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General Stability Theory in Plasma Physics.

Russer KULSRUD

Princeton Plasma Physics Laboratory, Princeton University - Princelon, N. J.

1. - Introduction.

In this course we shall consider three energy principles for the stability
of stalic magnetohydrodynamic equilibria. These three energy principles cor-
respond to three different sets of basic equations describing the plasma, each
of which applies in various limiting situations. We shall designate these three
different; approaches by the fluid theory, the adiabatic theory and the double
adiabatic theory or Chew-Goldberger-Low theory.

The fluid theory corresponds to the strong-collision limit where collisions
are g0 strong that the pressure always remains a scalar, but however, still o
weak that the conductivity may Dbe taken as infinite. The adiabatic theory
corresponds to the limit of no collisions and to the limit where the gyration
rading of each fype of particle and the Debye length are infinitely small com-
pared with macroscopic quantifies. The double adiabatic theory is an inter-
mediate theory in which collisions are not strong enough to keep the pressure
isofropic but are sufficiently strong to make the heat flow negligible. This
latter theory is the theory given in the paper of CHEW, GOLDBERGER and
Low [1].

In each of the three theories first the basic equations are derived, second
the equilibrium is discussed, third the linearized equations for small motions
aboub equilibrium are derived, and finally an energy prineciple is derived which

is shown to give a necessary and sufficient condition for the stability of @il -

these small motions.

In each case the basic equations are a closed system. In the fluid theory
the eqnations are the nsual fuid ones with p given by p =4p*. In the adia-
batic theory the pressure is found from the Boltzmann distribution funetion f
but otherwise the equations are essentially the same as in the fluid theory.
To find f it is necessary to solve the collisionless Boltzmann or Vlasov equation
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GENERAL STABILITY THEORY IN PLASMA PHYSICS 513

but the difficulty of solving this equation is reduced by the assumption of small
gyration radius. The equation reduces to a one-dimensional Boltzmann equa-
tion where the one dimension comprises the position and velocity of a par-
ticle slong a magnetic line of force. The theory is designated as adiabatic be-
canse the motion of each particle is governed by the magnebic moment being
an adiabatic invariant. In the double adiabatic theory a separate equation of
state is derived for each of the two independent components of the stress

_tensor, with each equation similar to the simple equation in the fluid theory.

Thus, since these equations arise from an adiabatic assumption {adiabatic here
meang no heat flow) this theory is often called the double adiabatic theory.
The two uses of the term adiabatic in adiabatie theory and douwble adicbatic
theory are essentially different. -

The theories arve developed on generally parallel lines. The arguments for
the derivation of an cnergy principle in each case ave formally the same.
When the energy principles are derived they will be compared for similar
equilibria. It will be shown that if one proves stability for an isotropic equi-
librimm on the fluid theory, the equilibrium will be stable in the other two
theories. The comparison of the double-adigbatic and adiabatic energy Pprin-
ciple is not completed as yet; but it has been shown that the energy prineiple of
KRUSKAT and OBERAMAN [2] which is slightly more pessimistic (more unstable)
than the energy prineiple of the adiabatic theory is definitely more pessimistic
than that of the deuble adiahatic theory. ’

The name double adiabatic theory is used rather then the (Ohow-Goldberger-
Low theory since these authors also layed the foundation for the adiabatic
theory and we shall follow their approach. This latter work is unpublished [3]-

The energy principle for the fluid theory is the first one to appear in plasma
physics. It is the energy principle given in the paper of BERNSTEIN, FRIEMAR,
KrUsSKAL and KULSRUD [4]. This paper also includes the energy prineiple of
the double adiabatio theory. The energy principle of the adisbatic theory is a
slight generalization of the energy principle developed independently and simul-
taneously by KRUSKAL and OBERMAN [2] and RosENBLUTH and ROSTOKER [5].

2. — Fluid theory.

2'1. Basic equations. — The basic equations underlying all three theories
will be the Fokker-Planck equation {6] for the Boltzmann distribution function
of each particle and Maxwell’s equations for the electromagnetic field. In
each of the three cases we shall make different assumpfions of simplicity on
these equations and derive three different sets of simple equations which we
can handle. It should be emphasized at this point that although the exact
structure of the Fokker-Planck equation is still under discussion this will not
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affect our simpler equations since the uncertainties in the Fokler Planck equa-
tion are covered up by our simplifying assnmplions.
The fluid equations are

1) Xy,
@ e = v prixB B,
) < wlg) =0.

The Maxwell equations are
(4) V-B=0,
(5) VB =i+ L
7(6) aag =—-c¢VxE,

(7 V-E = dmgq.

These equabions are coupled by an Ohm's law

1 1,
(8) E+-VxB="j.

Here g, ¥, and p are the density, velocity and pressure of the fluid (assumed
gealar), j, B, E and ¢ are the current, magnetic field, electric field and charge
density. The units used are Gaussian excepl j is given in em.u.; d/dt indi-
cates 9/0i-+V -V as usual. y, ¢ and ¢ are the ratio of speeific heats, the velo-
city of light and the conduetivity in abamp/abvols.

Although these equations apply to a number of situations (for instance with
y= o 'muompressibility) we have in mind a gas consisting of ions and elec-
trons. p is the total density, V' the mass velocity of the combined fluid, and
p the total pressure. The assumption is made that collisions are very strong
so that the gas is everywhere nearly Mazwellian. The first two fluid equa-
tiong are derived by taking the first two moments of the Fokker-Planclk equa-
tions. The next moment involves the heat flow which may be computed by
the method of Chapman and Enskog. Similarly a more correct Ohm’s law
may be derived which gives j with an anisotropic conduetivity and heab flow
terms. Tt should also be mentioned that the pressure is a tensor in eq. (2)
and the off-diagonal terms give rise 1o a viscosity term in (2). The correct
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;| ’ GENERAL STABRILITY FTHEORY IN PLASMA PHYSICS a7
equa- full equations have been derived by MARSHATE [7] for the ion-electron case
and are given in the review article of BERNSTEIN and TrREHAN [8].

The condition for the validity of these equations is 7T where © is the
mean collision time and T is a characteristic macroseopic time. Iowever, if
7 i very small all the trangporh fierms (viscosity, heat flow) may be neglected

! and we get essentially eqs. {1)~(8) (¢ may gtill be anisotropic).
We now wish to consider the limib of infinite conductivity o — oo, 80
! that (8) is replaced by
1
(8) E-+ " VxB=10.
However, in a certain sense ¢ -+ oo corresponds to very large v which seems
to contradict our previous assumption. However, in this case, ¢ large means
: 7> T(Lrwk[e?)! so (1)-(7), and (8a) should be valid if
i ' ' o Tzl
wll? ’
w? = dznetjm where n, ¢ and m are electron density, charge and mass, and L
i » macroscopic length. The first half of this inequality is usually well satis-
fed so our fluid theory is generally valid if the second half is satisfied. This
latter is more gtringent.

(Of course, there are other conditions that must be satisfied in the fluid
theory such as small gyration radius, small Debye length, ete. We do not;
gbress these in the fuid theory.)

(assamed Substituting (8’) in () and (7) and these in {2) we have
.4 charge ‘ v v

dt indi- ; d 1 1 @ 1 V-(FxB)VxB
zh;i:;lio- i ' . QE:—VP+E(VXB)XB+44302E(VXB)XB—E : cﬂ) )
vice with The last two terms are negligible if pc?>> B*4m so we may neglect them.
and elec- This corresponds to the neglect of digplacement current and the electric force
luid, and term in the momentum eg. (2). Also we wish at this point to eliminate all
Ty strong the factors 4n which may arigse 8o we seb
uid equa- . :
nck equa- _ B—VizB',
iputed by L
thm’s law ¥y J
heat flow ! ~ Vax'’
in eq. (2) i
he coxreeh which corresponds to a choice of units about 3 G for B, 3 A for J'.
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To summarize our equations are now

Continuwity :

de
(9) piriaine eV V.
Momenitum

av
{10 QE:—VP"{‘JXB
Energy:

dip

1) 1(5)-
Maxwell-Ohm:
(12) V-B =0,
{13) aaB_Vx(VxB)
(14) VxB=17].

The other fwo equations give ¢ and E which we do not need. Equations (9)—(14)
are closed equations for p, ¥V, p, and B. These are given respoetively by (9),
(10), (11) and (13), J is given as a definition by (14) and could be eliminated
with no trouble. (12) is a side condition; that is always satisfied if it is satis-
fied at any time. We shall take as fluid theory the study of the 0011sequences
of eqs. (9)-{14).

Equations (%)-(14) are cssentially those given in the paper by BRERNSIEIN,
FRIEMAN, KRUSKAL and KULSRUD [4]. We parallel the development of the
consequences of these equations given in this paper. The energy prineiple for
the fluid theory derived in these nofes was first given in this paper.

Boundary conditions: There are two types of situations which we might
consider: 1) a plasma confined by a rigid infinitely condueting wall on which
B-e=0, whore e is the normal into the wall (Fig. 1}; 2) a plasma adjacent

e .
e’ %
W—% i
vacuum
—— -
8 ) 77W77777>7772_:: a

plasma

Fig. 1. Fig. 2.

to a vacuum adjacent to a rigid wall (Fig. 2); in (2) Bre = 0 on the wall and
also at the plagsma vacuum interface.
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GENERAY, STABILITY THEORY IN PLASMA PHYSICS 59

Tor simplicity consider only assumption (1), It is comparatively easy to
extend the theory to case 2). We have in the wall

E=0.

Also we have the usual boundary conditions (with {d) =4, —4,)

. Ve=0,
e-(By=0,
ex{E>=0,
ex<By=J",

where J* is the current flowing in the wall. Thus in the plasma
exE=0.

Suppose B=10 in- the wall at some time; then 9Bfdf=0 and B=0 in
the wall for all time. Hence since (B-e)=0

—(14)
y (9), K
nated B-e =10 in the plasma:
sabis-
ences : so we have case 1) if B=0 in the wall at; any time.
) Tt is sufficient in light, of (8a)—(14) to assume only the houndary conditions
SFRIN, d
if tho Vie=0, Be=0.
ile for .
’ : TFurther B-e=0 is 2 side condition., For,
might C —exE— ex(VxB)=B-eV—V-eB=10
which :
jacent E‘ and therefore
3
S iB.e) = —ce =0.
i Bt( e) ce-VxE
N .
\;l The last equation follows casily on consideration of the line integral over any
!i closed eurve ¢ in the surface
i‘ ,
l o:gﬁE-dz:fe-VxEds.
all and

29, Static equilibrium. - For static equilibrium, ¥'= 0, the equations be-
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Vp=JxB,
V- B=0,
VxB=17T.

The gide condition VB =0 is now a full condition. Note that

B-YVp=0,

so that B and J lie on surfaces of consfant . Thus B has magnetic surfaces
i.e. surfaces everywhere tangent to B. Also p is constant along lines of force.
At the rigid wall

Be=10.

23, Linearized equations. — We wish to consider motions of the fluid in
the neighborhood of the stafic equilibrium given above. We write at a fixed
point r

p=p"+p,

=V,

B=B'+ B,

o =¢+¢,

J=r+J.
From (14)

J'=VxB'.

p', V', B and ¢ can be given independenfly initially and then (9)-(14) give
: their time development.
Introduce a displacement vector £, the Lagrangian
&ty ) displacement, (Fig. 3) by

rnt

fy. f oE
Fig. 3. "aT::V'

However, it is not necessary to take the Lagrangian point of view. To lowest
order we may regard g as given at a fizxed point and leave it undefined o higher
order by 2E(r, t)/0t=V¥'(r,1}; £ will than be an Eulerian variable, We do
nob consider all displacements »', ¥, B, ¢’ but only those obtainable in the
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GENERAL STABILITY THEORY IN PLASMA PHYSICS 681

following manner: assume the system in equilibrium. Then introduce exfra-
neouns forces which displace the system away from equilibrium and give it &
velocity. During this initial displacement all the equations except (10) hold.
Then allow the system to evolve under ail equations including (10). Thus
initially only £ and ¥ can be given independently. For instance, this displace-
ment preserves the total mass of the system.

The equations ave easily integrated to first order for o', p’, B’ in terms

“of E. Let

p*=p' +&Vp,
e* = o'+8Ve,
(p* is the perturbed pressure tollowing the displacement). Then
p* =— QV ‘£,
p* =—ypV-E,
B' = Vx(ExB)= B-VE—E-VB—BVE,
B*=B:VE—BV E.

After the initial displacement § is given by

o 14
aa
15) o 22 = [Vx(VXEXB)IXB -+ IxIV X ExB)] + VEVp) + Yy B).
Let
- Q =V x(ExB).

Then we have

9 -
16) ¢ ZE_ mE = (VxQ)xB + (X @+ VE VD) + VrV B,

where F is a linear (differential) operator. The boundary condition on £ is
{17) e E=0.

Equation (16) i seli-contained giving E in terms of . (A dot denotes time
differentiation). From condition (11), B'-e =0 follows,

(Note: one might consider independently perturbations nob restricted as
above. For instance take £ —E=p'=B'=0, ¢’ arbitrary. This produces no
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time variation. If p’ is taken arbitrary and the others zero this corresponds
to sound waves or magnetosonic waves, Similarly if B’ is independent. Also
it is possible to vary the equilibrium sfate by taking B’ and p' together. As
will be shown later, none of this extra freedom leads to more generality in
the determination of stability.)

24, Stability. — We now consider the behaviour in time of the perturba-
tions and in particular whether any of them can grow indefinitely. Of comrse,
they must always remain small enough for the linear theory to apply but we
may regard £ as finite and later multiply it by a constant so small as to make
the theory wvalid.

The standard method of studying small oscillations is the mormal mode
method. One looks for solutions of the form

E =&, exp [im.t],

80

(18) - Qwign = F(Eﬂ) ’ Eﬂ'e =0.

Assuming the §,’s form a complete set we expand any initial perturbation

Eﬂ - z a'ngn H

g = z @nGn €XD [t0,1]

is a solution of (16) which equalsE, at t=0. {Actually we expand £,— D butw,Ga
also and use the fact that & is a solution to get a more complete solution in
an ohvious way.) If all w, are real § is bounded. If any o is complex ew,, or
~— @, has a negative imaginary part and E is generally unbounded if 4,520,
E=E, gives an unstable perturbation. Thus the question of stability reduces
to examining the w, to see if any is complex.

From this observation we see that no generality is lost in fying ¢, »’, and
B to E ag we have done above, since if there is an instability, there is one
with all quantities growing like exp [{w,t] (with w, complex) and this insgta-
bility must vanish if continued back to i=— co. Obviously, for this insta-
hility the eguations before (15) are satbisfied.

The search for a complex m, is made easier by the fact that & is self-
adjoint ¢.e. for any § and 7 satisfying

£ene—0,
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GENERAL STABILITY THEORY IN FPLASMA PHYSICS 63

on the the boundary, we have

(19) [eFmar=fn-rear.
We show the gelf-adjointness of # later.
Trom this we find

o) o} is always real.
Proof w'?gE*= F(E¥). This with (18) and (19) gives

ot o v~ — 5+ F@)e = Jeraar — ofee g,

from which a) follows.

Because of a) there is no « overstabiliby », that is no growing oscillation
can occur. Also if a mode is stable and the equilibrium is varied slightly this
mode remaing stable {see Fig. 4).

D) The modes are orthogonal
(w) plane
+ rmpossible

Proof - Pig. 4.

fQEﬂ'Ede-:O if ol ok

(@ - o) f o, B dr — f (£ F(En) — En-F(E,)) a7 = 0.

We assume that tho £, are chosen orthogonal for equal w,’s also and nor
malized so thab '

(20) f.gE,, Enldr = 4 .

This property usuéJ]ly poes along with completeness for a set; of functions.

¢) A variational principle exists for computing w,'s. Consider

)~ HEFE
rECC
_ [88-(F(E) + AgE) dv
3= f pErdr !

3A=0 for all 3 is equivalent to A= w?, §=E, for some =.
A minimum of A gives the « most unstable» §,. If 2 is always positive )
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is always positive (w, is real). Also if A is ever negative the smallest w? (w? say)
is also negative and the system is unstable. Since the denominator is always
positive this means we need only examine the sign of the numerator

20) 8W=~;IE-F(§>dr,

for all § with E-e=0. We have proved §W > 0 for all § is a necessary and
sufficient condition for stability. Thus

d) There exists an energy principle for stability 4.e. an expression §W(E, E)
quadratic in § such that stability can be reduced to examining the sign of
SW(E,E). 8W will turn out to be the variation in potontial energy of the
system. :

For a simple example of an energy principle consider the one-dimensional
motion of a particle in a potential V:

ov
=0
O ’

is the condition for equilibrium. A small motion about equilibrium is given by

. OV
(8)" = — v (8x) .

It 6*V/dz* is negative the equilibrium is unstable. The sign of 3:¥[8x® may
be defermined by examining the
second variation in & '

./D-\“M
.o . 2 72
- \D/ Vot =2 0 5w

on?

unstable neuvtral stable

Tig. 5. If 3W<0 for some & then V<0
and the equilibrium is unstable.
Otherwise, it is stable (Fig. 5). The displacement & is sometimes called a
virtual displacement; since it is imagined to be made to test for stability of a
real motion.
Similarly for n dimensions

eV
SW = 2‘m51§: ]

and one has again an energy principle. The ¢ component of the linearized force
is Y (02V[0x 0w,

i+
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2 say) i’ The matrix 02V [0x,d»; corresponds to our operator F and ig obviously
&W&ys ! self-adjoint, since it is symmetric. Our theory corresponds to a continuum
: of dimensions but is otherwise algebraically the same.
* The proof of d) follows the remarks in ¢) with SW given by (20). We make
:_ some more remarks on d) and give another proof.
The sufficiency of 8W > 0 for stability does not really involve self-adjoint-
ness of B if SW is taken a4 priori to be the potential energy rather than defined
vy and o by (20). For, for an unstable normal mode w, is imaginary
I
W, €) 5 SW ~ exp [2iw,i];
H
s i . A
1gfn 11}(1)& let; ihe kinetic energy be
of %
r -
nsional K = }lof2dr.
! This is also proportional to exp [2iw,f]. If 8W > 0 we have
| u = K+ W ~ exp [2iw,d]
ven by
‘ with a positive coefficient. If w, is unstable % must grow indefinitely which
is impossible gince it ig a constant. Therefore w, is stable. This argument is
5 ossentially due to LraPUNorF and is used very skilltnlly by KrUSKAL and
& ma OBERMAN in their paper [2]. Tt is useful for obtaining weaker energy prin-
o th{; ‘ ciples which are only sufficient; for stability. _
B We may identify §W given by (20) with polential energy by considering -
o (&4 sw)= 2 g—zdr—l E-PE)dv| = (€ E—E F(E))dr =0
& at| J €2 2 € '
Vu 0 i Here we use self-adjointness. Since K is kinetic energy §W must be the va-
nstable. riation in potential energy.
salled a , We give another proof of the energy principle d)
ity of a Let E=3 a,E,
W = — % gF(E) dr=— 3 Za'n“m[gn'lﬂ(gm) = %Eana’mwijgnﬁgm dr ’-
W =4 z Uy 0 E
ed force

by (20). Tt all w2 >0, 3W is always positive. Hence 3W< 0 for some E
implies insfability, If w? < 0, 8W(E,, £.) < 0 and thus fnstability = 3W < 0 for

5 — Rendiconti 8.I.F. - XXV,
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some a.’s {or E). Hence W >0 (for all §) < stability, We have assumed
that the E.’8 are complete.
‘We wish an explicit expression for §W. From (16)

W= =45 Fmac—

= — 3 E[(VXQXB)+E-JXQ +5-V(E-Vp) +-§-V(ypV £).

E(VXQ)xB =—ExB-VxQ = V-[ExB)xQ]—Vx({ExB)Q,
§-V(E-Vp)=V-(EE-Vp) -V EE-Vp,
EViypV-E)=V-EypV-E) —yp(V-E),

using Gauss’ theorem

B = 410"+ T §xQ + (V£ + - Vp V-51dv —
—ﬁ(z—;xB)xQ +E(E-Vp) 4 E-ypV E] 4S.

. The lagt twoe terms vanish since Ee=0. (ExXB)xQ=Q-EB —B-Qt van-
| ishes also, since Bre=10. B-e=10 follows from {17) by the game argument
1l as used in the nonlinearized case (p. 6).

: i Thus

i @1) 3W=aﬁea+1-a><@+ypw-a)2+z-v@vmdr,

and we must examine this quadratic functional of E for stability. " This com-
_ pletes the derivation of the energy principle except for the proof that F is
| self-adjoint.

el We pause to discuss the advantages of the energy principle approach to
g [ : stability over the normal mode approach.

y il The most obvious way to check whether 8W > 0 always, is to minimize
it over £. Since it is homogeneous, it is necessary to normalize £, Tf we nor-
malize € by

4 '
. ‘ ) f@ﬁzdr——l,

we gel back the normal mode. equations by comment ¢). However, it is not
necessary Lo choose this parficular normalization buf only one which makes
8W bounded below. There is often % much more convenient normalization.
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sumed. Somefimes §W is obviously negative by a «trivial » perturbation. In this
case the energy principle has the advantage. This is facilitated by the fact
thati the energy has a physically intnitive significance. The first two terms
represent the variation of the magnetic energy and the last two of the plagma
energy.
Several important examples of this remarks are
E. 1) Suydam’s instabilities [9].
‘ 2) Gravitational instability [10].
3) Mercier's generalization of Suydam’s criteria [1fj.
4) Sharp separation of plasmsa and magnetic field [4].
In each case if; is sufficient; to exhibit an unstable €. Tn cases 1) and 3)
the § is localized. In case 2) the perturbation is
i obvious. In cage 4) a complete solution is obtained 4
d in this way (see Fig. 6). (However, a more general ")é‘// . 28 ,"
gt . . . . . 4 -~
1= energy principle including gravitation is used.) / 9\35“‘ = s
. 1t should be remarked that whenever the energy m‘;\{
= G . . . N . . e
51-4S. § principle is useful a corvesponding trick in the nor- unstable *
; mal mode fechnique can be found. The energy Fig. 6.
E van- ] principle simply makes the trick more obvious.
sument In the energy principle the theorem « AW > 0= stability » is moro natural.

: The theorem « §W < 0=-ingtability » relies on both completeness and gelf-
£ adjointness. If W < 0 for € this need not imply instability in a general cage
l since E need not be s normal mode. Although temporarily the system gaing
: kinebic energy at the expense of potential energy it need not remain propor-
. tional to E. & may change direction and move into 3 region of §W and keep
is eom- E finite. - ’
w Fis 1 ) . o
A Simple exomple. — PRENDERGAST [12] has given an example to_illustrate a
ach to stable sifuation with S§W<<o0.

Consider a 2-dimensional harmonic oscillator with negative spring congtant

inimize : and moving in field B[ to its plane (see Fig. 7).

we TOF- . The potential energy is — k£%. Let the oscillator have
3 @ a charge e. If v/kjm < }(eBfme) the system is stable
3 ' J“I:NO 8 although W< 0 always.
4 Thus it is essential to prove self-adjointness for the
Fig. 7. energy principle to work both ways.

; ig nob 1 .

makes 25, Proof of self-adjoininess of F. — We give two proofs of self-adjointness
ization. of ¥ one direct and explicit and the other indirect.
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Direct proof. — Let F= F, - F,

FE) = [VX(VXEXB)]xB+VopV E),
Fy(E) = I X[V x ExB)] -+ VE-Vp),

F, and F, will be separately shown to be self-adjoint.
Let 1 be another vector field with n-e=0

[nFigas ~[i axm [T x (T x B -V 0aT-BJar -
=f{v-[(n><B}><(V><(E><B))]4[VX(11><B)]-[V><(E><B)]+

+ V- (ypV E) — V-mypV E}.

MxByxQ=QnB—Q:Bn and ne=0

so when bthe divergence terms are integrated by Gauss' theorem they vanish.
The remaining terms are completely gymmetric in § and % and so

fn'E{E)dr:fE-Fl(n}dr,

F, is sclf-adjoint. Now consider F;

[in-E@ g Fonar = [tnTx(n-Ve—g VB BV-H+

+ - V(E -Vp) — E-Fx[B-Vq—n-YB—BV q] —§-Vn-Vpldr.

But
- (JxB(VE) —E-V(n-Vp) =—n VpV-E—E-Vin Vp) =—V-(&nVp)
which integrates to zero. Similarly
+E-JxB(V-E) +n-V(E-Vp)

integrates to zero.
Also

N jx(B-V)E= V-[Bn-jxE]l— V-Bn-jxg—'{B-V)nxj-E—'n X (B-V)j&




$xB)+

r vanish.

1-Vptdr.

(En-Vp)

S it

|
i3
}

o T 21
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and the first ferm infegrates out while the seeond is zero. The third term will
cancel the first term in the second bracket in the above expression. Finally

0=Vx(Vp)=V(jxB)=B-Vj—j-VB
go the last term is

n:(j-V)BXE.

With these remarks we have

f"l'Fz(E.») — g Fmdr=|n[— (- VIBxE+ (E-VIBX j+ (VB)-EX jldz.
To show the bracket vanishes consider
[((f xE)XV]XB = [Ej-V—jE§-VIXxB =Ex(j-V)B—jx(§-V)B,

on expanding the triple product in the bracket.
Expanding the triple product with (j x §) as a single unit we get

(VB)-jx E.
Equating these two we find the bracket vanishes. Thus F, and hence F

is self-adjoint.

Indireet proof. ~ We construct the energy of the system. The energy
per unit volume of an adiabatic fluid is pfy —1 since if we let

p = A¢”,
. T e
1 dg'  Agrile  Agr  p -
—_— d pa— y T8 — _ =S .
T[pt QIAQ o T T ym1T o
@ 0
Therefore the energy U is
¥: B2 P
:K p— g’ _— -
v=r+w [(2 +2+?—1)dr’

B2/2 is the energy per unit volume in the magnetic field. All we will need is
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that U is constant for all motions given by (9)—(14). Explicitly using (9)—(14)

f]:f[— VieVWHV-(—Vp+jxB—gV-VSV)+B-Vx(VxB)—

Y o FVp
y—lv y—1

drt =
=f{— V-(QW]*;%-iv-(pV)—V-[Bx(VxB)]} dr=20.

by Gauss’ theorem and (15). (B x(VxB)= BV -—-B-VB.)
Now we wish to expand U about the equilibrium to second order in E.
To do this we need to define § to next order.
We take £ to be the absolute displacement of a fluid particle, . e. a par-
ticle in equilibrium at r, i at

r=r,4+E(r, t} ab time t.

{Sec Fig. 8). To second order
o
og

Fig. 8. A {ro, 1) = Fi{ry+ &, t) = Flry, 1) + E-VV(ro-, ).

In terms of , it is easy to solve for B and p, and o to second order in £,
We have exactly :

plro+ &, t) = o(ro, 0) | T -+ Vo E|,

where | IV, E|=Det {I4 V,E)

p(ry+ & 1) _ [Q(ru + &, t)r
P 0) | ety ) |
-B(ro‘|‘§7t)_Bn B,

=0 20y,
ore L 60 o o %

Vz%—gdr:drou—i— VE|

We do not make use of these explicit expressions except to show the possi-
hility of expanding U,
Write

U= A(E)+ BE)+ K, &) + MEL) + SWEE,
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M
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where 4 and B are linear functionals, K, M, and $W are bilinear functionals
and we may fake K and 8W as symmetric.
What are 4 and K? To find them we take

E=0; 8o V=E, SB=38p=200p=0, dr=ds
and
g _[e€ -
U—fz dr.
Thus

E=1}]¢® and A4—0.
Differentiate (23),

U= 0=BE) + 0EY)

80 B =0, since E is arbitrary (U==0 for all £ and E subject to Ere=E-e =0).
Algo '

U=0=2K[EE]+ MEE) + M(EE) | 28W(EE) .
But by (16}

§ = FE)fo

50

|2, 8]+ e, 0+ a5, K8 o i,

and this must hold for all £ and E. Setting here g:o' we have
MEE =0,

the rest of the bilinear functionals vanishing since a bilinear functional vanishes
if either argument vanishes. Also from =0

Thus ’ [g’ F(TE)] o

K[I%g),ﬁ]=28W(E,E).




|
E N
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But 3W is symmetrical in § and E so

X

and setting £ =1 and using
K =3}[eE,

we have again the self-adjointness of F obtained above by a direct method.
Let E=§

smam:~ﬂff%q:§ﬁfmmm

and we have shown 8W given by (20) is actually the potential energy.

Of the two proofs of self-adjointness the last generalizes the easiest to more
complicated cases. 7.e. (vacuum, adiabatic theory, double adiabatic theory)
since it involves the least amount of information on F. Notice it is funda-
mental that £ and £ be independent as well as that 4 =0. Also in the estab-
lishinent of an energy principle we need X to be positive definite.

3. — Adiabatie theory.

3'1. The Boltzmann equation. — The adiabatic theory corresponds to the
limit of no collisions and small gyration radius.
Therefore we start with the Vlasov or collisionless Boltzmann eguation for
each kind of particle, ions and electrong
of vxB
¢

(1) 55+1)_-Vf+n%(E+

).vﬂf:o.

We pass to the limit of small gyration radius formally by taking very
large ¢ (sce vef. [5]). We will develop an asymptotic series for all physical
quantities in 1je. The expansion of the Boltzmann equation follows that of
Caew, GOLDBERGER and Low [3].

Write

fomm oo it

where f* is of order (1fe}". Then to lowest order

vxB
c

2) (E+ )VJ=m

Whe

and

elech
n

(3)

wher

@
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When necessary f will be distinguished by a subscript ¢ or e. Also the charge
and mass. f(t, r,v) is the density in velocity space and position space of
electrons or ions, (fd*»d’ is the number in d*»d»).

Write
axXB
; (3) E=—"—+ B,
where
E n = B|B|, an=20,
!
! (4) v=o-+s+gn, s:n=20.
od.
l (2) becomes
B .
X8 V4 Bin Vf=0.
i ' .
From this equation f is constant along a helix in velocity space which
Lore ; extends to infinity if B, 0. Thus f may not approach zero at g=oc0 if
B, =0(1).
ry)
_ Hence we lLake
wa-
tab- (5) B, = O(IIB)
and regard E and B as known series in 1 Je. Later on we will expand Maxwaell’s
equations in 1je to determine E and B.
From
the 6) : ' sxB-V,f=0
we geb
1 for . .
(7) jn = Jof, r, w, Q) 1
where
(8) w= §[2,
very ' . . '
sical (7) is the general solution of (6) where F° iz arbitrary. From (7) F° may have
;.t‘. of \ any behavior in time. 7To determine it we write (1) to next order
) %}-kv-Vf"—&—ist-V f+ E_n.v =90
_ ot me v m ¥ ’

where B, = e6. Let ¢ be the angle between s and some arbitrary veector _L
to B, say n-Vn. Then

af
SXB'V::]U=|BIB_905
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and (9) may be solved for f'. However f' must be periodic in ¢ and this con-
dition is cobtained by integrating (9) over ¢ (for constant i, r, w, g)

2
' afu N /] £ . 0 —
(10) / {aﬁ" VP vpelap=0.

0

Eqguation (10) gives 0F°/dt. However, in (10) the time derivative of/o¢ is
alb fixed r and ».
Let us formally change variables

=v—o—v-nn,
g=v'n,

Is
; &

=g

o _OF, OF,0r 02w’ | OF,dy
& o Tar & "ow o ¢ o’
at’ T

_a@_s,as'g . © . . [0
A A A A A

w

o¢’ on . on o On
B~V et sy =lat sy

Also det/0t and Onol are independent of ¢ while %s’dga: 0. Thus

1 (dfy, _oF, OO

o) 2 o T S Hag

In the same way we find

1 '3 VI I ! . aF
é;jv-Vfudqo: (o0 - g'n)- VI — ' (V- + ¢V —nn:V-a) w—l—

+ {ee:Vn 4 g'an Vi -+ 0w’V n) %,

1 (e , & 0F,
_f%n V. fodep'= — —

2 m g’
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0n- where we use

fss do = w( — nn) I the unit dyadic,

in the first equation, and aiso the notation

3t is \ ab:Ve = a-(b-Ve).

Combining these resulis with (10) we obtain :

of° 0 apn

— . —w(V- V-n—nn Va) —

(11) 5 + (@ + qn) VI — w(V-a - ¢V -n—nn:Va) aMl—'— 1

3 b

i + ua:Vn+qan:Vn+wV-n+a—,E+ or =0,
i ot aq
i ) We have now dropped the primes. :
Equation (11) is the condition on f*= F(, r, w, q) thati we can solve ,

for f. Also it gives the fime behavior of #°. F® can no longer be talken ar- B

bitrarily as a function of ¢, r, 2, g as one would conclude from the zeroth order i

cquation, but must be taken to solve (11). e
Incidentally we know fthat ';

. {
! oF" oF® I
' (12} - a—+ VFO‘%"WT‘FQ aq =0, i

i so we get by comparison

! ?z“_““‘}"q%;
Ww=—Viae—gV-n-+nn. Ve,

{13) ¢ = aaVn < qon Vn -+ wV - n—l—cz +_

‘I‘ ' to lowest order in 1/e. The right-hand gide of these equations represent the
;\ time derivatives averaged over a cyclotron period. These equations suggest
* ; an alternative way fio obtain the Boltzmann equabion to lowest order. De-

rive (13) directly from the equations of motion and use (12} to derive (11).

?l E
)ELF_ , 3'2. Mazwell's equations to zero order. — Hquation (11} gives ¥ in terms '
i ; ’ :
9q of «, n, ¢ as functions of r and ¢, Also the definitions of ¢ and % depend on
‘ o and .

To find the behavlor of o =(ExB)/B* n=B/|B| and ¢ = (& n)n we must
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express Maxwell’s equation o lowest order. Our development; is the same as
that sketched by KRUSEAT in the Les Houches nofes [13].
Maxwell's equations are

i (14) V-B=0,
3 | 8B
| (15) o =~ UXE,
B | _4n] | 18E
n (17) V-E = dnc,

where o is the charge density. J and o are given by

(18) J:Eeﬁfvdﬂfu,

j‘.F";T ; (19) a:Zeﬁrd%,

where the sum i3 over ions and electrons. [We must remember ¥ and B are
also cxpansions in Jje starting with 0{1).]

{14) to lowest order is the same, as is (15). In (16) and (17) J and o are
minus first order in Ife by (i18) and (19}, so (16) and (17) with (18) and (19)
become to lowest order

(20) Ji— e f froaw =0,

(21) ct=Yeffrdv=0.

But f,= Fo(t, r,w, q). Introduce w and g as infegration wvariables. We get
[f"v d*o =) F'(a + gn + s)2xdwdg .
The s term vanishes and e« {5 constant so

ff"vdf"u = N'x +2an"qdqdw )

N = ZRIF“dgdw,




w
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is the density. Hence by (21) and (20)

J1= Z 'nPUﬁen =0
or
Ui=0g,
where

NeUy= 2nqu"dqdw.
Thus Maxwell’s equations to minus first order give

(22) . zef © dwdg =0,
23) Zef bgdawdg = 0.

It is easily shown from (11) that the time derivative of (22) is zero if (23) is
satisfied. (This is just (3o /o)4+V-J1=0.)
Similarly the time derivative of (23) gives

(24) PRI SRS )

where
P°=mf(v—ot—'uun)(v—oc—w,n)f“d"'v,

is the zero order pressure. This may be obtained more siniply by taking a
moment; of the unexpanded Bolfzmann equation for ions and electrons dotting
with n and subftracting (see ref. [13]). It is easily shown that

(25) P =p,(I —nn)+ p,nn,
where

{26) po=m|wl2rdwdyg,
27) oy =1 F2rxdwdg .

Thus, Maxwell’s equations to lowest order (together with (11)) give B,
and oB[ot bul not E,. (22} and (23) are side conditions which if once satis-
fied are always safisfied. (14) iz also a side condition.
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oE/[ot is given by (18) to zeroth order. Hence we must proceed to zeroth-

order in (16} to find QE/ot (strictly speaking (16) is three equations). The
component, parallel to r is minus first order, which we used to find #,. The
part perpendicular to n is zero order which we use fo find ® ).

To proceed to zero order in (16) we need J to zero order which by (18)
involves f'. Because of (11) eq. (9) may be solved for #* bub not uniquely;
only up to a function of ¢, r, w and ¢ as in the cage of the solution for f° (at
first). However such a function gives no component of J perpendicular to B
except for the conveeted current o%:, so J, is uniquely determined in terms
of 7 (and E"). We find j by multiplying (19) by mv and integrating. Let
U=o+4U,n. The result is '

(28)

0 a
Qn%_l;l — g° (?%_1_ U"-VU“):J“XB“—V-P“J,—J"EO.

Thus the perpendicular part of (28) gives J,. The parallel part of (28) 1is
already satisfied in virfue of (11). Remember E*-n=0, ¢ = >mN. Pis here
the total pressure. (28) is obviously the equation of motion. o is found from
(17) to zero order. Solving (28) for J, we may substitute in (16) to find
ok, (ot .

This would complete our system of equations for zeroth order quantities.
This system is (11), (15), (16), and (24) with side conditions (14), (22) and (23).
[(16), means the perpendicular part of (16), the parallel part is actually (24)]
(11) is an equation for PV, (i5) tor B, (16), for E, and (24) for E;. In {11},
a, n, and & occur. These are defined by (3), B/|B| and eF, respectively.
In (16),, j, occurs which is defined by (28),. In (24) P, and N occur
which are given by (25)-{27) and 2an°dqdw respectively. o in eq. (28)
ig given by (17). These equations which form the sysfem include all of
the Boltzmann and Maxwell equations each to their lowest order. (16),
and (16), are of different orders of course. (17) is taken to minus first
and zeroth order buf in zeroth order i determines ¢® which gives a condition
on f which we do not use. It is clear that this procedure may be iterated to
obtain & set of equations valid to first order [i.e. order 1fe]. All those con-
ditions on zeroth-order quantities which are necessary conditions for the golu-
tions of the first order equations have been obtained. Thus, we have attained
our goal of determining a system of equations for the zeroth-order quanftities.

In these notes we shall work only with lowest order quantities. In general,
these equations are valid if 1) the gyration radiug and Debye length of beth
jons and electrons are small compared to macroscopic lengths and 2) both
gyration frequencies and plasma frequencies are large compared to macroscopic
frequencies. It is not alwa,ys'the case that these conditions are sufficient for
finding stability from the lowest order equations. Ior instance, if w2 is of

ord
le_n_;
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order (¢/R)* where @ and B are a characteristic macroscopic frequency and
length, and £2 ahd ¢ are the gyration frequency and radius, then it is neces-
gary to proceed to next order in the expansion to determine stability.

(See the paper of ROSENBLUTH, KRALL and ROSTOKER [14].)

3'3. Summary of equations for the adiabatic theory. — For eonvenience we
collect in one place the zero order system of equations. Howsever, we note
first that instead of solving (28) for J, and substituting in (17) we may solve (17)
for J, and substitute in (28). The result is

dU laE B VEE

(29)
Sinee E'=—a X Bfe, the last two terms are small by the factor B?/pe® when
compared with the left-hand side. We may thus write (29) as

dU
where now AmJ=V xB.
Of course, only the perpendicular part of (30) is independent of (11). To
make our scheme closer to the fluid theory we derive the continuity equation
from (11). Our equations may now be written:

Continuity:
)
(31) . 9+V(ﬂﬂ*0
Momentym
au
(32) [ rri =JxB-—-V-P,
Bnergy:
(33) p =pyun+p,(I—nn),
(34) Py = meF“(g{— Un¥adgdw,
(3b) pL= zij“szm dgdw,
. ,
@) 2 (ot gm) Vot winn Voo — Voo — gV o) o?
ot ow,

oF,

og =0,

+( %tJrcaa Vn + gon Vi +wV-n -|— )

a=U—Unn
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Maxwell's eguations:

(38)  V:B=0,
(39) ' VxB=J,
(40) %:Vx{axB),
{41) SelFrdgdw =0,
{42) SefFrqgdgdw=0.

Ohm’s laww:

(43) V=SSR

Definitions (besides P and a):

(44) n= |—B—| ,

dU 4du
{46) Y means sum over ¢ and e,
{47) N=|Fdw=|F2ndgdw.

The names are in general heuristic. The equations are complete and inde- -
pendent. New dependent variables have been taken to replace E, B and #°.

For instance,

{48) p =2 m|fd*,

originally, but this definifion can be replaced by 2 differential equation (31).
(48) is now a side condition. Similarly we have the side condition

(49) pUn=73m|Fyndwdg.

E, has been climinated. The Boltzmann équation now plays only the role
of giving the equation of state. (38), (41) and (42) are gide conditions. Ratio-
nalized units are used for J and B as in the fluid theory.

T

g

e e R

S B T,

T]
for g,
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61,

80
{62)
(83)
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(64)
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The system is (31)}-(49). The differential equations are (31), (32), (36), (40),
for g, u, #, B. The definitions are (83)-(38), (37), (39), (43)—(47). The side
conditions (initial conditions) are (38), (41), (42), (48), (49).

This system of equations is for all quantities to zero order. Itisin prin-
ciple easy to develop the system of equations to next order or to any order
in 1/e by iteration.

It is possible to simplify the Boltzmann equation somewhat by introducing
the magnetic moment » = w/f for a particle in place of w, where 8=|B]|.
Also it is possible to write

(50) ' By=—n-Vp,

where this equation of course only expresses part of #' as a gradient. Then let

(51) e=w+d + 2y,
80
¢
(F2) Q:V2(e—vﬁ—ﬁ?p).
(53) w= 1B

We may transform the Boltzmann equation to these variables, {, », » and &
just as we did from #rv to trwg. The notation is the same ag that of Kruskal
and Oberman [2]). The introduction of ¥ is due to NEwcoms [15].

The eguation becomes affer some algebra

{54) %-{-(OEJr gn)-Vf 4 wﬁnn-Va—vﬁV-aﬁQZnn:Va+

« e Dylof
eV o Dt ag =
where

D a—t—l—a-V.

Dt &

In deriving (54) we had to use (40) and (41) to show

Dn . 1 ot
a~m=an,Vot_§n VE.
Also we have set
(65) ftryn e) = 2 I0(2, 7, w, q)

6 -~ Rendiconi{ S.I.¥, - XXV,
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and in (54) ¢ is given by (52) in terms of ¢, r, v, e. f is a dilferent function than

fd, ry v).

We note that there is no coefficient of 9f/9v which corresponds to the fach
that the zero-order » is a constant; of the motion. Also the coefficient of of/ct
vanishes if « and dy/0 vanish which corresponds to the fact that for «=0
E°—0) and F, constant, ¢ is a constant of the motion. These facts may be
derived directly from eq. (13).

In computing moments we also need to know the Jacobian of the trans-
formation to vz which if Blg {2n (8/q)dvds =d?V). Hence

N =%, gdfvda]‘,

U, = Ei['g dvdsfq ,

L = Zim]'g dy defof ,

Py = Zimf% dede fg*,

the factor 27 having been absorbed into f. Since two values of g correspond
to one of f we must sum theinfegrals over the + and — values. Thusthe ¥, .

Note also for toroidal situations p is in general multivalued which i per-
missible but awkward. We shall, henceforth, restrict ourselves to situations
where p may be taken singlevalued. Such a situation is a mirror machine-
where all the particles arve «trapped », turned around by the magnetic field
as in a mirror machine.

Boundary conditions, — We will assume the
simplest boundary conditions namely o-n=0
on all boundaries. The magneotic lines of force
of the mirror machine are assumed to enter a
rigid infinitely conducting wall (see Fig. 9).

For particles which are bturning around

8

we have Fig. 9.

(67) , i, row ) =f(t,r,v e when ¢=0.

Where the plus and minus refer to the different signs of g as one approachoes
the point where g=19.

We now consider the consequences of the equations given in the summary
with (36) replaced by (64) and where appropriatc integrals over w and ¢ are

repl:
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replaced by infegrals over £ and » (and summed over 4) with the the corres-
ponding factor of §/g.

34, Slatie equilibrium. - We first consider the case of a static equilibrium
sabisfying the equations of the adiabatic theory given in Section 3'3. The
side conditions now become full equations. Denoting the equilibrium fby g
we find from the Boltzmann equation with & =0 (z=0)

(58) : gn-Vg=0
or g is congtant along each line of foree I

{69) g=g(L,ve).

Algo from (42) and %, =0

(60) _ 0 =f|i2—|— dv defqg .

The other non-trivial equations are

(61) V-P=JxB,

(62) : J=VxB,

(63) ' V-B=0,

{64) D il f % gdvde =0.

The other equations including (43) become redundant. The sirnpﬁciﬁjr of (58)
explaing the choice of & as an independent variable.

86. Idnearized theory, — As in the fluid theory we do not congider any
arbitrary perturbation of the equations of Section 3'3 from the stafe given
in Bection 34 but restrict ourselves to those satisfying constraints which do
not invelve loss in generality with regard to stability.

Let

. "
(65) L=

Then since B o= 0

0 aB .
(66) 5 EB) =B at g — 0.
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Thus we may Assume

EB=0.

(67) B'— Vx(ExB),

which is a solution of the linearized equations. (Remember an arbitrary con-
stant in time can be added to (67) in general, so (67) involves a constraint on

the perturbation.)
The linearized momentum equation is

(68) Q%JrV‘P’:(VxB’)xBJerB’.

(We remind the reader B’ is the perturbed B at a fixed point; B* =B'+§-VB
is the perturbed gquantity following E)
Now

Pr—P* _E.VPr,

and
P* = pi(I — nn) + (p, — p.) ()" + pymn .
p% and g} arc found from (56)

Tn evaluating p% care must be taken to vary the factor Blg. ({g is given
by (52)). To do this note that (2q[Ce), ., =1/q so, for instance,

[ f % v dsvﬁfr - { f Bady davﬁfgr - j"(ﬁzg)* v devg, + f g dv devpf® .

In this way the expreszion for P* is found to be

(69) P* = (¢ 28 )tnn 1 VE— V- -E)(I —nn) +
4 (p,— p)[nn-VE L+ n-Vén —nn(nn-VE+ V- &)+

+ Yam f % dvde[vpl + g — vfnn] (f* + gew*) ,
where

(70) ¢ = Zimjr% dv der2fiy, .

To complete the linearized equations we need equations for f* and one for ™.
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The equation for f* is from (54)

af* dg
{71} Efqn-vf*—a g.=10,

where

{72) | {= qz?mIVf+vﬁ(V-E~om:V§)—w%1p*,

COIL-

t on
and the equation for ¢* is (from (41))

{73) 0=>.¢ T% dyde(f*—g.) .

: BEquation (42) is easily shown to follow automatically.
““YB ‘From boundary condibions (57) and (71) we can show that

(14) S, % Af— Lg) = 0,

i where the line integral is bhetween the points where ¢ — 0. We restrict, our-
gelves to perturbations satisfying

(75) pn % di(f —Lgs) = 0,
given _
which once satisfled is always satisfled by eq. (71). Hence, no loss in gene-
rality ig invelved by rvestriction (75).

36, Stability theory. — The stability theory follows closely the fluid theory
of stability. The debails are given in the author’s paper « On the Necessity
of the Emergy Principle of Kruskal and Oberman », Physics of Fluids, 2, 192
(1962) [16].

Instead of a single equation for § as in the fluid fheory we have another
6 equabion for f which is first order. To arrive at two second-order equations
?’*) . we make use of a éuggest_ion of NewcoMe [15] and set

H

f(ty Ty v, 8) = fi(t': T, %; &) I fi(t: T, v 8},

hit,r, v, 8) = f;(ta Ty ¥, €] — f!_‘(ts Ty ¥ E),

f is the total number of particles with given e regardless of the sign of ¢, and &
represents the asymmetry of the particles between the ftiwo signg of g. Writing

- - PR At Y s 4 b R . O
o LT TR S T U e e I dasma e i NE— N



86

R. KUL3RUD

(71) for both ﬂ and f° and adding and subtracting we obtain for f and &

%+Lq|n-Vh—2C'ga: 0,
{(76)

ok -
S +Hlalnvi=0.

Eliminating A from these equations we have

.a_sz an(anf) - 2595 =0,

() e

a second order equation for f. Since only f enters into P* and (73) which -

gives p* wo may regard (68), (73) and {77) as = closed system of equations.
Regarding (73) as a definition for »* we may write the two scecond-order equa-
tions as '

E=F¢, ),

(78) - -
f=dJE&D,
and derive the cnergy principle from these egunafions.- For this purpose it is
necessary that F and J together satisfy a self-adjointness. This self-adjointness
was first discovered by NEwCOMR [15] who gave a direct proof of it. In these
notes we follow the indirect method of the fluid theory in finding and de-
mongtrating this self-adjointness.

We consider an arbitrary perturbation away from the equilibrium described
in Section 8'4. Ordinarily one could specify £, and f* while {7 is determined
by (71). These are subject to the constraints E-n=%,-n =0 and (75). How-

ever, it is possible fo assign both f and f, arbitrarily since fsatisfies a second-

order differential equation. Of course, f must satisfy restriction (75), and one
must be able to determine & from eq. (76). Tf is easily secn that the labter re-
quires that (75) be satisfied by f,. In summary the stability problem is re-
duced to examining all solutions of (78) subjeet to the constraints (on the
initial values of the perturbations) §-n=%§, n=0 and f and f, satisty (75).

In order to define our perturbations to higher order {as in the fluid theory)
we define

(39) B eair 50,

s0 § is the true Lagrangian varviable. We generalize (75) by noting that it is
a lincarized version of a nonlinear eonstraint given in the paper of KRUSKAT
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and OBERMAN [2|. Namely, introduce a labeling (i.e., two parameters) of the
lines of force, I, which gives the original position of a line of forece passing
through r at time ¢. Then for any function &

(80) ; =G0, 1, Ty e

is a constant. We congider only those perturbation which have the same value
of p as the equilibrium for any choice of & Tb is easy to show that fo first
order in the displacement thig is just consfraint (75). Because (80) is non-
linear #**, the second-order perturbation of f, is not completely independent
but may be related to f*2 and therefore it is possible o express the energy to
second ovder in terms of ¥ and f alone.

Aftier these remarks we now follow the argument given in the fluid theory
to establish the self-adjoinfness of the operators in (78). For convenience,
we write (78) a8 one equation

{81) : - A=H),
where A represents € and f together. The energy U is
U= me% dvde}‘sdr—]—f% dr,

which may be shown to be constant by means of the equations of Bection 3'3
Ixpanding it to second order in A, we geb

U = A(A) + B(A) + E(A, A) 4+ M(A, A) + W(A, 4)

which must be constant for all A and A subject to the constraints. We find
4 and K by seiting A=f, £=0 ‘

U:%IQEIS—F megdvds (f**+%w**)s.

(We may ignore the change in fjg produced by E, since £ =0 and the change
produced by ** is simply (efm)f/qy**.) On the other hand the nonlinear
constraint (80) fo zecond order gives

fﬂ lG’ (f** +8 w**) + Gii] dyde=0.
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Taking G, =¢ (for { =g) we have G, =—1/g, and
17 m 8 1 C
(82) U—‘éfggz—Zg[ﬁd?d&ikz—ﬂ(d,ﬁl),

and 4A=10. We must assume #.<< 0 since it must vanish nowhere, and thig
makes K positive definite. 7 is to be expressed in terms of f, by means of (76).
Now from the same formal argument as in the fAnid theory one obtaing

(83) K[H(A), A') = K[H(A"), 4],

where A and A’ ave any two A’s satisfying the constraints. Also

(84) Wi, A) = — K{H(A), 4]

and W(A, A) being positive for all A gives a necessary and sufficient condi-
tion for stability as ecan be shown by the last proof of condition d) in Section 2'4.
The analogous equation here is

W(d,A) = 3 ot K(A,, A,)0?
and K is positive definite.
To obtain an explicit energy principle it is necessary to find W by means
of eq. (84). Tt WA)=k(}, E) represent an abbreviation for the solution of
(85) qr-Vh={f4 2lg,

then

(86) WA, A) ‘% 0% F(E, ) dr 4 g%”fggi AR H(A)] d7 de do .

But is is easily seen from (71) that
(87) WH(A)] = —|qin-Vf.

Using (87) in (86), integrating the last term by parts and using (85) we have

V]T(/l, A):—%ngF(g; f)“szggls (f—é’ge}fd'ydadr.

The remaining infegrations by parts (on F) are standard and one obiains after
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some algebra

8 W= (@ +TExQ 5V E
- 1 3p,(nn 1 VE VB 1 (0, — p) [ nre (5 VVE) 4
- (un 1 VE: — (- VEY— (- VE)(VE )] +

+ e(nn  VE — V-E)a}dr—i z'mfg f-’“gdvdedr =
i.e [
1 212
= WI—ZZ@[%gdvdsdr,
where

- 2
A ..
f —ermlP*gs,

% is the value of f* given by KruskaL and OBErMAN and differs from ours
due to a difference in definition of g Their ¢ is

txo = ¥f + 0%/2
with no . ,

Expression (88) is identical with that given by EKrusran and OBERMAN
after one sets f, —=f_in their expression (a frivial minimization). Thus their
8W gives a necessary and sufficient condition for stability.

To be useful this expression should be minimized over f* (or f~) subject
to constraints (73) and (75). This has not yet been done bub a good sufficient
condition (for stability) is obtained by minimization subject only to (758). The
resulting expression is

(89) | Weo = W, — szg Atg.dvdsdr,
where

90 5 [[l@—vBnn:VE 1+ sV -E)at/lq|
o) T4l

8'7. Comparison theorems. — To compare SW, given by (88) with 3W, of
fluid theory we must consider the case of an isotropic g. We know that 3W, >
> 8W, of (89) and dW,, simplifies considerably for isotropic g,

(81) dWxo= %f[@*ﬂ-éx@ + & VpV &) — zm[ggslgdvdadt.
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Write

_ef[z—Syﬁ)nntvg—;—yﬁvg]dlj\/l—yﬁ:_{- _f @l T
@2 4= =i T a R BV LA

Then the last term of (91) is

1B P J?
® W Josfonfer g

where dy is a flux element and we have used

_ 8V

p = =TS >m|evig,de.

But by Schwarz's inequality

s J |2 [)dyS]?
f?{dy:_ dy(f) K= }W}f’

S0
15 [[dy.S ]
Wg>z f dpp Jidy—K
Now
for=3
fdyJ: gjdl%g s
80
5 "~
Wisg § ey gy,
where
e JIV-E)dijB

However we must remember that in the adiabatic theory §-m =0 while
in the fluid theory E-n = 0. Minimizing W, over £ -n is equivalent to making
nV(V-E)=0 or V-E=(V-Ey. Call W, minimized over £, SW.. Hence
we obtain the important result

SW, > §Wy, > SWL.
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But SW; gives a necessary and sufficient result for stability on the fluid theory.
Hence if the fluid theory gives. stability so must the adiabatic theory. Thus,
we see the fluid theory gives reliable results even in cases where one would
suppose it was unveliable. The comparison theorem and its proof iz given in
both references [2] and [5].

" 4. - Double adiabatic theory. -

41. Basic equations. — We now consider the sitnations intermediate be-
tween Ghose of weak collisions, adiabatic theory, and strong colisions, fluid
theory. Thaf is the situations in which collisions are not sufficiently strong
to keep the pressure a tensor bub sufficiently strong to prevent heat flow and
other transport processes. The basic equabions are

(1) ' %:_QV'V,

(2) ¢S =—V-PixB,
(3) P=p,(I—nn)+p,nn,
“ aleg) =0 )0,
(5) | %1: —Vx(FxB),

6) ' V-B-o,

{7) J=VxR.

The only difference between these equations and the fluid eqs. (9)-(14) of

- Bection 2 is that in (10) the pressure is replaced by a tensor whose two in-

dependent components are determined by the two adiabatic eguations of

state (4) insfead of the single equation of state (11) of the fluid theory.
One derives (3) and (4) as follows: Starting with the Boltzmann equation

{without; collisions) '

‘ T VxB
®) S vt e(r s By v e,

and introducing

9 ¥—ltam,
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(10) NU=|Viaw,

(11) P= mf{v — Uyw — Ujfdw,

-

(12) Q= m}(v— U)v — U)v — U)fds,

one finds after multiplying (8) by (v — U)(v— U) and infegrating by parts

(13) %§+VQ+PNIH+Pﬂv+wnvmmH%QMP—me:o,

where (P-VU)" is the transposed dyadic of P-VU.
Let e (or B) be large and expand P

P=PLPy..,
then {rom (13)

BxPr=PxB
or

{14) "P=p,(IT—nn})+p,nn.

Equation (13) to first order involves P’ but, first taking the trace and second
double-dotting with npn eliminates P, and gives

d
(15) T @pt+ o)+ Cpy +p)V- U420 (V- U—nn:VU) 4
+ 2p,(mn NU—-V - U+ 2p,V-U=0,
and

(16) d%4»1)“(V'-Un)JFZp,,m"L:VU:O .
respectively, Now from (1) and (B)

(17)

(18}

and combining these with (16) gives the second half of (4). Combining these
with (15) and the second half of (4) now gives the first half of (4). The deri-
vation is essentially given in reference {8].
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4'2. Static equilibrium. — The equations for sbatic equilibrium are

{19) JxB=V-P,
(20) : J=VxB,
(21) V-B=0,

These equabions are the same asg those of the adiabafic théory except p,
and p, are free and not determined by f.

4'3. Linearized equations. — Introduce § as before

0
az—U'

Then the basic linearized equation is

{22) Qc‘li—ai':—V'_P*—FV'(E‘VP)‘I‘J"XQ'JF (VXQ)XB:

where:
From (1), (3), (4) (and (8) for n¥),

{23) P*=p (nn.VE—V -E} —p (3nn:VE—V Enn
+ (py—2.)[n ' VER + nn-VE — nn{é¢nn VE |- V-E)].

From (22) and (23) we have

de
(24) 02 = Fou(®),

where F,(E) is a linear operator in & corresponding to the F of the fluid theory.

4’4, Stability. — The treatment of stability follows the indireet proof of
secion 24, Tt is easy to show from (1)—(7) of this seclion thal the energy

_[{ey: B By
(25) U—f(217+2+p¢+2 dr,
is constant. One expands U in € to second order

(26) U= A®E) + BE) + K& &) 1 ML)+ WE E)

i
{il !
l
|
z
il !
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and 4 and B are easily shown to be zero and again

[‘ng dr.

i

[l

(27) E(E &)=

As before from U=0 for all £ and  one has

FDA(E.) - FDA(E’) }
928 K|l—=,E|=K|—, &,
o8 [ B =r [
Qr
(29) ij(E), g dv— | Fou(EY) Edr.

- - A . . - ..
From this o* is real for normal modes and an energy,principle exists, z.e.

(30) SWDA — —-[E FDA(g) d.'E' I

gives a necessary and sufficient condition for the stability of the solutions of
the linearized double adiabatic solutions of Section 8'3. By some integrations
by parts one finds

) Waum [0+ TEXQ+HE T B+ (VE )P+
1 PV anVE + (5, — p)[— (VBN
— (n-VE)- (VE-n) + 4(nn:VER | nn-VEV - — an V- (§-VE)].

From (31) and eq. (21) of Section 2 onc sees thabt if P is isotropic (pL=7p.)
and we set y =13,

(32) SWo, > 8W,.
Thus, if an equilibrium is found to be sfable on the finid theory it will be
stable on the double adiabatic theory. (It will also be an equilibrium).

To find the comparison between the adiabatic and double adiabatic theories
we find from (31) of this section, and eq. (88) and (89) of Section 3, thab

(33) SWio=8Wps L+ T — %fdrnn :Vg['p_L(ZV g -+ nn VE) -4

+ 3(py — pL)(pr IVE)]

o M e A Do kil i

R i e

whe
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where

and A is given by (90) of Section 3.
But by the Schwarz inequality
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(34) I=—3% %%jg dydedrg, [IJ.Z — 22 (nn VE —V -E)7],

We thus have the inequalifies

(38) \

» » BT =

» » FT =
» r KO =
» y K.O.=

»

b

»

]

SV, < 8Wyo << SWoa
W< W .

»

»

B

»

(35 33 < (@A) [Pnm VG 4 op(V £ — - VE
{ _) < Jallg
(Hjnﬁ: write
= (fabdl)z/f§§<fazdlszdl/(fg)z,

q q
where _

1 1

o= b=l ]) .
Use of (34) and (35) gives
(36)': i} I<:§L dr [p, 2V - — nn VE) + 3pynn:VEjrn:VE.
Therefore from-(33) and (36)

(37) §Woco < Sy -

The relations]iip between W, and W, has not yef been worked out.
From inequalities (38) we get the theorems

Stability on F.T, = Stability on K.0.T.

AT,
D.AT.
AT,
D.A.
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where we use the abbreviations:

ET. = Fluid theory,

AT. = Adiabatic theory,

D.A.T. = Double adiabatic theory,
K.0.T. = Kruskal Oberman theory,

= = implies.

Again the derivation of the comparison theorems follows that given in both
references [2] and [5].

L
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