequencies. (The flow is
unstable if any of these frequencies have imaginary
parts corresponding to exponential growth.) We shall
see, however, that there are cases in which 3 steady-
flow problem can be reduced to one of static equilib-
rium; and in those cases the stability criterion will be
given by a modified energy principle.

7. Flow with azimuthal symmetry

From now on we shall devote our attention to flows
with an axis of symmetry, neglecting gravity (p=0)
and considering only the scalar-pressure theory.
Introducing cylindrical coordinates r, 8, 2, we have

or 0z =0 a6 _
28, a6, 26,

With this type of flow we can think of the fluid as
composed of a doubly infinite set of ring elements
encircling the z axis. Each of these elements is identi- "
fied by its initial coordinates r, and z,, and its instan-
taneous position is specified by giving the three coordi-
nates r, 6— 6, z as functions of 7, and z,. (In order to
keep the notation simple, let us write § instead of
6—80, from now on, so that @ will be the angular
displacement of the ring element as a whole.)
For the initial volume element we now have

1. (1.1)

dBry = 2nrydrydz,. (7.2)

Consequently, if we again define J as the ratio of
d3z to d*z,, we obtain

J——_f_ ar 8z_~3‘r az)
T org \0ry 02, dzy 01y /"

(7.3)

The mass density g and the pressure P are still deter-
mined by Egs. (2.20) and (2.21), but with the new
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expression for J. The magnetic-field components are
as follows:

1/ or or

B, = —f( o Bu+ 2 BOz), (7.42)
r [ 06 1 a0

By =T[4 Bort 5 But g5 Bu) (1:4D)
1/ 9z oz

B, = 7("_6% Bu+ 5o Boz), (T4c)

in which the initial values must satisfy the divergence

relation
oB [

dzq

22 (ryBe)+

7o Oy

=0. (7.5)

Next we have the potential-energy density
P, 1

‘ aor Do 2
V=t=prT T [(‘a"r Bo+ 57, Bo:)

o8 1 o0 2

72 (g Burct 7 Boot B

(& B+ 2 Buef | (16)
0 0 !

T 2,

the Lagrangian density ;
L= op(Ft 476+ —7, (1.7)

and the Lagrangian equation of motion

d (oL _1__6;(, °L_)

‘Jt‘(aq')+ ry 81 \ °2(04/07)

9 ( oL ) oL

+ 72 \e@aiory) g~ 00 7P

where g is any one of the three coordinates r, 0, 2.
Finally, we have the Hamiltonian density

H = 5 (m? + Lt b4V, (19)
in which the canonical momenta are given by
7t = L[0T = goT, (7.10a)
7o = OL[60 = 0,720, (7.10 b)
7z = OL[0% = gy . (7.10 ¢)

In the remaining sections we shall consider purely
azimuthal steady flows with the magnetic field either
purely toroidal or purely poloidal, and investigate their
stability against displacements that preserve the azi-
muthal symmetry (m=0 displacements in the usval
notation). Tn both cases (the toroidal and the poloidal)
it will be shown that the stability criterion is given
by a modified energy principle.

8. Stabilify of stéady azimutﬁal flow with a toroidal
. field

Let us now consider an azimuthally symmetric
flow, not necessarily a steady one, with Bor= Bo,=0,
i.e., with a purely toroidal initial field. (Of course, the
field will also be purely toroidal at all future times.)
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Tor the Lagrangian density in this casec we have
simply

P P2

1. : ,
e 2 -2 ()2 52 .08 e
L—_ 2 QO(T + 4 0 + z ) ('}lwl)v/y'" 27'02(]

which does not contain 0 or any of its spatial deriva.~

tives. This means that 0 is an ignorable coordinate,
and that its conjugate momentum is a constant of the
motion:
.od oy 5
o = g7 (0o 720) = 0, (8.2)
which is simply the conservation of angular momen-
tum for the individual ring elements.
We can eliminate the ignorable coordinate 0 with

the help of a new function R, the Routhian:

R = L——ﬂo@
1 7?

1 . .
—_,-.»:‘2_90(7'2.*_'22)..__— - e

LT - Py 72 Bgy®
2 gpr* (y—1

JIT=L T 2T

(8.3)

By using R as a Lagrangian density (ROUTH’s proce-
dure [17]) one obtains equations of motion for thi
remaining coordinates » and z, the 0 motion entering
only through the constant srp. (Note that in effect
we are simply counting the azimuthal kinetic energy as
part of the potential energy.)

Tt is now easy to derive the stability criterion for a
steady flow with v,=v.=0. With this type of steady
flow the only time-dependent coordivate is ¢; and
since 0 has been eliminated, the motion is effectively
independent of time in the Lagrangian as well as
in the Eulerian description. Furthermore, the Rou-
thian function (8.3) is the sum of two terms, one
positive-definite and quadratic in the velocities, an¢
the other depending only on the coordinates. In othes
words, the Routhian for small displacements from the
steady flow has the same form as the Lagrangian for
small displacements from a static equilibrium. The
steady-flow problem has thus been reduced to one of
static equilibrium, and the stability criterion will
necessarily be given by an energy principle. The onl
difference is that the energy integral will now include
a centrifugal potential energy.

The procedure described above is an extension ot
one that is familiar in classical mechanics [18], where
it is used to investigate the stability of such steady
motions as the regular precession of a top. It should
be pointed out, though, that a reduction to static
equilibrium cannot always be achieved, since the
elimination of ignorable coordinates will often lead to a
Routhian with some of its terms linear in the veloc-
ities. This occurs, for example, in the problem of the
sleeping top.

The equilibrium conditions (which are readily
obtained from Eq. (7.8) with R in the place of L)
may be reduced to the following:

Py + E Biy = F (), (8.4a)

Bop— -0 = G (ry) (8.4b)
04 T2 0/ .
So'0
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where I and G must satisfy
G (rg) + 7o F' (rg) = 0. (8.5)

Although the combinations ¥ and & can only depend
on 7q, We note that the individual terms may depend
on z, as well.

To describe the small displacements we write

r=ry+ &, (8.6 a)
=12+, (8.6D)

"and, as in the static-equilibrium case, we expand the
potential energy out to second order. The result, if
the subscript zeroes are dropped, is

W=rx[rdr dz[3’Z°2 L+ 0P+ B div

1 7] 7] o0& oL o9& @8
P+ Lme)(P R 2 2o

r Or

2¢ o0& 2¢ ¢ &2 Sy
Rl e =R | R
where div is simply the divergence of the vector dis-
placement:
& eE et
The necessary and sufficient condition for stability
against azimuthally symmetric displacements is that
‘this integral be positive for every & and (.

_ After integrating various terms by parts, and making

use of the equilibrium conditions (8.4) and (8.5), we
‘obtain

W::nfrdrdz{A £ 4 (yP 4+ Bg2)

. (272 Bg? — ng?[) £ 2\' ;
[d“”_' GP T Byr ] i (89)

where A4 is a certain function of the equilibrium quanti-
ties and their derivatives. We shall prove that W is
positive-definite if and only if 4 is positive for all
values of 7 and z. The “if”” part of this statement is
obvious; and to prove the “only if” part, let us assume
that 4 is negative at some point and construct a dis-
plecement for which W is negative. If at some point
we have 4<0, then, by continuity, that point is
surrounded by an entire region £2 in the r, z plane such
that 4 is negative at every point of Q. Let us pick
a £ that vanishes outside of Q and that satisfies the
following condition for all values of r:

Ta,l26 | & [2rBe—age] :
fdz[“a7+7“ P T B }“‘O‘ (8.10)

(It is clear that these two conditions on £ are com-
patible.) Comparing Egs. (8.8) and (8.10), we see that
{ cdn be chosen so as to make the bracketed term in
W vanish. But then, since & vanishes wherever 4
is non-negative, we have W<0 for this particular
choice of & and £, which is what we set out to prove.
The stability criterion, then, is given by the following in-
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equality, the left-hand side of which is simply the
function 4 written out explicitly:
1 & [=a 2 dBp 2Bg*
w el B+ 2

(272 Bo* — mp*/o)?
78 (v P + Bg?)

The flow is stable if and only if this inequality holds
at every point in the fluid.

Let us briefly consider two special cases, that of
magnetostatic equilibrium, where 7=0, and that of
pure hydrodynamics, where By=0. (Note that the
equilibrium quantities, although they may have a
z dependence in the general case, can only depend on r

> 0. (8.11)

* in these special cases.) In the first case (719=0) the

stability criterion reduces to

dlog By _ yP—Bg?

dlogr -~ yP4+ B (8.12)

which was first derived by TSERROVNIROV [191; and
in.the second (By=0) it reduces to
4 ()

’a‘;‘ P > 7?@77'-3. . (8.13)

For an incompressible fluid we may take y infinite and
obtain

d [ (3.14)

& —Q——) >0,
which will be recognized as Rayleigh’s condition for
the stability of Couette flow [7]. In its essentials,
Lord Rayleigh’s derivation of this stability condition
was equivalent to the use of an energy principle; and
for this reason the material presented here may be
regarded 2s an extension of his work.

9. Stability of steady azimuthal flow with a poloidal
field

We shall now consider flows in which the magnetic
fieldis initially poloidal ( Bos=0). (Note that the field will
not, in general, remain poloidal unless the flow is
steady, since a nonvanishing By is induced whenever
the angular velocity varies from point to point on a
single field line.) It will again be possible to reduce the
steady-flow problem to one of static equilibrium, but .
this time the reduction will be carried through by

"means of a contact transformation. It is therefore

appropriate to start with the Hamiltonian, which is
now given by

j— 1 2 _]‘_ 2 1. 2] [ P__o -
H"‘"zgo-[nr +,’,2n8 T Ttz + (y—l)J./—l

a9

1 or oor 2 2 o6 2
-+ *2‘7[(5;; Bo, + E{ B()z) +r ("5;; By, + "a‘zo’ BOz)

2
+(~:§; Bor + ai:; By ] 9.1)

The coordinate 6 is no longer ignorable, since it
enters the Hamiltonian through its derivatives with
respect to ry-and z,; and the conjugate momentum
7ty is no longer a constant of the motion. There is,
however, an integral of 7, that is constant. Let B,
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be the magnitude of the initial field, and let dl, be
the element of arc length in the ry, 2z, plane. Then,
taking the integral of my/ B, along a magnetic field line
(which we assume to be closed), we obtain

d { modl, __(g) dlo[ 2 ( aH'__')
T I TB, 3B, |7 or, \"0 3000y
2 oH
+ "5“( 5(60/07) )]
2 {90 a0
= a5 (G Bu+ 5 Bu)| =0, 02

where use has been made of Eq. (7.5). Let us consider
the infinitely thin shell between two neighboring
flux surfaces. Then, according to Eg. (9.2), the total
angular momentum of the fluid within the shell is a
constant of the motion. The angular momentum can,
however, be transferred by the field from one ring
element to another in the same shell, so that an indi-
vidual ring element need not have a constant angular
momentum.

From our present viewpoint there are two respects
in which a purely azimuthal steady flow differs from
a static equilibrium: The coordinate 0 depends on
time, and the momentum 7y does not vanish. What we
shall try to do, therefore, is find a contact transfor-
mation from the variables 8, mp to new variables §,

7p such that § and zs both vanish when the flow is
steady. Let us first note that the field-lines in a steady
flow must rotate as rigid bodies (the law of isorotation
[20, 21]), which enables us to write

Bo, o, +Boz az = 0. (9.3)
Now the Hamiltonian has a term proportional to the
square of this expression, an expression that has just
been seen to vanish when the flow is steady. It is
strongly suggested, therefore, that 7z is proportional
to that expression. As for the conjugate variable f,
we may expect it to be some functional of 7, since
715 is a functional of §; and, since 7 vanishes when the
flow is steady, so will g.

We now give the generating function of a contact
transformation that will lead to variables f, ms with
the desired properties:

86, 8)=—BroVe, (BO, oy + Boz o2, ) (9:4)
The conjugate momenta are derived from the gen-
erating function in the usual manner:

I T a8 2 es
= T o, (’° 3 (20/2r,) ) ‘"éZ(a (80/0zy) )
F] ]
= Bor'g" (Brov/ 00) +Boz'a‘;“ (Broved,  (9.5a)
7T =——§'- == TO\/*(BOr 7 +B0z oz, ) (9.5b)

where use has been made of Eq. (7.5) in the evaluation
of 7tp. Let us imagine that Eq. (9.5a) has been solved
for B as a functional of 7. (The constant of integra-
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tion must, of course, be chosen independently of time
on each field line, or else § will not vanish in a steady
flow.) If the field lines are closed, then f# will generally
be multi-valued. It follows from Eq. (9.2), however,

-that ﬂ is single-valued; the jump in f is a constant

of the motion.

It is easily verified that the new variables f, ng ob
a Hamiltonian system of dynamical equations, or in
other words, that the transformation from 0, ng to
B, mp is actually a contact transformation. The Hamil.
tonian of this new system of equations is easily obtained
by substituting Egs. (9.5) into Eq. (9.1):

_ 1 2 r 2 1 2 )

=gy [ )+ g s
1 dr ar 2

o e S (2 5 22
1

+ | Bor o (BTov/E0) + Boe ot ﬁrov@o].a 9)

Note that part of the kinetic energy has been counted [
as potential, and part of the potential energy as ki .
etic. Specifically, the 6 components of the kinetic and . §
magnetic-field energies have been counted, respi
tively, as potential and kinetic.

We now have a system of canonical variables such
that the generalized velocities and momenta all vanish
when the flow is steady. Furthermore, the Hamiltonian
is the sum of two terms, one positive-definite and quad-
ratic in the momenta, and the other depending only
on the coordinates. As before, this means that the
steady flow has been reduced o a static equilibrium,
and that the stability criterion for azimuthally symmet-
ric displacements will be given by an energy prinei-
ple.

The conditions for equilibrium are readily obtain
by setting str, 71g, and 7, equal to zero in the Ham.
tonian equations of motion. They are

net | 0P, 9Bo.  9Bo\ _
— ot et BTGy =0 019
al)o aBo, 3Boz _ -
T +Bo,( aro)_o,. (9.7b)

0 700 4 709
B () + Boe iy (o) =,
in which rzp is not regarded as a canonical momentum,
but only as an abbreviation for the expression (9.5a)
with f=f,. Note that Eq. (9.7¢) is simply the condi-
tion for rigid-body rotation of the field lines.

As before, we expand the potential energy to second
order in the displacement, which now includes a third
component n=f — fB,. (Note that # is single-valued
even though f itself is not.) The result, if the subscript
zeroes are again dropped, is

@72

W= nfr drdz {~—1—; [B (nrvo) — _27;0_5J . f_‘;,fi
+ (yP+ BY)dive—2 (P + B2) (:. LN

ot &l oE &t R
b g o) H (B VER BV

—2(B,B-VE+ B.B-V)div}, (9.8)




where 2 0
g B'V::B'g“'BZ‘a;’ (9.9)
a;ﬁd where div is defined as before. The stability crite-
rion is that W be positive for all &, 7, {.

“Let us now minimize W with respect to #, holding &
and  fixed:

Wmin (E: C) = Minﬂ W(‘E: 7, C)

Then the flow is stable if and only if Wmia is positive
for all £, ¢. The minimization condition is

(9.10)

1 2
B-V[-:B-V(nrv) — 2

]:o, (3.11)
or
B-V (nry/g) =0or* C+2m £]r,

where C is constant along the field lines. Integrating
over the infinitesimal shell between two magnetic
surfaces, we obtain

0=C(ory+@mélry,

(9.12)

. where the brackets indicate a volume average over

the shell. Note that the volume average can also be
written as follows in terms of line integrals:

gy $FE.
@duB

and (9.13) into Eq. (9.8),

(9.14)

Substituting Egs. (9.12)
we finally obtain
k gt &2

ort

{or%)®

+ (yP + B?) divi—2 (P + —;-132)

Wmin =T J-r drdz {Q 2 (2& npfr)? _

AXF—+—~+ ~~~~~ )
+ (B-VE? + (B-V)2—2(B,B-VE + B.B-V{) div).

(9.15)

We shall not go any further into the general case of a
poloidal field, but in the next section we shall consider
the special case of a purely axial field in detail.

10. The special case of a purely axial field

Let us now suppose that the unperturbed magnetic
field has no radial component. Then, if we continue
o suppress the subscript zeroes, the equilibrium condi-
tion (9.7) reduces to

d 1 50\ ngd
£ (P + 5 B ) —

er®’

(10.1)

in which the individual terms can no longer depend on
z but only on r. (The stability of a purely azimuthal
steady flow in the presence of an axial field has also
been treated by CHANDRASEEHAR [22, 23], but under
a different, and considerably more difficult, set of

30*

(9.13)
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conditions. He has taken account of viscosity and
finite electrical conduectivity, but with an incompress-
ible fluid and a uniform field. We, on the other hand,
are neglecting viscosity and assuming infinite con-
ductivity, but we are taking account of compressi-
bility and allowing the field intensity to depend on r.)

Setting By equal to zero in Eq. (9.15), integrating
various terms by parts, and making use of the equi-
librium condition (10.1), we obtain

IVminénjrdrdz{Bz?(_gi_ +i)2 + [%3__;_(30_2_)

r 4
4mp? gt o0& \2
— o —rer |8+ 525
4ng® . 2& \2
+ 2+ P (div + ) ) (10

Let us define a new integral W, in which r is the only
variable of integration:

Wo—r [ rar{B2 (g + £f

or 7
4% ngt

+ [ () e —Fee e aos

We can easily show that Wnin is positive for all &,
{ if and only if W] is positive for all & The “if” part
is obvious, since the last three terms of Eq. (10.2)
are necessarily positive; and to prove the “only if”
part, let f{(r) be some function of r such that W,
is negative when &=={ (r). Then Wmi, will be negative
when £ and { are chosen as follows:
E(r,z) =f(r)coskz,

(10.3a)

Lne) = —[r O+ 10+ 7 1] B2,
(10.3b)

where k is very small; for the term B:? (0£/02)% is
negligible when % is small, the next term vanishes
because (£)=0 whenever k30, and the last term
vanishes because of the choice of {. The necessary and
sufficient condition for stability, then, is that W,
be positive for every &(r).

If the magnetic field is so small that we can drop
it from the integrand of W, then the stability condi-
tion is simply

da (_n_g_) o dnt,  mt

dr\ e or y P2 °
Now this condition does not agree with the corre-
sponding condition (8.13) for stability in the presence
of a small By. In fact, it is possible for a flow to satisfy
the latter condition without satisfying the former;
and whenever this happens the flow will be stable in
the absence of a field, or in the presence of a small
By, but it will be made unstable by an arbitrarily
small B.. (Of course, the growth rate of the instability
will be correspondingly small.) What the axial field
does is to remove a constraint, the constancy of m,,
and by so doing it enlarges the class of allowed motions.
Suppose, for example, that a particular ring element
on a particular flux tube starts to move outward.

(10.4)
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Then its angular velocity will decrease; and the axial
field, because of its distortion by the nonuniform
rotation of the flux tube, will transfer angular momen-
tum from the other ring elements on the flux tube to

the one that is moving outward. That element will.

then be subjected to an increased centrifugal force,
tending to push it still further outward and thus
to destabilize its radial motion. ‘

If the magnetic field is not small, then the simple
condition (10.4) is still sufficient for stability but no
longer necessary. To determine the stability when
that condition is not satisfied, we may have recourse
to a method that has been worked out in connection
with the diffuse linear pinch. Here we shall simply
give the results, referring to the pinch work for de-
tails [24].

We consider the differential equation

< (rBz o )——gE:O, (10.5)
where ‘
11 d [=® 4mq® mt 1
9(7) _7’-[5—(7)_ or MVPQZ‘T"’]
B2 dB;?
+ 22 S22 (10.6)

(This equation is simply the Euler-Lagrange condi-
tion for stationary values of W). Slngularltles occur
at every value of r for which B, changes sign, and the
solutions £ (r) may exhibit either of two types of
behavior: If 7; is the singular point, then the solu-
tions may have an infinite number of oscillations in the
neighborhood of 75, or they may behave like real
powers of r—rs;:

[ (r—r)
‘ (r—mrs)™"

The condition for nonoscillatory solutions is that the
following inequality be satisfied at the singular point:

dB; d [ng 4my® gt

(o + 2[5 () — 5 — 5] 0. @09
It can be shown (Corollary 9—1 of Ref. [24]) that
instability oceurs whenever the solutions are oscilla-
tory; hence the condition (10.8) is necessary for sta-
bility.

Now suppose that the flow takes place between
concentric cylinders of radius ¢ and b, and that the
cylinders are rigid and perfectly conducting. We then
have the boundary condition

£ (@) =& (b)= (10.9)

Let the singular points, if any, be 7, 75, ete., and
divide the interval a < r<b into subintervals a <<r <rg,
ra<<r<rs, etc. We may assume that the inequality
(10.8) holds at each singular point, in which case the
solutions of Eq. (10.5) will have the form (10.7), since
we already know what happens when it does not
hold. We pick out solutions in each subinterval as
follows: (1) In the first subinterval let & (r) vanish at
the left endpoint r==a. (2) In every other subinterval

E(r) ~ (10.7)

where n; +n,=1.
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let £(r), in the neighborhood of the left endpoing,
be the smaller of the two expressions (10.7). Except
for a multiplicative constant, a unique solution hag
now been defined in cach subinterval, and we can ask
whether there are any interior points of the subinter.
val at which the solution vanishes. It can be shown
(Theorem 10 of Ref. |24]) that the flow is stab’
and ouly if there are no such points in any of the s, _.
intervals. This result enables us, in any particular
case, to determine the stability by solving a second-
order differential equation numerically.

Erratum

Consider an upright glass of water, and let the water |
be subjected to the virtual displacement & =7, |
£=£&,=0, a rigid-body rotation. For this displace. |
ment, since &i=0 and &y &i==-—2, the energy inte- |
gral (6.9) reduces in the absence of a field to

W= j Pydday < 0. (R1) |
Thus, according to our version of the hydromagp~*is |
energy principle, a glass of water is rotationally . }
stable. It is clear that some mistake has been made. !

The trouble arises from an improper definition of §,
Suppose for the sake of definiteness that the fluid is |
enclosed by a rigid wall. with the magnetic field purely §
tangential. Then the boundary conditions are

Boi dO‘m’ == (),
&idogi=0,

(E2) |
(=3 §
where doy is a surface element of the fluid boundary.
These boundary conditions are used in proving that |
the first-order part of W vanishes. Restricting ‘
selves temporarily to the scalar-pressure case, we L
; 170,
Wer = 5 | dog

%

2l i e |

Jd xﬂé["(’(m,>x.ﬂn' (10( oty B ) BW%.-WJ

+ M:If J [—damf'.(l)““i' ; Boz) + dO'OfBOjBnifi] .(E45

The volume integral vanishes because of the equilib-
rium condition, and the surface integral because of |
the boundary conditions. But, if & is defined as |
xi—x4i, then & dgo vanishes only to lowest order; |
and the surface integral, instead of vanishing exactly,
reduces to a non-negligible second-order term. What |
we must do is write

- 1 i
i = xoi + &+, 1 (E5)
where 7; is a second-order term chosen to make &
satisfy the boundary condition (E3) exactly. It is
easily shown that v} must then satisfy the boundary
condition

1 dooi == doi £ &. (E6)




The energy integral will now have a contribution

from 7 . .
From now on, as in Sections 810, we shall drop

the subscript zeroes from the equilibrium quantities.
Proceeding as in Eq. (E4), we find that the contribu-
tgion of ) to W is equal to the surface integral

" 1 1 1
— 1 77i(P + 5B = — oty &(P +5B)
(E7)
By adding on a term that vanishes as a result of the
frst-order boundary condition (E3), we can reduce

" this expression to a volume integral not involving
any second derivatives of :

1 8 2 1 1
sea s {ea | (P + 5 B)8]—(P + 5 7)&v8)
1 g 1 > B £ 0 1
:—é—fdsx{fx & . 3:1:,‘(}) _{__532) +2§1/E:‘é’a‘c‘i‘(P +—2—BZ)
1 5
+ (P45 Bl —&E1). (@)
Finally, by adding this term to Eq. (6.9), we obtain
the complete expression for the energy integral:
1 L[ e o 1
W= T‘Z[fda x {5: & [Q i oy + i 0w (P + 5 Bz)]
d
+ 2885 (P + 5 B + 0P + BY (6
+ B Bi(sbu—2 i) (E9)

The stability criterion is that this integral be positive-
definite relative to the boundary condition (E3).
With a tensor pressure the contribution of % is
again given by the surface integral (E7), but with
P, instead of P. The complete energy integral is then
2 2
W g [@aftis] o gt s (Pr+ 55

w; o

+ 26 i (P 1+ 5 B
+2(PLt g BY (62 + (B + Pi—P) e by i
—2 (P4 BY b+ (4P—P)) (1w £5)?).

(E10)

In the case of steady azimuthal flow there is no
additional contribution when the wall is a circular
cylinder. But if it is a general surface of revolution,
a8 it may well be in Sections 8 and 9, we obtain
surface integral '

w[r(P+ 55— e+ (£ — Har],

(E11)

MAGNETOHYDRODYNAMICS

which must be added to Egs. (8.7), (9.8), and (9.15).
This term, when reduced to a volume integral as in
Eq. (E8), leads directly to Egs. (8.9) and (10.2), and
for this reason does not affect our final results in any
way.
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