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Foreword

THE present monograph attempts to discuss a fairly wide range
of questions in the modern statistical theory of noa-equilibrium
processes in 2 plasma by a unified method, proceeding from the
microscopic equations.

As the starting point we use the closed system of equations:

Qﬂ_l_(v_ aN,,)Jrea ({EM_!_%[Q,AHM]} : 3Na) -0,

ot oq op
1 oEM )
curl HM = = ~a—t+4ﬁZe, oN, &p, divHM =0,
M
curl BM = _%‘%’r_; divEM=4nZeafNa d*p,.

for the microscopic phase densities

Nig.p. D= 3  8(g—¢®)dp—p)
1<Ci< Ny

of each component of the plasma a and the microscopic strengths

of the electric and magnetic fields EM(gq, 1), HM(q, t). Under

fixed experimental conditions these functions are not determined

unambiguously so they must be-looked upon as random func-

tions.

With this method of description the problem of the statistical
theory of non-equilibrium processes in a plasma can be reduced
to determining the first, second and higher moments of -these
functions. The present book pays most attention to the approxinia-
tion of the first two moments. Little work has as yet been done on
the theory of the higher moments for a plasma.

In the last few years a number of books has appeared about
various questions of plasma theory. Amongst them are the well-
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Foreword

known books Propagation of Electromagnetic Waves in a Plasma
by V. L. Ginzburg and Electromagnetic Properties of a Plasma
and Plasma-like Media by V. P, Silin and A. A. Rukhadze. The
first four issues of Problems in Plasma Theory have been pub-
lished under the editorship of M. A. Leontovich and contain
papers by a large number of authors. Of non-Russian books
R. Balescu’s book Statistical Mechanics of Charged Particles
should be mentioned.

The author hopes that the present book will be a useful addi-
tion to what has already been published on plasma theory.

viil
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Introduction

PRESENT-DAY statistical theory of a plasma is based on the well-
known work by L. D. Landau (1936), A. A. Vlasov (1938) and
N. N. Bogolyubov (1962).

Using the Boltzmann equation Landau (1937) was the first to
obtain the kinetic equation for a uniform (or quasi-uniform)
plasma which allowed for charged particle collisions.

In 1938 Vlasov derived a system of kinetic equations with a
self-consistent field—the closed system of equations for the first
distribution functions and the Maxwell equations for the average
strengths of the electric and magnetic fields. This system of
equations is now widely used to describe the processes in a plasma
when the characteristic time is much less than the relaxation time
(the time taken to establish an equilibrium state).

Bogolyubov’s well-known monograph Problems of Dynamic
Theory in Statistical Physics shows that the kinetic equations of
Vlasov and Landau can be derived by approximate solution of
the chain of equations for the distribution functions f, f, ---»
of one, two or more particles. '

Here the distribution functions f,, f,,. are expamded in
powers of the interaction energy and the asymptotic solutions are
found for the equations for the functions f;, f., - . ., which are
completely determined by the first distribution functions f,.

The equation with the self-consistent field is in this way the
first approximation of perturbation theory, which corresponds to
completely neglecting the correlation. .

In the second approximation in the case of a spatially uniform
plasma we obtain Landau’s kinetic equation.

However, using perturbation theory with respect to the small
parameter characterizing the ratio of the average interaction

ix



introduction

energy to the average kinetic energy is insufficient when describing
the processes in a plasma. This is manifested in particular in that
the “collision” integral in the Landau equation obtained in this
way contains a logarithmically divergent integral with respect to
the wave numbers.

The divergence at small distances (large wave numbers) cannot
be eliminated within the framework of perturbation theory since
the interaction energies and correlation functions are not small
at small distances. The divergence at large distances is connected
with the fact that polarization of the plasma is not allowed for
when using perturbation theory with respect to the interaction
energy in the collision integral.

Bogolyubov (1962) suggests that plasma polanzatlon be al-

lowed for by an improved perturbation theory method in which
the smallness parameter used is the so-called plasma parameter
e = (r,,/rs. It is defined as the ratio of the cube of the mean
distance between the charged particles r,, to the cube of the
Debye radius r,; which determines the correlation radius of the
charged particles for states close to equilibrium.

This parameter is inversely proportional to the mean number
of charged particles N, in a sphere of radius r;. For a rarefied
plasma the number N is very large so the parameter & << 1.

The presence of thlS parameter allows us to give the distribu-
tion functions f,,, fose» €tc., in the form

IR N IDESACE BIACE 1))
+ Egab(qn Q"’ p9 P’! I)v
j;abc = f;:ﬁ:f::‘l‘ e(gabﬂ‘l“gbcﬁ:'l'gmfb)"' Ezgabc

Here the g, are double correlation functions of the components
of the particles a, & and the g, are triple correlation functions.
In the first approximation with respect to the parameter & we
obtain a closed system of equations for the functions 7, 8-
The equation thus obtained for the function g, differs from
the corresponding equation obtained when expanding with re-
spect to smallness of interaction in that polarizationis allowed for.
Also in this case it has proved possible to find an asymptotic
solution of the equations for the functions g,, in the spatially

X
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uniform case when the time dependence of the functions g, is
determined by the time dependence of the first distribution func-
tions f,. This solution has been obtained by Balescu (1960),
Balescu and Taylor (1961), and Lenard (1960) for the classical
case and by Konstantinov and Perel (1960), and Silin (1961, 1962)
for the quantum case.

The corresponding kinetic equation for the function £, differs
from the Landau equation in that plasma polarization is allowed
for more exactly (see § 11). :

It is possible, of course, to obtain a more precise solution of the
system of equations for the functions Far 8aps Baper ---» WHED
higher approximations with respect to the parameter « are allowed
for (see Silin, 1963a). '

Bogolyubov (1962) discusses the case of a Coulomb plasma
(a system of charged particles interacting in accordance with Cou-
lomb’s law). Bogolyubov’s method can, however, also be used in
the more general case when it is important to allow not only for
the potential electrical field, as in a2 Coulomb plasma, but also
for the rotational electromagnetic field.

In this case instead of the distribution functions that depend on
the particle coordinates and momenta we must use the more
general distribution functions that depend apart from the vari-
able particles, on variables characterizing the microstate of the
electromagnetic field and use the appropriate equations.

Tt is convenient to use a different method for giving the micro-
state to describe the processes in a plasma (see Klimontovich,
19582, 1958b, 1960a and 1960b). We shall consider that the
microscopic state of a system is given if we know the values of the
microscopic density of any plasma component

No=_ 3 . dg—q0)5(p P:(1))

H
at a given point in time at each point of a six-dimensional phase
space g, p and the microscopic values EM, HM of the electrical
and magnetic field strengths at any point g. In this case we can
take the system of equations for the functions N,, E™, H™ as
the initial microscopic equations. This system of equations can be
simplified for a Coulomb plasma and becomes a closed system of
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equations only for the functions N, (q, p, #). These equations are
similar to the operator equations for the wave: functmns in the
Heisenberg representation.

It is this method of describing the microstate of a plasma that
is used in the present work. This is dictated by the fact that using
the system of equations for the random functions N,, EM, H™
as the initial one makes possible a considerable simplification of
the solution of a number of problems.

This is because we have to solve the comparatively simpler
system of equations for the deviations of the random functions
N, EM, H™ from their average values instead of the very
complex equations for the distribution functions of the particle
coordinates and momenta and the field oscillator coordinates and
momenta.

With this approach the problem of the theory of non-equilib-
rium processes im a plasma is reduced to determining the mo-
ments of the random functions N,, EM, HM.

The simplest are the first moment N, = n,f,, E" =
H™ = B. Here n, = N,/V is the average particle concentration
of the component a and f,, is the corresponding first distribution
function. The bar denotes statistical averaging.

When averaging the system of microscopic equations we do not
obtain a closed system of equations for the first moments since

the second moments M, hM—Na appear in the equations for
the functions N,, e, b as well as the first. The third moments
appear in the equations for the second moments and so on. The
position here is similar to that which occurs with Bogolyubov’s
method when deriving the chain of equation for the distribution
functions or in the Green function method (Zubarev, 1960;
Bonch-Bruevich and Tyablikov, 1962; and Abrikosov, Gor'kov
and Dzyaloshinskii, 1965).

In those cases when the central moments, starting at the third,
can be ignored in the first approximation we obtain a closed
system of equations for the first and second central moments of
the functions N, e™, A™.

For a2 Coulomb plasma, when the rotational electromagnetic
field may be ignored, we obtain in this approximation equations

xil
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equivalent to the closed system of equations for the functions £,
2., which is obtained in the first approximation with respect to
the parameter &.

The microscopic equations for a plasma are discussed in the
second chapter. Here we also average the microscopic equations
and examine an-approximate system of equations for the first and
second moments.

The first chapter is of a sub51d1ary nature. Here we discuss the
Maxwell equations for slow and fast processes when dispersion
of the medium must be allowed for.

The third chapter discusses the system of equations with a self-
consistent field. ,

In the fourth chapter we investigate the statistical characteris-
tics of a spatially uniform and non-uniform plasma.

To a certain extent this case is the opposite of the self-consmtent
field approximation. In the self-consistent field approximation of
the second moments

N,eM = N,e+3N,0e, NJiM = N,b+ 5N,0b,

which appear when averaging the microscopic equations for the
functions N, only the first terms expressed by the first moments
N,, E, B are retained. The second terms, which allow for correla-
tion of the particle and field distribution, are neglected. In the
spatially uniform case the correlation terms play a major réle.

A closed system of equations for the first and second moments
is used to describe the processes in a plasma. Even this approxi-
mate system of equations is, however, still too complex so the
question arises of the conditions under which it can be simplified
and to what degree.

If the maximum correlation time of the random disturbances
in 2 plasma is small by comparison with the relaxation time of the
first distribution functions f,, then all the second moments can
be expressed by the functions f. .

Under these conditions we can eliminate the correlation func-
tions from the equations for the functions f, and obtain closed
equations (the kinetic equations) for them. They are discussed in
§8 11, 13 and 14.
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Expressions are derived for the spatial and space-time spectral
functions for both a Coulomb and a relativistic plasma.

The fifth chapter is devoted to a discussion of the more general
case when the correlation time of the perturbations in a plasma
can be comparable with or greater than the relaxation time for
the first distribution functions.

Then the correlation functioms can be expressed by the f,
functions only for the short-wave region of the spectrum (“the
collision region”). For the long-wave region of the spectrum {*the
radiation region™) only the more complex correlation functions
can be expressed by the spectral function of the field strengths for
the radiation region. Closed equations for the distribution func-
tions f, (kinetic equations) cannot therefore be obtained. Instead
of the kinetic equations we obtain in this case the more general
equations for the functions f, and the spectral functions of the
field strengths. This system of equations can be used to describe
a definite class of turbulent motions in a plasma.

. The equations obtained can be easily generalized for the case
when it is necessary to allow for the higher moments of the random
functions N,, E™, HM.

The last chapter is devoted to discussing the various possible
methods for 2 hydrodynamic description of processes in a plasma.

Section 21 derives the hydrodynamic equations for a strongly
ionized plasma without allowing for plasma wave emission, when
the characteristic dimensions and times are much greater respec-
tively than the relaxation length and relaxation time of the first
distribution functions. The kinetic equations for the functions f,
are used as the initial equations. The hydrodynamic equations are
obtained by Grad’s method.

Section 22 discusses the example of hydrodynamic description
of the processes in 2 spatially uniform plasma allowing for plasma
wave gmission.

Section 23 discusses the hydrodynamic equations for a “plasma
without collisions’”, when the characteristic dimension of the
system is much less than the mean free path (the relaxation length
of the function f).

Finally, §24 is devoted to deriving the equations for the

Xiv
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Introduction

hydrodynamic description of the motion of charged particles in a
weakly ionized plasma.

The majority of the material in the present book has been
presented in lectures read in the Mechanics and Mathematics
Faculty of the Moscow State University.

Lack of space in the book has not permitted the inclusion of a
whole series of important and interesting questions in plasma
theory. Amongst these are, for example, questions of stability
theory, non-linear problems which can be solved on the basis of
the equations with a self-consistent field and non-linear problems
of a turbulent plasma. Nor is there discussion of questions con-
nected with allowing for inelastic interactions. The author hopes
to discuss some of these questions in another monograph.

The list of references covers works used to some degree in the
present monograph or which discuss questions not touched on
here.
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CHAPTER |

Maxwell Equations for Slow and Fast
Processes

1. Maxwell Equations for Slow Processes

There are two methods for describing the processes in a plasma,
just as in other media such as a gas or a solid: the macroscopic,
or thermodynamic, and the statistical. :

In the macroscopic description the state of the system is defined
by a small number of thermodynamic parameters, such as tem-
perature, density, pressure, internal energy, etc. The thermodyna-
mic parameters are the averaged values of the corresponding
microscopic functions.

The thermodynamic description has been developed both for
quasistatic (reversible) processes and for slow irreversible pro-
cesses. In the latter case a closed system of differential equations
is established for the thermodynamic functions.

As an example we can take the gas dynamics system of equa-
tions which is a closed system of equations for the thermody-
namic functions g, T" (or p) and the dynamic function u which
defines the mean velocity of motion in the gas.

The condition of slowness of the thermodynamic processes in
a gas means that the functions g, T, # vary only a little over
distances of the order of the mean free path and during the time
of free flight. In other words, this means that the thermodynamic
description of the processes in a gas is suitable for that stage of
the process which follows after local statistical equilibrium has
been established, i.e. for the so-called quasi-equilibrium processes.

The gas-dynamics equations can be used to show that the sys-



Non-equilibrium Processes in a Plasma

tem of equations for describing stow processes can be obtained
in two ways.

The first (the phenomenological method) is based om the use of
the conservation laws and experimental ratios between the fluxes
of heat, momentum and matter and the gradients of the thermo-
dynamic functions. At the same time the equations contain ex-
perimental coefficients of, for example, viscosity, thermal con-"
ductivity, diffusion, etec.

The statistical description of the thermal processes allows us to
determine the validity of the simpler thermodynamic method of
description, to establish its limits of applicability and to express
the experimental coefficients in terms of the micréscopic para-
meters.

In addition, of course, the use of statistical methods allows us
to discuss problems which cannot be solved by the thermody-
namic method.

The first two sections will discuss certain questions in the macro-
scopic theory of electromagnetic processes which are necessary
in order to understand the statistical theory.

The present section discusses different ways of writing the
Maxwell equations. These equations define the connexion be-
tween the average values of the electrical and magnetic field
strengths and the average values of the electric current density and
charge density. :

In their mathematical form the Maxwell equations express the
system of basic laws governing electromagnetic processes in an
arbitrary medium. When describing slow processes the properties
of the medium are characterized by giving a small number of
constants: the permittivity, the permeability and the conductivity,
whose values are determined by experiment.

The Maxwell equations for fast processes are discussed in the
second section.

Let e; be the electrical charge of a particle with a pumber 7.
We define the microscopic charge density and the microscopic
current density

eyt = Zeié(q-qi(t)), M= Zieav.-é(q—qs(t))-

L
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Maxwell Equations for Slow and Fast Processes

Summation is with respect to all the charged particles in the
system. The subscript “e” on ¢ will be omitted in the cases when
it does not lead to confusion with the particle density g.

The microscopic charge and currept densities are extremely
complex functions since they depend not only upon the coordin-
ates of the selected point ¢ and the point in time £ but also on
the coordinates and velocities of all the system’s particles.

In the macroscopic description instead of the microscopic
functions we use the averaged characteristics

Q(Q7 t) = QM: j =3N—I'
The bar indicates averaging with respect to an ensemble of identi-
cal systems. :

It is frequently convenient to split the average charge and cur-
rent densities g, j into two parts.

Let us take a flat capacitor as an example.

Let the charge of one of the plates be given as @ and ¢ = Q/S
be the charge per unit area of the plate. We shall call the charge
O the external charge. The term “‘strange” is often used instead
of “external”. If a dielectric is put between the outer plates,
surface charges appear on the capacitor plates due to polariza-
tion. We shall call these induced charges. The total surface charge
density may therefore be shown in two parts: the surface density
of the ext_ernal charges o° and the surface density of the induced
charges o',

.Let us take another example. Let a current [ flow through a
coil. We shall call this given current the external one. Into the coil
we put a cylindrical core which is magnetized by the magpetic
field produced by the external current. As a result of the magneti-
zation a current flows over the surface; we shall call this the
induced current. o
. Sometimes the charge and current densities are divided not
into external and induced but into “free” and “bound”. Bound
charges are those which can move only over a distance much less
than tl?at of the system in question. For example, the charges
appearing on the boundary of a dielectric when it is polarized are

-bound. In the same example ¢ = Q/S is the density of the free

3



Non-equilibrium Processes in a Plasma

charges. The bound currents are the currents produced by the
bound charges.

In the examples discussed the two methods of division agree.
However, in the case of a completely ionized gas, for example, all
the charges may be considered free so the second method of
division is no good here, but the charges can be divided Into
external and induced (see § 7).

We shall therefore assume that the total charge and current
density can be divided into two parts:

o=g"+d, F=i+i (1.1)

“The strengths of the electrical and magnetic fields can also be
defined in two ways.

We can introduce the microscopic strengths of the electrical
and magnetic fields. These will be denoted E™ and HM respec-
tively. These quantities are very complex functions, the value of
which at a given point in the field and a given point in time
depends on the position and velocities of all the system’s charged
particles.

At the same time as the microscopic values of the field strengths
we shall introduce the averaged values of the electrical and
magnetic field strengths as characteristics of the electromagnetic
feld. We shall denote these by E and B. The guantity B is
generally called the magnetic flux density. Averaging, as before,
is carried out with respect to an ensemble of identical systems.

E is thus the average value of the microscopic field strength
EM | which is determined by all the charges, both external and
induced.

B is correspondingly the average value of the microscopic
magnetic field strength HM, which is determined by all the
microscopic currents, i.e.

E=EM, B=HM (1.2)
The laws of electromagnetic theory establish the connexion
between the average values of the charge and current density on

the one hand and the strengths of the electrical and magnetic
fields on the other.

4
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Maxwell Equations for Slow and Fast Processes

These laws can be written in the form of the system of differen-
tial equations called the Maxwell equations.
The system of Maxwell equations can be written in the form

190E  d4m . '
curl B = - ﬁ T], (1.3)
1 0B
curl B = - % {1.4) (1))
divB =0; 1.5
div E = 4np. (1.6)
Below we shall sometimes denote eqns. (1.3-6) by the single

figure ().

The first of these expressions expresses the fact that the source
of the magnetic ficld B in a medium is the density of the electric
current j of all the charges (both external and induced). In addi-
tion an alternating electrical field is a magnetic field source.

The second equation is the differential form of Faraday’s law.
It expresses the fact that an electrical rotational field appears when
the magnetic field strength varies with time. The third equation
expresses the fact that the magnetic field is always a rotational
field so that the lines of force of the magnetic field strength
are closed. Finally, the last equation is the differential form of
Ganss’s theorem which says that the flux of the electrical field
strength vector through a closed surface is proportional to the
sum of the charges inside this surface. Gauss’s theorem can be
proved by using Coulomb’s law. l

Equations (1.3-6) thus connect the average densities of the
charges and currents (both external and induced) with the mean
values of the strengths of the electrical and magnetic fields created
by these charges and currents.

Equations (1.3-6) are still not enough for determining the
electrical and magnetic field strengths. .

In actual fact the functions g, j can be written in accordance
with formulae (1.1) in the form :

o=, J=jer
The external charges and currents ¢°, j° can be given but the

5



won-equilibrium Processes in a Plasma

induced charges and currents themselves depend on the values of
the field strengths E and B .

There are thus the four unknown functions B, B, ¢, 7, three
of which are vector functions. Equations (1.3-6) are insufficient
for defining these functions with respect to the given external
charges and currents. _

For the problem to become defined we must have additional
data on the system in question which will allow us to establish
a connexion between the unknown functions ¢!, j and the
strengths of the electrical and magnetic fields in the system.

This question will be discussed below. For the moment we will
point out that the Maxwell equations in form (I) are not written
in the only way possible. '

Tn actual fact if the charge and current densities can be divided
into two parts in accordance with formulae (1.1), then the average
strengths of the electrical and magnetic fields can accordingly
also be divided into two parts.

By D and H we shall denote those parts of the electrical and
magnetic field strengths which are created by only the external
charges and currents. The vector D is generally cailed the electric-
al induction vector and the vector H the magnetic field strength
vector.

The remaining components of the electrical and magnetic field
strengths, whose source is the induced charges and currents, will
be denoted by 4xP and 4zM respectively. The vector P is called
the polarization vector and the vector M the magnetization
vector.

These names are connected with the fact that, for example, for
a dielectric inside which there are no charges the vector P is
equal to the dipole moment per unit volume of the dielectric.
Likewise for magnetics, provided that the total current across the
magnetic is equal to zero, the vector M coincides with the
magnetic moment of a unit volume of the body (Landau and
Lifshitz, 1960) (see, for example, §§ 6, 27).

We can thus express the mean values of the field strengths E
and B in the form

E =D—4xP and B = H+4=M. (1.7

R,
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Here the minus sign is placed before the term 4zP on the grounds
that the strength of the electrical field always decreases because of
the polarization (the appearance of induced charges).

In the case of slowly changing fields the induced current can be
represented in the form of three components |

Jt =jcond+a—;:——!-c curl M. (1.8)

The first term defines the conductivity current produced by the
motion of free charges. The second termn defines the polarization
current and the third the current that appears upon magnetiza-
tion. The ratios between these three components of the current
ji are not, of course, the same for different media.

The density of the induced bound charge g, is defined by the

polarization vector
8o = —div P; Qb+Qcond‘ = Qi' (19)

Using formulae (1.7-9) the system of Maxwell equations can
be written in the form :

1 0D dn. 47 .
curl H = = W"F—E—Jcond-l_TJc, (1.10)
1 ¢B :
curl B = —— =, . (1.11) (L
divB =0, (1.12)
div D = 4n(p°+ o.ona)- (1.13)

This is the most widely used way of writing the Maxwell equa-
tions. In certain cases the first two terms of the right-hand side
of (1.10) can be combined into the one (1/c) dD /9t (see § 2).

In eqns. (I) the quantities g°, j® are known and the unknowns
for g,,nq = O are the vectors B, H, E, D, j...s- In this case as
well it is necessary to have additional data about the system to use
as a basis for establishing the connexion between these vectors.

If the medium in question is isotropic, i.e. all directions in it
are equally likely, then in the case of constant fields there are
between the vectors D, E, H, B, j_,nq4, 2s experiment shows, the

7
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relations
D=¢E B=uH, Jjuon=0E, (1.14)

where ¢ is the permittivity, u the permeability and o the conduc-
tivity.

If the first two expressions of (1.14) are substituted in formulae

(1.7) we obtain the connexion between the pairs of vectors P and
E, and M and H

el . it
where « is the dielectric susceptibility and y the magnetic sus-
ceptibility. '

The coefficient = is greater than unity in all bodies. The permea-
bility 4 may be greater than unity (in paramagnetic and ferro-
magnetic substances) or less than unity (in diamagnetic sub-
stances) but is always positive, L.e. u = 0.

The coefficients &, g, «, ¥, o are functions of the thermodynamic
parameters characterizing the siate of matter.

In the case of anisotropic media, e.g. crystalline solids or con-
ducting media placed in a strong external magnetic field, the
relations (1.14) take the more complex form:

D; = e,E, B;= u;H, jod=oyE, (1.16)

ij*=js
Here ¢ is the permittivity tensor, u; the permeability tensor and
oy the electncal conductivity tensor.

If we use the relations (1.14) two unknown vectors, e.g. E, H,
remain in the Maxwell equations (IT). Then by solving the Maxwell
equations with respect to the given currents and charges j°, o° we
can find the strengths of the electrical and magnetic fields. Using
formulae (1.7, 14) we can determine the functions B, D, j.na
and the polarization and magnetization vectors P, M. Substitut-
ing the values of the functions P, M, j.,ng in formulae (1.8, %
we can find the functions §, o' which define the distribution of
the induced currents and charges. :

Equations (1.14) or (1.16) are called the material equations.

In a number of cases it is convenient to have yet another way of
writing the Maxwell equations which differs slightly from the
equations (II). It can be obtained as follows.

8
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Instead of the electrical induction vector D in eqns. (II) we
introduce another vector I}; defined by the relation

oD,
ot
Thus the expression (1/4x) 0D /9t is the sum of the displacement
current caused by the change in the total electrical field E and
the induced current §, i.e. all the current with the exception of
the given external current j°.
Using expression (1.17) we obtain the following system of
equations instead of eqmns. (I):

oE .
= W+clag . (1.17)

curl B = _C— 'a—t-[- J (1.18)
1 4B
curll B = == a3 (1.19) {IL)
divB =0, ' (1.20)
div D, = dog®. ' (1.21)

As well as the known functions j¢, ¢° the three vectors B, E,
D, come into eqns. (IIT}. The magnetic field strength vector does
not come into the system of eqns. (XIT). It is therefore sufficient,
using the properties of the medium in question, to establish a
connexion between any two of them, e.g. between Dy and E, for
the system of eqns. (JIT) to suffice to determine the two vectors
B and E.

The material equations (1.14, 16) occur not only for constant
fields but also in those cases when the field strengths are slowly
varying functions of time and the coordinates.

For example, the condition for slowness of field vanatlon in
time can be written in the form

oE E B B )
W«T’ W<<T, . (1.22)
where T is the characteristic time of the slowest processes in the
system in question. Similar relations can also be written for

variations in space.
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If the conditions (1.22) are not satisfied, the relationships be-
tween the vectors D and E, H and B, and j.. and E become
more complex. This question will be discussed in the next section.

2. Maxwell Equations for Fast Processes

It has been shown in§ 1 that it is necessary to find the connexion
between the vectors D and E, B and H, and j,,4 and E by
proceeding from the properties of the material in guestion in
order to use the Maxwell equations.

In the case of constant or slowly varying fields in an isotropic
medium the connexion between these vectors is of the form

D{g,t) = cE(q,t); B(g,?) = pH(q,1);
jcund(q’ t) = UE(qs “')‘ (2°1)

Instead of the first two relations of (2.1) we can give the connexion
between the vectors P and ¥, and M and H:

P(g,t)=aE(g,1); Mg, )= yH(qg,1). 2.2)
By using the formulae
E=D-4zP; B = H+4tM, 2.3)

we can establish the connexion between the coefficients € and =,
and u and g

e=1+dnz; p=l+4my. : 2.4

It follows from the formulae (2.2) that the polarization and
magnetization vectors at a point ¢ at a time ¢ are determined by
the values of the field strengths E, H at the same point and fime.
This is true when there is little variation in the fields at spatial
and time intervals characteristic for a given system. In the oppo-
site case the relations (2.2) do not hold and must be replaced by
more general relations.

Let us first take a simple example to explain the basic features
of the given problem.

We shall discuss the question of the passage of an electro-
magnetic wave through a dielectric. We give its structure by the
following model, We shall assume that the matter consists of

10
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atoms having one electron each. When the electrons are displaced
from a position of equilibriuzn an elastic force appears which is
proportional to the displacement. The main mass of the atom is
connected with its positively charged part.

When a monochromatic electromagnetic wave passes through
the medium an alternating electrical field appears at each point
which varies in accérdance with the law

E(t) = Eje—iot. (2.5)

The frequency of the field’s variation is such that only the neg-
atively charged electrons, which have a small mass, are displaced
noticeably in the atom during the oscillation cycle.

As a result of the periodic motion of the sleciron due to the
action of the periodic field the atom itself becomes a source of
electromagnetic waves, which leads to the electron losing energy.
This means that when an electron moves it is acted upon by a
frictional force which we consider to be proportional to the
electron’s velocity of motion. As a result we obtain the following
equation of motion of the electron in the atom:

mi+BF+kr = eB(t), . (2.6)

where § is the friction coefficient and k is the elasticity coefficient.
" Equation (2.6) agrees with the equation for a damped harmonic
oscillator acted upon by an external periodic force.

We can rewrite eqn. (2.6) in 2 more convenient form. For this
purpose we divide it by m and introduce 2y = f/m and w, =
= 4/(k/m) (the frequency of the eigen oscillations). As a result
eqn. (2.6) becomes

Fopi+olr = ;%E(”' .7

It must be stressed that the quantity r defined by eqn. (2.7) is
the value of the electron’s displacement in the atom averaged over
a number of atoms since it is not the microscopic electrical field
strength in the righthand side of this equation but the averaged
electrical field strength that appears in the Maxwell equation.

The frequency o is not small when compared with the eigen-

11



Non-equilibrium Processes in a Plasma

frequency w,. This means that we cannot consider that the pro-
cess varies slowly with time,

Tn future we shall use 4 to denote the wavelength of an electro-
magnetic wave in a substance and r,, to denote the mean distance
between the atoms of the substance. We shall assame that the
density of the substance is such that the mean distance between
the atoms is much less than the wavelength, i.e.

Fay << A ' . 2.8)

In this case the field strength may be looked upon as a slowly
varying function of the coordinates since the field strength varies
only a little over distances r,,

As a result it may be assumed that the polarization vector at a
point g is determined by the value of the field strength at the
same point. Bearing this in mind we shall not generally write the
variable g below.

This condition is well satisfied, for example, when an electro-
magnetic light wave is propagated in a dielectric. In this case the
frequencies @ and w, are of the order of 10'® sec™. The wave-
length of the light is 4 ~ 5X107% cm and the mean distance
between the atoms of the order of 1078 cm.

We thus now have the problem of establishing a connexion
between the polarization vector P(r) and the electrical field
strength E(t) for the model of the medium in question.

We shall use z to denote the average number of atoms per unit
volume. The polarization vector P is equal to the d1p01e moment
p of an individual atom multiplied by n:

= np. ] (29)

In its turn the dipole moment p of the atom is equal to the
electron’s charge e multiplied by the electron’s displacement »
from the equilibrium position, i.e. p = er. Substituting this ex-
pression in the formula for P we obtain

P = enr. (2.10)

We have thus connected the polarization vector P and the
electron’s displacement in the atom #, which can be determined
by the solution of the differential equation (2.7).

12
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‘We multiply eqn. (2.7) by en. Using formula (2.10) we obtain
the differential equation for the polarization vector

P+2yP+uwlP = —-EE(t). 2.11)

The general solution of eqn. (2.11) can, as is well known, be

represented as the sum of two parts. The first of them is of the

form
P°(t) = e~"(C, cos w,t+ C, sin wyt),

where @} = wi—92.
The constants €, Cp are determined by the initial values of

. the polarization vector and its dertvative. This part of the solution

is fully determined by the initial values of the vector P and its
velocity and does not depend upon the strength of the electrical
field E.

The second part of the solution of eqn. (2.11) is proportional
to the field strength E and can be written in the form

‘ ‘
Py = S8 | et sin o —VEGEY . (212)

mwl

Expression (2.12) deﬁnes that part of the polarization vector that
is not dependent on the initial data.

Using the formula E = D—4aP we can write the following
expression which connects the induction vector D with the
electrical field strength vector E:

D(t) = E(z}
4ren
mw,

t
J e=*=) sin w,(t—t') E(t") dt' + dap°(t).
[H]
: (2.13)

The vectors D and E thus become connected through an
integral equation in the case of rapidly varying fields.
If we introduce the notation

, dre’n
ft—t) ==

e—t=1 gin w,(F—1", (2.14)

13
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expression (2.13) can be written in the form

D(t) = E(t)+ fr Se=r) E(t") dt’ +4aP°(2). (2.15)
0

Instead of expression (2.15) we often use the asymptotic expres-
sion, which is valid provided that the time interval #—z, (¢, is the
initial point in time) is greater than the time required for the
establishment of steady conditions. In the case under discussion
this means that

t—tg > 1/y.

In this case we can make the initial point in time in (2.15) ap-

proach — oo, thus obtaining the following expression:

D) = E(:)+f' Ffi—t)E) dv (2.16)

which defines the connexion between the vectors I and E for a
steady (stationary) process.

For the example under discussion the function f in formulae
(2.15, 16) is defined by expression (2.14). However, formulae
(2.15, 16) occur in other cases as well since they are the most
general form of the linear connexion between the vectors I and E.

Formulae (2.15, 16) differ only in the form of the function /for
different systems. ’

Expression (2.16), which defines the connexion of the vectors

D(1), E(2), is often wriiten in the form
H
D(t) = J‘ Hi—1)E(" dr'. (2.17)

By comparing the expreésions (2.16, 17) we can find the con-
nexion between the functions fand &:

s(l‘;—t’) = §(t—t)+ft—t), t=1. (2.18)

Let us find the connexion between the Fourier cornponents of
the functions D(1), E(¢). To do this we carry out a single-variable
Fourier transform with respect to time in (2,17, 18). Using the

14
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potations for the Fourier components, for example

E(o,q) = Eq) = | B(g, e ds
(1]
@ = wf_l_iwu’ o' =0
and the similar notations for the other functions we obtain from

(2.17, 18)
D(w) = =(o) E), (2.19)

o) = 1+ f T e dt = 1+flw). (2.20)
)]

We shall call the function &(#—t") the dielectrical constant func-
tion and () the Fourier component of the dielectric constant.

It follows from formula (2.19) that the mapnitude of the
dielectric constant depends on the frequency, i.e. the ratio of the
functions D, /E,, is different for different frequencies.

The frequency dependence of the dielectric constant is called
the dielectric-constant dispersion.

Likewise the frequency dependence of the magnetic permeabi-
lity is called the magnetic permeability dispersion.

Let us examine in greater detail the expression (2.20) for the
Fourier component of the dielectric constant e(w).

The function e, defined by expression (2.20) is complex.
Denoting its real d€nd imaginary parts by ¢ and £ we can write

elw) = &'(w)+ie"(w). (2.21)
It follows directly from formula (2.20) that for the real values
of w
e —w) = (W)
or
glw) = &'(—w), &"(w) = —&"(—w). (2.22)
Thus the real part of the function &, is an even function of @ and
the imaginary part an odd one. ‘
As @w — 0 the function e, approaches the value of the static
dielectric constant g4, From formula (2.20) we find the connexion
between the functions ¢, and f: ‘

g = 1+ f " e dr. (2.23)
0 .

15
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In all real media the integral f () dt is finite. When @ = <,

— 1, since the substance will not have time to be polarized
because of inertia.

If we treat the function e, as a function of the complex fre-
quency & = o’'-+iw’”’ we can establish a number of important
properties of the function &,

It follows from the deﬁmtmn (2.20) that the function &, is
finite when o = 0. When @’ =< 0 the integral in expression (2.20)
diverges if [o"| = .

‘Remembering the properties of the function ) it may be
concluded that ¢, does not become infinite anywhere in the upper
half-plane (when o’ > 0}, i.e. itis an apalytical function in the
upper half-plane.

With a complex frequency we have 1nstead of the condition
(2.22)

e(—w) = * (o). (2.24)

It follows in particular from this that when & = " {0’ = 0),
i.e. on the imaginary axis, e(—iw”) = &"(—iw"), ie. the function
g, is real.

On the real axis

¢ >0 when ow=w =0 (2.25)

and &' =0 when o < 0.

By using the property of the analytical nature of the function
e, in the upper half-plane we can establish important relations
between the real and imaginary parts of the function s, as
a” - 0

For this purpose we shall use the expression for the extreme
value of the Cauchy integral, namely, if f(z) is a function of the
complex variable z = z'+iz"” (z'' > 0) becoming zero as z —~ o=,
then the expression

f(u)
0= -5 1
defines the function as analytical in the upper half-plane.
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It follows from this expression that as 2" — 0

fz) = —z—ii{Pf Q) 2 du— mj 3(u— z)f(z)du}

(2.26)
Using the property of the delta function we find

n_ 1 o= fl)
f&)=F J‘_w;;—;du- (2.27)

The sign P indicates that we are taking the principal value of the
integral.

‘We can apply formula (2.27) which we have obtained for
establishing the connexion between ¢, and ¢, as @'’ — 0.

For this we notice that in accordance with what has been said
above ¢, - 1 as @ —~ =, 50 for the function &,—1 we have
g,—1 +0asw + <.

Using formula (2.27) for the function ¢,,—1 we have

ew—l=ip [T aly (2.28)
it )__u—w

e

Separating the real and imaginary parts we find

e —1 =lpf gy gl = _lpr =l g,
n ) _u—w x )

U—w

(2.29)

The relations (2.29) establish the connexion between the real
and imaginary parts of the function e,. They are called the
dispersion relations.

Let us find the expression ¢, for the example given above.

Substituting the formula (2.14) for the function fin expression
(2.20) and integrating with respect to t we find forw” =0, w = @’

4menim

ta =1+ i~ —i2my

(2.30)

This expression can be derived more simply if we examine the
steady solution of eqn. {2.11) straight away.

17
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From this, separating the real and imaginary parts, we find

4me’n wi—o?
=14 Pt 2.3
2.
v _ dmetn 2y (2.32)

&y = m (@2~ w4

This example can be used for an easy check of the properties of
the function e, listed above. _
As w - 0 we obtain from formula (2.31) the expression for &,

For gases the value of ¢, is almost unity since
dne’nim < wf.

At low frequencies, when © <« @y, we have

2 2
s = 1_4_4s'ze n el = dne’n Lyw ]

mei -’ m w}
At high frequencies, when @ > w,, we have
2 ' dmel
w=1-9%, ooty
w? m

It will be shown below that for a dissipative system the ima-
ginary component is always non-zero and positive.

We shall show now that the absorption coefficient of electro-
magnetic waves in a medium is proportional to &

For this we recall that the phase velocity of propagation of an
electromagnetic wave in the medium at g = 1 is

Z?Fh

¢ c

Fiabvs (2.33)

Here n is the refractive index. When ¢ is complex the refractive

index is also a complex quantity. We use the notationn = n'+in"".
Since & = »?, then

& =n2—n'"% ¢ = In'n" : (2.34)

Therefore the imaginary part of the refraction coefficient is pro-
portional to the imaginary part of the dielectric constant.

18
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We substitute the expression n = n'+in” in the formula for a
plane wave propagated along the z-axis:

e—i (m—iﬂ—o nz) — e— 2::: 7=i (cn.r—“::z—n n':). (2.35}
Here 4, is the length of the electromagnetic wave in a vacuum.

It follows from formula (2.35) that when #”’ = 0 (or &” = 0,
since #' > 0) an electromagnetic wave is damped in a medium.
The damping coefficient § = 2an’ /4, is proportional to the
imaginary part of the refractive index.

In the example discussed above where we calculated the di-
electric constant it was assumed that the medium consists of
neutral atoms (for example, a neutral gas). Such a gas has no
electrical conductivity and therefore is a dielectric.

It is also possible to determine the dielectric constant ¢, for
metals. In order to obtain this expression we note that when the
frequencies are not too high (less than 10'® sec ~7, i.e. frequencies-
in the visible light range) the displacement current (1/4+) 9D /9t

is much less than the conductivity current Jeona- This means that

in the first Maxwell equation

10D 4n 4z
curl H = — E Jcond""?)e

we can ignore the first term in the right-hand side by comparison
with the second. Therefore for a metal the first Maxwell equation.
can be written in the form

-

corl B =¥ (5 450,

For slow processes in a metal we can use Ohm’s law j._ 4 =
= ok, where ¢ is the electrical conductivity. When there is no-
external current we obtain the equation

curl H = 4_"GE. (2.36)-

To determine the dielectric constant of a metal we wnte eqn..
(2.36) in the same form as for a dielectric, i.e.

18D
curl H = =% (2.37)
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Comparing the right-hand sides of eqns. (2.36, 37) we obtain

oD |
o7 = 4ok, (2.37a)
Hence with constant ¢ for a steady process
H
D) = 4:wj E@)d? or D)= ,4”_" E(w).

(2.38)

Comparing the second eguation of (2.38) with eqn. (2.19) we
obtain

elw) = EEZ—O; w=0o+in"; o <0 (2.39)
Thus even for siow processes, when the conductivity is con-
stant, the dielectric constant depends upon the frequency.
Ohm’s law in the form j...q(g, £) = cE(q, ) ceases to be valid
for rapidly varying processes.
For a steady process the connexion between the current and
the field strength E is defined by the expression

Feond(?) = f - E@)d'; j@) = olw) Ew),

” (2.40)
which is similar to expression (2.17).
In this case the conductivity is frequency-dependent and in-
stead of expression (2.39) we have for a metal

glw) = i%o‘(w). 2.41)

If we make allowance for the displacement current in egn.
12.36), we obtain the following expression instead of (2.41)

e(w) = 1+i4—c;-z o(w). (2.42)

It follows from the results obtained that there is no difference
in the description of the properties of a dielectric and a metal
in the case of rapidly varying processes. In both cases the proper-

ties of the medium can be characterized by the complex dielectric

constant e(w). Instead of the dielectric constant we can use the
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complex conductivity to describe the medium’s properties. The
connexion between them is defined by relation (2.42),

In the case of rapidly varying processes the connexion between
the vectors B and H also varies, of course. Instead of the con-
nexion B = uH we then have

B@) = f C W=t H@d; Bw) = ue) Hw).
- (2.43)

When describing processes in a plasma it is best in many cases
not to isolate the last term defining the magnetization current
from the induced current (1.8).

If the medium can be characterized by an electrical conducti-
vity that determines the connexion of the total induced current
and the strength of the electrical field, then the connexion of the
total induced current j' and the field strengthE 1s tensocrial, i.e,
in a steady state takes the form

. r -
o= [ o= B)ar, o) = o) Ew)
(2.44)
The expression for the total current is defined as usual as
Jj=Jj+5 (2.45)

where j° iIs the external current.
When the state is not steady we must select an initial point
in time #, = 0 and instead of formula (2.44) write

T
70 = [(ae=) B ar's i) = o) E@)
0
(2.46)
The value of the current determined by the initial condmcns is
included in j°.
If the induced current j' is combined with the term (1 /c)aEIBt

{see (1.17)) and we use the Maxwell equations in form (IIT), then
instead of the conductivity -tensor we obtain the dielectric-
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constant tensor z;. The connexion between the vectors Dy, E

D) = [ etV E@I, Do) = ) Ee)
’ (2.47)

follows from formulae (1.17) and (2.46).
By comparing the formulae (2.46, 47) we can find the connexion

between the tensors sw ;- For the Fourier components it is

eylw) = 5,,—!—1 ai(w). (2.48)

Up to now it has been assumed that the value of, for example,
the induced current at a point ¢ at a peint in time ¢, i.e. the quan-
tity j'(g, t) is determined by the field values at earlier points in
time t' (see (2.44)), but at the same point ¢q, i.e. by the values of
E(q,t"). However, when the fields vary appreciably over distances
characterizing the medium’s properties the value of the induced
current §(q, £)is determined by the value of the field not only at
the point ¢ but also in the region surrounding it (see §§ 7-9).

In this case the connexion between the quantities j', E and D,
E becomes more complex. Instead of eqns. (2.46, 47) we shall
have the general relations

!
jilg 1) = _[ f oylt—t' g~V Efq', ) o dF,  (2.49)
0

, .
D{q, 1) = f f e(t—t', q—qVE(q’. 1) dq dt'. (2.50)
0

In the steady state the lower limit is replaced by — .

If the properties of the medium differ at different points, i.e.
the medium is spatially non-uniform, then we have ¢, ¢’ in the
formulae (2.49, 50) instead of ¢ —q'. If the properties of the me-
dium are not uniform in time either, e.g. the mean charged par-
ticle concentration varies with time, then we must write ¢, ¢
instead of r—1¢". _

Therefore in the most gemeral case (assuming linearity) the
formulae (2.49, 50) contain the functions

o (t,t’,q.q9"); =t t.q.9) ) (2.51)
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The Maxwell equations (1.18-21), i.e. in form (IIT), together
with the material equation (2.50) make up the closed system of
equations for the functions B, E. We see that in this case the first
and fourth equations of system (III) are integro-differential equa-
tions.

It is necessary to know the distribution of the external currents
and charges j°, o°, the initial values of the field strengths B, E and
the boundary conditions to solve these equations.

It is important that it be stressed that the data on the state of
the system which are not determined by giving the imitial values
of the fields E(q, 0), B(q, 0) at the initial point in time are included
in j°, o°. The same istrue of the boundary conditions.

If there is spatial uniformity in time, when the material equa-
tions can be used in the form (2.49, 50), it is simpler to use the
Maxwell equations for the Fourier components of the functions
E, B, j, ¢ _

We carry out the expansion into the Fourier integral with re-
spect to the time and space variables. We can write the Fourier
integral in the form

E@.1) = s j J' Ble+i 4, ) e=(o+19 it a)dondd

(2.52)
Ew+id, k) = Elw, k) =

= f - f E(q, 1) e—2r+ito=0enl dt gy, (2.53)
0

Here and below o'+in” = v+id; o = w; o' = 4. The Fou-
rier coefficients are functions of the complex frequency w4+ iz,

. Similar formulae are also valid for the other functions.

Using the folding theorem we obtain from formulae (2-49,
50) the following relations between the Fourier components of the
functions j* and E, and D and E: T

Jilw, k) = oy(w, ) Efe, k);
Dyw, k) = s5{w, k) Efw, k). (254

Using these relations and the formulae (1.17) we canfind the
connexion between the Fourier components of the tensors ¢,
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ﬂ"-j.

g(w, k) = 6,,+z 4 ; ,,(cu k). (2.55)

The dependence of the dielectric-constant tensor on the wave
number is called the spatial dispersion.

When there is spatial dispersion we have instead of the formu-
lae (2.22)

&, k) = e*(—w, —k); &, k) = (—w, —k);
g, k) = —&"(~w, -k). (2.56)

In the case of a spatially infinite medium the Maxwell equa-
tions (1.18-21) can conveniently be written for the Fourier com-
ponents. Using the formulae (2.53, 54) and the identities

curl (@d) = A curl a—[ aAgrad 4] (2.57)
. f ( f(r)) emarviotds = —i(+i4) fw)=fO), (259)

we obtain the following system of equations:

ik AB@, B)], = — (@ -+i4) ey(o, B) Efo, )

LB 0+ k), 59)
ke AE(o, W] = L@+ B, )+ S B0, (.60
(k-B(o, k) = 0, 2.61)
ikiey(w, k) Ef{w, k) = 4me*(w, k). (2.62)

To conclude the present section let us examine the question of
the energy of an electromagnetic field, using the Maxwell equations
in form (III) for this purpose.

‘We multiply eqn. (1.18) scalarly by E and egn. (1.19) by B.
After this we subtract the second of these equations from the
first.

Using the vector identity

 div [EAB] = (B -curl E)— (B-curl B), (2.63)
we obtain
1 oD\ oB? ¢ . .
(2.64)

24

Maxwell Equations for Slow and Fast Processes

The vector I} is connected with the vector E by the material
equation (2:50) or the corresponding equation (2.54) for the
Fourier components.

The first term in the right-hand side can be written in the form

. c
—div S, § = .- [EABL. (2.65)

The vector § is called the Poynting vector. It defines the ﬂux
of electromagnetic energy.

The second term in the right-hand side defines the work done
by the external current per unit time. “

We integrate eqn. (2.64) over the system’s volume

I
~§ (-9~ [ Bg (2.66)

If the system in question is dispersive, then even if the flux
of energy through the surface surrounding the system and the
external current are zero the system has no energy integral.

The reason for this is as follows.

It follows from the dispersion relations (2.29) that in a disper-
sive medium the imaginary component of the dielectric constant
£'"(w) is non-zero.

It can be seen from the formulae (2.34, 35) that the imaginary
component of the dielectric constant determines the absorption
of electromagnetic waves in the medium.

A dispersive medium is thus at the same time an absorbing or
dissipative medium. Because of this there is no electromagnetic

© .energy integral since the energy is converted into heat.

If the medium is non-dispersive the connexion of the vectors
D and E is defined by the relation D; = ¢;E;. The tensor compo-
nents are real constants.

In this case eqn. (2.66) can be written in the form

—35 (S-d%s)— f () dq. '(2-67)
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The quantity W is defined by the expression
1
We o~ f {Ei&;E;+ B} d°g. (2.68)

If j*=0 and the total energy flux through the surrounding
surface is zero, then the quantity W is a constant. This allows us
to call W the electromagnetic energy of the medium in question.

Proceeding from the Maxwell equations (II) and the material
equations (1.14), we obtain for W instead of (2.68) the expression

1
W= 8_:zf (B + uH?) &g,

It is also possible to introduce the concept of energy for a dis-
persive medium provided that the conversion of the energy into
heat is a slow process or, in other words, when the medinm is
weakly dissipative. The condition of “slowness” will be defined
below.

Among such systems are, for example, a pendulum or an oscil-
lating circuit withalow damping factor. For example, for a damp-
ed oscillating circuit with an eigenfrequency «, we can intro-
duce the energy concept

_LE ¢ L _d

Way=-+353 I=2 (2.69)
(L is the inductance, C the capacitance, I the current, ¢ the
charge) if the damping decrement ¢ = R/2L (Ris the resistance) is
much less than the oscillation eigenfrequency w, = 14/(LC). In
this case the energy of the circuit’s electromagnetic oscillations
(the conversion of this energy into heat) decreases as

dWe,

dt

We shall show that for a dispersive medium we can obtain a
similar equation for the medium’s electromagnetic energy.
Let us examine the expression for the spatial Fourier component

D, E) = J' D(t, qe=t* 0 dog; |

1
@y

= —2pW,,. (2.70)

D, q) = J‘D(t, k)elte- o) g3k (2.71)
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of the electrical induction vector D{(g, t). Using the formulae
(2.52~54) we obtain

D1, k) = % f " Diw, k)e=ku+idx g,

= % f ) g, K) Efw, k)e—te+1d doy

1 do | dt’ e= AN+l =0g (o, K)E(t', k).
2 ] A

(2.72)

We shall now define what we understand by a weakly dissipa-
tive medium. '

We shall use w,, w,, . . ., 10 denote the eigenfrequencies of the
medium in question. In the example taken above the eigenfre-
quency is the frequency of the electron’s oscillations in the atom
(see (2.7)).

Let us examine the tensor components ¢,(w, k) for frequencies
close to wy, w,, . . . . We use @, to denote one of the eigenfrequen-
cies. The above condition means that

Ww—ep < wy. ' (2.73)

When there is spatial dispersion the values of o, depend in the
general case on the wave number k.

We carry out the expans.on of the function &;(w, k) around

the values of w,.

Efj(ws k) = 8(;(501, k)-f-aijguiﬂ(w—w‘)-[— P (274)

The tensor &;(w, k) is a complex function of w,.
We can write the condition of weak dissipativeness in the form
eyl B) = eo, B)+igj(w, K); & <l (2.75)
We give the field strengths in the form )
E(l, 1) =Y E(t)e—tobr; Bk, t) = ;B,(t) e—ior(k)
(2.76)

Here E and B, are slowly varying functions of the time.
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The conditions of slowness of variation of the functions E, B,
means that we can choose a time interval 7 such that

1 9E, 1 e 1 .
L o € wOPR S oo, 117, (276a)

where cu}m“ is the minimum eigenfrequency.

We substitute expansion (2.76) in formula (2.72). We use the
approximate expression (2.74) and instead of e introduce the
variable &; = w—ew,. After this we obtain

D) =53, f " fw FRpS T —
o 0
33," ’
X {Eij(ﬂ){, k)+fx_r 5(1?;} Ej(f N k). (2.77)

In the second term we integrate by parts with respect to «,. Using
the formula

B(t—t) = 515 f T it gy,

we integrate with respect to «, and #. As a result we obtain

Di(t, k) =z{e,,(m,, K)Elt, K)+i 38» OF, 5; k)} ot
. 1

(2.78)

A similar expression is required below for the time derivative '

2D(t, k)/dt. Using expression (2.78) we obtain

aD(t, k)
ot

+Z[ (e, B) -, By | e, @79)

= i Z wa:;(mb k) E{(f k) g—iw{k)e

In the second term of this expression we can ehmmate all but
the term with e smce according to eqn. (2.75), & << 1 so the
term contalmng EU @/0t is of the second order of smallness.

Let us return to eqn. (2.66) and examine it for the case when
the right-hand side is equal to zero.
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‘We expand under the integral the functions E, D, B into Fourier
integrals with respect to the coordinates. Using formula (2.71)
and the formula

S(k—k) = (2;)3 J‘ ¢k 0) g, (2.80)

we write eqn. (2.66) in the form

1 aD*(t, k) . oD, k).
ey | { (B0 0 ) ¢ (B 022G, )
+(%(B(t, k)-B*(t, k))} &k = 0. (2.81)

We substitute expression (2.79) in this equation and average
with respect to the time interval T.
With the condition (2.76a) we have

T
-le f (Et) o= Efeo) df = 8,(B-E]).  (2.82)
4]

We can obtain a similar expression for the integrals containing

the amplitudes B,.
By using these formulae, eqn. (2.81) can be written after the
above transformations in the form

BW
&= —0. (2.83)

The right-hand side of this equation is defined by the expression

1 -
0= | 0n
0 = 3= S0 cj(en, KBt B) B 1), (234)

The quantity @ is proportional to the imaginary part of the
tensor ¢; and thus deﬁnes the conversion of energy into heat in
unit tlme ]

The quantity W is defined by the expression

W= Sin:’ f W, d°k, (2.85)
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where

1 9 ' *
W, = [ ; {B_w; (C!)lsij(wh k)) Elt, k) E; e, k)

+(Bi(1, k)-Bi, k))} . (2.86)

If the medium isnot absorbing (¢" = 0) the quantity # is con-
served for a closed system.

Equation (2.83) is similar to eqn. (2.70). We shall call the quan-
tity defined by the formulae (2.85, 86) the electromagnetic energy
of a dispersive (dissipative) medium.

If only two frequencies, which are identical but opposite in sign
|1 = |w,] = @, are significant (this means the presence of two
waves being propagated in opposite directions), then the expres-
sions for the functions 0,, W, become

I Fr -
O, = Emoé‘u(&)g, k) ENt, k) E9*(1, B, (2.87)

1 b , .
W = —4_‘;5 {a_% (CUQEU(COO, k))EP(f, k) E? (f, k)

+(Byt, 1)-Bi(s k))} . 238)

Let us now examine the more general case when the connexion
between the vectors D and E is not linear. This occurs with a
sufficiently high electrical field strength when the electron’s dis-
placement in the atom is so great that the restoring force (see
eqn. (2.6)) becomes non-linear so that the connexion between the
vectors P and E (or D and E) is also non-linear (see Akhmanov
and Khokhlov, 1964).

We notice that the expression (2.50) for a steady state can be
written in the form

Di’(g, 1) = fﬁadfl f drie(Ty, 7)) Eft—14, g—7)).
0

(2.89)

In order to change from (2.50) to (2.89) we mustreplace the va-
riables in (2.50) as follows: t' — 71—, q’ —~ g -7y The index «1”
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in D means that the connexion between the vectors D and E
in (2.89) is linear.

‘When there is a non-linear connexion the vector J? can be shown
in the form of the sum of two terms

D = D4 plad, (2.90)

The first term (linear) is defined by expression (2.89) and the
second (non-linear) by the expression

_]_)gnl)(q’ 1) =f dflJ‘m dz, fdsﬁ fdarzxijk('fls Ty, 11, T'a)
0 0

X.E}(t—-zl,q—rl)Ek(t—rl—rz,q_rl—rz)—y-f dty .

0
Xj‘mdfszdf3fdarlfd3rzfd3r3
0 0

X Opif(Ty, Tay Tg, Ty, o, T3) E"i(t_"rl! r—7y)
XE(t~T1— Ty, q~1;—1,)
KE(t=T1—Ty—Ta, g—T1—Pp—T3)+ .. . (2.91)
Thus in the case of a strong field the medium is characterized
not only by the tensor &, but also by the more complex tensors
Xiwe Opprs - -+ -
If the spatial dispersion can be ignored the tensors s> Ligher + + »»
become
gi(r, ) = (1) 8(r),
Li(Tas Tas 71, 1) = Hijx(T1, T2) 8(r) 8(rs), . . . (2.92)
When there is no time dispersion either
&5(T, 7) = £;0(z) 8(r),
X721 Tay Py, 7o) = 158(71) 6(z) 8(ry) 8(ry), (2.93)
where g, Yy - - -» 8I€ constant tensors.
It follows from (2.89, 91, 93) that when there is no dispersion
Dig, 1) = e5EQ, )+ 7B g, ) Bl )+ ... (2.94)
Let us obtain the electromagnetic energy balance equation for
a non-linear medium taking spatial dispersion into account.

Let us assume that the spatial and time processes are character-
ized by fast and slow variations of all the functions and let us give
-
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the fields E, B in the form (compare (2.76))

E(g.t) = E(uq, ut,q.t), B(g, 1) = B(uq, yt, q, 1),
(2.95)

where @ is a small parameter and ¢, ¢ are fast variables.
We expand into a Fourier integral with respect to the fast vari-
ables

E(uq, ut, q, t)

]
= o f des &% Eug, pt, kb, w) e=—~te0]| (2.96)

B(uyg, pt, q, t)

(2, )4j do &k B(uq, pt, k, ) e~ i=—al, (2.97)
We can also write the functions D®, D=, j¢ .. . in the form
(2.96).

In these formulae the Fourier components themselves are
slowly varying functions of the coordinates and time. These ex-
pansions are reasonable if the spectral functions are non-zero
only at values of w, k greater than e, &, such that

oFE aE

E(ug, pt, o, B)o,, > Pui’ Ek ;0 > Pug |’ etc.

(2.98)

Let us obtain the expression for the function D"(ugq, ut, k, o).
For this purpose we substitute the expansion (2.96) in formula
(2.89), expand the function E[pu(t—1,), u(g—ry), o, k] into a
series with respect to 7,, r; and limit ourselves to the first two
terms of the expansion. As aresult we obtain (compare (2.78)):

dey 0

0 ) 7
D} @ut, ug, o, k) = ( o, B)+i 2 o O

 (Osy; @ q
: (B_k" (ﬁ)) Efut, uq, o, k).
(2.99)

We shall consider that the non-linear terms are small and are of
the order of u, so the dependence of the field on the slow variables
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can be neglected in (2.91) when deriving the expression for
D™ (ut, uq, w, k). The expression thus obtained for D™ can
conveniently be written in the form:
‘Dgnl)(.ur: ug, o, k)
1
= @ay

X i, k, wq, ko) Ef{wy, k1) Ex(w,, k)

f deoy deoy Ry @Regd(00~ 0oy — o) S(F~ ey — ki)

1
+(2.;T)8'f dwl dCU2 dCUs dskl d3k2 dakaé(m—wl-—wz—mg

Xo(k—Ey—ky—Ie;) @ijm(CU, E, 0ot kot k3, wg, k)

X‘Ej(mlls k1) Eilws, ko) Efws, k). (2.100)

Using formulae (2.99, 100) we can find the expression for the
Fourier compenent of the function 4D /9t

(BD

W) - _’w(DmJFD{“”H (Hf pg, ©, k).
M, pg, w, k

(2.101)

It is easy to obtain the corresponding expressions for all the
Fourier components of all the functions in the Maxwell equatjons.
Let us write out the system of equations for the Fourier compo-
nents of the functions K, B. To do this we substitute in the
Maxwell equations (1.18~21) the expansions (2.96, 97) for E, B
and the other functions. As above we shall consider that there is
little dissipation (s; ~ g). We shall assume that the functions
J§%, ¢° are also of the order of u. Then in the zero approximation
with respect to g we obtain the following system of equations
for the functions E(,ut, uq, w, k), B(ut, uq, o, k):

[kAB), = ~= &E;, (k-B) = 0; (2.102)
w
[k NE] =?B, ke E; = 0.
Eliminating the vector B we find the system of equations for E;

2
[RALRAE]+25 6, = 0. (2.103)
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We shall use e to denote a unit vector along the direction of the
vector E. From (2.103) follows the equation which connects the
frequency w, the wave vector I and the vector e determining the

polarization

2
[k/\e]z--%eia,-jej =0, (2.104)

If the medium is isotropic, the tensor ¢; depends only on the

one vector K, so can be given in the form
oo, 1) = (8= ) e 0. 9+ L 0 )

(2.105%)

where e, e1 are the longitudinal and transverse permittivity
(see § 7).

For an isotropic medium eqn. (2.104) turns into the two dis-
persion equations

wlel(w, k)—c® =0, &'w,k)=20 (2.106)

for transverse and longitudinal waves respectively.
We can now write the equations for the functions E(ur, ug
o, k), B (ut, pq, w, k) in the first approximation with respect

to u:
c(ourl.g B): = % (wef.)é_ﬁ'.j.._m (?.fu . OF; )—iwD:.ﬂ

Yot ok ougq
+we; B+ A (2.107
clcurlg E) = _g_ft; (2.108)

( 9 D) = 4mge; (-i : B) — 0. (2.109)
0BG " it vy e oug

In order to obtain the energy balance equation we multiply
eqn. {2.107) by E; and the complex-conjugate equation (2.108) by
B and subiract the second equation from the first. Using the
vector identity (2.63) we obtain the equation

1 Hoeg) _ .
=5 (E ool E; +Bz) = ~ = div,q Re [EAB]
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D 4 _._afu (1), g+
+8nd1vﬂq T j—z—-Im(D E*)
—% Eje) E*—Re (jo-E*). (2.110)

We can write this equation in 2 more convenient form.
We introduce the notation for the density of the electromagne-
tic energy of a dispersive medinm appropriate to given w, k:

Wut, pg, o, k) = n(E ‘9(3’5”) E*+BZ) (2.111)

The total energy density is defined by the expression
W ut, pq) = @ )4J. Wut, uq, o, k) do &k (2.112)
(compare (2.111, 112) with the expressions (2.85, 86) for a discrete

spectrum).
From the zero approximation equations we find

c « _ € . .
B = —[kAE], [EAB']=—[EARAE®]]  (2113)

Using the first of these formulze we eliminate the vector B
from (2.111)

W = ( s RAel+o 0 — (0eie); ,))

1 Owesye) E° 2.114)

T w Jw “8a

Equation (2.104) is used in the derivation of the second expression
of (2.114).
We write the first two terms terms in the right-hand side of
(2.110) in the form —div,, ¢ S, where S is the energy flux vector.
We can write the vector S in the form
o

S(ut, uq, o, K) = 0, W = 2= W, (2.115)
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where

2 (k—e(k-e)) —o? ;_L €i€jj€;
v, = ' 2.116)

B 7 . .
Y (wee;e)

is the group velocity vector for a dispersive medium. The ex-
pression (2.116) can be derived directly from the equation (2.104)
if we differentiate it with respect to & and solve the equation
obtained for dw/dk.

In the case of an isotropic medium we obtain from. (2.116) two
expressions for the group velocity of the transverse and longitudi-
nal waves - .

2%k — w? % Re et (o, k)

= = &, L ’
-5; (GJ Re s (CO, k))
9 Ree(w, %
% e E (CU, )
vl = — > ) (2.117)
B Re ¢V (w, k)
We further introduce the notation for the damping decrement
o, ) =y O _ _aresie
’ B 2 @ a r - a r
"o [EAel + 50 (we;s;se;) 0 (wese;ie;)

(2.118)

For an isotropic medium two expressions follow from this for
the damping decrements of the transverse and longitudinal waves

2 1 ‘ It

yio, k) = 2BET P k)= T2 (2119)
20l ?E
Fo (@7) 9o

Using the notations we have introduced we can write eqn.
(2.110) in the form
d 0
— Wt —
out " Duq
—Re (je-E). (2.120)

w TL
(2, W) = _ZVW_AE Im (D™ E*)
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If the medium is linear and the function E (ut, ug, o, k) 1is
independent of the coordinates, then eqn. (2.83) follows from
(2.120) for a discrete spectrum.

It can be seen from (2.120) that the energy W(ut, ug, @, k)
may vary because of the presence of an energy flux, dissipation
(conversion into heat), work of the external current §° and, lastly,
noa-linear interaction between the different waves.

Instead of the function W we can use the distribution function
for the quanta:

W(.u't: uq, @, k)
#ien(2m)* ?
where #iw is the energy of a quantum.

If we ignore the dissipation and consider that j* = 0, then we
can obtain from eqn. (2.120) the balance equations for the total
number of quanta, the total energy of the quanta and the total

momentum of the quanta, i.e. the functions (see Akhmanov and
Khokhlov, 1964)

N(ut, ug, o, k) = 2.121)

demdBk, fﬁmNdwd%, J'ﬁk N do d*F.

(2.122)

In the derivation of these equations use is made of the following
three properties of the non-linear term in eqn. (2.120):

Im f (D E*Yydow d®k = 0,
Imfco(D“l-E‘)dwdak = 0;

Im f k(DY E*) deo d = 0. (2.123)

In the proof of these equations it is essential that the integrands.
in formula (2.100) for D® should be mon-zero only if we can
satisfy the conditions

w = 601+w2, k= k1+k2, (2-124)‘
in the terms that are quadratic and
W =, +wy+ws;, k= k1+k2+k3 (2'125)
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in the terms that are cubic with respect to E. In quantum lan-
guage these conditions express the laws of the conservation of
energy and momentum during the interaction of three and four
waves respectively.

It will be shown below that under certain conditions the equa-
tions describing the processes in a plasma can be reduced to the
electrodynamic equations. This is possible when we neglect the
feedback of the field on the slowly varying distribution functions
Sz (ut, ug, p). In the opposite case we obtain a more complex
system of equations for the functions f,, E (ut, uq, w0, k) (see
8§17 and 18).

3. Magﬁétohydrodynamic Equations

We can use a system of gas-dynamics equations to describe the
slow processes in a gas when the functions g, u, T" vary only a
little during the time of free flight.

If the gas consists of charged partlcles then the gas-dynamics
equations are insufficient even to describe the slow processes since
it is necessary to know not only the functions g, u, T but also the
strengths of the electrical and magnetic ﬁelds wb;ch are defined
by the Maxwell equations, in order to give the system s state
thermodynamically.

It is thus to be expected that to describe the slow processes in a
.gas consisting of charged particles we must use a system of
equations both for the density, velocity and temperature of the
charged particles and for the strengths of the electrical and
magnetic fields.

We give an example of such a system of equations which is
valid upon the following assumptions:

1. We are discussing a gaseous or liquid medium whlch pos-
sesses electrical conductivity. At the same time, however, the den-
sity of the electric charge is zero at all points in the medium.

2. We place the system under discussion in an external constant
magnetic field of magnitude B,. We limit the magnitude of the
magnetic field by the following condition. We use 4 to denote the
mean free path of the charged particles, e.g. electrons, in the system.,
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Physics tells us that in a constant magnetic field a charged par-
ticle describes either a circle or a spiral. The radius of the circle
is rp = Mcv/eB, and is called the Larmor radius. In this formula
v is the particle’s velocity, e the charge and M the mass.

We shall consider that the magnitude of the magnetic field
strength B, is limited by the condition r; > 1 or B, « Mcw/el.
This means that there is hardly any distortion of a charged par-
ticle’s trajectory over its mean free path. With this condition it
may therefore be assumed that the coefficients of conductivity o,
viscosity g and thermal conductivity # which come into the
equations are independent of the magnetic field strength.

3. According to Ohm’s law the current density in a medium is
proportional to the strength of the electric current, i.e.

j=cE. 3.1

We shall assume that variations in the electrical field strength
take place so slowly that in the first equation of the system of
equations (I} we can neglect the displacement current, i.e.

%—? < 4noE. (3.2

If the process is periodic the condition (3.2) can be written in
the form o < 4mo. For metal conductors this condition is satis-
fied right up to light frequencies since the magnitude of ¢ for
metals is of the order of 10*-10%7 sec ~1.

For conducting gases the range of frequencies for which the
condition (3.2) is valid depends on the degree of ionization of the
gas.

4. We shall limit ourselves to discussing the case when the
velocity of motion is much less than the velocity of light, i.e.
u << ¢, If this is so the equations can be discussed in a non-relati-
vistic approximation.

5. We shall assume that the medium’s permeability is unity, i.e.
B=H.

6. We shall discuss only slow processes.

If we use 7 to denote the time taken to establish a local equi-
librium state in the system under discussion, then the condition
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of slowness of variation of the functions g, U, T, B, E can be
written in the form'

BB B v U
o <7 %T«? (3.3)

with similar conditions for the coordinate derivatives. This means
that there is little change in any of the functions during the time
taken to establish local equilibrium. For gases the quantlty T is
the time of free flight.

Using these limitations we shall first discuss the equations for
the strengths of the electrical and magnetic fields. We note that
when a conductor moves in a magnetic field an induced electrical
field strength B} appears in it in accordance with Faraday’s law
resulting in the appearance of an induced e.m.f. at the end of the
conductor.

If the velocity of the conductor is U, then

E = _[0\B=Lwam, 3.4)

Here we have allowed for the fact that in the case under dis-
cussion B = H. An induced field will appear in a conducting
medium located in a magnetic field. In this case Uig, t) is the
velocity at the point ¢ at the time ¢. The total strength of the
electrical field is E+(1/¢) [U A B]. Using this result we can write
Ohm’s law (3.1) for a conducting medium in a magnetic field in
the form

j=o (E+713— [U/\B]) . (3.5

Hence we can express E in terms of L UBRB

_ 1 j
E= - w1+ (3.6)

+ Here and below o(g, ¢) d%g is the average number of particles in a volume
d*q around the point g at the time ¢, The mass density is Mo ,where M is the
mass of a particle.
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The first three Maxwell equations in the approximation under

discussion become
curlB=i§j; curl E = _lB_Bl; divB = 0,
¢ c ot

Using expression (3.6) to eliminate E from the second equation
and the first equation to eliminate j, we obtain, remembering that
div B = 0, the following equation for the strength of the mag-
netic field in the medium:

2
9B _ wr[UABI+-S. veB, (3.7)
ot 4o -
The second equation for B is of the form
divB = 0. (3.8)

Equatmns (3.7, 8) for the magnetic field strength are not closed
since the velocity Ul(g, t) enters into eqn. (3.7).

In order to obtain a closed system of equations we examine the
system of equations for the functions ¢, U and the entropy S.

'The continuity equation for a conducting medium is of the
previous form:

?9: +div oU = 0. 3.9
In the Navier-Stokes equation we have the additional term

F )

M= ois [FAB],

where F is the force acting on the magnetic field on an element
of a conducting medium in which a current j is lowing; M is the
mass of a particle. By using the Maxwell equation curl B =
= (47/c)j we can eliminate j from the expression for the force.
As a result the Navier-Stokes equation becomes :

oU 1 1
——-I-(Ugrad) U= —H- gradp—W[B/\curl B]
Nl v a] SR
+r ( U + grad div (,) - (3.10)
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We can select the equation for the entropy §, for example, as the
last equation. It contains an additional dissipative term caused by
the generation of Joule heat during the passage of an electric
current through the medium in question.

The amount of Joule heat generated per unit time is j2/c. Using
the Maxwell equation curl B = (4n/c)j we can write this expres-
sion in the form

c2
TG_:r;EE (Clll‘l B)2 .

As a result we obtain the following equation for the extropy
density:

doS U, oU, 2, AU\
B TVt = 2T(3q %03 ”3_%)

FE AT+ (curl B)?, (3.11)

T 16:52
Equations (3.7-11) constitute a closed system of magneto-
hydrodynamic equations. When B = O eqns. (3.9-11) agree with
the ordinary gas-dynamics equations. We can deal with the
question of magnetohydrodynamic waves in a similar way. Let
the functions o, B, p, U vary only a little from their values Oos
By, po, Uy which they have when there are no disturbances in the
medium, i.e.

¢ =o0oto, B =DBy+h; p=p,+Movig;
U=1U,. (3.12)

Here B, is the external magnetic field and v, is the velocity of
sound in the medium. We shall consider that U, = 0. Below we
shall omit the suffixes 0 and 1 on B,, o, and U, respectively.

We substitute the expressions (3.12) in equs. (3.7-11), leaving
only the linear terms. Omitting the dissipative terms we obtain as
a result the following system of equations for the functions o,
h, U:

I
%; = curl [UAB], divh =0, (3.13)
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gf-l-go div U = 0, (3.14)
oU v2
T grad o+ —— M fcurl A AB). (3.15)

Using this system we can discuss the problem of the propaga-
tion of small disturbances when the effect of the dissipative terms
can be ignored.

In order to find the solutions of eqns. (3.13-15) describing the
propagation of plane waves with a wave vector k and a frequency
o we shall give the functions g, U, h in the form ~ e~1®/—(®]

In this case the system of eqns. (3.13-15) becomes

~wh = [EA[UAB]], (k-h)=0, (3.16)

o = Qo(k -0), (3.17)
wll = E-gk+ [B/\[h/\h]] (3.18)

Eliminating ¢ from eqans. (3.17, 18) we obtain
2FT — 0 2alTe . TT d : ) )
0*lU = v2k(k L)+4g;M90 [BA[EAR]] (3.19)

We shall show firstly that in magnetohydrodynamics there are
waves during the propagation of which oscillations occur in the
plane of the vectors B, k.

For this purpose we shall project eqms. (3.16, 19) onto the
vectors B, k. As a resuit we obtain the following closed system of
equations for the functions (k- B), (U-B), (U- k), [(h-E) = 0by
virtue of the equation div h = 0]:

—~w(h.B) = (B-[k/\[U/\B]]), (3.20)

(k- T) = v2k?(k- U)+E£TQ; (k-[BALEAR]),
(3.21)
wXU-B) = vk-B) (U-k). (3.22)

From the condition of solubility of the system of homogeneous
equations (3.20-22) for the functions (h-B), (U.-B), (U-k) we
find the dispersion equation which connects the frequency « and
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the wave vector k
— (U2 + v}k + o2kt cos? § = O, (3.23)

Here we have introduced the notations vl = B*/4nMp (the
velocity of the magnetohydrodynamic waves) and cosf =
(B-k)/Bk.

From eqn. (3,23) we find

ok = ? k2 {02 +03 £4/[ (w2 +03) — 40322 cos? 87} (3.24)

We have thus obtained two types of wave, during the propaga-
tion of which oscillations take place in the plane of the vectors
B, k. It follows from formula (3.24) that the phase velocity of
these waves is

g1
v =7 (325)

and is independent of the magnitude of the wave vector. These
waves are called magnetosonic. A wave with a phase velocity of
v;, is called accelerated and one with vy, retarded.

As B0, vph—-vs and o3 +0. In this extreme case a magneto-
sonic accelerated wave is the same as an ordinary sonic wave.

It follows from formula (3.24) that in the general case the phase
velocity of an accelerated wave can take up values within the
limits 0+ 2} = v{}? = Max [2%, v2].

Accordingly the phase velocity of an accelerated wave when
B = 0 is greater than (or when 6 = 0, equal to) the velocity of
sound.

The phase velocity of a retarded wave is within the I1m1ts
Min [0} cos® 6, 92] = o372 = 0.

We note further that the variable components of the velocity
U and the magnetic field strength have components both along
the direction of propagation of the wave (along the vector k) and
in the direction at right angles to k. Inthe general case, therefore,
magnetosonic waves are neither longitudinal nor transverse.

Apart from magnetosenic waves there are other tramsverse
waves that are also called magnetohydrodynamic.
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In order to obtain the dispersion equation for them we project
eqns. (3.20-22) onto the direction at right angles to the plane
formed by the vectors B, k. To do this we multiply equs. (3.16—
19) scalarly by the vector [B A k]. As a result we obtain two equa-
tions for the functions (k-[B A K]}, (U-[B A K]):

—co(h-[BAk]) = (B-E) (U-[BAK]), (3.26)

~ ity B9 (- [BAK]) = o(U-[BAK]).  (3.27)

From the solubility condition for these equations we find ‘
o? = v} k% cos? 0. (3.28)

Thus the phase velocity of transverse magnetosonic waves' is
equal in magnitude to

Vpp = ¥, €Os 8, (3.29)

For these waves the variable density componentis ¢ = 0. The
variable pressure and entropy components are also zero.

In order to obtain the expressions for the damping decrements
of the waves in question the dissipative terms must be retained
in eqns. (3.7-11).

For example the following expression is obtained for the damp-
ing decrement y of a magnetohydrodynamic wave:

o fp
7 =25 (i ) e

To conclude the present section we would remark that just as
in the case of the gas-dynamics equations we can ask what the
statistical foundation is of the magnetohydrodynamic equations
for conducting gases, e.g. 2 plasma.

As a starting point we can take the appropriate kmetlc equa-
tion for the distribution function of the charged particles in the
plasma (see §§ 11, 15).

More can be learnt about the solution of the magpetohydrody-
namic equations from other books (Landau and Lifshitz, 1960;
Ginzburg, 1964; and Kulikovskii and Lyubimov, 1960). *

The magnetohydrodynamic equations for a rarefied plasma
(2 “plasma without collisions’) will be discussed in § 22.
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CHAPTERII

Miscroscopic Equations for a Plasma.
Averaging the Microscopic Equations

4. Microscopic Equations for a Plasmat

_ We now come to the discussion of the statistical theory of
' ‘processes in a plasma.

A plasma is the name given to an ionized gas in wh1ch the-total
charge of the negatively charged particles is equal to the total
charge of the positively charged particles. Thus a plasma as a
whoie is an electrically neutral system. .

Neutral gas particles may also exist in a plasma alongside the
charged particles, i.e. a plasma may be less than one hundred
per cent ionized. _

‘We shall mainly discuss the case when the plasma is a com-
pletely jonized gas and consists of two components: nega-
tively charged particles (electrons} and positively charged ions.

We shall denote the charge of an electron by e(e < 0). N, is the
total number of electrons in the plasma. The total charge of the
negatively charged particles is eN,.

We shall denote the charge of an ion by e¢,. It may equal one
or more electron charges. The ratio of an ion's charge to the

electron’s charge will be denoted by z. Then e, = z |e|. Furthermore

let N; be the total number of ions in the plasma. :
Using these notations the condition of electrical neutrality of
the plasma can be written in the form

eN.+eN; = eN,+z|e|N, = 0. (4.1)
Therefore N, = zN,,

t Klimontovich (1958a, b; 1960a, b).
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We shall also use other notations which will permit consider-
able simplification in writing the other formulae.

We shall introduce the suffix @ to denote whether one or an-
other quantity belongs to a certain plasma component. Thus in
the case of a two component electron-ion plasma the suffix takes
the two values 2 = e for the electrons and a = i for the ions.

Using this suffix the electrical neutrality condition can be writ-
ten in the form

Y e, N, = 0. (4.2)

Here e, is the charge of a particle of a kind ¢ and N, is the total
number of particles of the same kind.

N, is normally very large so a plasma is a system consxstmg of
a large number of charged particles.

What are the microscopic equations of motion for such a
system ? :

In the case of a gas consisting of neutral particles the micro-
scopic equations of motion of the gas particles are the system of
Hamiltonian equations for all the particles in the system

oH oH
= By TT e [ = P . 4.3
G BT gy G=L2..M @)
For example, for a single-component gas when there are no
external fields the Hamiltonian function is of the form

H= 3 Bl 3 ola-g) @4
i)

i

1<Ten2m 2,

The microscopic state of a gas is defined at a given point in
time if the coordinates and momenta of all the system’s particles
are known. The number of independent variables in this case is
6N.

The time variation of the state of the system, i.e. the variation
of the coordinates and momenta of the system’s particles, is
defined by the Hamiltonian equations.

For a plasma the situation is more complicated since it consists
of charged particles so there are always electrical and magnetic
field strengths present in it.
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The state of a plasma is defined if as well as the coordinates
and momenta of all the charged particles the values of the electric-
al and magnetic field strengths at each point are also known at a
given time.

It follows from this that the microscopic equations for a plasma
are a system of equations for all the coordinates and momenta
of the charged particles and eqations for the electrical and mag-
netic fields strengths.

In order to write this system of equations we shall first assume
that at a given point in time we know the values of the electrical
and magnetic field strengths at each point. We shall denote them
EM(q, 1), H(q, ).

The index M indicates that we are taking EM, H™ as the pre-
cise microscopic values of the electrical and magnetic field
strengths as opposed to the averaged values which we were deal-
ing with when studying the Maxwell equations.

If g, is a coordinate of the ith particle of kind @ and v, its
velocity, then the force acting on this particle at a point in time
¢ 1s defined by the expression

Foi = eB(qu 1)+ [v,,ABM(g,, 1)]. (4.5)

The first term in this expression is the magnitude of the force
acting on 2 charged particle in the electrical field and the second
term the force in the magnetic field.

Using expression (4.5) we can write the equation of motion
for an ““a” particle:

“dg_:i = F(qm'= t)’ Pai = MU, (46)

Here m, is the mass of a particle of kind 4.

The system of eqns. (4.6) is not closed since the field strengths
EM, HM themselves depend on the coordinates and momenta
of the plasma particles.'In order to obtain a closed system of
equations we have still to write the equations for the field strengths.

Before doing this we note that instead of the system of eqn.
(4.5) it is convenient to discuss the equations for the charged par-
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ticle deusities in a six-dimensional p_hase space which we define
as follows:
Nalg: 2, 0) = T Mg~} (p—pult)). (47

<P

With this approach the microscopic state of a plasma at time
¢ will be defined if we know the values of the phase densities
N, (g, p, #) at all points of the six-dimensional phase space and
the values of the microscopic strengths of the electrical EM(g, f)

and magnetic H"(q, 7) flelds. b
Remembering the property of the -function f dx—xNdx=1,

a

if @ =<x"=sb, we see that N,(q, p, 1) &g &£p is equal to the
number of particles of a kind ¢ whose coordinates and momenta
at a point in time ¢ lie around the values of ¢, p in the range d°q #p.
From the definition of the function N, (g, p, ) it also follows that

f N.(q, p. 1) &g dp = N,, (4.8)

where ¥, is the total number of particles of kind a.
‘We can find the equations for the functions N(p.q.t) from
the condition
WP 1) _OWNa [ ONG\ (o NG\ o 4
dt ‘a:““("aq*f’ap » 49
which is a consequence of the continuity equatiom in phase
space. A _
Assuming that the variation of the momentum p in a six-
dimensional space ¢, p is defined by a formula similar to (4.5, 6)
we obtain the following equation:
ON, ON,
TR (v. 8q)
1 N,
+e, ({EM(q, t)+—c-[vf\HM(q, t)]} . Bp) =0,
(4.10)

where v = p/m,. ‘

For the sake of simplicity we shall omit the arguments of the
functions N,(gq, p. ) in those cases when this leads to no diffi-
culties.
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Using the functions N, we can write the expressions for the
microscopic density of the charge g and the current density Ja
of the component « in the following form:

G = Y edlg—g.)=e f Nog, p, 1) dp,

1=i=N,
“.11)
JHE. ) = T evud(g—qu)
1=i=N,
=e, f %Na(q, p. 1) Bp. (4.12)

To derive the equations for the microscopic strengths of the
electrical and magnetic fields we note that the Maxwell equations
in form (I) hold, as experiment shows, not only for the mean
values E = E™, B = B™, j =%, p = g™ but also for the actual
functions E™, HY, o™, jM.

Using formulae (4.11, 12) and remembering that the total
charge and current densities in a plasma are

o= aZea; j= 23 (4.13)

we can write the microscopic equations for the electrical and
magnetic field strengths -

1 6EM 4x
curl HM = — -t Z €, f N (q, p, 1) &p.

(4.14)

I oHM

M- - T
curl E T e {4.15)
div HM = 0. (4.16)
divEM =4z ¥ e, f Ny(q. p,t)dp. 4.17)

These equations are often called the Lorentz system of equations.
The system of eqns. (4.10, 14-16) composes the closed system
of microscopic equations for a plasma.
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Instead of the equations for the functions E™, H™ we can
use the equations for the microscopic potentials 4™, o™, In this
case
dAM

at

HM = curl AM, EM = —grad tpM——:;- . (4.18)

The arbitrary feature in the selection of the potentials permits
us to impose an additional relation between them.

It is very important that even in the case of a plasma conditions
are possible in which the state of the system at the point in time
t can be characterized approximately by giving only the coordi-
nates and momenta of the system’s charged particles at the
same time.

This is possiblef, in the first place, the strengths of the rotational

. electrical field and the magnetic field in the plasma are low; in

the second place, if the temperature of the plasma is such that
the mean thermal velocity of the particles is much less than the
velocity of light. (When there are no external fields the first
condition is a consequence of the second.) -

In this case the magpetic field strength, which is proportional
to the ratio /e, is low. The rotational component of the electrical
field strength is also low. This follows from eqn. (4.15). It may
therefore be assumed that approximately the magnetic field is
zero and the electrical field is purely potential, i.e.

EM = —grad oM, curl EM = |, (4.19)
¢ :

The equation for g™ is of the form
—divEM = v = —4z e, j Nq.p, D dp, (4.20)

whilst the equations for the functions N, are simplified and be-

COome
ON, [ N, AN ‘
St (v e )+ea (E ap) =0 @4.21)

and together with eqns. (4.19, 20) make up a closed system of
equations for the functions N,, EM, Solving eqn. (4.20) we find
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the expression for the potential

PM(g. 1) = T ey [ HLLLD o gng, 422)
b lg—q'|
where a is replaced by b.

It follows from this solution that the potential ™ and thus
also the electrical field strength at a point in time ¢ are fully
defined by giving the coordinates and momenta of the particles
at the same point in time. Therefore by using the solution (4.22)
we can eliminate the potential from eqns. (4.21) and obtain

closed microscopic equations only for the functions N, (g, p, t)
N, ( BNG)
+{®

ot Toq
s 1 AN,
Yo (| Lt Ny, p ) B B e
;eeb(faq lq—g ] P AP A BP)
~0. (4.23)

In the case of a two-component electron-ion plasma, eqns.
{4.23) are a system of two equations for the functions N.(g, p, 1),
Ni(g, p, ©) (the phase densities of the electrons and the ions).

Lastly, an even simpler case is possible when the microscopic
state of a plasma can be defined by giving the coordinates and
momenta of only the electrons.

This is because the mass of an electron m, is much less than the
mass of ion m; so when discussing rapidly varying processes we
-can ignore the displacement of the ions and consider that they are
evenly distributed through the whole plasma.

We use n; = N,/V to denote the density of the evenly distri-
buted ions. If z = 1, then ¢, = |e|.

Of eqns. (4.23) one equation remains in this approximation -

for the phase density of the electrons N since we consider the ion
distribution to be given. This equation is of the form

dnN, + (.v aN.,)

ot “oq
d e* on,
(|2 —E [ wiq, ',y —m} g2 = .
(fﬁq [q—q'] {f {4, D) dp "} 1 Bp)
| (4.24)
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Eguation (4.24) can also act as the initial microscopic equation
for describing the processes in a plasma when the ion distribution
can be considered to be given.

We can now write the microscopic equations for a relativistic
plasma when the particle velocities are so high that the dependence
of the mass of the particles on the velocity has to be allowed for.

The guantity

Nq,p, ) dPqd&p (4.25)

defines the number of particles of the component g in the volume
d°q d®p and is an invariant under Lorentz transformations.

An element of the six-dimensional phase volume &g dp
remains unchanged during a Lorentz transformation so the func-
tion N, (g, p,t) also remains unchanged (for more detail, see
Klimontovich, 1960a, 1960b; and Landau and Lifshitz, 1962).

The system of eqns. (4.10, 14-17) is also invariant under
Lorentz transformations if the connexion between the momentum
and velocity in it can be defined by the relation

1

P=myv Y=o (4.26)

Instead of the functions N, (g, p, t) we can use functions of eight

variables: the four-dimensional vector g(q, ict) and the four-

dimensional vector p{p, ie/c), where ¢ is the energy of a particle.
We can define these functions as follows:

Nigp)= ¥ %5(9_'—‘1[(1'))5(?:-—1-"1(0(1‘)), @27)

1=1=N,
8(pi—pin(t)) = (p—pAD)) 8(e—ei()).
In this definition the expression
Na(Qi’ pi) 14 dsq d3p de . (428)

is the number of particles of kind @ whose world lines intersect
an element of the hypersurface orientated along the time axis, and
whose momenta lie in the range d&*p de around p,.
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The expression (4.28) can be written in the explicitly relativist-
ically invariant form proposed by R. L. Stratonovich

Na(?i: p) = 1<§=N 5(9:‘9’:(0(30) 5(?:'—.?:(:)(-5'[)) ds;.
‘ (4.29)

Here s, is the eigentime of a particle with a number /.

Instead of the system of eqns. (4.10, 14-17) in this description
we must use the system of equations for the functions N(gp By
and the electromagnetic tensor F) whose components are the
microscopic field strengths EM, BM.

This system of equations is as follows:

d e, 9
U, EZa Nu(g:,0)) 'f"'c— Yo, TR No(g:, 2 = 0. (4.30)

oFY "
G =4aTe [ VNG r D, (431)
M M M
3£f 3;;’ %1;; =0, (k1=1234), (432

where Ugyv, icy) is the four-dimensional velocity,

The relativistic invariance of egns. (4.30-32) is self-evident.

The microscopic equations for a plasma can be obtained from
a variational principle.

It is well known (see, for example, Landau and Lifshitz, 1962)
that the expression for the action S of a system of charged par-
ticles can be written in the form

s=y ¥ {—macf\/(—vﬁn)ds;
a 1=I=N,
w8 | gy ge 1 FM* i (4.33)
¢ [l () Rt § 1671c ik q, .

where 4,(4, ip) is the four-dimensional potential.
Using the functions (4.27, 29) and remembering that ds = dt/y
we can write expression (4.33) in the form

§S=Y f {—-mac V(= U,?)-i—% A}“U,}
X N(q;, p)) d°q dp dt ds+ “16;7:5 f FME dig, (4.34)
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We find the equations of motion of particles of kind a from
(4.34) as follows:

E] S . e
P=2 . 95 i Cm 4.35
5T, Wy 2T A (#:33)
dap; b A e 0
e " ke, AME), 4.36
& = 9a; WN,gup) ¢ 9, % U6 (4.30)
Remembering that
L TV S SNVt
& = %% AU = Uy 925 + FR U,
(4.37)

we can write the equation of motion of a particle of the kind & in
«the usual form

du, e,
ma ot = % MY, . (4.38)

Using the last equation we obtain the expression (4.30) for the
function N_(g;, p;). We obtain the equations for F,I;I by the usual
method (Landau and Lifshitz, 1962), carrying out variation with
respect to AM.

5. Averaging the Microscopic Equations for a Plasma

It is very difficult to make direct use of the microscopic equa-
tions for a plasma, just as in the case of a gas, becanse of their
extreme complexity. We shall therefore proceed to a discussion of
the averaging of the microscopic equations (see Klimentovich,
1958a, b; 1960a, b).

We shall start with the simplest case when the microscopic
state of the plasma at a certain time ¢ is completely defined by
giving the coordinates and momenta of the plasma’s charged
particles.
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In this approximation we can proceed from the system of eqns.
(4.23) for the phase densities

oN, oN,
ot '+'(v'a—q-) —-Zb:e,,eb
0 1 oN,
Are -—IN ’s ': d3 ’d3 .2 =0.
X(faq lq—q'1 24P 0T Pp ap)
' (5.1)

We remember that ¥,(q, p, ) is a dynamic function of the co-
ordinates ¢,; and the momenta p,; of all the charged particles
of the kind a and is defined by the expression

Na(‘]’ P’ t) = ]<§N 6(‘1"‘1::1‘("‘)) a(p—pai(t))s (52)

where N, is the total number of particles of the kind a.
 Since the microscopic state in this approximation is defined by
giving the coordinates and momenta of the particles, the statistical
properties of such a system are given fully by the distribution
function Sy of the coordinates and momenta of all the N = ZNG
a

particles in the system. This function is introduced so that the
expression  fy][ gy - . . Py, d®p,, . .. d®p,y, defines the

probability that at a time ¢ the coordinates and momenta of the
particles of the kind @ have the values gq,,, ..., Qany Pors - - =
Pan, 10 the ranges d°q,, . . ., Py, &P,y - . ., PPy

We shall use the symbol a,, to denote the combination of the
coordinates q,,, p,; of a particle of kind a. The letter 2 without
a suflix is the combination of the coordinates and momenta
g, p of a point in a six-dimensional phase space.

Therefore

E,; = (q:u's pm‘)n €= (qs P) (5'3)

With these notations the expressions for function (5.2) become

Nz, )= Y  8(w—zlr)). ' (5.4)
1IN,

Using the distribution function f,, we can find the mean value
of the phase density N, (a, ?).
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We denote statistical averaging by a bar onm top. Since the
particles of one kind are identical

N, 1) = fK;N @) fy ][4 - . ',
= N,,f 8w~ Sy [1 8 - . d°, .
(5.5)

We define the distribution function of one particle of kind a:

Ja(®,, 1) = foN d%,,...d%, [] d%cy...d%, ,

¥a ba )

(5.6)

where ¥V is the volume of the particle. Using this function the
expression (3.5) can be written in the form

© NJg.p.t)=nflq, p, 1) (5.7

Here n, is the mean concentration of particles of the kind a.

In a similar way we can connect the mean value of the products
of the phase densities N,, N,, N, ..., at different points in'a
‘phase space with the distribution functions.

Splitting the double sum

Y, d@—ay) dx'—xy)

1T N, 1SN,

into the two parts

2 w—a,) b(x' —a,)
1KISQN, 1<V
Tyi#ETyy when a=b

+'§ab Z
1<

i<<Ng

d(x—,)0(z— "),

we obtain, neglecting unity when compared with V,, the following
expression for the mean value of the product of the two functions

N,(z, t) Ny (=, t)= nanbf;:b(ws xz't)
+ apnt S —x') f, (2, t), (5.8)
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where f,, is the distribution function of two particles of kinds
a and b, In terms of f, it is defined as

j;b(wla: mlb: H )

= V?J‘fN dswaz - dawaNu dsmbz .. .
v %%y, T dbay ... doTy . ' (5.9
evta, b
Likewise we obtain

N (@, ) Ny(@', t)N (X", 1) = namn foplee, @', 2, t)
+ 6nbnanca(m - m,)fac ('T5 ;’B”, f)
+ 6acnanb6(w"w")f:zb (:'B, "E’: f)
+op . (x — ") fo (2, ", 1)
+ 8asbpcbl@®—2") 82’ — ") £, (2, ¢) (5.10)

and so omn.

Apart from the distribution functions use is made below of the
correlation functions g, (e, ', ) of two, a2, 1) of
three. . ., particles.

The second and third correlation functions are defined by the
formulae :

Tap (@, @', 1) = fol@, 1) fo (2, )+ g, @, 1), (5.11)
Jave (2, &', 27, 8) = fo(@, ) fo (', t) (2", 1)
+falx, 1) g, @7, 1)
+o (@', 1) gola, 27, t)
+f@”, 1) gal®, ', 1)
+gapl, ', &7, 1). (5.12)
It is sufficient to know the first and second distribution functions
Jar fop in order to determine the thermodynamic functions, the

fluctuations and the gas-dynamics functions.
It follows from the formulae (5.7, 8) that the functions

S fop can be expressed in terms of the first F‘,(:n, t) and second

N (@, 1) Ny(x', t) simultaneous moments of the random functions.
We obtain the equations for the moments of the function
N (z, 1).

58

Microscopic Equations for 2 Plasma

Direct averaging of eqns. (4.23) gives the equations for the
first moments

o, ('v. @) - (Z f D eats
ot oq 7 oq lg—q|
%Nb(q’, P t)N.(g, p, 1) d¢’ d3p') = 0.

(5.13)

This system of equations is not closed simce it contains the
second moments as well as the first.

Equation (5.13) can conveniently be written in a different form,
using ‘

8N, (q. p. t) = N, (g, p, t)—N,(q. p, £) (5.14)
to denote the deviation of the random function N, from its mean.
At the same time as using the moments of the function N, we

shall use the central moments 6N, 8N,, 8N, 8N, 6N, etc.
It follows from definition (5.14) that
N (@, N (x', 1) = N, (&, t) Ny (', 1) ‘
+ 0N, (=, t) N, (o', 1). {5.15)
From formulae (5 g, 11, 15) we obtain the connexion betwaen
the function 6N dN, and g,

SN (@, 1) ONp (', t) = nmpg ., ', 1)
+ 80—, 1, . (5.16)
Taking into account that J\_’a = n,f,, and using (5.15) and
(5.13), the resulting equation for the first distribution function

[y is:

o (..
o+ (> %)
(5 ) TasgT i 0 P -

1 e,e
gl
-—a% W@ P DN P D) b p
= 5,0, p. ). 5.17)
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The equations for the functions £, contain the second central
moments dN, 6N,. S,(q, p, t) is the notation for the right-hand

side of eqn. (5.17).
If we use formula (5.16) and remember that the integral
0 1
T 0g~q) di¢’' =0,
faq TEr iR L

then the right-hand side of eqn. (5.17) can be expressed in terms
of the correlation functions g,

? e
Sa(Qs P t) = ;an‘ (Tg“‘élqe_—f;f{‘

a ’ r ’ r
°—3pgab(q,p,q,p,t)) d*q’' d%p’.
(5.18)

~ Thus we must use the functions 6N, 6N, or the functions g 1O

define the first distribution functions f,.

Before doing this we shall write eqn. (5.17) in a more conveni-
ent form, noting that, in accordance with formula (4.22), the
expression

EM = —grad oM
' 1 r * ' ’
=y [ N, g dp 5.19)
9q 5 lg—q’|

defines the microscopic strength of a longitudinal electrical field
in a plasma.
Denoting the deviation of the field from the mean by

SE(g. ) = E¥(q, 1)—E(g, £), (5.20)
we write eqn. (5.17) in the form

Fo, (0 e\, (g _ €00 —orr

S (o e o) - -3 )

= Sl p. t); (5.21)

divE=4nZeanafﬂd3 ; curllE =0,

Therefore to find the functions £, we must know the correlation
SN (q, p, 1) 8E(q, ).
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In order to find the equation for the function 8N, 8N, contained
in eqn. (5.17) we first examine the equations for the functions
8N, SE. .

From eqns. (4.21), (5.21), remembering that EMN, = EN,+
+0EN,+EON,+0ESN, and N, = n,f,, we obtain the equa-
tion for 8NV,

26N, JddN, % ) N, ‘
o +(v g )+eana (6E Bp)+e“ (E _31) )

9 SEEV) —
+e, (@  (SEON,— aEaN,,)) =o. (5.22)

We obtain the equation for 8E by subtracting the second
eqn. (5.21) from eqn. (4.20)

divoE = 47 Y e, f 8N, d®p, curl 6E = 0. (5.23)

It is now easy to obtain the equations for the second moments.
The most general simultanecus second moment for the case
under discussion is

ON(q. p, ¥) ONy(g', P, ). (5.24)
If this function is known, we can find the expressions for the
simpler functions, e.g.

ON,(q. p. 1) OE(g’, 1), (0E(g,t)-8E(g’, 1)) et

In order to obtain the equation for the function (5.24) we notice
that

2 S, 1) N, )

_ 08N (z, )

JON (', 1)
ot t )

'6Nb(m’= t)+aNa(m’ f) 5

In this we substitute the derivative 9 4N,/9¢ from egn. (5.22)
and the derivative JdN,/dt from the corresponding equation for
the function dN,(g', p’, 1) [it is obtained from (5.22) by making
the substitutions a — b; q, p — ¢', p’] to obtain the unknown
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equation. This equation is not closed either since the means of

three products such as, e.g. dN,ON,OE, will appear in it, .

Thus the third moments appear in the equations for the second
moments. In the same way we find that the fourth moments
appear in the equations for the third and so om, i.e. we obtain a
chain of coupled equations.

Using the connexion between the distribution functions f,, £,
etc., and the central moments we can obtain a corresponding
chain of equations for the distribution functions f;, f,., ...,
or a chain of equations for the functions J, and the correlation
functions g,;, 8,45 - .

The solution of these chains of equations is just as complicated
as the precise solution of the original microscopic equations,
Therefore, just as in the kinetic theory of gases, the question
arises of the possibility of breaking the chain of equations and
obtaining closed equations for a small number of the first moments.

In the case of rarefied gases the possibility of breaking the
chain of equations for the functions Jes Eap» 8ape 15 Dased on the
following. The radius r, of the sphere of action of the molecular
forces in the gases is small (rg ~ 10—8-10 7 cm). Therefore in
rarefied gases the simultaneous approach to a distance of the
order of ry of three or more molecules is a rare occurrence. This
permits us to neglect the triple correlation functions &a5. and
use a closed system of equations for the functions Jis 8-

With certain assumptions it is possible to find a solution of the
equations for the functions g,, which is independent of the initial
values of the functions g,, and is wholly determined by the form
of the first distribution functions 7. ‘

After substituting this solution in the equations for £, we
obtain a closed system of equations for the first distribution
functions f,—the Boltzmann system of kinetic equations.

In the case of a plasma it is also possible to break the chain of
equations for the moments or distribution functions. The Pos-
sibility of this cut-off is, however, conditioned by other causes.
The interaction of the charged particles in a plasma proceeds
according to Coulomb’s law, so it decreases comparatively stowly
as the distance between them increases. In the case of gases the
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effective radius of the sphere of action is the same in order of
magnitude as the radius of the molecule. We shall see below that
the quantity determining the effective radius of action of the
charged particles in a plasma is the so-called Debye radius r,,
which can be defined by the formula

Loy, (5.25)
rs xT,

where T, n, are the temperature and concentration of particles

of the component @ and # is the Boltzmann constant,

Let us estimate the magnitude of the Debye radius and com-
pare it with the radius of action of the molecular forces in a gas.

We shall take the following characteristic data for the plasma
parameters: n, = 10* em =3, T, = 3X10* degrees. Such values
occur, for example, in the positive column of a glow discharge.

Remembering that le| = 5X1071° esu, x = 1-4X10 1 erg/
degree, we obtain r,== 10 ~2 cm.

Under these conditions the mean distance between charged
particles is r,, = 5X107* cm. Therefore r,, <« r,, ie. in a
plasma the radius of the sphere of action may be considerably
greater than the mean distance between the particles, whilst in a
rarefied gas, on the other hand, ry < r,,

We introduce for a plasma the non-dimensional parameter

g = Tav ' (5.26)

The quantity 1/e is proportional to the number of patticles in a
sphere with radius r;. For the example discussed above ¢ < 1.
This means that there is a very large number of particles in 2
sphere of radius r,. We shall use this fact.

We introduce a physically infinitely small volume dV,, such
that

ri, = dVy <rd. (5.27)
This is possible if & « 1.

It may then be expected that the central moments dN, 6N, and
the correlation functions g,, will be small when compared with
N,N, and f,, f; respectively. This assumption is confirmed by
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the solution obtained below of the equations for the correlation
functions.

The expressions (5.11), (5.15) in this case can be written in the
form '

Jas(, x', t) = fu(m: r)fb(ml: t)+§gab(m: x’, t): (528)
N, t)Nb(w’s t) = ﬁa(w: t) ]\—fb(w" t)
+ &8N, (@, 1) dN,(x', t). (5.29)

It can therefore be assumed under the above conditions that
the second distribution function deviates only a little from the
product of the first distribution functions.

In its turn the third distribution function differs little from the
product of the first functions

f:xbc(w= -'L", 'T'Ha t) = fa.ﬁ;.fc"l_ S(gabfc'f"gacf;b +gbcf::)+ Ezgabcs
(5.30)
_ where g, is a triple correlation function of the order of &2,

Accordingly, the expression for N_ N, N, contains, if we substitute
in it N,=N,+8N,, the mean of the triple deviations 8N, 8N, 8N,
likewise of the order of &2,

By dropping the terms proportional to ¢* we can obtain a
closed system of equations for the first and second moments or
for the functions £, g,,.

We notice that in this approximation we can omit in eqn. (5.22)
the non-linear terms SESN 2> OE8N, since it is they that lead to
the appearance of the third moments in the equations for the
second moments.

As a result in the “second moments approximation’ we obtain
the following system of equations for the functions 8N, OE:

%+(v_86Na)+ea (E.aaN")-!-eana (ag%) =0,

ot oy op

(5.31)
div 3E = 43 e, f 8N, d%, curl 8B =0
, 5
From the next two equations we find
a 6Nb(q’s P’: t)

0E = — o | — =~ By’ dipl. (5.32
$%0q] Tla—q1 LR )
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Using this expression the system of eqns. (5.31) can be written
in the form

aaNa+ (v .aaNa) te, (E aaN,)

ot oq op
a €a€p ’ ’ ’ ’ afa)
-1,y (= | =25 Ny, ps 1) B2 Fp - Ya
na; (aq Iq___qfl b(q P ) q p ap
—0. (5.33)

We multiply the first equation of (5.31) by dN,(q', p’, t) and
the corresponding equation for the function ON,(q', p', 1), by
ON (g, p, 1), add the two equations and average. As a result we

obtain for the function éN (g, p, 1) ON{q". p', t):

2] d r I\ T v
[EJF (v'ﬁ) " (v '39“’) ] a0,
+le E--———a +€ E—a ON, 6N,
a & apr aiVp

op
+e,n, (5E(q, t) 6N, 3_1;)

+ ey, (6Na 3E(q’, 1) gﬁ’, (5.34)

) =0

Using formula (5.32) we can express the functions oESN,,
0N, OF in terms of 8N, 8N,.

The system of eqns. (5.17, 34) for (5.21, 34)] is a closed system
of equations for the first and second moments.

Instead of eqns. (5.34) we can use the equations for the correla-
tion functions g,,. Using formula (5.16) and the equation for L
we obtain

P & , @
(5 (7 3g) * (7 57) ) 2
0
+ (ea (E . -(;%) +eg (E . 3_1):)) Zab
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J J‘ €. of,
— N 2 c” ; d3 rr da rr, Ma
" (Bq lq—q 84T 4P ap)

B A r rr aj‘b
- el 77 T ? i Sac da dB vy
é\:”(aququg 9 4P ap)

— (2t [ O,
“(aq|q—~q’l {apfb 50 }) (5.35)

Equations (5.35) and (5.17) with the right-hand side of (5.18)
also make up a closed system of equations for the functions Jas
Eape

We must bear in mind that the set of equations (5.34, 35) is
not completely equivalent: while in eqn. (5.34) we neglected the
third central moments, in egn. (5.35) the ternary correlation
functions are neglected.

Let us lastly discuss the most general case when for the charac-
teristic of the microscopic state of a plasma we have to know not
only the coordinates and momenta of the plasma’s charged
particles but also the strengths of the electrical and magnetic
fields. In this case we can proceed from eqns. (4.10) for the
functions N,(q, p, ) and eqns. (4.14-17) for the microscopic
field strengths EM, HM,

Averaging these equations we obtajn

BN“-{- (v. a_N":')

at op
1 O\,
M — . 2 =
v {0+ o B, ol -G = o
(5.36)
1 a—E 4.’
curl B = - W+—;;ea[v]\fa {g.p.t)d%, (537
1 dB
curl E = '—? "a—t, (5‘38)
divB = 0. (5.39)
divE = 4z Y e, f N (g, p..1) &*p. (5.40)

66

Microscopic Equations for a Flasma

Here E = E™, B = HMare the mean values of the electrical
and magunetic field strengths,

The system of averaged eqns. (5.36-40) is not closed since the
averages of the product of the functions N, and the microscopic
field strengths EM, H™ are in it as well as the mean values of
the functions &,, EM, H™.

Thus we also have a coupled chain of equations for the mo-
ments here as well. .

In the second moments approximation we obtain from (4.10,
14-17), (5.36-40) the following system of equations for the ran-
dom deviations:

éN,, d&E, 4B = HM-B;
PON, [ 06N, i o8N,
+ (v_- )+ea ({E—I—-;[’DAB]} - )

ot oq
1 af,
- L) g, 5.41
ten, ({5E+ - [v/\éB‘]} Bp) 0 (5.41)
_ 1 O04E 4= Smy. div SR = 0-
curlrSB—?-——vami—-—!-?ZeajvéNadp, iv ;
(5.42)
curl 6F = —-»i— - 33—?, div 5E=4:rZeaJ 6N, d*p.
(5.43)

These equations permit us to obtain the equations for the
second moments.
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CHAPTER Il

Equations with a Self-consistent Field — Vlasov
Equations

6. Kinetic Equations for a Plasma in the Self-consistent Field
Approximation

For an electron-ion plasma, just as for a gas, we can introduce
the concept of the relaxation time 7, — the time taken to establish
statistical equilibrium. This quantity is different for the electrons
and the ions. For the time being it is important that the relaxation
time and the corresponding length for the electrons are in order of
magnitude

1 rs; V.
T
"[,'N—’ g — = =

o = ore = Ve (6.1)

where e is a quantity which is inversely proportional to the
number of charged particles in a sphere with the Debye radius
(defined by formula (5.27)) and w, is the frequency of the plasma
oscillations. In a rarefied plasma the quantity  is small so the
relaxation time is considerably longer than the period of the
plasma oscillations and the relaxation length is far greater than
the Debye radius. R
If the characteristic times 7" of a process in a plasma, e.g. the
period of the oscillations in the plasma, the oscillation damping
time or the time of flight of charged particles through the plasma,
are much less than the relaxation time and likewise the charac-
teristic linear dimension L is much less than the relaxation length,
ie.
T, Lxi, (6.2)
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then the equations given in the preceding section can be consider-
ably simplified. In actual fact, the first two terms in the left-hand
side of eqn. (5.17) are in order of magnitude equal to £, /T.

It is shown in § 11 that the term on the right-hand side of eqn.
(5.17) is in order of magnitude equal to f,/r,, so that when the
conditions (6.2) are satisfied in the zero approximation with
respect to the parameter Tz, we can neglect the term oa the
right-hand side of eqgn. {5.17). As a result we obtain the following

gquation

b

3 [ eb 1] r 3f |
s (L | 2 g, p', 1) dPq’ @ -—“) =0. (6.3)
(BQIIq—qlﬁ’(q PO P By
If instead of eqn. (5.17) we use the system of equations (5.21),
then in the zero approximation with respect to T/7, we obtain a
system of equations for the functions £, E

%—i— (v- g_);z)"l'ea (Eg—'::) =0;

divE = 4n) en, J- f.d*p; curlE=0. (6.4)

Equations (6.3, 4) are called equations with a self-consistent
field.

It is important to stress that the equations with a seif-consistent
field are obtained from the corresponding chains of equations
for the moments of the functions N, or the equations for £, g,..
Zape» if the higher moments (starting with the second) or all the
correlation functions g,,, 4. ... in them are completely
neglected.

This means that instead of the formulae (5.11, 12, 15) in the
self-consistent field approximation

Sap (X, ®, 1) = £o(2, OF, (@, 1); fope = Fufsfer 65)
N,(x, )N, (x', ) =N, (x, t) N, (&', 1) etc.

In other words, the approximation leading to the equations
with a self-comsistent field is based on the assumption of the
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complete independence of the phase densities at different points
in six-dimensional phase space.

Equations (6.3, 4) relate to the case when we can neglect the
transverse electromagnetic ficld.

In the general case the system of equations in the self-consistent
field approximation can be obtained from the system of eqns.
(5.36-40) if we neglect the correlation between the values of the
phase densities and the microscopic strengths of the electrical and
magnetic fields, i.e.

N,EM = N.E = n_f,E, (6.6)
N,B™ = N.B = n,{,B. : (6.7

As a result we obtain the following system of self-consistent
equations for the functions f, and the average electrical and mag-
netic field strengths:

of, af. s

. E ] ] B 3 3

(v ae)+ ({ (@, )+ {oABlg r)]} o) =0
- (6.3)

4

curl B _% %_‘?Jr “Ze,,n fvf;(q,p, 1y dip,  (6.9)

curl B = —% 3£ . (6.10)

divB = 0, (6.11)

divE = 4z Yen, f £(q, p. 1) d°p. (6.12)

The system of equations with a self-consistent field for a plasma
was first studied by Vlasov (1938, 1950) and it is called the Vlasov
system of equations after him.

Equations (6.8-12) are still valid in the relativistic case, provid-
ed that p = mye.

Let us examine the conservation laws for a system of equations
with a self-consistent field.
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We use the definition of the density p, and the mean velocity
U, of the component a

Qa(q,t)=naffad3 ; Ua(q,t)=z—:fvﬁd3,
(6.13)

where n, = N_/V is the mean number of particles of the compo-
nent a per unit volume.
We integrate eqn. (6.8) over p and sum over a. Remembennz
that
f;(% D 1') =0 when b= Lo (1 =1,2, 3)

(6.14)
and :
([v AB]. Bf,,) (;— v/\B]f,,) , since
(i . [@,\B]) — 0, (6.15)
op
we obtain the equation
) 0. ) 0.U,
g4+ 4 = 0. (6.16)

ot dq

We proceed as follows in order to obtain the equation that ex-
presses the law of conservation of momentum.

We multiply eqn. (6.8) by n,p = n,m, v, integrate over p and
sum over 4.

In accordance with (6.13)

S, [ of, d'p = Tma,L, (6.17)

is the total momentum density of the plasma particles. _
We introduce the following notation for the tensor of the mo-
mentum flux density:

i; = Zmanaf v, f, d°p. (6.18)
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From this we split off the part determined by the average velocity
Hr'j = ZmaQanan‘!‘P‘;j- (6.19)

The stress tensor P, is defined by the expression
Py =3Py = Zmanafév,- 8v; f, d°p, (6.20)
& @ .

where &2, = v;,— U} is the deviation of the ith component of the
velocity from its mean.
Finally, we use the notation for the electric charge density

Qo1 = 2. €M, ff., d°p (6.21)
and the electric current density
Jj=>Yen, f vf, d°p. {6.22)

Using these notations we obtain from eqn. (6.8), after multiply-
ing by n,m v, integrating over p and summing over a, the follow-
ing equation:

a a 3 alTa a 1. B
W% M0, Us +5q7; (M0, UpUS+P2) = QelEi'i‘?[J/\ 1
(6.23)
We transform the right-hand side of the equation. Using the
Maxwell equations (6.9-12) we obtain
I, 1., 1
gelE+—c- JAB] = y div (E -E)+@ [curl BARB]
i1 [OE I .. .
~ [3?/\3] = 1 [div (B-E)+div (B-B)]
+4i1 (lcuri B AB)+ [curl EAE))
1.2
4nc O

where the zero term div B = 0 is added.

[E AB], (6.24)
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We make use of the vector identity

A, div A+[curl ApA),

1
9 (A?,“j A2) L 0dxd, | 94,4,
- 04 09, 04

Then, by puttiﬁg A; = E;--B,, we can write the expression
(6.24) in the form

19 o,

1
+—[J P e e i— 6.25
QelEt+ - U/\B]r Amc BI[EABL aqj ( )
The tensor T; is defined by the expression
1 E*+ B*
Ty= -4 (E,.E,.+B,.Bj—a,.j : ) (6.26)

and is called the electromagnetic stress tensor (or the Maxwell

stress tensor).
Using the relations (6.25) we can write eqn. (6.23) in the form

0
c% {Z n.0, U?+% [E /\B];}z “a_q_ {Hij"f' Tij}- 6.27)

It expresses the law of conservation of the total momentum of
a plasma. In fact, by integrating this equation with respect to
the whole volume using Gauss’s theorem, we obtain

0 1 2
Y {Z eqr, Ui+ ZFC[EAB]E} diq =— 35 {0+ T} d.Sj-
(6.28)
On the left-hand side is the variation in unit time of the ith
component of the total plasma momentum

&= f{Z €alla (-Ta+4%w (E /\B]}dsq. (6.29)

It consists of two parts: the momentum of the plasma’s charged
particles and the momentum of the electromagnetic field.

The right-hand side of eqn. (6.28) is the amount of total mo-
mentum “flowing out™ per unit time through the surface bounding
the plasma.
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We shall call the tensor
Hy+7; (6.30)
the total momentum flux density tensor.

In the case of a closed system the right-hand side of eqn. (6.28)
Is equal to zero and the total momentum ' remains constant, i.e.

.1
G = f {E e Uyt [B /\B]} dq = const.  (6.31)
If we take eqns. (6.4) as our starting point, which takes into

.account only the longitudinal electrical field E, then instead of
eqn. (6.27) we obtain

0 J ,
E%"eanaU? = “—a—gj‘ (H1j+1-?j)- . (632)
Here
. 1 E?
Ty = s (EEEJ—fSU ”5—) (6.33)

is the elecltrical stress tensor and the total momentum
G = f Y e, Usdg (6.34)

is determined by the momenta of the plasma’s charged particles.
Let us now examine the plasma energy balance equation.
We multiply eqn. (6.8) by n,p?/2m_, sum over a and integrate
over p.
In this case the first term in eqn. (6.8) becomes

Znafpzfad"p

2m,

a0ald 2
=Y Ty g, f aij; d°p. (6.35)

We now introduce the definition of the temperature of the
component g plasma particles

3

n, [ mg(év)*
?XTH = —aj —i—f; d3p (636)
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Using this definition we can write expression (6.35) in the form

2 mo 2 3
E”‘fzfn ﬁd3p=z£%4+-z—zgaxra. (6.37)

Thus the total kinetic energy of the charged particles consists
of the kinetic energy determined by the mean velocities and the
energy of random motion.

The expression

2 '
Y 7, f vk, dp (6.38)

defines the ith component of the flux vector for the kinetic energy
of all the system’s particles. '
Remembering that the last term in eqn. (6.8) drops out in
hese transformations, since (¢ [# A B]) = 0, and using the defini-
tion (6.22) for the electric current density we obtain the equation

2 2
win| B hp= S n [k epG-B).
(6.39)
We now use the Maxwell equations (6.9-12).
We form the scalar products of egn. (6.9) and the vector E,
and of eqn. (6.10) and the vector B. After doing this we subtract
the second equation from the first and using the vector identity

diviEAB] = (B -curl E)—(E -curl B), (6.40)
we write the result in the form

| N - .

8_,1505 +B% = —Ecdlv [EAB]—(j-E) (6.41)

This is the energy balance equation of an electromagnetic field
whose energy density is

S R
W= o (B + B). '(6.42)

[
S = BB (6.43)

is the vector of the electromagnetic field energy flux (the Poynting
vector).
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The last term in eqns, (6.39, 41) (j-E) describes the exchange
of energy between the electromagnetic field and the charged
particles of the plasma.

We eliminate this term from equs. (6.39, 41). As a resuit we
obtain the equation

A 7 3 1 2
-a—i{gna Ef;dp+8_75(E2+B)}

2
= —div {Z nafvﬁ‘;—j;d3p+% [E/'\B}}. (6.44)

The left-hand side of this equation expresses the change per
unit time of the total emergy of the charged particles and the
electromagnetic field. The right-hand side defines the flux of the
total energy of the particles and the field.

. In the case of a closed system the total energy of the plasma
is conserved, i.e.

il s dps L [ (B2 B2 g3y
;ﬂafzmaﬂ(%p, t)d qdp+8:uf(E + B%) d®q = const.
(6.45)

If we use equs. (6.4) as the initial equations, then there are no
terms containing the magnetic field strength B in eqgns. (6.41, 44)
or formula (6.45).

We shall show that in the self-consistent field approximation,
i.e. in the case of complete neglect of the correlation, the entropy
of all the plasma’s charged particles remains unchanged if the
system is closed. :

This will mean that dissipative processes are not taken into
consideration in the self-consistent field approximation.

In this sense the self-consistent field approximation is.analogous
to the “ideal liquid approximation’ in hydrodynamics.

We can define the total entropy of the charged particles by the
expression

St) = —%¥'n, f £ lnf, d°q &p. (6.46)

We multiply eqn. (6.8) by —»n, In Ja, sum over @ and integrate
over p and q.
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We take into consideration the fact that

zn,flnf,,%f;ﬁqu = %zn,ffalnfa dPq d°p

2lnf,
-3 n J' f.55 L2 g avp. (6.47)
The second term here is equal to zero since
d
%Zna ff;dsqdap = EZna = 0.

Integrating by parts, we obtain from the second term of eqn.

(6.8)

zn Inf, - vfedPa Fp

4 of 3
= e (2 ~(v- 2\ Bg Bp = 0.
= Ea naf{aqi (vifa Infa) ('v aq)} q&p
(6.49)
Finally, the last term of eqn. (6.8) gives

Y ean, f nf, (% . {(E+% [v/\B]fa)}) d’p d’q

= gen [ (g5 {Ve s o (B4 L 1B |) g
_ ;_ (6.49)

This expression vanishes since f,(q, p, ) = 0 when any of the
components of the momentum is equal to % ce.
Using formulae (6.47-49) we obtain

ds(t)

_._.._:0’

dt (6.50)

ie. the total entropy of the plasma’s charged particles remains
constant provided that the whole system is closed.

Let us now take a look at the solution of the system of eqns.
(6.8-12) in a linear approximation.
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7. Solution for Self-consistent Equations for the Functions f,,
E, B in the Linear Approximation when there are no Ex-
ternal Fields

The system of self-consistent equations for the functions £, and
the field strengths E, B discussed in the previous section is a
complex non-linear system of equations.

We can, however, immediately produce a special solution of
this system of equations:

JLg.p.)=fAlpl), E=0, B=0.
Here (we are omitting the suffix “el” of g)

0 =4r Y en, fffd"'p =4ny en, =0 (7.1
by virtue of the condition (4.2) for neutrality of the plasma, and

J=4xy en, f vldp =0 (7.2)
because

f2 =fAlph-

Let us examine a solution which differs only a little from this
special solution.
We shall assume that

fulq. p, 1) = L(Ip))+fHg. p. 1); fEfD, (7.3)
E=E, B=08, (7.4)

and consider that the functions f2, E!, B! aresmall, so that when
the expressions (7.3, 4) are substituted in the system of eqns.
(6.8-12) we can neglect the quadratic terms in the functions fh
E', B

As a result we obtain the following system of equations for
the functions /2, E', B!

1 0
agf - (v-%%) te, (El(q, 1) %J;;) =0, (7.5)
curl Bt = % QBETI+%J—TZeana f oft dp, (7.6)
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1 ot
curl E* = B 7.7
divB =0, . (1.8)
divE! = 4z Y en, f fidp. (7.9)

We have allowed for the fact that in the equation for £} the
term .

€ o _
o (enmr35) =0
since
(4] /]
aa—f"—=p af"z and ([eAB]-v) = 0.
'D 3%

In future we shall omit the index 1 of the functions F A OiN
B*. This will not lead to confusion.

We shall show that the system of eqns. (7.5-9) can be reduced
to the Maxwell equations for the electrical and magnetic field
strengths E, B. )

We shall use the Maxwell equations in the form (IIT) (see § 1)
but taking into account dispersion in time and space.

In the case of an infinite plasma it can be reduced to the system
of eqns. (2.59-62) for the Fourier components E(w, k), B(w, k).
We must obtain the expression for the tensor g;{w, k) and the
functions j*(w, k), 0°(w, k) from the equation for the distribution
function f,. ‘

Equation (7.5) can be written in the form

and its right-hand side looked upon as a non-uniform term. Then
the expression for f, can be given in the form of two parts: the
solution of the homogeneous equation that satisfies the initial
condition

Jdq.p, t) = f(q, p,0), when =0

and the special solution of the mon-uniform equation. As a

) ' (7.10)
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result we obtain

Sdg: p. 1) = f(g—vt, p, 0)
t 3fo
—e, E(lg—v(@—1t), t)dr'- 3223,
e f( (a-vt-), v)ar'-32)

(7.11)

It is easy to check by direct differentiation that eqn. (7.11) is
equivalent to eqas. (7.5) for the functions f.

Let us examine the waves in an infinite plasma. In this case it
is convenient by virtue of the linearity of equs. (7.5-9) to expand
all the functions in a Fourier integral with respect to the coor-
dinates and write the equations for the Fourier components.

We can give the expansion in a Fourier integral in the form

fo= (2_% ff;(k, p. ) gk, (7.12)
E = (21)3 f E(k, t)ellea) J3f,
(7.13)
— i(keq) 43
B @ )sz(L t)e a*k.

We shall denote the Fourier components by the same letters.
Substituting the expressions (7.12, 13) in eqn. (7.11) we obtain
the following equation for the Fourier components of the func-
tions f,
Joke, p. 1) = fo(k, p, O)e—ilk=n

o[ (s e a2,
0

(7.14)

We multiply (7.14) by e,n,, sum over « and integrate over p. As
a result we obtain the expression for the Fourier components of
the electrical charge density

ok, 1) =Y en, J‘ Lk, p, 0)e—itkw) 42p

; en f f(E(h t')e—itkeoli=1) . %;) dt' d*p.
(7.15)
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It can be seen from the formula obtained that the total charge
density consists of two parts. The first part is wholly determined
by the initial distribution function and is therefore a known func-
tion of the coordinates and time. In accordance with the termi-
nology adopted in§ 1 we shall denote this part of the charge density

. by ¢° (the density of the “external” charges). The second part of

the charge density, which is proportional to the electrical field
strength, is determined by the induced charge density o'. Therefore
the expression (7.15) can be written in the form

o(k, t) = o=k, 1)+ ok, 1). (7.16)

We now multiply the expression (7.14) by ez,v, sum over @ '

and integrate over p. We then obtain the expression for the elec-
tric current density

jk, ) = ;eanafv};(k, p, De—itesn g3p

_Yen, J' ’ f wemilthroti=0)] (E(k, . e ) dt' dp.
z A op
(7.17)

The expression for the current density can also be represented
as the sum of the “external” (or “strange”) and induced currents

J(k, 1) = ok, )+ ik, £). (7.18)

The Fourier component of the “external” current is defined
by the first term of expression (7.17) and that of the induced
current by the second term.

Just as in § 2 we use a smgle~var1able Fourier transform with
respect to time

Elw, k) = f E(k, tye—d+iot oy (7.19)

0

In the same way we determine the functions B(w, k), Jlo, k),
oo, k), ... .

Using the folding theorem and remembering that the integral

1

w—(k o)y +id’ (7.20)

—lfw e—drifo—(k-v)lt dt =
o
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we find from the expressions (7.15-18)

o, k) = 1Y en, Sk, p, 0) d*p;

w—(k -0)+id
j@, k) = i¥ e, f % &*p; (7.21)
| - F (E %J: ) N
9‘(w,k)=—z;eanadnm D o

’!:(E(cu, E)- Eg;")
7 2y = g 2 3
J(ws I") - lzeana cu—(k"v)-l-iﬂ dp

a of

We notice that the second equation (7.22) can be considered as
Obm’s law for a plasma which defines the connexion between
the Fourier components j(w, k) and E(w, k).

If we use oy{w, k) to denote the conductivity tensor, then
Ohm’s law for a plasma will become

Jiw, E) = oy(w, k) E{w, k). (7.23)

Comparing the expressions (7.22, 23) we obtain the formula
for the conductivity tensor

afe
Y 9p,
. 2y = —§ 2 ___—j 3
oy, k) iy en, RO a*p. (7.24)

a

We now introduce, just as we did in § 2, the induction vector

Dfw, k) = E{w, k)+i—— oy Efw, k) = ¢(w, R)E,

: (7.25)

4
w=i

where g4(w, k) is the tensor of the plasma’s dielectric constant
which is conmected with the conductivity tensor by the relation
(2.55)

g{w, B) = o {w, k). (7.26)

47
w+id
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By using the formula (7.24) we obtain the expression for the

_ dielectric constant tensox

af?
de’n Y3, op; .
ey, B) = b+ L= | ommayrid P (7.27)

The formulae (7.21, 27) define the functions ¢*(w, k), j*(w, k),
gy(w, k) for a plasma in the linear approximation and in the
absence of external fields. Accordingly the problem of determin-
ing the field strengths E, B is reduced to the system of Maxwell
equations (2.59-62).

It must be stressed that in the case under discussion the quan-
tities §°, o° are determined by the initial vatues of the distribution
functions f(g, p, 0). '

It follows from the Poisson equation for the Fourier com-
ponents when ¢ =0,

i(k-Ek, 0)) = 41 Y e,n, J‘ £k, p,0) d°p, (7.28)

that the initial values of the functions f, also determine the ini-
tial value of the projection of the vector E(k, t) onto the vector k.

‘We shall split the vector E(k, 1) into transverse and 10ng1tud1na1
parts with respect to the vector k

Ek,t)=E\+EL, [EAE]=0, (k-EY)=0

Using this division we can see from (7.28) that the initial value
of the functions f, determines the initial value of the longitudinal
electrical field.

Therefore in the Maxwell equaﬂons (2.59-62) we need to know
the initial value only of the transverse component of the electrical
field strength in order to determine the field strengths E, B. The
magnetic field is always transverse since (k- B) =0

The actual expression (7.27) for the tensor &,(w, k) is derived
with the proviso that the function f? depends only on the modu-
lus of the momentum, i.e. for the isotropic case.
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Since in this case the dielectric constant tensor depends on the
single vector k, it can always be represented in the form

ey, k) = (a —%) ek, B)+ L 54 oo, k). (7.29)
The functions &', e%, which depend on the magnitude of the
vector k, will be called respectively the “longitudinal” and the
“transverse’ dielectric constant. The meaning of these names is
that the functions &/, &%, as we shall see below, determine re-
spectively the longitudinal E' and the transverse B+ components
of the electrical field strength vector in the plasma.
It follows from formula (7.29) that

(7.30)

el = Si-% . el — (Bij_k:kj) £y

K

Substituting in the expressions (7.30) the formula (7.27) for the
tensor ; we obtain the explicit form of the functions &!!, &+

r 570
(k-v)(k- ")
4meln, p
elw, k) = 1+3, Rltid) | ok -v)+id P,
(7.31)
[ oy
2ne3n, ([[k/\v]/\k] . %)
et k) = 1+3, KRo+id) ]  o—(k-v)+id

(7.32)

The expressions (7.31, 32) are often written in a different form.
In the expression (7.31) we take into account the fact that
(k-v) [0—(k-0)+id]™t = —1+(w+id)/[wo—(k-v)+id]and in
the expression {7.32) we integrate by parts. As a result we obtain

the following formulae:
ar?
4sven, k- op 3
&', k) = l-i-z e o— (k- v)<id d’p, (7.33)

. 4meln ff 3
el(w, k) 1- Z m m d p-

(7.34)
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Let us return to the system of eqns. (2.59-62). By using eqn.
(2.60) we can eliminate the vector B Then we obtain the system
of equations

i ([k Ak /\E]]+°§§- D) 4’“" :, 0)
2 [RAB, O: (7.35)
i(k-D) = 4mp°; D; = e;E;. (7.36)

We can represent the vector E in the form of the sum of the longi~
tudinal and transverse components

k-E)
=k PR

Using eqns. (7.35, 36) and the expression (7.29) for the tensor
g; We obtain the equations of the functions E', E+

ie'(w, k) (- B") = dmpe;  [RAEN = 0, (7.38)

JEa-

From these equations we find

En

(7.37)

)El - i‘:ﬁ, — & Bk, 0)

+?[k ABE,0)]; (k-EL)=0. (7.39)

i 4rp°

I = —j—
E'(w, k) I o @R’ (7.40)
Ei(o,l) = —idnwji +iwBL(k, 0)—ick AB(k, 0)]
(cr+iA)? eJ-(co R)—c2k*®
(7.41)
In the expressions (7.39, 41) the vector
\ .. k(k-jc
L e sz ) (7.42)
is the transverse component of the external current.
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The magnetic field strength can be determined by the formula

=L [kAEL]+— ¢, 0). 7.43
B = o [RABL]+ o Bk, 0) (7.43)

The transverse and longitudinal components of the electrical
field as fupctions of the coordinates and momenta are defined

by the formulae
E” (q, t) == 1 J‘W J‘E I (CO, k) eAI—i[w:—-(k.q)] deo dgk’

(2m)*
(7.44)
Eli(q,1) = (—2-:153 f ” f E (e, k) edr—iwr—te 0 doy O,
o ' (7.45)

It follows from these formulae and the formulae (7.40, 41) that
the electrical and magnetic field strengths in a plasma are de-
termined by two factors. In the first place by the form of the initial
distribution functions f,(q, p,0) and, hence, by the external
currents and charges §°, ¢° and also the initial values of the fields
E*, B. In the second place by the functions &' (w, k), (v, k)
which arg characteristics of the properties of an isotropic plasma
in the linear approximation.

It follows from the expressions (7.40, 41, 44, 45) that we must
find the zeros of the denominators of the expressions (7.40, 41)
in order to calculate the functions E'" (g, £), EL(q. 1), i.c. we must
solve the equations

eli(w, k) = 0, (w4 id)%ct (o, k) — c2k* = 0. (7.46)

By using expressions (7.33, 34) we can write these equations in
the expanded form '

N
4:eln ( .BP)
el p = 47
P Yyl s oy ek e (7.47)
e | 4rteln, 0 3
@+id¢ (1-3 25 | o=mhomTia ‘”’)
— % =0, | (7.48)
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Equations (7.47, 48) define the dependénce of the complex
frequency on the wave vector for longitudinal and transverse
waves respectively in a plasma and are therefore called the dis-
persion relations. These equations were first derived by Vlasov
(1938, 1950). In the next section we shall discuss the solution of
these equations for different forms of the distribution functions
f(pD-

For a given distribution /7 we can find the most exact solution
of the initial equations with a self-consistent field by using the
perturbation theory method (the method of successive approxi-
mations). In this case the initial equations can also be reduced
to the electrodynamic equations of a dispersive medium which .
are, however, non-linear (see § 2). In the non-linear approxima-
tion the plasma is characterized not by the single tensor &; but by
the combination of tensors &, %, @, ... (see § 2) d=fining
the connexion between the vectors D, E in a non-linear medium.
The position here is similar to that which occurs in non-linear
optics (see Akhmanov and Khokhlov, 1964).

With this approach no allowance is made for the inverse effect
of the electromagnetic waves on the form of the distribution
functions f7. If this inverse effect is significant the equations with
a self-consistent field can no longer be reduced to the electrodynam-
ic equations. In this case, however, we can under certain condi-
tions simplify the initial system of equations with a self-consistent
field and reduce it to the simpler system of equations for the
smoothed distribution functions f,(ut, uq, up) and equations for
the slowly varying spectral functions of the electrical and magnet-
ic field strengths. This approximation is often called quasi-
linear.? Xt will be discussed in § 8.

To conclude the present section we would point out that the
solution of the equation with a self-consistent field described
here is also valid, of course, when the initial momentum distri-
bution f}(p) is not isotropic. The corresponding expression for
the dielectric constant tensor is given in § 14.

t Vedenov, Velikhov and Sagdeyev (1961); Vedenov and Velikhov (1963);
Vedenov {1962); Drummond and Pines (1961); Shapiro (1963); and Karp-
man (1964), .
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8. Propagation of Electromagnetic Waves in a Plasma when
there are no External Fields

It has been shown in the previous section that in the linear
approximation independent equations are obtained for the longi~
tudinal (in relation to the vector k) and transverse components
of the electrical field strength vector. This means that when there
are no external fields in the linear approximation the longitudin-
al and transverse waves are propagated independently.

Let us first examine the propagation of longitudinal waves in
a plasma.

It follows from the formulae given in § 7 that the longitudinal
component of the electrical field strength is determined by two
factors. Firstly, by the form of the initial distribution function
fq, p, 0) or the corresponding distribution of the external
charge and current density. Secondly, by the dielectric constant

¢' (o, k) which is a characteristic of the plasma’s properties in
; the linear approximation.
It follows from the expression (7.40) that to calculate the func-

tion E'(g, ) we must find the zeros of the numerator, i.e. solve

the equation

e (o, k) = 0 (8.1)

-5

w—(k-v)

or in the expanded form

1'5'2 4:reana

@p =0, o=o+in"
(8.2)

Equation (8.2) defines the complex frequency w as a function
of the wave vector, i.e. defines the nature of the longitudinal waves
which can be propagated in a plasma.

Let us examine the solution of the dispersion relation for differ-
ent forms of the functions £2(p).

Let us start with the simplest case when we can neglect the
motion of the ions and consider that they are evenly distributed
throughout the plasma.
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We shall assume that the plasma consists of two components:
electrons and ions. Then the suffix g in the expression (8.2) takes
the two values a=e, i.

In order to satisfy the condition of immobility of the ions we
make their mass in expression (8.2) approach infinity.

As a result we obtain the following dispersion relation:

(%)
4metn, op
k2 w—(k-v)

14

(8.3)

Let us examine some examples of the solution of this equation.

1. Let the electron temperature T, = 0 and their mean velocity

be zero, i.e. U, =0. Then the distribution function can be written
in the form

f@) = 8(p), @4

where d(p) is a d-function.
We substitute this expression in eqn. (8.3) and integrate by

parts with respect to the momenta. As a result we obtain the ex-

pression

dne’n, (p)

I- [o— (k-]

d*p = 0.

Integrating over p and using the properties of the S-function
we obtain

47sezn; =0, wl= %_ (8.5)
myw m,

Therefore when the temperature is zero the only oscillations
possible in an electron plasma are those with a frequency

w, = \/ (4“:’”) : 6)

which is called the electron Langmuir or plasma frequency.

It is important that the frequency does not depend on the wave
vector, 1.e. the oscillations occur at the same frequency for any
wavelength or, to put it better, for any size of non-uniformity.
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2. We shall now assume that there are two groups of electrons,
1 and 2 in the plasma. For group 1 the mean velocity is I/, = 0,
whilst U, = 0. As before the temperature of all the electrons is
ZETO.

In this case the distribution function f£,(p) becomes

”ef;(P) = "1‘5('?_ U]J+n2a(p)’ neznl +n27 (87)
where n; and n, are the concentrations of the first and second
groups of electrons.

Substituting this expression in eguation (8.3) and integrating
over p we obtain the following expression:
w? 03
= To-®-OgF Tt

where @y = 4/(dne’ny/m,), w,= 4/(4ne*ny/m,) are the plasma
frequencies of the corresponding groups of electrons.

Equation (8.8) of the fourth degree in w has complex-conjugate
roots. This means that the state of the system for a certain range
of values of the wave numbers is not stable. We shall prove this.

If we assume that the increasing root of eqns. (8.8) is close to
(k- U,), we can find the solution in the form

o= (k-U)te; |e| =<k -T). (8.9)

We substitute relations (8.9) in eqn. (8.8) and by using the small-
ness of £ we obtain

(8.8)

2 2
.

1= 4t R A (8.10)
From formulae (8.10, 9) we obtain
w= (k- ‘)(11 ©y ) ©.11)
RV [ 74

It follows from the solution obtained that for the wave number
values that satisfy the condition

k- -U,) < 0, (8.12)

there are two complex-conjugate frequencies, i.e. there is a wave

with an amplitude rising in time and therefore the initial state is
unstable,
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The absence of a lower limit in the instability condition (8.12)
can be explained by the fact that we are not allowing for thermal
motion. For T, %0 the instability arises only when the velocity of
the relative motion is greater than the mean thermal velocity.

In accordance with the condition (8.9) the formula (8.11) is
valid if the second term in eqn. (8.11) is small when compared
with the first. When (k. U}) <« o, this condition means that

WKWy O Ny <K Hy. (8.13)

In order to obtain the solution in the region where (k- U) ~ w,

we put
k-U)=0,, and o=cw,+a. . (8.19)
Substituting these expressions in (8.8) we obtain the equation for %
al+ 2w56° —03a® + 20w x —olon? = 0.
From this, when the condition (8.13) is satisfied, we find
2t ~wind = 0; o= 1:5:;/3 W (z:) Ia.
' (8.15)

Therefore for this region the complex-conjugate roots are de-
fined by the formula

1£i4/3 jo\20
m=w2——2%cu (m:) . (8.16)

Just as in the first case the increment when the condition (8.13)
is satisfied is much less than the real part of the frequency.

If the concentrations r; and #, are the same then by the sub-
stitution w — (k- Uy)/2 = £, eqn. (8.8) is reduced to the biquadratic
equation

- 2 A
e (5 o ()
2 2
N 2
— (G“—;”—l)) ] = 0. (.17
We can write the solu {ion of eqn. (8.17) in the form

=g e (e = [ (5

(8.18)
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It follows from this that if

E-U)2=w, (8.19)
all the roots are real, and when ' .
0=E& -0U)2<=wm (8.20)

there are complex-conjugate roots for 2, one of which corre-
sponds to a negative imaginary part of the frequency and leads
to the appearance of a solution that increases with time.
It follows from formula (8.20) that the state is unstable for all
wavelengths whose wave numbers are within the range
0 <k < kpoy = 200,/0;, kU (8.21)
The example of an unstable state in an electron plasma dis-
cussed here is given only by way of illustration. The question of
describing unstable states in a plasma requires separate discussion

(see Leontovich, 1963).
3. Now let T, = 0 and the function f? be the Maxwell distri-

bution, i.e.
0 — T 2mgn =
2= Gyt o> Te=T. (8.22)

We substitute the expression (8.22) in the formula (8.3). In the

integral over p we take the vector k along the x-axis. We can then
immediately integrate over p,, p.. Remembering that

1 7

I~ P
f e 2T dp, = /QumnxT), i=x,5z,

we obtain the following dispersion relation:

o 3 P
4rie® 1 ot T
men, 7. _
Y Ve | ek, =0
(8.23)

If we introduce the integration variable ¢ = p_/ £/ (2Zm»T) and
use z = mw/k 4/(2mzT) to denote the ratio of the phase velocity
to the thermal velocity, then the dispersion relation can be writ-
ten in the form

1 z (= gt
4o (1+~\~/—:;f_m§dt) = 0. (8.24)
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In the expression (8.24) the complex quantity z has a positive
imaginary part since @ = o' +iw”, @' = 0.
Tablés have been compiled for the integral
co 5—p2
f LIy
t—z

-—a

for complex values of z (see Faddeyeva and Terent’ev, 1954). By
using these tables we can find the value of the frequency for any
value of the wave number.

Im the very interesting case of low values of k, when r2k? << 1
and the wavelength 4> r,, the dispersion equationcan be solved
analytically. We see that as k¥ —~0, w —w,, i.e. @ approaches a finite.
value, so that smali k(rjk << 1} correspond to phase velocities con-
stderably greater than the thermal velocity of the electrons, i.e.

2> \/(;T) . (8.25)

In addition it is to be expected that for low k the imaginary
part of the frequency '’ is much less than the real part o" <« ',
This will be confirmed by a result obtained below.

Bearing these conditions in mind we can take the limiting
value of the Cauchy-type integral in the dispersion equation
(8.23).

Remembering that when z = z'4 iz’ the integral

lim |~ % dy =P L : f(f)y dy—inf(z),  (8.26)

2 =0 -

where P denotes the principal value integral, the dispersion rela-
tion can be approximately written, taking the quantity o'’ to be
small, in the form —_—

oo P

L i g ZmT
B CampT) | o w—kv,  Px
o etmd (9 —%) _
oy (ﬁe = =0. (827

Bz ="y %
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When calculating the first integral we use the condition (8.25).
Then under the integral sign we can make the expansion

1 =l(1+kvx+(&)2+(ﬁ)s+...) (8.28)

w—kv, o w w o

Substituting the expansion (8.28) into eqn. (8.27) and when
integrating over p, leaving the first two non-vanishing terms, we

obtain
o 2 _ my(e j):
1—3’5—(1+3 %T,k2)+i (E)—“*—mae BT =0,
w? m o 2 3 (MT) [z

m,

(8.29)

We substitute & = o'+ iw’ in (8.29), remember that o’ <« o',
and make the real and imaginary, parts vanish. In the zero ap-
proximation with respect to r2k? we find

w? = w?, (8.30)
and the more precise value

w'? = @i+3 Ekz. (8.31)
mc
It can be seen from this that when r2k? < 1 the real part of the
frequency differs but little from the plasma frequency e,.
Putting the imaginary part of eqn. (8.29) equal to zero and leav-

ing the main terms we obtain the expression fory = —w'’
= [[Z) . B g 8.32
y \/(8) ey o=, (3.32)

The imaginary part of the frequency '’ is found to be negative
since the function £l(w. k) is an analytical function in the upper
half-plane and therefore has singularities only in the lower half-
plane.

The quantity y is called the plasma wave damping decrement.
The formula (8.32) was first derived by Landau.

It follows from the expression (8.32) that when r%® <1 the
damping decrement is much less than o’ as was assumed above.
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We can find from the formula (8.31) the magnitude of the phase
velocity

0w o 3 T
— T 252

C RT3 emek, when riP«1
@

2> \/ (’:n-z) . (8.33)

Therefore for plasma electron waves the phase velocity is a
function of & i.e. wave dispersion occurs.

We would also point out that the damping decrement y is small
only for long waves. Using the tables (see Faddeyeva and Teren-
t’ev, 1954) compiled from eqn. (8.24) it can be found that when
kry =1 the damping decrement becomes comparable to the
real part of the frequency.

“Let us now turn to discussing the longitudinal waves in a plas-
ma taking into account the motion of the ions.

We shall assume that the plasma is strongly non-isothermal,
This means that the electron temperature is much higher than the
ion temperature

T.=>T; (8.34)

In the first approximation we can neglect the thermal motion
of the ions and assume that the distribution functions of the elec-
trons and the ions f2, £° are of the form

1 P

fo= We-m, Si = &p). (8.35)

We substitute the function (8.35) in the dispersion relation
(8.2). We can at once integrate with respect to p,- By taking the
vector k along the x-axis we can integrate with respect to
Peys Pe - After this we obtain the following equation:

9 -2
2 k e T, o
14+ 4me’n, op, dp.—9% = 5
K2/ (2nmxT,) w—ku, P r =
(8.36)
Here
dmeln, ‘
z = TG

o? poy (8.37)
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is the square of the plasma frequency for the ions.

We shall show that in an electron-ion non-isothermal plasma
longitudinal waves are propagated with phase velocities much less
than the thermal velocity of the electrons but much greater than
the thermal velocity of the ions: :

\/(%) = % = \/(LT‘) . (8.38)

m;

Assuming once again that the damping decrement is small we
calculate the integral in eqn. (8.36) in just the same way as in
eqn. (8.27). By virtue of the condition (8.38), however,we can once
again expand in powers of w/k+/(xT_/m,).

As a result we obtain the following dispersion relation

. TRE
DeMe g / z\ g (™ 20, F8.39)
I+k2zTc+1\,(2)k3 xT, O I
Remembering that =T, /mm? = r3,, we can rewrite this equa-
tion in the form

2

B ’(E) @ . (8.40)
e JE) ke

e

2

(i)}

From this, by putting @ = w’—iy and remembering that
2 < o', we find

w2 = DGR /(z) ek _
L4753k AL /(RTc)k(mzekzﬁ
e

(8.41)
For long waves when

ri k1, (8.42)
the expressions (8.41) become

/ T m, _ Tom,

(8.43)
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where ¥, is the velocity of sound waves in the plasma

v, = J (’;—5) , | (8.44)

which is determined by the temperature of the electrons and the
mass of the ions.
It can be seen from the formula (8.43) that Y << ' since m,/m,
<< 1, '
By virtue of the non-isothermal nature of the plasma the condi-
tion {8.38) for sound waves is in fact satisfied.
Let us look at another extreme case when

ri k=1, “ (8.45)
where

o =, p= \/(%) W : (8.46)

In this case the oscillations occur at the ion plasma frequency
and are called ion oscillations. In the first approximation, just as
for the electron oscillations, the frequency is independent of the
magnitude of the wave vector k.

Let us now examine the dispersion equation for transverse
waves in a plasma. _

The dispersion equation, which defines the frequency of the
transverse waves as a function of the vector E,is of the form

w'e(w, B)—c%k?* = 0. ‘ (8.47)

By substituting in this the expression (7.34) for et(w, k) we
can write the dispersion relation for the transverse plasma waves
in the form

” dren, fP
co~=r:2k2+z = f o— (ko) dip. (8.48)

If the functions /2 and £ are Maxwell distributicns, then by
using the tables (see Faddeyeva and Terent’ev, 1954), we can find
from eqn. (8.48) the values of the frequency o for any magnitude
of the vector k.
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For long waves in the first approximation in the integrals we
can put 1/[o—(k-v)] ~ 1/o.
Then from the eqn. (8.48) we find
w? = mi+c2k2, “’i — 24:7178,}13_ (8.49)

a My,

The frequency is a real quantity. The fact that the damping
decrement vanishes is caused by the fact that

(S2P))p = mguie = O, (8.50)
since it can be seen from the expression (8.49) that the phase
velocity of the transverse waves in the plasma is greater than the
velocity of light and for velocities of v = ¢ the distribution func-
tion should be equal to zero. This occurs in fact for the relativistic
Maxwell distribution (see § 13).

We have discussed the question of the propagation of electro-
magnetic waves in a plasma using the self-consistent equations in
the linear approximation. This is possible if the wave amplitudes
are so small that the non-linear terms can be neglected.

For stable plasma states the amplitudes are small if the initial
perturbation or the external cause of the wave propagation is
small. If these conditions are not satisfied, the non-linear terms
must be taken into consideration when solving the equations.

It is, of course, absolutely necessary to allow for the non-
linear terms in those cases when the plasma is in a non-stable
state. The question of the solution of the system of the self-
consistent equations for a plasma with the non-linear terms taken
mmto consideration is still far from being resolved. Only certain
special problems have been examined.

We shall make one more point here. It follows from the solu-
tion obtained for the dispersion relation for the longitudinal
waves in a plasma that the longitudinal waves in a plasma are
damped if the temperature is not zero. This means that the solu-
tion of the equations for the first moments in the approximation
discussed describes a dissipative process.

A question arises. How can this be made to agree with the
statement in § 6 about the constant entropy in the first moments
approximation ?
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The peint is that the Maxwell distribution, for example, is only
one of an infinite number of distributions of the form f2(|p|)
which satisfy the system of equations for the first moments.
Therefore the equations of the first moments are insufficient for
selecting a definite solution of the form f2.

The use of some definite solution indicates that we have gone
outside the framework of the first moments equations, i.e. we are .
quietly making use of correlations or of the higher moments.

It will be shown im § 11 that the kipetic equations, which
contain a contribution from the higher moments, describe the
dissipative processes.

9. Propagation of Electromagnetic Waves in a Plasma Located
in a Constant Magnetic Field

We proceed from the system of equations with a self-consistent
field (6.8-12) for the functions f,, E, B .
Just as in § 7 we assume that
fdg, p. t) = 2Ap)+fHgq.p, 1), B=B'+B,
E =E. (9.1)
Here B? is a constant magnetic field.
We shall assume that the function f? is of the form

f2p) = 27, P, ' 9.2
i.e. that it depends only upon the transverse {p*) and longitudi-
nal (p') components of the vector p relative to the external mag-
netic field vector B . The function fX(|p{) is a special case of
(9.2). This being so

e,
2 (v
c

and the equation for the function £} in the linear approximation
can be written in the form

.Bff =0 9.3
Bp) ©-3)

ofs Ofs ofs oy
o+ (05 ¥ (o0 B-g5) = e (B55).
9.9
Below we shall omit the superscript 0 of B.
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We can write eqn. (9.4) in a more convenient form.
Let us examine the solution of the equations

P_ faprp), mL-

ar  mge a gy P G-3)

which are characteristics of the homogeneous equation (9.4).
The solution of eqmns. (9.5) connects the values of g, p at the
time ¢ with the values of the coordinates and momenta

R, t,p. q) =R,0,t—t, p, @);
P, t,p) = PO, t—1t', p) (9.6)
at the time ¢'.
The arguments of R, P, indicate that B, P, are the values
of the momenta and coordinates at the time ¢/, if at the time ¢

these values are p, q.
From eqns. (9.5) we find the solution

p = (P,-b) b+[[bAPJADB] cos Q(1— 1)

+[P,ADB] sin Q. (t—17); 9.7
q = Ra.|_£b'?;:4w(z—t’)+[_[b_/\%_2]/\_b] sin Q (1 —1")
[i‘:ﬁ\) 1 (1—cos Q,(t—1")). (9.8)

Here b = B /|B| and 2, = ¢,B/m,c.
The inverse relations are of the form
P, t—t,p) = (b-p) b+[[bAPIAD] cos Q (' —1)
—[bAp]sin Q¢ —1); ®.9)
R0, 1=, p, q) = q+(b-v) b(r'—1)
+ [[b Ag]/\b]

a

sin Q(t'—1)

_[bAv] o ) = P
on {1—cos Q,(t'—1)); v_m,,' (9.10)
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Below we need the expressions (9.7-10) for the individual com-
ponents. When B ||z we have from (9.7)
Dx = Pyecos Q(t—t")+P,, sin Q(t—1);
Py = P, co8 Q1—1)—P,, sin Q(t~1"), p,=P,.

(9.72)
From (9.8)
g. = R,.+ Lo sin £ (t—t’)-l—ﬁ(l—cosﬂ (t—1t));
& ax maQa -4 mngla 'a ?
—_ Pa.'l’ 4 —_ Y e Pax — — 7
g, = Ray—l-m sin Q (r—1t") Q_,,ma(l cos Q,(t—t")).
(9.8a)
When B =0, ¢, = R,,+2,(t—1") follows from (9.9, 10).
P=p, R=qg—v(-t) (5.11)

Using the formulae (9.9, 10), eqn. (9.4) can be put in the form
f;‘(q, p: r).zfal(Ra 0, t—19, P, Q)s PO, t—1,, P)’ Io)

¢ afe :

—e,,f (E(Ra(o, 1—t',p, ), t)- (a ) ) ar’.
[ P/ prpyo.1—t,p)

: (9.12)

The first term on the right-hand side of (9.12) is determined by
the initial value of the function f} and is the solution of the
homogeneous equation (%.4), whilst the second term is the solu-
tion of a non-homogeneous equation (9.4). Below we shall take
to = 0. :

We use eqn. {9.12) to connect the value of the current j with
the valué of the electrical field strength F. To do this we multiply
(9.12) by e 1, ¥, sum over @ and integrate over p.

We can write the expression obtained in this way, just as we
did above, in the form of two components

Jlg, t) = je+ji (9.13)

We obtain the following expression for the external current j°:

J(g, 1) =Y ean, f ofd(R,0,1,p, @). PO, 1, p), 0) &p.
’ (9.14)
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The induced current j' is defined by the expression
!
a0 =~ dn[ @ [ap

X v ((E(R,,(O 1=t ) ) (6‘1))

In (9.15) we carry out a two-variable Fourier transform with
respect to ¢ and a single-variable one with respect to ¢. Using the
folding theorem we obtain

Flo,B)= =% egnaf dt j dPpe—A1+Tet+ (kR0 1. p Oy
a 0

X (G B)- &

) ©.15)
p_"Pa(O»t 1 P

(9.16)

) P — Pa(0. 4, p)

By comparing (9.16) with (7.23) we obtain the expression for -

the conductivity tensor of a plasma located in a magnetic field.

o, K) = =Y &n, f " ar f &p
a 0

il p—+Pyo.t,p)

When B = 0 the expression (9.17) is the same as (7.24). In

order to make this limiting transition we must use (9.11) and
remember that

fme—dr—‘i[m-—(k-v)] tdr =
0

3¢ g dr= ot (ke Rat@, £, p, )] 'U.'( (9.17)

i
w—~(k.v)+id’
We transform the expression (9.17). We make use of the
equality

(9.18)

f U2Ps) . dps
; = ,._ﬂ.._ P . S 0.1
v ( dp; .)p-—P, v ops dP, (3.19)
For functions of the form of {9.2)
FAP,) = rp). (9.20)

Using (9.20) and the formulae (9.7a) and (9.9) the expression
(9.19) can be written in the form

1 ¥ P.i(0, ¢, p). (9.21)

m, op,
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The expression (9.17) may be expressed in the form

en, [
Uﬁ(ws k) = *;-—ET'G—J; dt -
% fdape-mwtwr-t-(k-mw, La P, (0, t, p) Bf (p) (9.22)

The dielectric-constant tensor i$ connected with the conduc-
tivity tensor by the expression (7.26)

4r
gt
wtid o

The index “4™ means that the appropriate functions are
analytical in the upper half-plane.

In the expression (9.17) (or (9.22)) we can integrate over f.
The corresponding calculations will be given in § 15 for the case

of a Coulomb plasma.
Here we give only the final expression for the tensor &;:

& = 8,41 (9.23)

dacin, & 1Ty 2
=Wtl ot X | s —kieisd g P
32m
a

In this expression

2
22 (n {1) iv?% (n ;’i) I pipt == dh

Xz a Gy
. I .
e = | —in?, (n &1) I RW)E —ilolLT
o
nl? .
vyl “—” HELE W

a

Here we have used the notations: ¢+, v", kL, &' are the
transverse and longitudinal components of the vectors ¢,k in
relation to the vector B, a, = k, v, [@,, I, = I (a,) is a Bessel
function of the nth order and I, is its derivative.

We can now find the dispersion relation for a plasma located
in the magnetic field. We turn to eqns. (7.35, 36) to do this.
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By using the expression D, = g;E; and remembering that
[l A[EAE]] = k(k-E)—EK?, we can write the homogeneous
equation (7.35) in the form

2
(kk T e,,) E =o. (9.242)

From the solubility condition for this system of equations we find
the dispersion relation

2

kza,.,.-k,.k,.-%e,.j(w, k) (9.24)

When there is no magnpetic field in the isotropic case the tensor
&; depends only upon the components.of one vector and therefore
can be represented in the form (7.29). In this case eqn. (9.24)
degenerates into two equations: the dispersion relations for the
longitudinal and transverse waves. This means that when there is
no magnetic field the longitudinal and transverse waves are pro-
pagated independently in the linear approximation. When there
is a magnetic field it is generally impossible to make this division
of eqn. (9.24).

Let us examine some important special cases.

1. Waves in a cold plasma. We make the temperature T, of all
the plasma components equal to zero. In this approximation

f2(p) = p).
We substitute this expression in the formula (9.22), integrate by
parts and carry out the integration with respect to p.
Using (9.23) we obtain the expression

(9.25)
By means of formuia (9.9) we find
P } cosQ,t sinQ¢ 0
2= —sinQ¢ cosQz 0 (9.26)

0 0 1

We substitute (9.26) in (9.25), integrate over ¢ and take the
limit as A4 -~ 0. As a result we obtain the following expressions

dp; !
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for the components of the tensor &yt

4ne M 1
f11 €9 = 1- Z z_Qg H
dmeln, w?
fas = 1—; ma® @t
. 4nein, Q,

£1g = &g = 12 = (927)

€13 = €93 = &y = &g = 0.
In this approximation the tensor e is Hermitean, i.e.
=g; or g(B)=¢(~B). (5.28)

This means that there is no absorption in this approximation,
Le. the dissipative processes are not taken into account.

Therefore when there is an external magnetic field the plasma’s
dielectric constant tensor is complex even if absorption is not
taken into consideration.

A medium which is characterized by a complex dielectric
constant tensor is called magneto-active or gyrotropic when
there is no absorption.

In the case in question the tensor &; can be given in the form

&y

£y fg 0
g,=|~-ig & O (9.29)
0 0 £y

When thermal motion and absorption are taken into considera-
tion the tensor &; is not Hermitean, It can always be split into
components, however: the Hermitean and the anti-Hermitean

part.
Indeed, in an arbitrary case the tensor &; can be written as the

sum of two tensors
. . 1 .
& =5 (ey+ 5+ 5 (=23 (3:30)

the first of which is Hermitean and the second anti-Hermitean.
The second component of the tensor defines the absorption in
the case of a weakly absorbing medium (see formula (2.84)).
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In accordance with (2.87) the amount of heat evolved per unit
time and unit volume at a frequency w is defined by the expression

1 re x *
Q) = - w6 (@ EE} = —%‘:-5 (es()— ) E,EL. (9.31)

It follows from formula (9.23) that

. o'..+g".‘.
—ICD(S,-J-—S_';:) = L@'é‘i,
so that the expression (9.31) can be written in the form

oy+0o7 .
Q) = “—"EE}, (9.32)

i.e. the amount of heat evolved is defined by the Hermitean com-
ponent of the conductivity tensor,

Let us now proceed to the solution of the dispersion relation
(9.24). It is sufficient to discuss an electron plasma to explain the
basic features of the waves in a cold magneto-active plasma. All
the ions do really is to form a positively charged background.

We use w, = 4/(4ne®n,/m,) to denote the plasma frequency
of the electrons. For an electron rlasma the formulae (9.27)
become:

2 2

o @

—_ —— — & i — =]
31_.._511_322,_1_._2_._.ﬁ, 82—833—1—-——2,

(9.33)
ig = g1p = gpy = i —2 % ar
B w28
€13 = gy = £3) = &g = 0.
Here we have used the notations of (9.29) for the components
of the tensor &,
If the waves are propagated along the magnetic field we can
assuine that the vectors

kllz, Bl:z (9.34)
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and the system of equns. (9.24) becomes:

2 2
(Eo'_ sl_kz) Ex+i'ccg'2-gEy = 0’

CZ
R s (9.35)
——i%—gEx-i- (% sl—kz) E, =0,
gE, = (. (9.36)
Here we have used the notations of (9.29) for the tensor compo-

pents &;.

It follows from these equations that when the waves are propa-
gated along the magnetic field the dispersion equation degener-
ates into the two:

b
& =0 or 1—6‘3; =0, (9.37)
CO2 2 w2 2
(C—zsl—kﬂ) ‘(c_z) g = 0. (9.38)

The first of these equations is the dispersion relation for lon-
gitudinal waves in a plasma. The second is the dispersion relation
for transverse waves.

We shall first show that when B = 0 the second equation
agrees with the dispersion relation obtained in § 8. In fact, when
B=20

Ct)z

g=0, eg=g= 1—;-0—% =& (9.39)

Equation (9.38) in this case provides two identical solutions
w? = w2+ %2,
agreeing with (8.49).

When B = 0 the tensor ¢; for a cold plasma is of the form

kik; k&
€:j=(f3s; ) et+—~ kj el = ed;

5 - (9.40)

Here we have taken into consideration the fact that for a cold
plasma when B = 0
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Let us examine eqn. (9.38) when B = 0.
We can rewrite it in another form:

(nP—ey)® = g%, (9.41)
where
k
= CE . (5.42)

Depending upon the problem under discussion we may be
interested in the solution of eqn. (9.41) for w for a fixed k, i.e.
for a fixed wavelength, or in the solution of eqn. (9.41) for »
with a fixed frequency. In the latter case we find from eqn. (2.41)

ne = g1tg. _ (9.43)

Therefore three waves are propagated along the magnetic
field: one longitudinal and two transverse. The phase velocities
of the transverse waves when B # 0 are different.

Let us examine the question of the polarization of the trans-
verse waves. T'o do this we turn to eqns. (9.35). Using the solution
(9.43) we can find the ratio of the components £, E,:

(%)12 = +i (9.44)

¥

Since +i = et7? it follows from (9.44) that the maximum
values of the components E,, E, are shifted a quarter of a wave-
length. Therefore the vector E describes a helix, 1.e. circular pola-
rization occurs. The wave with the refractive index n. is called
the ordinary and the wave with an index n, the extraordinary
Wwave,

It follows from (9.44) that the end of the vector of an ordinary
wave turns clockwise and of an extraordinary wave anticlockwise.

If the vector % is directed at an angle 6 to the vector B, then
instead of eqn. (9.38) we obtain the more complicated equation

(&1 5in® O+ &, cos® Bmt+ [(g2— e+ e,6,) sin® 6—2e4¢,]1°
+ey(sf—g%) = 0. (9.45)

This equation degenerates into two equations for longitudinal
and transverse waves only when 8 = 0.
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From (9.45) we find two solutions for n?
niz 2(e, sin® 3}!- &g cos? 8) {(81 —e18) Sin®0+2¢;0
+4/[(§—g%—e15)* sin® B+ 4edg? cos? B]}. (9.46)

Thermal motion in many ways alters the nature of the propaga-
tion of waves whose phase velocities are comparable with their
thermal velocities. In this case new effects, e.g. resonance at fre-
quencies that are multiples of £2,, appear that cannot be obtained
if we neglect the thermal motion. In addition, thermal motion
determines the wave damping.

Here we shall take only one example which has received insuf-
ficient attention in published papers. Other cases of wave propa-
gation in a magneto-active plasma are discussed in detail in other
books (see Silin and Rukhadze, 1961 ; Ginzburg, 1964; and Leon-
tovich, 1963).

2. Propagation of magnetohydrodynamic and magnetosonic waves
in a non-isothermal plasma. Let us return to the expression (9.16)
for j(w, k). We shall discuss it for the case when the f7 are Max-
well distributions with components at different temperatures, i.e.

e
fi= me 2mgTy (9.47)

We substitute this expression in the formula (9.16) and replace
the variable p by P,. The Jacobian of this transform is egqual
to unity. As a result we obtain the expression

File I‘)"—Z a aJ‘ dtfd3P A:+:[mr+(ﬁ: R.(0, 1, D(PL), o))]
o

X p(P.) (E(cu K)- 3f (P, ﬂ)). (9.48)

The function p{P,) is defined by the expression (9.7).
We transform the expression (k -R,(0, £, p(P,), 0)) To do this
we substitute the expression {9.7) in (9.10):

b'-Pab b/\Pa /\b
Ra(o"t?p(Pﬂ)’ 0)=_{( m) f+[[ m.f; ]

+ 2 /\b] > (1—cos 2 :)} (9.49)

a

sin &2t
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Using this expression the scalar product (k R0, ¢, p(P,, 0)))
can be written in the form

(k-R,(0, 2, p(P.), 0)) = —{ .,x(mkfg sin (¢

cos .Qat)) +P, ( mfba sin £2,¢
“_Q (1— coth))+ kt} =(P,-K,(0,1,k)).
(9.50)

The vector K is deﬁned by the expression
(b-E)b  [[bAEIADL]
K0k = { " t+ i, sin £2,¢
[kAD]

e (1—cos Qat)} . (6.51)

Using (9.50) we can write the expression (9.48) in the form

il Bgna = .
e, k) = "“'Z o dr | d8P, e—dt+ilor+ By Py
a sz Jg

xp(P,) (E<w,

. gf;;n ) _ (9.52)

In (9.52) we integrate by parts with respect to P,
Jiw, k) = Z e—gii—“ fm At f d3P_g—4t+ilot+ (K P o)
a M, o

X (p(E)+ip(Po) (B-E,))f?. (9.52a)
The vector p(E) is defined by (9.7) in which P, E.

We substitute the Maxwell distributions (9.47) in this and inte-
grate with respect to P,. For this we use the value of the integrals
1

. ] 1
Ibm?)—mfe*w’ T P, = T 0.5)

i(Kg Pg)—
= Gt )%f Faie o @°P,

3 a
TR,

=imyT, K, I° (9.54)
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As a result we obtain the following expression for the current:

2 it - .S 2
oy D [ g
a Mg Jy

X [p(E)—m»T,p(K,) (E-K,)]. (9.35)
In this formula the vectors p(E), p(K) are defined by the formula
(5.7) in which we must take z'=0 and replace the vector P, by
the vectors E, K, respectively. The vector I¥, is defined by the
expression (9.51).
Let us make use of the formula (9.55) to examine the expression
for the current in a cold plasma. For this we take 7, = 0 in
(9.55). Then we obtain

Jo k) = y & f " dte-drviop(E), (9.56)
a ]

In this we substitute the expression for p(E) and integrate
over 2. Using the values of the integrals

" g aiiat o Hotid)
J; e cos Q¢ dt o+ Ay~
= : Q
— At kit of —_—
j; e sin £,¢ dt @riAy— (5.57)
we obtain the following expression for the current:
. N (b. (b-E)d
J(wsllr)_;mﬂ { CO-I-I/_’]
e +id) Q,
*Toridy—az LONEIND] - [E/\b]}
(9.57a)

From this, by using the formula (9.23) when 4 ~0 we obtain the
tensor with the components defined by the formula (9.27).

We can now proceed to the solution of the question of the propa-
gation of magnetohydrodynamic and magnetosonic waves in a
non-isothermal plasma.

In a non-isothermal plasma T, T;. We denote the thermal
velocities of the electrons and ions by

»T, »T;
VT: = \/( g ) . VT. = \/(_m:‘) N Vro = VTl‘ (9.58)
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Let us examine the waves, the phase velocities w/k =V, of
which satisfy the condition

Vi << % < Vr,. (9.59)

‘We shall find for them the expressions for the ion and electron
currents.

‘When calculating the ion current we can, by virtue of the con-
dition T, = T}, put T} = 0. Allowing for the thermal motion of the
ions leads only to small corrections.

In this approximation we can use the formula (9.57) to obtain
the expression for the ion current.

Using the identity [[b AEIAb] = E—b(E-b) we can write
the expression for the ion current in the form

2
€i%;

m[(w+idy2—QF]

ji= -

{Qi[E/\bl
i (w+id)E 9.60
+m_+z'Z b(EAD)~i(w+id) } (9.60)

Let us now examine the expression for the electron component
of the current defined by the formula (9.55).

In the expression for the electron current there are three time
parameters:
! 1 1

m, rVJ‘u = Tak, fgu — Q= . (9.61)

1
Tm=a=

We shall omit the suffix e from 7, since T; = 0.
For the case when the wavelength is much greater than the
Larmor radius V,./Q, for the electrons, i.e. when

kVy
Q

=3 (9.62)

e

and when the condition (9.59) is satisfied, the values of the para-
meters (9.61) satisfy the inequalities

(9.63)

To 3Ty, 3 1tn, ©OF V,

o= Vp <

ZTe
P
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In the expression for ji(w, k), which follows from (9.55), there
is the quantity KZ. Using (9.51) when a = ¢ we obtain for K2
the expression

. 2
K= (bmi‘) £+2

e ¢

[FEADP (1—cosQ.0)
2 Q2 *
The main contribution to the integral in ¢ applies to the region
t =7, . Hence from (9.64), we have for the angles for which

(bfT’?ﬁ, (9.65)

(-]

(8.64)

tan? f <<

T 2
- (—"i) that K2 ~
Ta,

e

Vik?
i.e. the second term in (9.64) is much less than the first. By virtue
of (9.63) the condition (9.65) is satisfied for practically all an-
gles 6.

Consider now the expression for j! in the zero approximation in
the parameter 7, /vy,. In this approximation in the formula
for j, all the terms which contain cos 2,2, sin Q,¢ and 1/, can
be omitted. We therefore obtain the expression:

ji = en, f“ {b(E-b)
m, Jy

7 i xT 1 2g ¢¥
;T b(E-b)(b-k) ,z} g T g KT gy (9.66)

Given the conditions (9.59, 62), & << Typ
Since the main contribution to the integral applies to the region
t = 7, ., within the integral one may put

(wr)?
7

eI = ] e JyT

Therefore, performing the integration in (9.66), we get

. n_n (v , o )
Jilw, By = m, {4_513 ® +12—a2} WE-b);
a_ 2T 4 4o '
g = 2, (k.b) {9.67)

Here and below we put A=0. Since A only enters the initial
formulae in the combination @ = w+i4, in order to obtain for-
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mulae which hold for finite 4, we must make the substitution
w — w+id.

Our expression implies that the real part of the current which
determines the wave attenuation, is proportional to the second
power of the small parameter wzy,,, whilst the imaginary part is
proportional to its first power.

The expression (9.67), is, of course, incomplete since all the
terms containing the second small parameter 7o /7y, = Vrk/Q2,
have been discarded.

‘We must thus obtain a mote precise expression from (9.55),
namely, one which is correct to order (Vrk/2,)? for the real part
of the current, and to order (¥,k/Q2,) for the imaginary part.

The corresponding expression for the electron current is

L. ot o bBE-b) o [EAK]
oo, ) = —in 5 b Ry dky, (0B

H(m%{aﬁbaﬂ-b) _ BE-BAKD . [bAK](D-E)

Zo-RE P T ak-B) 0T Ok -b)

+zn§2~ [k ADI(E-[kA b])} . (9.68)

Here &, = ¢,B/mc,

W= = () o= ()

v, = \/ (f") , (9.69)

and z, is the velocity of sound in a non-isothermal plasma.

To obtain the dispersion equation, one needs, using the for-
mulae (9.60, 68), to determine the dielectric constant temsor,
and then to substitute it into (9.24) and evaluate the determinant.

The dispersion equation simplifies further for waves associated
with the motion of jons as well as electrons. For such waves,
which are often called the low-frequency waves, it is also neces-
sary to satisfy the condition

w < (). (9.70)
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We shall see that magnetohydrodynamic waves in a plasma
with phase velocity v, = B/+/(4amm;) are also low-frequency
waves, Substituting into (9.70) the phase velocity of magnetosonic
waves instead of w/k, the condition (9.70) becomes

Vi <<£,,€2—;'2 or = owl= 4—7:—2?31

Using the condition (9.70), the dispersion equation obtained
by the above method can be written as two independent equations,
one of which is

o? = v3(b-k)? &.7D)
and it determines the transverse magnetohydrodynamic waves in
a plasma. In the approximation under consideration the damping
decrement of these waves is zero.

The other equation determines the frequency and damping
decrement of the magnetosonic waves in a plasma in the approxi-
mation when the dissipation due to collisions between charged
particles is negligible.

For the frequency, we have

wt— (0 +22) kPoo?+ 0% 02(b - k) A = 0. 9.72)

This equation coincides exactly with (3.23) from the equations of
magnetohydrodynamics.
The solution of egn. {9.72) for the phase velocity of the ac-
celerated and retarded waves is given by the formula (3.24).
For the damping decrement, we have
1 m {cos 20 —x) cos 28 i
Ve = E%{ = 4/(1+x2—2x cos 26) } |cos 8] "
: (9.73)
Here . is the damping decrement of the accelerated and re-
tarded magnetosonic waves respectively;

_ (2a)® _ fd
X = (Ts) » Yo = ”sk\/(g

Thus, if the conditions (9.59, 63, 70) are satisfied, magneto-
hydrodynamic and also magnetosonic waves can be propagated
in a plasma.

(9.70a)

€ | M, '
sz om
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However, this does not imply that the hydrodynamic equation
(3.7-11) can be used under these conditions.

In§3 it was pointed out that to use the hydrodynamic equations
it is necessary to satisfy the conditions (3.3), i.e. the hydrody-
namic functions must vary little during the attainment of local
equilibrium over the corresponding path length.

In § 21 we shall see that if these conditions are fulfilled, the
usual hydrodynamic equations (and, in particular, the magneto-
hydrodynamic equations) can be used for describing processes
in a plasma. In this case the dissipative terms in the hydrodynam-
ic equations are determined by the correlation functions or,
using our terminology, by the “collisions” between the charged
particles of the plasma.

But right now we are considering the propagation of waves in
a plasma on the basis of the self-consistent field equations which
are only applicable in the other limiting case when the charac-
teristic time is much less than the relaxation time (the “collision
time”). The usual hydrodynamic equations in which the dissi-
pative terms are determined by the collisions, are not therefore
applicable here.

The damping decrement, as defined by (9.73), is of a different
nature from the damping in ordinary magnetohydrodynamics.
Here the attenuation is due to the absorption of magnetosonic
waves by the electrons of the plasma.

Recapitulating, in a “plasma without collisions”, i.e. in the
domain where the self-consistent field equations are applicable,
there is a range of parameter values for which the magnetohydro-
dynamic equations are applicable, but with different dissipative
terms. This topic will be discussed in more detail in § 21.

If B~ 0 and § - 0in (9.72, 73), these formulae coincide with
the formulae (8.43) for the frequency and decrement of attenu-
ation of sonic waves in a plasma.

Note finally that, as in § 8, the influence of the collisions can be
taken into account approximately by substituting o — w+i,
where 4 is the effective collision frequency.

A more systematic way of taking the “collisions’ between
charged particles into account is treated in the following sections.
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Correlation Functions and Spectral Functions.
Kinetic Equations for a Plasma.
Landau Equations

10. Simultaneous Correlation Functions for a Non-relativistic
Plasma t

A set of equations for the first moments ]7,, =nf,.E= EM,
B = H™ was considered in §§ 6-9. This set of equations {equations
with seif-consistent field) is obtained from the chain of equations
for the moments or the functions £}, ¢, &ses - - +» by meglect-
ing the higher moments or correlation functions g, g0 - - - -

In § 6 it was shown in the self-consistent field approximation
that the entropy of the charged particles of the system is constant,
1.e. dissipative processes in a plasma cannot be taken into account.

To obtain approximate equations which describe irreversible
processes in a plasma, it is thus necessary to have regard to the
correlation between the charged particles. This is the topic treat-

ed in §§ 10-11.

To elucidate the main features of the problem, consider the
case of a spatially homogeneous plasma.

In the absence of external fields the average electric and mag-
netic field strengths are zero, i.e. the first moments of the micro-
scopic strengths EM, H™ are zero. Only the first moments JT’,, =
= n,f, are non-zero, In this case

Ja =f;(P, ), (101)

* Bogolyubov (1962); Balescu (1946); Balescu and Taylor {1561); Lenard
(1960); Silin (1961, 1962a); Klimontovich (19861).
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i.e. the first distribution functions depend only on momentum
and time.
Equations (5.21) in this approximation becoms

i

. €. (0 ——=
Za o F= (Y. . 10.2
9= (@D = sip. ) (102)

The case under consideration is the opposite of the self-con-
sistent field approximation. In fact, in the self-consistent field ap-
proximation, of the second moement

N,EM = N,E+8N,0E ' (10.3)

only the first term is retained, and the second term which takes
into account the correlation of the field and the particle distri-
bution is discarded.

In the approximation of a spatially homogeneous plasma the
first term in (10.3) vanishes since E = 0. Only the second term
taking into account the correlation remains.

In the spatially homogencous case the simultaneous second
moments depend only on the coordinate difference g—g’. We
expand the second moments as a Fourier integral in ¢ —¢’. For
example,

ON,(q. p.t) 0N, (q'. p', 1)
= %f (0N, (p) ON, ()i, &= d3k,  (10.4)

ONa (g, p. 1) 0E(q’, 1)
- ﬁ f (8N, (p) ), ,*4~4) dk. (10.5)
We shall call the Fourier components the spatial spectral func-
tions. From (10.5) it follows that
(8N.(D) 8B s, ¢ = (SEBN,(p))i... (10.6)

We write the equation for the spatial spectral function
(8N,ON,), , using equation (5.34). If E = 0, from (10.6), we
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obtain:

g? (N, 8N, (R - 0)— (B )] (BN, BNy «

-0
+en, ((6Nb(p’) SE)L .- gf; ) + ebnb((aNa(p) SE). " a—f—)
= 0. (10.7)
From (10.5) for g = q' we find
; 1
NG P DB ) = g5 [ Re (N.0) B, k.
(10.8)
Using this formula, eqn. (10:2) can be written as
o & 2 . L
"a—t = m(a—p- f Re (6Na 6E):¢, ,)dak = Sa(p, f)..
(10.9)

Since all the second moments can be found if the moments

0N 8N, are known, eqns. (10.9,7) form a closed set of equations
for the first distribution functions and the spatial spectral func-
tions (8N,0N,),. ..

This set is still too complicated, though for the solution of many
problems these equations simplify further for the following
reasons.

The solution of the set (10.7,9) in the general case depends on
the initial values of the functions f, as well as of the spatial
spectral functions (N,0N,), ,.

We denote the relaxation time for the distribution functions
Ja by T.. It represents the time taken to establish a state which is

~ independent of the initial distribution £,(p, 0).

The relaxation time for the spectral functions depends on the
wave number k. We denote it by 7(k). For small k(k << 1/r,) it is
determined more particularly by the damping increment (k) of
the plasma waves. '

The time (k) usually decreases with increasing k, i.e. the
stationary state is established more rapidly for large k than for
small.
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In statistical equilibrium the spatial spectral functmn in effect
changes only if k = 1/r,, i.e. kpy ~ 1/r,. CN

It is therefore assumed that the plasma state differs 11ttIe from
the equilibrium state in the sense that the spatial spectral function
is small if k& < k

In this case a max:mum relaxation time exists for the spatial
spectral functions:

Tmax = t(kmin)- (1 0.1 0)

For states close to equilibrium

Ta 1
Tmax VT = wL (1011)
which is of the order of the natural oscillation period of a plasma.
In the following we shall see that the relaxation time of the
distribution functions £, is

T, ~ L>> Tmax, SINCE & = (&)3« 1. (10.12)

W ry
Here we avail ourselves of the fact that the parameter (5.26) for
a rarefied plasma is much less than unity.

The condition (10.12) implies that the stationary state is
established much more rapidly for spectral functions than for
functions £, .

We introduce an auxiliary time parameter 1/ such that

T, > £—§->>Tmax. (10.13)

Let us consider the asymptotic solution of (10.7) which holds
good for times ¢ such that

Trax << 1 —1Tg ~ Z]i-<< 7., (10.14)
where £, is the initial time.

Owing to (10.14) one can only seek the solution of (10.7) which
depends on time, not explicitly, but through the first distribution
functions. In this case the first term in (10.7) is small compared
with the others and so it can be discarded.
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Considering that the function (8N,0N,), , is associated with
the Fourier component of the correlation function g, by the

relation
(BNONw,t = nupgap(le, p, p', )+ 06,m,0(p—p")

(10.15)
from eqns. (10.7) and (10.14) we get
(8N, 8N )z o
i % . . s
= ‘o —kv)—id {?(‘m(’“m)" (k ap)
B2 (N (- SE) ( aﬁ’)}—l—éab&(p PWS.
(10.16)

Here we use the fact that [k A 6F] =0, i.e. that the vector $E is
parallel to the vector k. We take the quantity 4 to be zero at
the end of the calculations. According to (10.13) this implies that
Ad<<lfry,,, but A== 1/,

From eqn. (10.16) we can obtain a closed equation for the
simpler function (6N,8E), which also occurs on the right-hand

side of (10.9).
For this we multiply (10.16) by 4me,, sum over » and then
integrate over p’. From the last two equations of (5.31) it follows

that
OE(R) = —i’;t% 4z z 2, f ON(k-p") &p'. (10.17)
b

Using this expression, theequationforthe function (6N, (% - S E)),,

-
drnein P A
1“‘%“% kg 2 (F" 'U) (Iu vl) dsp (aNa(]‘ '6E))J\.

dmve,n, of, (6Nb(p Y- 5E))
TR ( Bp)ze (ev)—(k-v)—
+idnen, 1. (10.18)

An integral equation with a Cauchy-type kernel is thus obtained
for the spatial spectral function (SN, (k- SE)),..

is
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The expression in brackets on the left-hand side of (10.18)
coincides with that for the longitudinal dielectric. constant of a
plasma at the frequency w = (k-v):

.. f(p, 1)
i, ) = 1+, o

- Fek=lr L= | emo i

This formula only differs from (7.33) in that the function fHpy
is still unknown; its kinetic equation is found in§ll.

The formula (10.19) determines two functions: (1) & * analytic
in the upper half-plane, and (2) ¢ ~ in the lower half-plane of the
variable o+ id.

For a convenient solution of (10.18) we introduce fuﬁctions
Hf and HE, defined as:

dp. (10.19)

— 1 ONy (k-6
lHl_(CO, k) = E; &g f ((J)T(bgﬂ_-?)% d3P (1020)

— N 1 (6N (K -3E)); , .
—_:H2(m: ]\,) _E; ep -—-———“—-———-m_gk.v):tgz dsp = I(H;"-) .

(10.21)
| From (10.19-21) it follows that as 4 ~ 0
f . dmeln o
2 4 — (ke el gt
iy T fé(m (fe-v)) (1 3p)dp
= o=@, k)—c*(o, k), (10.22)
S J' 8(00— (k) (3N ,(p) (Fe - 8B) s &°p
= i(Hy (@, k)— Hf (0, k)). (10.23)

Using (10.19, 20), the equation (10.18) can be written as
(N (R -8B ) e~ (B -v) - )

4; " o, _ )
i (k-%) Hy ((k -0) )+ idmen,f,.

| (10.24)

From (10.24) we first obtain the equation for the functions H.
We multiply this equation by e 8 (e —(kv)), sum over a and then
integrate over p. Using the formulae (10.22, 23) we get the

= i27i
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following equation

(A1 (w, k)— H (0, k)) e~ (w, k)
= (e7(w, k)—e* (o, k) Hy (0, k)

+ 4, f 8(w—(le-v)) fdp. (10.25)

Since the last term is real, putting the imaginary part of the
other terms equal to zero, we obtain the relation
(Hr —H7)e™ = (Hf—HH) et (10.26)

This implies that the discontinuity of the piecewise-analytic
function (H;— H,) ¢ on the real axis is zero. Since this function
tends to zero as @ — e, the vanishing of the discontinuity implies
the vanishing of the function itself, i.e.

(H,— H,) eleo, k) = 0. (10.27)
Hence
Hy(w, k) = Hylew, k) if elw, k) = 0. (10.28)

The condition &{w, k) = 0 is satisfied for the region under
consideration.
Using this condition, eqn. (10.25) simplifies to

H(w, k) et(ow, BY— H* (0, k) e~ (w, k)
=3 4ne§n,,f 8(w—(k-2v)) f, &p. (10.29)

So, dividing by |&(w, k)|?, the expression for the discontinuity
of the piecewise-analytic function H{w, k)/s(w, k) 15

2 _. .
By B Z4ﬂeanaf6(w (k-v)) f, d&p o
e~ et | e(w, &) |2 ) :

Knowing the discontinuity, the formula for the functions

HE[et is

(&) ___I_J'(H+ :’i:) _
g o K 2ni e+ &~ m,’kco——w’ii.d’

(10.31)
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As a result
Hi
(ei)m,k
1 \ Ty
= —Y 4saein “p-
2m'z o (0—(k-v)Lid) | e((k-v) k) |* i

(10.32)

By using (10.32), eqn. (10.24) yields an expression for the
required function (8N, (k- 8E)),

(0N, (k- 8E)),,
v daen, [ O, £ 1)
e ( ) f((k o)~ (k- v')~id)
B’ g Amens (10.33)

le(R-2)* e ((k-v) E)

To form an expression for the most general spectral func-
tion (3N, 6N,),. the solution of (10.33) has to be substituted in
(10.16). Corresponding expressions for the correlation functions
g.,(k, p, p'} are obtained by formula (10.15).

From (10.33) we find an expression for the real part of the
function (8N,(k- 0E)), occurring on the right-hand side of (10. 9).

Using the expression for the imaginary part of the dielectric
constant

&'w, k) = —:'r,z‘he fé(cu—(k - 7)) (h Bf},) d*p,
(10.34)

which follows from (10.19), we get
16m8e,n, (k- v)—(k v
kZeﬁnbf ((k-v)—(k-v")
k4 le((le-v)-E) 2

X{( cm)ﬁ_(, afb)ﬂ}ds,

(10.35)

By using the expression for the function (8N, 8V,), an ex-
pression can be found for the spatial spectral functions of any
characteristics of a plasma.

Re (8N, 8E), = —
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We form the expression for the spatial spectral function of the
electric field strepgth (6E.JE), by means of formula (10.33).

‘We multiply (10.33) by —d4mie k/k?, sum over a and then inte-

grate over p.
Using the expressions (10.17, 19),

(431) en Ja
SE-F a°p. (10.36)
( e =2 G R)E P (

The spectral function for arbitrary components (4F; OE),, is
given by (10.36) if we bear in mind that

k.k.
(8E; O0E}), = 1:12“ (OF-0E), . (10.37)
In the equilibrium case the expression for the function (8N, 6N,),,
becomes
(ON, Ny = Bap, S(p—p") fu p")
eﬂebnanb ’
—_—— 2z f . 10.38)
Sl PP (
[
By using (10.15) we obtain an expression for the function
(k. p, p*) in the equilibrium case.
The expression for the spectral function (SE-dE), in the
equilibrivm case is

(3B -0E), = 4w —"L

14723
To obtain (10.39) directly from (10.36), one uses the identity

(10.39)

22

Zaafmp Zaa1+o

which is satisfied in the equilibrium case.
If k% << 1, it follows from (10.39) that

(8B-8E), = 4nxT. (10.41)

Consider another expression for g,,(k, p, p’). From (10.15, 38)
we find that

gab(ks p: p’) = -

(10.40)

€ats  Jol(PIWP) (10.42)
e, 1+r%2

125



Non-equilibrium Processes in a2 Plasma

We find the function g,(q—q’,p,p") itself. For this, using
the value of the integral

_la-a’|
1 . , 1 e =

" | = itkg—a) 3 = ——, (10.43

(zn)af e Pk = =g 1
we get

_Jlg—ga'!

£l a2, P) = =52 & 1) (. (1040

ah L o] %T 1‘1 q l [
Here the expression for the Debye radius is used

»T
r2 = ) . 10.45)
4 4y e ' {

Substituting (10.44) into the expression (5.11) for the distribu-
tion function of the coordinates and momenta of two particles,
we get
e, e~ 97 Ilra)

Sa Q. 9", P, 07} = f(P) fo{P) (1 T xT

lg—-q'|
(10.46)
From the formulae (10.44, 46) it follows that
g =0 fulq, 9,0, ) = £(D) (P if
lg—q' | = ry, (10.47)

ie.if |g—q’| = r, the motion of charged particles is statistically
independent.

One may therefore say that r, is the radius of correlation since
it defines the distance |q¢—¢q’ | over which the correlation function
is non-zero.

From (10.44) it follows that the correlation function is negative
for charged particles of the same sign, but positive for particles
of different sign.

the proviso that the second term in (10.46) is small compared with
the first. Consequently, formula (10.44) applies to the following
distances

[ €,€, b! or |eaeb1

q—q'|»>— T < xT, (10.48)
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i.e. to distances over which the particle potential energy is much
less than the average kinetic energy.

For the Fourier spatial component this condition implies that
(10.42) holds for wave numbers

»T

kL .
|eaeb|

(10.49)

This result justifies the assumption that the effective radius of
action between charged particles in a plasma is of the order 7,.

It must be stressed that there is an important difference between
the effective radius of action or range in a gas and that in a plasma.

In a gas the effective range r, is the distance at which two
molecules interact effectively. In simple models this is the radius
of the spheres representing the molecules.

In a plasma the effective range r, depends on the thermodynam-
mic parameters of the plasma, i.e. the temperature and density of
the charged particles. The lack of mutual influence between par-
ticles at distances greater than r, results from the interaction of
many charged particles.

11. Set of Kinetic Equations for the Functions f, neglecting
Plasma Wave Radiation. Landau Equations

In § 6 the set of kinetic equations for an electron—ion plasma
was treated in the self-consistent field approximation. The equa-
tions referred to rapid processes with characteristic times much
less than the relaxation time <, i.e.

T, ~ljoe (11.1)

We shall now form kinetic equations for £, which are equally
descriptive of the transient process of establishing equilibrium,
in other words, equations which apply to time intervals greater
or less than the relaxation time 7, [see Landau, 1937; Bogolyubov
1962; Balescu, 1946; Balescu and Taylor, 1961; Lenard, 1960;
Silin, 1961, 1962a; and Klimontovich, 1961].

As previously, it is assumed that the following condition is

fulfilled _
e = (r3,/r9) = L. (11.2)
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Consider, firstly, the case when the plasma is spatially homo-
geneous. For the functions f, we can then use eqn, (10.9)

ofh e [0 &k = S,(p, 1).
b e

If conditions (10.12-14) are fulfilled, the function Re (8N, 6E),,
in conformity with (10.35) is expressible in terms of f,.

Substituting the expression (10.35) into eqm. (11.3), we get a
closed set of equations for the first distribution functions—the set
of kinetic equations.

Itis convenicnt to write the set as

aj::r _ Bfa afb }
anap J‘de( 'v){ jfb 3ija
Li=1,2,3. (1.9
Here we have put

Q?}’(v —')

f P (A v) EATE 8((k-v)—(k-v)) k.
(11.5)

As before, we assume snmmation over repeated subscripts , j.
Sometimes convenient expressions for the right-hand sides of
(11.4) are

W
£+ At (11.6)
Se = Gy P e+ gy At
Expressions for the coefficients Df and 4f are

Dﬁl(p) = ZZE&EEH&

d(k-v)—(k-v)) f, &k &, (11.7)

f I e (r. v) )’
A(p) = —§2e;e5nb

kk afb '
o((k-v)—(k-v)) L2k Pp'. (11.8)
J-k"]a((k-v)-k)!z (Cem)=( v))ap} b
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Here Dy, Af are the diffusion and the systematic friction coeffi-
cients in momentum space respectively.
An expression for the friction coefficient A4, is
"
Ay = L2 Ts((kv)k)d
2n K2 |e((kv)-k)

i.e. the systematic friction coefficient is proportional to the ima-
ginary part of the dielectric constant at the frequency (k- v).
Consider now some general properties of the set of kinetic
equations (11.4, 5),
Firstly, we show that the set (11. 4) is satisfied when Maxwell
distributions with identical temperatures are taken as the func-
tions £, i.e.

ik, (11.9)

S N (11.10)
* (2nmxT)"

Substituting expressions (11.10) into (11.4), the left-hand side
vanishes. Consider the right-hand sides of these equations, which
we again denote by S,. Performing differentiation, we obtain the
expression

1 d
S = —sp g | o8

By using the formula (11. 5) we see that (11.11) vanishes since
(11.5) contains the factor o((kv)— (k- v")).

So the right-hand sides of (11. 4) vanish on substituting the
Maxwell distributions.

We thus come to the conclusion that the Maxwell distributions
for electrons and ioms are solutions of the set (11.4).

We establish some general properties of the right-hand sides
of these equations.

We multiply the right-hand sides of (11.4) by an arbitrary
momentum function ¢,(p) and by 1., and then sum over  and
integrate over p. We use the notation

g0 =5 | ?’a(P)a‘i: 5 afb }dap &p’
(11.12)

29— U) fufy . (11.11)

and summation is carried out over the subscripts §, j.
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By analogy with the corresponding expression in the investiga-
tion of Boltzmann’s equation, the function I{g, ¢t} may be called
the “collision integral”.

Integrating by parts over the momentum p in(11.12) and then
interchanging the variables p % p’ and a % b in the expression
for I, considering that according to (11.5) the tensor O % remains
unchanged on the substitutions p 3= p’ and a 7= b, the expression
for Iig, t) can be written as

- (-5
X0 (gfff - ) ep aL13)

It follows from (11.13) that, as for a gas, the “collision integral”
for arbitrary functions f, vanishes for three choices of function

Pa(p):

e(p)=1; p; p*2m,. (11.14)

The function 7 clearly vanishes for the first two cases. When
w.(P) = p?[2m,, it must be borne in mind that the function Q;.""
contains the factor 6((k-v)—(k-v")).

As in the case of Boltzmann’s gas equation, it is therefore to be
inferred that the relations (11.4) for f, yield equations for the
conservation Jaws of the total density of all the charged particles,
the total momentum and the total energy density, ie. for the
functions

e=§naszd3p, ;najpfzda ,

P2
£

This property of the kinetic equations (11.4) will be used later
in deriving the hydrodynamic equations of a plasma.
We now show that the entropy of a plasma, given as

a°p. (11.15)

S()=—%Y 1, ffa(q, p. ) Infiq,p.1) &g dp,
e (11.16)
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can either increase or remain constant. The latter applies only
in statistical equilibrium when the f, are Maxwell distributions.

Multiplying (11.4) by —#n, In f,, summing over 2 and integrat-
ing over q, p, we get

di,ﬁ‘) (I( 1) &% (11.17)

The right-hand side of this equation is determined by (11.13)
where one should put g, = —xIn f,. Expression (11.13) may in
this case be written as

_ dlnf, dlnf) (dlnf, dinf,
Zznanof{ 3}?‘_ ap: }{ apj - Bp'- }

/
XO#f, fo d°p d®p’ (11.18)

We show that the integrand in (11.18) is always positive.
SubStltutan into (11 18) the expression (11.5) for the tensor
we get

N (k-A)2
I= 252 .
Ageaebnanof Kt (e -0)-F) P
X 8((k-v)—(k-v)) £.f, &k &®p &p’. (11.19)

;j H

Here A is a vector with the components

4= dlnf, dlnf,
"( or;  op; )

(11.192)

From (11.19) it follows that the “collision integral” I is zero or

greater than zero if g, = —x In £, i.e.

I=0. ' (11.20)
Hence '

das 0.

7= (11.21)

‘ The equality sign in this formula applies when the collision
integral vanishes, which is possible provided that

& F]
op e g 0 fo = ap—P"), (11.22)
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where a is a constant which is independent of the subscripts a4
and &, Equation (11.22) for arbitrary a and b has the solution

Infp) = 5 7*+(B-P)+7. (11.23)

As in solving Boltzmann’s gas equation, the constants a, 8,
are given by the conditions

naffad%:v = 04 n,,fmifa dp = 0, U,; (11.24)
p-—mUSP . o 3 .
HGJ. zma .fadp - 2 Qa"Ta‘

Hence we obtain the following expressions for the functions:

1 et (11.25)
— Ty .
fa= (2m = T)%e e ’

As expected, in the equilibrium state the functions f, are
Maxwell distributions. It is important to stress that the tempera-
ture and average velocities of all the components of a plasma in
the state of equilibrium are identical in this case.

If the plasma is not in the equilibrium state, the entropy rises
until the plasma reaches equilibrium and then remains constant
thereafter.

The kinetic equations (11.4) are a very complicated set of
integro-differential equations. The kernels of eqns. (11.4), given
by (11.5), depend also on the required f, since these are contained
in the expression for the dielectric constant.

However, there are a few cases when the set (11.4) becomes
much simpler. We consider one of the most important of such
cases.

Suppose that the initial non-equilibrium state, the dynamics of
which we are describing by (11.4), is such that the number of fast
charged particles with a velocity greater than the corresponding
average thermal velocity is small. It is assumed that the average
kinetic energy of electrons and ions is of the same order.
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For this case consider the second term in the expression for the
dielectric constant of an electron-ion plasma:

s
deln (ka?)
elw, k) = H—; k; < ()

ap. (11.26)

By making the foregoing assumption the distribution functions
[, have maxima at v ~ \/ (#T/m,). Therefore the second term in
(11.26) is of the order 1/rZk? or less.

Since the dielectric constant occurs in the denominator of
(11.5), if '

1/r3k? =1 (11.27)

the denominator is large and the integrand is small.

Therefore in evaluating the integral over &k in (11.5) one may
approximately put e = 1, i.e. we can neglect the medium’s polari-
zation, while restricting the range of integration over & by the
requirement |k | = 1/r,.

In this approximation (11.5) becomes

O#(v—v') = 2ele} f f@ 8{((Ek -v)—(k -v")) &k,

(> 2y K
(11.28)

To simplify the integration over k in this expression, note that
the tensor Q';."’ depends only on the components of the one vector
v—o'. In its most general form this tensor is

02 = d=b(v—v); (v —v");+ B4, (11.29)

=ij

Here A and B are functions of the vector v—1v'.

From (11.28) it follows that these functions are not indepen-
dent. In fact by multiplying the tensor ;.b with (v—v"); and then
summing over /, and also having regard to the function 6((k.- v)—
~{k-v")) in (11.28), we find that :

(v—2"); 0% = 0. (11.30)

Using this condition, from (11.29) we find the relationship

between the functions 4" and B*®

Asb(p—p')2+ Beb = 0. (11.31)
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Using this condition the expression (11.29) becomes
o = A""{(v—v’)-(v—v’)-w-(vuv’)’ By} (11.32)

Thus, to determine the tensor ,J , it is sufficient to determine
just one function 4%, which is expressibie without difficulty in
terms of the sum of the diagonal elements of the tensor Q}}"’

ab
Aed = . if

2(w—v)?
ele} J'a((k'v);z(k'”’)) BL. (11.33)

lo—v'2
Thus it only remains to evalnate the integral in (11.33). We take
the z-axis in the direction of the vector v—#' and also introdure
spherical coordinates. Then
(& -v)—(k-v))
k2

7 dk
= sz O(k|v—v'{cos ) sin 6 dfi dk = L, f =

A fv—o'| ) k

(11.34)

a4k

We have to consider the limits of integration in the integral
fdkjk. It has been seen that in changing over from (11.5) to
(11.28) for Qu » the range of integration over & is bounded at the
lower limit by the condition k = 1/r,.

The restriction of the integration range at the other end of
large k& (short distances between particles) is due to assuming the
correlation function to be small. According to (10.48) our for-
mulae therefore hold good in the ranges

tq—q’[»'e;;f'; ; 'e"_"’bl < nT. (11.35)

Since the limits of the integration range in (11.34) are those on
the integration sign, the minimal distance over which the results
are valid, is given by the condition

I
| €:85 ‘ )

(11.36)
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Consequently, the maximum value of & is
1 xT

e o "(11.37
kma.x T'min leaebl ( )
On these conditions
bmax dle
—=In 11.38
J; A (11.38)

min
Using the formulae (11.34, 38), the expression for 4% is
2rmete? rs

abh — __ a _td
4 Too B (11.39)

Substituting this formula into (11.32), the required formula for
the tensor is

g;—lj“e;js {@=v78,— @~ (o=v)} 1n "

(11 40)

The kinetic equations (11.4) for the functions f, with the
kernel (11.40) were first treated in Landau’s paper of 1937. They
were derived from the set of Boltzmann’s equations for the
distribution functions of charged particles.

But Beltzmann’s equations only have regard to binary colli-
sions between charged particles. However, in conformity with
(11.2) many particles are present simultaneously in a charged
particle’s sphere of action. It is therefore inconsistent to use
Boltzmann’s equations for deriving kinetic equations in a plasma
on the condition (11.2). This is evident, more particularly, in that
in forming the kinetic equations for a plasma from Boltzmann’s

equations, alogarithmically divergent integral J-dk/k appears in

the expression for the kernel and further assumptions have to be
made regarding the limitation of the integration range for small k.
In using (11.5) for :.}b the integral is convergent at low values
of &, if the medium’s polarization is taken into account.
Note, however, that it is far from always possible to replace
(11.5) by the simpler expression (11.40). It is the polarization of
the plasma which is the real consideration for plasma states close
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to the boundary of the region of stability, and also for unstable
states.’ _

These kinetic equations will be later used for calculating kinetic
coefficients for a plasma.

Here we only estimate the relaxation time, i.e. the time taken
to establish statistical equilibrium. Hence, we must evaluate the
right-hand sides of eqn. (11.4). We do this for a purely electron
plasma.

For the tensor @ we use the expression ( 11.40).

On our assumption vp ~ =7, and so the right-hand side of the
equation for the function £, is of the order

s Ty el O
{—, where 7, ~ M (11.41)
* etnln —£

Considering  that r, = \/(#Tjame®n); o, = v/ (4re*n/m),
n o~ 13, we get
1 s
@y, In (ra'/rmin) r:a;v '
But since In(r,/ry,.) is usually of the order of several units,
having regard to the definition of g, the expression (11.42)
¢an be rewritten as

(11.42)

Ty ~

3

1 1 . Fav
-rrww—LE»m—L, since s==—r§<< 1. (11.43)

Similarly for the relaxation path A, we have
A~ ryfe sy (11.44)
Since the kinetic equations for a plasma were originally formed
from a consideration of Boltzmann’s kinetic equations, the same
terminology is often used. Thus the quantities 7. and 4_ are called
the free-path time and the mean free path. But this terminology,
though it is apt, does not go to the heart of the matter since,
if the condition (11.2) is satisfied, each charged particle is inter-
acting with many other particles simultaneously.
Equations (11.4) are written for the case when the distribution

functions f, depend only on pand ¢, i.e. for the spatially homo-
geneous case.
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" However, they can be generalized without difficulty for a
slightly inhomogeneous plasma. Slight inhomogeneity implies
that the functions [, E, (6N, 6E) vary little over distances of the
order of the correlation radius.

The correlation radius, as the correlation time z(k), depends
on the value of . In § 10 an expression for the spatial correlation
function was obtained on condition that the spatial spectrum is
bounded on the side of low values of k, i.e. some value &k,
exists. For states close to equilibrium (and only in this case does
fe i EXist)

Kmin ~ 1/74, (11.45)

where r, is the Debye radius.

Thus one may formulate the condition for slight inhomogeneity
as follows: the functions £, and E, and therefore also 6N, 6E, vary
little over distances of the order of the Debye radius.

On this condition eqn. (11.4) can be written as

i7 of, o, iah
~a ) .22 = & P 1), 1.46
7t (v ge)re (B ge) = s p . (149
where S"" is the collision integral for an inhomogeneous plas-
ma.

The right-hand side of the kinetic equation is defined by the
function 6N, 6E. From (5.21) it follows that

e, /0
SAq.q.t) = T (@
For a spatially homogeneous plasma this expression can be
represented ‘as (11.3). Using solutions of (10.35), we represent
the collision integral §, in the form of (11.5) or (11.6).
To obtain an expression for a slightly inhomogeneous plasma,
we proceed as follows. .
The formulae (10.4, 5) determine the spatial spectral functions
for a homogeneous plasma when the correlations at the points
4, q’ depend only on g¢—¢q'.
In the slightly inhomogeneous case the correlations at the two
points depend not only on g—¢’, but also on (g+q")/2. Using

0N, (q, p, 1) OE(g, r)) . (11.47)
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the condition for slight linhomogeneity, we write
(8N, 0N, b)q—q’. a+q’)2 = (‘3Na aNb)q-'q'- o—(g-q)/2
T G
~ GN8N o= (3 g OV a)i =g
(11.48)

We shall show that this expression can be used for determining
the collision integral in the case of an inhomogeneous plasma.

Using the solution of Poisson’s equation for SE (see formula
(5.32)), we write the right-hand side of expression (11.47) so that
it contains the function 8N, &N,

. o ]
Fern =T [

1
X1g=gT (@ p: 1) 0N, (¢, p', t)) dq dp'.
(11.49)

Substituting into (11.49) the approximate expression (11.48)
for &N, 8N,, we have

z b

j [ — r 9 —
XTaT {(aNa A (E FACAIAR q)} ) &
(11.50)

Here in the integral we substitute ¢ —g' = , Py’ = —d%p.
We expand the integrand as a Fourier integral in . Using the
formulae

T — 1 .
BN N0 = f (8N, 6N, 4000 dok,  (11.51)

1 1 4z
T = G | 7 O (11.52)
rn 9 1 1 A (O ki Lo
2 E'ﬁ”@fﬁ(é*?)ﬁ"‘"“’“’*

(11.53)
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the expression for the collision integral [Klimontovich, 1961;
and Klimontovich and Ebeling, 1962] is

. A b ik,
Shb(g, p, 1) = —zﬁ;*‘wbaj‘ {;? (ON, 8N )k,

BY R s
= (—2- F)T% (ON, 6N b &°p’ BE.

(11.54)

The right-hand side is expressible in terms of the simpler func-
tion (8N, 8E),, ,, availing ourselves of the formula

(5N, 5E),, = 1'4:;;%% f (5N, 5N, &°p', (11.55)

which follows directly from Poisson’s equation for 3E.
Bearing in mind that the collision integral is a real function, we
get [Klimontovich, 1961; and Klimontovich and Ebeling, 1962]:

S:l:nh(q! ps t) = _@%— (% * f Re (6Na6E)k) d3k

. 0 8y _kik, ii ., 3
Oy, op, (—2——7) 7, Im (8N, (k -8E)), k.
(11.56)

Comparing this expression with (11.3) for the collision integral
of a homogeneous plasma, it is seen that the collision integral
for an inhomogeneous plasma contains an additional term deter-
mined by the imaginary part of the function (N, (k- 8E)), i.e. by
the imaginary part of the formula (10.33). In § 18 we shall eluci-
date this additional term’s réle in the collision integral.

12. Conservation Laws taking Higher Moments into Account

In § 6 the laws of conservation were considered for a plasma in
the self-consistent field approximation when a closed set of equa-
tions for the first moments served as the initial equations, i.e.
when correlations were completely neglected.
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The total energy and total momentum of a plasma were deter-
mined by the average phase densities N.(g, p, t) and average
electric and magnetic field strengths. Fora Coulomb plasma B=0,
whilst the average electric field can be expressed in terms of J_\;; .
Thus only average phase densities entered into the conservation
laws,

In § 11 the conservation laws deriving from the kinetic equa-
tions of a spatially homogeneous plasma were treated. In these
equations the contribution of the spatial spectral function (6N,
6F), is taken into account only for large values of k when it is
expressible in terms of the first distribution functions £,.

In this approximation the comservation laws again contain
the first distribution functions £, (or the average phase densities
N

In §§ 16-17 the contribution to the equations for £, from the
spectral function (6N, 6E) will be taken into account for domains
of low values of k— the radiation region. If one takes radiation
into account, a closed set of equations — a set of kinetic equa-
tions — cannot be obtained for the functions fa

Instead, we have a more complicated set of equations for func-
tions f, and also for the spectral function (K- OE), i -

Thus, by taking radiation into account, not only do the first
distribution functions f, enter into the laws of conservation,
but also the correlation functions.

In this connexion it is useful to present the conservation laws
which follow from the set of exact microscopic equations (4.10)
and (4.14-17) for the functions &,, EM and H™.

The set of microscopic equations coincides in form with set
(6.8-12) for the first moments. To change over from eqans.
(4.10, 14-17) to the set (6.8-12), it is necessary to perform the
substitution: ' ‘

Ny~n.fo3 EM~E, HM-—~B. (12.1)
To obtain the comservation laws, taking higher moments into
account in the formulae of § 6, derived from the self-consistent

field equations, we replace the functions n,f,, E, B by N,, EM,
HY, and then carry out averaging.
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Equation (6.16) for the law of the conservation of the number
of particles, still remains unchanged, but we rewrite it here as

IS DI

Since the initial equations do not have regard to the processes
which lead to a variation in the number of charged particles (ioni-
zation and recombination processes), not only is the total number
of particles conserved, but also the number of particles of the
individual components, i.e. besides (12.2) the following laws of
conservation follow also from (4.10)

O [+ 4 i.f . d°p = 0. 12.3
EJ‘Nadp"I'(Bq v)Na P ( )

Using (4.10) we form an expression for the average momentum
of the charged particles of the component a taking correlation
into account. For this we multiply (4.10) by m, v, integrate over
p and then average.

As a result we get

% m, f v N, d3p+%ma f v,-vjﬁa d*p
i

= GUEF -+ [JUAHM],

[

. - 1 _
= 4Bt LjohBl+52, O+, B7.70BL, (124)

where ¢, 3 répresent the microdensity of the charge and cur-
rent of the component a, whilst EM and H™ are the microfield

strengths.
In forming eqns. (12.2-4) we used the condition N {q, p, 1) =0
forp,= = (i=1,2, 3), and also the fact that

N\ i ) v
| ([vAHM]-%) - (ap [oAH ]N,,),
since /9 ‘ .
— M1} =
.(Bp )
(compare these expressions with (6.14), (6.15)).
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We thus assume that if p, = + o=, any moments vanish which
contain the functions N,(q, p, 1).

To find the total change of momentum of all the components
- of a plasma, we sum (12.4) over a:

3

%Zmaj”i—ﬁa a'ap-l-aq Zmafv,-vjffa d°p
a j a

1, :
= aE+ 5 ABL+ 305+~ (A6B). (125

This equation differs from the corresponding (6.23) of the self-
consistent field approximation, through the two last terms:

éq OE; %[5]’/\63]. (12.6)

The first of these terms refers to the correlation of the charge
density and electric field strength, and the other to the correlation
of the current density and magnetic field.

Both these terms determine an additional change in momen-
tum, as compared with that in the approximation of the first
moments.

The right-hand side of (12.5) can be expressed in terms of the
first and second moments of the microscopic field strengths E™,
HM_ if (4.14-17) are used for the microfields.

To obtain the corresponding expression, we replace in formula
(6.25) all the average quantities by the microscopic quantities,
and then carry out averaging. We then have

1 -
p . %{[E/\B],r-l—[ﬁE/\ GB],} = — {qE,—-I——C]{- [§AR);
L5705+ L 3R 631,} ~ 2 (rak). 2
C qu

Here T; is the electromagpetic stress tensor, defined as previ-
ously by (6.23), whilst the tensor

—_— 2 2
Ky = —$ (6E; 8E; + 8B, 531— 8 (—‘SE)—;(@) - (12.8)

142

e et

Correlation and Spectral Functions

Thus K determines the additional electromagnetic stresses
due to considering the correlation of the microfields.

We sum eqns. (12.5, 7) and so obtain the law of the conserva-
tion of momentum of a plasma taking correlation into account

— 1 Y et
_E% {;mafviNa dsp-%-a([E/\B],--l-[éE/\ aB];)}

— {Z n [on, d3p+T,-,-+K,v,-} )
j a

This equation differs from (6.27) in the additional terms for
the correlation of the microfields. .

Integrating (12.9) over the whole plasma, its right-hand side
contains the surface integral

fﬁ {H,J"i‘ J“;j‘l‘K;j} dzsj; II’J‘ = ;na f ﬂivjﬁa dsp-
(12.10)

In considering correlation the idea of a set being a closed one
alters in that, from (12.10), it is deemed closed if the components
of Hﬁ, T; vanish on the boundary, and also those of K.; which
is determined by the electromagnetic stresses due to microfield
correlation.

Taking the microscopic equations for the functions N, and
the microscopic strength of the longitudinal electric field as the
Initial equations, the terms containing the magnetic field in eqns.
(12.5, 7, 9) drop out, Equation (12.9) then becomes

d = d
E;man;Na d3p = -—a—q‘r HIJ+TEI+KEJ) (12.11)

The tepsor T} in this equation is given by the formula (6.33),
whilst for K3 we have

K (12.12)

e
i

—1 (=== . (BE-3E)
= zt“ (6E56Ej—6,j —-——) .

Consider, finally, the energy-balance equation taking corre-
lation into account.
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The equation for a change of the average kinetic energy taking
correlation into account is

3 2 a 2 _
ng'p—Na dﬂ = —-B—f]—,z vi%Na dsp

2m,
+{(j-E)+(8j-0E). (12.13)
It differs from (6.39) in the last term. From eqns. (4.14-17)
for the microfields, in place of (6.41), we get the equation of the
energy balance of the electromagnetic field

1 0
8z ot

= —-%; div {[E/\B]+[6E/\ 6B]}—(j.E)_(5j.5E)_
(12.14)

Adding eqns. (12.13, 14) we get the equation of the total energy
balance of a plasma. It differs to (6.44) by taking correlation into
account.

For a Coulomb plasma, eqn. (12.13) still holds, but in (12.14)
terms containing the magnetic field drop ont.

Hence the conservation laws as derived from the self-consis-
tent field equations, are only valid as an approximation when the
state of the plasma is described just by the first moments.

The other extreme case when the plasma is spatially homoge-
neous and isotropic, is also of interest. In this case the average
fields E, B are zero and, therefore, the electromagnetic energy is
entirely determined by the correlation terms.

The corresponding conservation laws follow from the foregoing
equations if we put E = B = 0 and bear in mind that ¥, in the
isotropic case depends only on the absolute magnitude of the
momentum, -

For example, for a Coulomb plasma, eqgns. (12.13, 14) in this
approximation become

{(B*+B%+((BE}+(3B)%)}

3 2 T TYEEE
E;f%]\r& &*p = (37 -0E), (12.15)
% . (5_57&?__@_ = —(53E). (12.16)
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These equations imply that the total energy of a homogeneous
and isotropic Coulomb plasma,

.
Efz‘%Na d"p-{—-slTI(aE-éE), (12.17)

is constant.
The conservation laws for a homogeneous and isotropic plasma
will be used later in §§ 17, 21.

13. Kinetic Equations for a Relativistic Plasmat

- Consider first the case when the plasma is homogeneous and
isotropic and when no external fields are present. Under these
conditions the functions £, are

fo=rf(pl 1) (13.0)
A more general case is considered in § 14.
Equations (5.21) for the functions f, in this approximation
become

Y _e(? e
Lo 2 (ap aNaaE)

€, L) —
= —-m (a—p . f Re (6Na 6E)k) dk = Sa (13'2)

" and they coincide in form with the corresponding equations (10.2,

9) for 2 non-relativistic plasma. The difference is that the function
(6N, 8E), for a relativistic plasma does not coincide with the
function defined by (10.33).

To find the spatial spectral function (8N, 6E), in the relati-
vistic case, we use the set (5.41-43) for the functions éN,, oE, éB.
In the isotropic case the term ([vASB] - 8f,/9p) in eqn. (5.41)
drops out.

By virtue of its linearity, this set can be split into two- sets
which describe the transverse and longitudinal excitations in the
plasma respectively.

t Belyayev and Budker (1957); Klimontovich (1960a, 1960b); Silin (1961,
1962a) and Klimontovich (1961).
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Putting
SE = SEI+8EL, curl B! =0, divéEL = (13 3)
0j = ojil+ 85+, curl g =0, divejt =0,
the first set of equations is
OON | SN o
a - 2] H - ..._a _—
2 +('v o )+eana (aE ap) 0, (13.4)
3——?9E +4=8!l = 0, curl $EIl =0, (13.5)
div 6B = 4z Y e, f NIl dop. (13.6)

Here the superscript || of the function 8N, indicates that the equa-
tions refer to longitudinal motions in the plasma.
The other set is

L
BéNa +(’U 3(5N.L)+ - (aE-L-%) _ 0, (13.7)

ot oq op
_ 1 O00E* 4m .,
curl 6B = <~ T to Jjt, {13.8)
1 déB
b=
curl §E+ = PRy Tk (13.9)
divéB =0, div 8E* = 0. (13.10)

Such a division is justified in that the second moments of the
current densities and of the fields, as calculated by means of the
random functions ON)|, $N¥, break down in the isotropic case
into the sum of a potential component and a rotational compo-
nent which are uncorrelated. This has been shown elsewhere
[Klimontovich, 1958b].

More complicated correlations, e.g. 0N, (g, p,?) 6N, (g, p’, t),
contain common terms for the potential part and the transverse
part, the form of which requires no explanation.

Of course, one does not have to make such a division, but it
does usually reduce the calculations considerably,
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Equations (13.4-6) coincide with (5.31) which are the initial
equations for forming (10.7) for the spatial spectral function
(8N, ON),, . of a non-relativistic plasma.

On this basis rather than solve equs. (13.4-6) we can immediately
use the expression (10.33) for the function (8N,(%-J0E)),. It thus
determines the longitudinal part of the collision integral in (13.2).

Naturally, the functions f, in (10.33) satisfy other equations
besides the kinetic equations (11.4) for a non-relativistic plasma.

We now pass on to the corresponding expressions for the
transverse part, taking the set (13.7-10) as the initial equations.

From (13.7) we form an equation, analogous to (10.16), for
the transverse spatial spectral function (8N, dN,),.

(0N, ONp),,
i

= - )—(k-v)— z‘dl

[ (68, () 6Ei)k f

ey, 3EL), 3fb}+an,, Sp—p i, (13.11)

omitting the | sign on 8N,

Multiplying (13.11) by ¢,[ [k Av'] A k] /K2, summing over b and
then integrating over p’, the equation which relates the functions
(8N, 81),, (3, 8E*), is:

(6N, 51
en Z [[EAV]AK]; (0N, SE}) e ,QJE
=i ®O=Eo)—id P,

HLALth]a,

el?
HONOEML 37 | Tm =Gy P
k
e,n EHL:;M_] - (13,12)

By using the Maxwell equations (13.8-10) we form two more
equations for the spatial spectral functions (6N, 6EY), and
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(6NaajJ‘)h
i(k -v) (8N, 8EY}), + e, (BEF 6EJ-) af"

+ic(ON [k A 8B);)y, + 4 (8N, aj,.l)irc =0, (13.13)
(k-v) (3N, 6B),,— (6N, [EASE!]), = 0. (13.14)

In thelast equation we take into account the fact that in a homo-
geneous isotropic plasma the electric and magnetic fields are
weakly correlated. The term with &, 5, is discarded for this
reason.

From eqns. (13.13, 14) we must eliminate the terms which con-
tain the magnetic field. We multiply (13.14) vectorially with k
and then use this equation to eliminate the term (8N, [kAJSB]),
from (13.13). We then get the equation

i((k-v)— c®k?) (8N, OEF), + en (k) (8EF r?vE-'-),= af"

+ 4l -v) (BN, 87L),, = 0. (13.15)

From eqns. (13.12, 15) we eliminate the function (8N,&/1),.
We then arrive at the equation

((B-v)* &L ((k-v) - k) — c%2) (3N, OEL),,

B 4:rean Bfa [k AvIAR]; (8N, OET), 3
T e a Z (ke v)—(k-v)—id

+ ien (R -v) (OET 5EJ-),‘ f

EpavInE];
[[% Av] ]f

+ida(k-v)e,n, & -

(13.16)

Here we denote the transverse dielectric constant by el(w, k).
e F L (w, k)
afb)
2mein, ([[h/\v JAK]- ap p

] 3,
) Peridy ] o=t T 4P
(13.17)
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The functions analogous to HE(w, k) in § 10 are
[[kAv]IAR], (BN, SE}),
HE L 3
Hay = hi;ebf w—(k-v)+id L

(13.18)
[k AwIAKY (0N, 8E);

[
—iHE,, = —
IH(2)IJ 2nizb:eb] w—{k-v)tid

(13.19)
The formula (13.18) implies that

Te, f 8(ewo—(k -v)) [[k ADIAK]; (BN, 8EL), dp

. = i(H(_l)ij_Ha-)ij)' (13.20)
In a homogeneous isotropic plasma
H(d:;)sj = H(;E)ji: a=1,2 (13.21)

Using formula (13.19), we write eqn. (13.16) as
((k-'u)2 £ ((k-v)- k) —c2k2) (0N, 8EF),

= oo T 1. )af“H@)u((h v)-k)

+ien(k-v) (GEL 5EJ-),‘ af"

[[L/\'U]Ak]i
— £
We then form the equation for the function Hj (w, k) by

+ ia(k -v)e,n, (13.22)

- multiplying (13.22) with §(w—(%-v))e,[[RAvIAK], and then

summing it over a and integrating over p. By using the formula.

2mi Y 2’; a'la f&(w—(k-v)) ([[k/\v]/\k]- _‘;f;) d°p
= &l (w, k) — L, k) (13.23)

and also the formula (13.20), the equation for the functions H,j is
(w26l =L — c2c?) (HH)IJ_HG)U) = wz(ef‘)l — 8(+)l)H(T-’)U

2
_5_£,2,_w (8(—)J._3(+).L) (6EJJ' 5E,J;')k

oy e | ere1ARL [ AOIAR],
X (e~ (k) f, &% (13.24)
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Bearing in mind that the last two terms in this expression are
real, we can equate to zero the imaginary part of the other terms:

{w?e~— C‘zl%z)(H i — Haup)=(0?s™ — EkA(HY ) — Hype
(13.25)

Hence

Hyylw, k) = Hgyo, k). if oo, B)—c%® = 0,
(13.26)
i.e. the dispersion relation has no real roots.
This condition is equivalent to (10.28). By using it, eqn. (13.24)
becomes
Hi(w, k) Hi (o, k)

0PIt — 22T eI — B2

Z4men f[k/\’v]/\h] [k ATIAK] w—(k-v)f, d%p

= lw?el(w, k)—c2k? (2
k2 1 1
82 (w“e("')J- — 2t (L c2k2) (8E;" BE7)y.-

(13.27)

+

This formula determines the discontinuity of the piecewise
analytic function Hj/{w?s —c?k?).

Knowing the discontinuity we find the expression for the
functions HF (o, B)/(w?e® —k?%):

Hiw k) 1
wlet(w, k)—c®%2? ~ 2mi

4
5 e, fa (' — (& -D))[[KATIARL[[R AVIAKLS, d°p
X (w—w'tid) o™ (o, k)—c%k?)? deo
k2 1 1 L
T 8af wlet(w, B)—c?k? (OF; an Dk (13.28)

We now return to (13.22), and having substituted into it (13.28),
bearing in mind the isotropy and homogeneity conditions, we get
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4-:e ", “3__&
k®  dp;

€8N, 6E}), =

(0 5 5 [[h A0 AL [ A0 IAK
X ((k-v)— (k- 1) —id) [(k-v")2et (Rk-v) - k) — 222 d*p’
dr(ke -v)eln, [[EAv]AR);
(o - @

fao (1329

Formula (13.29) is analogous to the corresponding formula

(10.33).

The total spatial spectral function of a relativistic plasma
(6N, 0E); = (ON[} 8EY), +(ONL OE1), (13.30)

is given by the sum of the expressions (13.29) and (10.33).

To form the kinetic equation, we require an expression for the
real part of the function (6N,8E),,: from the formulae (10.35) and
(13.29) we find

Re (6N,3E,) = 4:'1:2e n, 2 41:2,,71,5

xiJ [%ar

(Boy[[EAV]AK] [[KAVIAE] ]5((;,- -t)—(k-v"))
|(E-vYel((k-v)-E)—c2|?

af(p) ki,
sctyp) LB o ”—“'“[5.. ST

(ko) [["/\Ulf\k]s [k Av'IAK], ]
2| (ko) et((k-v)-k)—c*k?|?

3 8( (ke 0) — (B -0) aff’fa(;o)ars } (13.31)

It is necessary to transform this expression.
We change from differentiation with respect to the momenta
to differentiation with respect to the energy & = 4/(m’c+p*c%),
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bearing in mind that

_B_*de.a_p_cz_i__v_a_ since =2
" Op " dp 8 & 0 = de’ P=-z
(13.32)
In the isotropic case the relevant formulae are

A % _ . 2 %,

(b-0)[[RABIAK], 52 = (k-0) UeAwl 5
kj%{:é[k/\v]ﬂ, (13.33)

i

f [k ADIAE]L [Tk AvIA K], 8(w—(k-0)) £.(p) &°p

= 5 @k [ AT o(w—h-0) .(p) Ep.
(13.39)

Using (13.33, 34), in the last term of (13.31)} we carry out the
transformation

> N YYeINg) [ AvIA K] 2% s (v

= %”: (5{: L k’) [Rae' Pk 3f¢.'

= o[ [kAVIAK] [(RAVIAKL; §f ;

k. ofy

([kAw]- [RAD]) [[RAVIAR]; 19 (13.35)

I

We now substitute the expression (13.31) into (13.2). Using
formula (13.35) and the relation

[EATTAK], 3{,?_ (k) = ([kAv]- [k/\v])( 3fa),

the resulting equation becomes

7. a
= S| 08 {5 D) = s,
(13.36)
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where
gb — 2.2 k,kj
QU 2€aebf{ kt|g! ((k.v).k)lz
kikj([k/\v]-[k/\v’])2 H(kv)—(k-v))dk
k4l(k'v)zsi((k.v).k)_czkz]2} ((kv)—~(kv)) k.
(13.37)

It is eqns. (13.36) with the kernel (13.37) which are the required
relativistic kinetic equations for the distribution functions f,.
They differ from the corresponding non-relativistic equations
(11.4) only in the form of the tensor 077.

In the non-relativistic approximation (¢ — =) the expression
(13.37) coincides with the corresponding expression (11.5).

The kinetic equations are sometimes conveniently written as
Fokker—Planck equations
o _ 0 L, . 54K
& ~on vop, T op

The coefficients D, A7 are

g3

(,j=1,2,3). (13.38)

- 2,9 kik;
Dg, gze“ebm’f[k‘[e"((k-v)-k)[z
(v [[EAIARL [TRAVIARY Yo o (o
k‘*](k_-v)%*((k-v)-k)—cﬁkﬂ" ]5(@ r)—(k-v ))
X fop) &p’ d3k. (13.39)
; _X 2,2 kiki
gzea%nbfl:k”s“((k-’v)-k)lz
(ko) [[EARIA K] [[EAVIAR]
244 (R v et((k-v) k) — k2|2

] 8((k-v) — (ke -v")

s 30’ A3
X % d*p’ PE. (13.40)
Other forms of notation for (13.39) and (13.40) may be con-
venient.
In § 14 expressions will be formed for the space-time spectral
functions of various characteristics of a plasma and, more particu-
larly, for the electric field strength.
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In the isotropic Ease
(OE-0E)y, i = (SEV - B )y, y+ (6EL -8EL)y 1. (13.41)

This implies that the spectral function for the electric field
strength is composed of two parts, viz. the spectral function of
the longitudinal field and the spectral function of the transverse
field. These functions are determined by the formulae (14.29, 30).
The spectral functions of the different components F, OF; are
formed by formulae {14.31, 32).

Using these expressions, the diffusion constant Dj; can be
represented as

2
Dy(p) =1—Z;—3 f 8(o—(ke-2)) {(SE! 6 Yo, x
+(8ELFOE Yo, )} div R, (13.42)

Thus the diffusion constant in momentum space is determined
by the spectrum of the fluctuations of electric field strength at the
frequency o = (k-»).

Under the conditions formulated in § 10, the fluctuation spec-
trum is in turn determined by the distribution functions f, (see
(14.29, 30)).

A more general case is considered in § 16.

In the non-relativistic approximation the formula (13.42)
becomes

J' 8(co—(fe-0)) (OE! 8E) o 1 doo &°ks,
(13.43)

22
D(p) = 1

i.e. the diffusion constant is in this case determined by the spectral
function of the longitudinal feld.

Consider another form of notation for the coefficient 42.

The formulae (10.22) and (13.23) define the imaginary parts of
the function " (w, k), et (o, k):

Imel (@, k)= —= ¥ 4”"’" fa( — (k) (;n 311;)
(13.44)
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2
Imet@, k)= —x3 zj g f&(m—(k-v))
% 3 13.45
X [[k/\v]/\k]-ap a*p. (13.45)
Usin:g these formulae, the expression (13.40) becomes

| ol E [ [HImel@,k)
' oAt K |eMe, K) |2

(k-v) [[kACIAE] Im si(w, k)} 8(w— (& -v))dod®k.

K? [(@?e L (o, k) —c?h? 2
(13.46)

Thus the coefficient 47 is proportional to the imaginary part of
the dielectric constant tensor.
In the non-relativistic approximation from (13.46) we find

2k Ime(w, K) . .
' (13.47)

In § 11 some general properties of the collision integral were
considered. It is easily verifiable that they also hold good in the

relativistic case.
In particular, a Maxwell distribution is also the equilibrium

solution of eqns. {13.36). In the relativistic case the solution is

fi(p) = 4, exp [-— ﬂ%&] . (13.48)

The quantities 4, are determined from the normalization condi-
tion.

We show that the Maxwell distribution (13.48) satisfies equs.
(13.36). We substitute this distribution into the right-hand side
of (13.36). Performing differentiation with respect to p;, and p;,
using (13.32), we get

s, = er v f 0w — ), £.D) S d°p’
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This expression vanishes since the formula (13.37) for Qg
contains the function 8((f-v)—(k-2")), and ((k-v)—(k-v))
X&((k-v)—(k-2")) = 0.

In § 11 it was shown that the kinetic equations (11.4, 5)fora
non-relativistic plasma can be simplified if the state of the plasma
differs little from the equilibrium state. In this case one can
neglect polarization in (11.5), but integrate over k in the range
k = 1/r;. In this approximation the tensor fo’ is given by (11.28)
or by (11.40). The kinetic equations (11.4) with this kernel are
Landau’s equations.

We show that analogous equations can also be formed in the
relativistic case. '

In§ 14 we shall see that in the relativistic case the Fourier space
component of the correlation function gulg—q', p—p’) is
given by the expression

eﬂe a !
gk, p.p") = — Eezfzc 2 (ﬂ{;g) . (13.49)

It differs from the corresponding mon-relativistic expressions
(10.42) in that now the Maxwell distribution f,(p) is relativistic,
i.e. it is defined by the formula (13.48).

By the use of (13.49) we find the expression for the correlation
function which coincides with (10.44).

* 1 r ; ‘. ’
gab(q_qfs pa_'p) = oAy gab(k,p,p)e-'(’“'I-—QJ’
(27)
(13.50)

So in the relativistic case the correlation radius for the equi-
librium state is of the order of the Debye radius r,. This implies
that in the equilibrium case the spatial spectrum is bounded
towards small &, since, as in the non-relativistic case, there exists

a value

Kuia ~ rld (13.51)

The condition (13.51) holds also for states close to equilibrium.
If it is fulfilled, we can put £' =1 and &t = 1 in (13.37), but
integrating over the range k > l/r;, i.e. using the following
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expression for the tensor:

5 kik; ([k/\v]-[k/\'v’])z
Qsf = 2eze} L,,L?{H-W}
 8((ke-v)— (k-v")) d°k. (13.52)

This integral diverges logarithmically as (k| — o, so towards
large |k| the integration must be restricted by another condition
similar to (11.37) or (11.36).

Equations (13.36, 52) are the relativistic analogy of Landau’s
kinetic equations.

Using the isotropy condition of the functions fi|pl 1), the
expression (13.52) can be rewritten as

kikj kA '[k/\ ’] 2
Q?f=2e§e§'[ P [1+——"_([(k_‘l;])2_c2; )]

x 8((Fe-v) —(J&-v")) &k. (13.53)

Compared with (13.52) this expression contains the additional
term

kde, ([ Av]-[RAD' o~
sere [ s (CENPLIEAED) 3~ o0) .

This term, however, in no way contributes to the right-hand side
of (13.36). This can easily be seen by substituting the expression
(13.53) into equation (13.36) and replacing inside the integral the
component of momentum p't transverse to k by — .
The expression (13.53) simplifies to
% = 22§e§[(fu-v’)—cg]2f - kik;
(c*k2—(k -v)%)?

% &((ke-v)— (k -v")) &°k. (13.54)

We can transform (13.37) in the same way.

The kinetic equations (13.36) and (13.38) are given for a
spatially homogeneous plasma.

Their generalization to an inhomogeneous plasma is the same
as in § 11.
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To conclude this section, we introduce without derivation (the
derivation is given by Klimontovich [1960z, 1960b]) the relativis-
tic kinetic equations for distribution functions of eight variables

q;‘(qs l-(.'t), pi(ps iE/C')
Fig, 2 = No{a., pD- (13.55)

The microscopic function N,(g;, p;} is defined by (4.27-29).
The distribution function of eight variables F,(g;, p) is so
defined that the expression

Fgps)y d®q d®p de (13.56)

is the mean number of particles of kind a having world lines
which intersect some element of a hypersurface which is oriented
along the time axis, and also momenta which lie within the limits
d®p de about p,.

For states which differ little from the equilibrium state, the
equations for the functions F, are

aF, _ 8 OF, . O0F -\ n .
U‘Bq.— q;a}’f {317 o= a’F}dp b
(13.57)

e3b = 2e2e3(U, UL f T—«—wé(k,[f,) 8k ULY dFe doo.
Lhmlm=1,23,4 (13.58)

Here &, (&, iw/c) is a four-dimensional wave vector, Ufyw, icy)
is the four-dimensional velocity, and p, = mU,.

In (13.58) ome can integrate over w and k. If we avail ourselves
of the symmetry of the tensor ag.b about U, and U] and also the
fact that

Uiey; =0, Uje; =0, (13.59)

in order to determine the tensor e;" it is then sufficient to find the
sum of the diagonal elements. As a result we get the following
expression (see Klimontovich, 1960a, 1960b; and Belyayev and
Budker, 1957):
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o 2meled CAMNE
EUb = (:5 b [In Pmm] {‘: ot lj, 6;_;

(U:Uz)

rypey 1
_(Uin+ Ui UJ)?

LAY} —3f
[T,
[44

(VU + U’U')}

(13.60)

The values k., ~ 1/rp, and &k, ~ 1/r,, as in the forego-
ing, determine the range of wave numbers for which the solution
holds good.

Equation (13.57) with kernel (13.60) corresponds to (13.36)
with kernel (13.54), To change over from (13.57) to ( 13.36), it is
necessary to use the relationship between £, and F,

Fa (gis pa) = ”a.f;(% y .f) 6[8_ ¢ '\/(pg"}“mgcz)] -n.qa_c ?
(13.61)

and then substitute this expression into (13.57) and integrate

over .
The formula (13.61) follows from (13.56) considering that all
possible states are on the surface

2P = —mic. (13.62)
In the equilibrium case eqns. (13.57) are satisfied by a relati-

vistic Maxwell distribution, which for constant particle-mass m,
can be written as

F, (g p) = Co(p7+mic®) exp (p '?‘) , (13.63)

where C is a normalization constant, ET,- is the four-dimensional
vector of the average velocity in the equilibrium state, and T is

~ temperature.
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To change from the distribution (13.63) to (13.48), one needs
to select the frame of reference in which U} is (0, is/c), to integrate
(13.63) over &, and then use (13.61) which relates the functions
F,and f,.

14. Stationary Space—Time Correlations in a Plasmat

In the foregoing sections it has been shown that if
& = (r,,/rs)® << 1, for a statistical description of the processes in
a plasma one can use the closed set of equations for the first
distribution functions f, and the correlation functions g, or
second moments. The higher correlation functions in.this case
are small (of the order of &%),

If, furthermore, the functions £, are slowly varying functions of
their coordinates and time (vary little during the correlation time

and over distances of the order of the correlation radius), then’

“simultaneous™ second moments can be given in terms of the
first distribution functions. As a result we get a closed set of
kinetic equations — equations for the first distribution functions.

The functions ON,(x, ) 6N, (x’, £) characterize the statistical
relation of the values of the coordinates and momenta for a pair
of charged particles at a particular instant of time ¢.

However, in some cases it is necessary to know the statistical
relation between the values of the coordinates and momenta of a
pair of particles (or of the distribution of the particles at two
points in phase space) not at the same instant, but at two different
instants of time.

To solve this problem it is sufficient to determine the mean
value of the product of the functions N,{(z, ) and N, (z’, t) at
two different instants ¢ and ¢', i.e. the function

N, (=, t)Ny(x', t'). {14.1)

One can immediately separate out the part which is expressed
by the first distribution functions f, and f,. For this we substitute

T Klirnontovich and Silin {1963), Rostoker (1961), Akhiezer, Akhiezer and
Sitenko (1962), and Xlimontovich (1961).
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1

into formula (14.1) the expressions N, = ﬁ‘,—I-éNa and N, =
= N,+6N,. Considering that 6N, = 0 and &N, = 0, we get

Na (x: t) Nb (mfs t') = Rra (ﬂ:, t) j_Vb (:L", t,)
+8N (. 1) oN, (', ). (l4.2)

The first term on the right-hand side of this formula is given by

the first distribution functions since the functions IT’a, N, are
proportional to £, and f,.

The second term, however, represents the correlation of the
fluctuations (deviations about the mean) of the phase densities at
different instants. In the present section we show that the ex-
pression

ON, (x, t) 8N (x', 1) (14.3)
on the same assumptions as in § 10 regarding slow variation of the
functions f,, is also determined by the first distribution functions
Far

This result is very important. In fact, by using the function
(14.3) one can find the space-time correlations of electrodynamic
functions: fluctuations of the densities of the charges dg, of the
currents §j and of other characteristics of a plasma determined
by the motion of charged particles.

Thus, for example, for the correlation of the fluctuations of the
charge density at different points and at different instants of time,
we have

delq. ) do(g’, t)

= Yo, f 5N, P, DN, 7. 7) d°p .
(14.9)

Furthermore, by using (14.3), one can determine the correla-
tions between fluctuations of gas-dynamic functions, such as the
densities of the individual components, their velocities, tempera-
tures, and moments of velocities and so on, and also the cross-
correlations of the fluctuations of electrodynamic and gas-dy-
namic functions.
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Thus all binary statistical characterizations of a non-equilib-
rizm plasma can be found by the use of (14.3).

In the present section we form expressions for the spectral
functions for a wide frequency band compared with the “colli-
sion” frequency, i.e. for w > 1/t,, where 7, is the time taken to
establish equilibrium. Slow fluctuations, i.e. at frequencies
w 5 1/t constitute a separate problem and therefore will not be
considered in the present section.

We now turn to the problem posed. To find the function (14.3)
for a non-relativistic plasma, one can use eqn. (5.33) for the
function 6N,.

Accordingly we multiply (5.33) by 6N, (g, Pp’~1') and average
out. We then get

& _
= GN,58p), o+ ('v- % (3N, 3N,), ,,)

(14.5)

as required. Here (0N, 6NV,), . is an abbreviation for the function
(14.3). '

In the case of statistical equilibrium the functions (8N, ON), o
depend only on the difference between the coordinates ¢ and ¢’
and on the difference between t and ¢'.

In non-equilibrium conditions for which the requirement of
slow variation of the distribution functions f, is satisfied (see
§ 10), it can be assumed that expressions (14.3) also depend on
the differences between the coordinates and between the instants
of time, and only on the coordinates and time proper through the
first distribution functions f,.

Thus one can look for the solution of (14.5) which explicitly
depends only on q—q’, t—1¢':

6Na (q: pv t) 5Nb(q’a pra t’) = (5Na 6-Z\‘rb)q—q', feut! -
{14.6)
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If these conditions are satisfied, (14.6) is a rapidly varying
function of g—¢q’ and r—¢’, whereas the f, are slowly varying
functions of @, ¢, ¢, t'.

Therefore for solving eqns. (14.5) one can assume as a first
approximation that the functions f, are functions of the momenta
and that they do not depend on the coordinates and time.

Considering our assumptions, eqn. (14.5) needs to be solved on
the following “initial” condition: the function (14.6) is the same
as the expression for a simultaneous correlation of the fluctua-
tions of the phase densities. Knowing that the phase densities are
associated with the correlation functions g,,, we write this
““initial” condition in the form: if t—¢' =0

(0N, ONp),» = (0N, ONy), = nam, 8%, &', 1)
+ 8,51, B — ) [, £). (14.7)

To solve the set of eqns. (14.5) with the initial condition (14.7),

' it is expedient to use the ome-sided Fourier transform in the

independent variable ¢—¢' and then the two-sided Fourier
transform in the variables g —¢q'.

The soluticn so obtained enables the two-time functions (14.3)
to be expressed in terms of the one-time functions {8V, dN,),, the
expressions for which have already been found in § 10.

But since the one-time functions (44, éN,),, under the condi-
tions under consideration, are given in terms of the first distribu-
tion functions (see § 10), in the last analysis we obtain formulae
which express the space-time correlations in terms of the first
distribution functions.

We say that the spacé~time correlations obtained in such an
approximation are stationary and uniform since they are explicitly
independent of time and the coordinates. Dependence on the
coordinates and time enters only through the functions f,.

Slight non-uniformity can be treated in the same way as in
§ 11 (formulae (11.48-56)). Non-stationarity will be considered in
§§ 16 and 17.

The proposed method of calculation was carried out at
length by Klimontovich and Silin [1962]. The method appears
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rather cumbersome. This is especially evident in the relativistic
case. For this reason in the present section we shall consider
another method which enables expressions to be formed for
stationary space-time correlations in a simpler way.

As the initial equations we take the set (5.41-43) for the random
deviations 8N, 8F and &B.

Using these equations we express the values of the random
functions 4N, 6F, 6B at the instant ¢ in terms of their value at
the earlier instant ¢ = 0, For this we use the one-sided Fourier
transform with respect to time and the two-sided transform
in the coordinates. For the respective Fourier components one
may put, for instance,

ON, (o, k, p) = f B f " en, (q, p. e 2+iler—=a) dt B3,
1] —_—cn

The functions dN (o, k, p), SE{w, k), 4B(w, k) are analytic
in the upper half-plane of the complex frequency w +i4.

From eqgns. (5.41-43) we obtain, after straightforward algebraic
transformations, the following expressions for these functions

8N, (@, , p) = 8N, (k, p, t = 0)

i
o—(k-v)+id {
. Ve
—en, (aE(m, k) %)} . (14.8)
SE(w, k)
_ io[RA[SEK, 1 = OAK]]—ic[kASB(k, t = 0)]*
- k(@ +id) et (w+id, k)—c?ke)

SN, (k, p, t = 0) k
+4n§e"J‘ w—(R-v)+id ) Kelw+id, k)

k E
+ olkA AR a*p. (14.9)
k(@ +id)? e (e +1d, k) — c¥k?)
8B(w, k) = w:i = [1: 1 0B w, )]
i
+ o OBk, £ = 0). (14.10)
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Here &'(w, k), e(w, k) are the longitudinal and transverse
dielectric constants, as defined by (10.19) and (13.17).

The formulae (14.8-10) enable the functions dN,, 6F and 6B
to be found from their values at the instant z = 0,

By using the functions dN,(k, p, 1), 6E(k, t) and dB(k, t) one
can find the spatial spectral functions for the correlations at two
instants. For example,

6N, (k, p, ) SN, (E', p’, ) ‘
= (220 8(k—K") (BN, 8Np)y. 1 ¢ - (14.11)
The function &(fe—k’) appears in formula (14.11) owing to
spatial homogeneity.
In the equilibrium and stationary cases the correlations at two
instants depend only on the difference ¢—1r'.
Hence space-time spectral functions do not depend explicitly

on time. They are associated with the corresponding two-time
correlations by a Fourier transform. For instance,

(2= (k—R") (3N, (p) ‘3Nb('P’))m, "
_ f SN, p, D 0N, (O, s T)eei=) d(i—1").
- (14.12)

Comparing the formulae (14.11, 12), we get

(0N, 0N o= [ (BN, 8} i) dle—),
- (14.122)

Analogous formulae hold for the functions (3E:JE), »
(0B 6B), ; and other spectral functions.

We will use expressions (14.8-10) for finding the space—time
spectral functions.

For this we show that, for example, the spectral function
(8N, 8N,),, ;. is expressible in terms of the functions éN, (w, k, p)
and N, (w, k', p'):

(27 8(k—E") (3N, 0N ),
= lim 243N,(o, &, p) 0N (o, &, p). (14.13)

Ad—Q
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Likewise
(27)* d(k—K") (BE -0E), 4,
= A].im'J 24 (8E(w, k)-6E*(w, k) (14.14)
and so on. B

We obtain the formula (14.14), for which we consider the
expression

(8E(w, k)-0E*(w, k7))
= J' Tar f " dte=atviat' o s~ (E(k, 1')-3B(K, ).
v - (14.15)

By virtue of the stationarity and uniformity of the expression,
(8E(k, t)-0E(E’, 1)) depends on #'—¢"’ and so is non-zero only
fk=Fk.

We introduce the new variables ¥ —¢” = v and (t'+1")/2 = ¢,
and then

(5E(w, k)-3ENo, k)
— J‘m d'CJ‘m dt e-2dr+x’wr(6E(k, t')-ﬁE(k', t”)).
L]

2
(14.16)

Integrating over #, we get
(0E(w, k)-8E*(w, k')
- 'éla f " (8E(k, 1)-8E(K', 17))elt ) d(e' 1),

By using formula (14.12a), we get (14.14).

Formulae analogous to (14.13, 14) are used in statistical radio
physics (see, for example, Stratomovich, 1961).

We find, first, an expression for the spectral function (3E- 8E),, ;.
To do this we substitute into the right-hand side of the formula
(14.14) the expression (14.9) for 8E(w, k) and the corresponding
expression for E"(w, k).
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We shall consider stable stationary states for which the equa-
tions .
elw, k) = 0, ol (w, k)—c%2 =0 (14.17)

do not have real roots.
Consider the contribution to (14.14) of the individual terms
of the product (8E(w, k) 8E"(w, k7). First of all we cancel
out the common factor (27)% é(k—k").
The product of the first terms of the expressions 6E(w, k)
-8E*(w, k'), after averaging and dividing by (2#)® d(k—F&"),
contains terms of the kind
(8E; BE)),
|wPet{w, k) —c2k2|?

(14.18)

. and also analogous terms with the functions (3E, 8B, )i (0B; 8B e

Simultaneous spatial correlation functions in the equlhbnum
state are always finite.

For states, near to equilibrium, when the conditions (10.12, 13)
are fuifilled,

lim A(SE; 3E)), = (14.19)
49
The limiting transition 4 — 0 implies, as previously, that
4 is much smaller than all the characteristic times of the spectral
functions. In this case, according to (10.13),

Tomar < 1/d 1, (14.20)

where 7., is the characteristically maximum time of the spectral
functions. Forexample, 7., ~ 1/y..., where Vmin 15 the damping
increment of the plasma excitations at k ~ k.. Here k__ is the
boundary of the space spectrum on the side of low wave numbers.

If conditions (14.19, 20) are fuifiled, and also the condition
(14.17), expressions of the kind (14.18) become vanishingly small
after multiplying by 4 as 4 — 0, and so they make no contnbutlon
to the expression for the function (0E- 8E),, . .

The cross terms of the product (6E(w, k). SE* (o, k")) also
make no contribution to the expression for the function (8E
«6E),, . for the same reasons. The only difference is that instead
of expressions of the kind (14.18), we have expressions which
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contain, instead of spatial spectral functions, space-time func-
tions of the kind

f (O 8N, (p))w

w—-oy+id 2P = CEUor,

where
Ulw, k) = f [6N, (p, 0)/(w— (K -v)+id)] 4°p.

The space-time spectral functions satisfy the condition
lim A(BE-SE), , = 0, (14.2D)

Ad—0

which corresponds to (14.19). Similar conditions hold for the
other functions.

‘We have still to consider the contribution of the second terms
to the product (8F{(w, k). dE (w, k).

After multiplying the second terms we obiain the following
expression for the function:

(8E -3E),, , = (OE'-8E"), .-+ (8E* 0EL), ,, (14.22)
where
(SE!.6BM, -

z (41) Cals lim zdf (6Na 6Nb)k dsp d3p"
a0 J (o—(k-v)+id) (w—(k-v)—id)

1
XW' (14.23)
(SEL-SE+ )wk__zm.l 24
40
f ([ ARIAR]-[[T AV AR]) (3N, 8N, Fp dp’
(0 — (],, v)+id) (o —(k-v")—id)
(14.24)

{&)"E'L _C2k2 }?— "

The expression (14.23} determines the spectral function of the
longitudinal fields, whilst (14.24) determines that of the transverse
fields. From these relations it follows that the space-time fumnc-

168

Correlation and Spectral Functions

tions are also given by the simultaneous spatial spectral function
(3N, () 8Ny (2 M,

This function is connected with the Fourier components of the
simultaneous correlation functions by the relation

(6Na 6Nb)k = nanbgab(ks D p,) + aabna 6(13_10’)}2 - q

We substitute this expression in the formulae (14.23, 24). In
the terms containing the functions g,,, in this case we have the
integrals

gab(kvp7p’) dap d%n’
(o—(k-v)+id) (o—(k-v)—id)
(14.25)
f ([[EAOIAE]-[[kADIAK]) gk, . ) ,
d®p d3p’.
(w—(k-v)+id) {(w—(J-v")—id)

From the ensemble density it follows that in the equilibrium
case the function g,,(k, p, p’) can be represented as

8ao(Rs P> D) = 2a(K) fu(P) Fo(P'):

where £, f, are Maxwell distributions.
Integrals of the following kind enter into the formulae (14.25):

J‘( - (P, p) galke. p; P) d*p d°p’,  (14.26)

o—(k-v)+id) (o—(k-v)—id)

where the ¢(p,p’) are functions which are integrated with
&k, p,p’), for examble polynomials in p and p'.
In the equilibrium case the integrals (14.26) for given ¢(p, p")
can be evaluated. They are finite functions of @ and k.
Counsider the non-equilibrium state, when

lim A (PP gl oy P)
a0 J (o—(k-v)}+id) (o—(k-v")—id)

d*p d&*p’ =0,
(14.27)

the quantitity 4 here satisfying conditions (14.20), as above.
Using this condition and the formula

Jm, (PP b p(x}), (14.28)
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we obtain from (14.23, 24) the following expressions for the
spectral functions of the longitudinal and transverse electric
fields:

(4m)?en, J‘ 2nd(w— (ke -v))
. SE! = d®p;
@E!-0E s . = 3 — FICNOK Je d°p;
' (14.29)
(OE*-3E%),
_ @ Un)einw® [ 2nd(w—(k-v)) [kAV]E S, .
LT g %o, By — e @ P

(14.30)

In the isotropic case the tensors (SE. OE), w (OE‘-SEY), .
can be represented as

(OE} OB, = 5 o1 5B,

(OEF 86EL), \ = % (aij~%) (BE*-8E), z;  (14.31)

(6E{5‘Ej)m, = (aEl” ‘5EJ’-'I)m, & + (B‘Ef_ aE}‘L)w, ke (1432)

and they are therefore determined by formulae (14.29, 30).
In the same way, by using the conditions (14.19-21, 23), we
can form expressions for more complicated' spectral functions.
Later we shall require the spectral function (8N, 8E),, 1. It is
determined by the expression

(ON,BE)s o = ———rtoee (o, 05, , 2o

w—E&-v)y+id p;
Rk
kPelifm —id, k)
o[k AvIA k]f
K{(w—id)? - (w—id, k)-cZkz)}f“'
(14.33)

+ ime n,2n0(w—(k -v)) {

We introduce the expression for the real part of this spectral
function
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Re (8N, 5E,’)m, B = —WEN, ﬁ(w—(k-v)) (5E_,- 8E) o, 1 g—-f-
)

k; Im &ll(w, k)
e, ke [? k®

o[k ACIAK] Im eH(o, K)
k2 |otet(w, B)— k22 } «

—dme,n,2m8(w—(k v)) {

(14.34)

This expression contains the spectral function (dE; 6E),, , of the
fields, which is given by (14.22, 29-32)..

In the same way we form the expression for the most general
spectral function of phase distributions of particles in a plasma:

(BN BNp)o, 1k = 2m0,0(w— (K -2)) (p—p") n,/,
+ €2€57 N OLBE o, i e 9
(0~ v)+id) (0—(k-v)—id) dp; 0p)
dreepntty  2nd(w—(k-v")) k;
" o—(k-v)+id k? [ eWw+id, k)
w[[EAVTAE]; e
wlet{w+id, k)— c2k? ] ap;”°
dmeepny  2nd(w—(k-v)) k;
To—(kw)—id 2 [ e (w—id, k)
o[ [EAVIAE]; i
mzsl([cfn—id,]k)—]czkz }W:’ “ (14.33)

We have thus formed expressions for space-time correlation
functions without solving the equations for the simultaneous
correlation functions. Moreover, by using our expressions, the
corresponding simultaneous correlation functions or spatial cor-
relation functions.can be found.

From (14.12), for instance, the relation between the spatial
and space-time spectral functions of the phase densities is

(BN 8N )w = 51; f " (BN BN, )u, 5 do. (14.36)
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By using (14.29-32) the expressions for the spatial spectral
functions are

kik; . (4m)e2n, £,
5E_r| 6E!| — gl a 3.
( i JJk 2 g 2 f[g"((k-v)-k)izdp’

(14.37)

(4=)’ein,

B

(E-o [[RADIAE] [[EAC]AK]
|(e-2)* o2 (R -0) - k) — K22

GEH8Ef ) =T

a

£, d%p. (14.38)

X

Formula (14.37), for the spatial spectral function of longitudinal
fields is the same as (10.36), though formed in another way.
It can also be shown without difficulty that the same expressions
can also be formed for the other spatial spectral functions in two
different ways.

Let us form the corresponding expressions for the case of
statistical equilibrium.

We substitute Maxwell distributions in (14.29, 30). Using
(13.44, 45) for the functions Im & (w, k) and Im &l(w, k), we get

8x Ime'{w, &)

(GET -8B )y 1 = = T o T (14.39)

16703 Im gL (to, k)
el R A T (14.40)

(OEL-8EL)0 1 =

Consider now the case of the longitudinal field in more detail.
The || sign is omitted. ’

We substitute Maxwell’s distribution in the expression for
&, k). The expression for Im ¢(w, k) in the equilibrium non-
relativistic case is

o

N dmein, il TRk
Im &(w, k) = :1:%: BaT kA/(2mm e T) ¢ )

(14.41)
From this formula it follows that if e 3 0, then

Ime(w, &y +~0 as k-0 (14.42)
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We apply the formula

. 4 :

By applying it and using (14.41, 42) for small k we get

e Im e(ew, &)
W - n:a(co Re B(CU, k)). (1444)
So, for small & the expression (14.39) becomes

(OE! 3B, . = 8725(cw> Re &1 (e, k) wT. (14.45)

This implies that the spectral function is in this case non-zero
at those values of w and k& for which
Re ¢, k) = 0. ' (14.46)

In the zeroth approximation in k, the expression (10.19)
for &¢"(w, k) becomes

w} dme3n,
gl = 1—-5‘;_;—; w? = > (14.47)
Using the formula
B(p(x) = T —aX %) (14.48)

L €3] PR
where x; are simple roots of the equation @(x) =0, in this
approximation we get
1 -
8(w Re e (v, k) = = [6—o)+w+w)]. (14.49)

From (14.45, 49), therefore
(BE"-6E"), 5 = 4n2[§(co—wL)+6(co+wL)] =T. (14.50)

Thus the spectral function is non-zero at frequencies coinciding
with the plasma oscillation frequency.
Likewise from {14.40) we get

(CEL-3EL)y, x = 167%3(w® Re el(w, k)~ c%?) |eo] T
(14.51)
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By using solution (8.49) of the dispersion relation (8.47) for the
transverse fleld at low values of %, we get

(BEL-8EL),, i = 8a%[8(c— o) + doo+o)] =T,
= 1/(wk+ 022, (14.52)

For the spatial spectral functions, using (14.60, 52), we obtain
the following expressions:

(BB = - [ (B 6B g do = e,
(14.53)

(6EL.SEL); = 8muT. (14.54)

The results (14.45, 49, 51-54) hold when the imaginary parts
of the functions 2" (w, &) and ¢'(w, k) are small. Under this
condition the attenuation is also small and so we may say that
the results relate to the “pass band”, or radiation region.

It follows from (14.53, 54) that for the radiation region the
energy both of the longitudinal field and also of the transverse
field, referred to a particular value of the vector k , is independent
of this entity, and is determined solely by the temperature.

The expression for the function (8E-8E), from (14.39) is the
same as (10.39) for any k:

T

(BE" . 8E"), = 47;;1-_5%!?, (14.53)
a

Hence (14.53) holds if kr, << 1. On this particular condition the
damping is small, which follows from (14.41) if & = ;.

It is seen from (14.55) that the longitudinal field’s energy,
referred to a particular k, depends in the general case on k and
decreases with increasing k.

We now show that there is no such relationship for the function
(6E*-SE*),.

Integrating the expression (14.40) over  and considering that

Im s, k) = % (sLw+id, )= (w~id, ),

174

Correlation and $Spectral Functions

we write the integral as

. 1 1
L. LYy = — ey
(8EL . 8EL), 8axT pm-f ((w+m)ze¢(m+id, k)—ck*
1
T (w—idyF eL(w—id, k) — &k

The first of these integrals contains singularities only in the lower

half-plane, whilst the second contains singularities only in the

upper half-plane; therefore in the former we close the contour

in the upper half-plane, but in the lower half-plane in the latter.
Taking into account that

wls (@, k) -k > 0? a5 @ — o, (14.57)

) w do. (14.56)

and then using the value of the integral
1 da 1

i) ozid = T3 (14.58)
we obtain the result A
(6EL8EL)y = 8mxT, (14.59)

which is the same as (14.54) for the radiation region.

This is due to the following reasons. The integral (14.56)
depends on the value of e as @ — oo, Therefore, for fixed k%,
@ > ck, and so the phase velocity m/k > c.

From (13.45) it follows that

Imellw+id,E)~0 as A0, if ok = ¢,
(14.60)

since the condition @ = (k-®) under which the integrand in
(13.45) is non-zero for w/k=>¢, cannot be fulfilled, i. e. all charged
particles have velocities less than the speed of light.

Therefore the contribution to (14.59) in the equilibrium case
re}ates only to the radiatign region and so (14.59) and (14.54)
coincide.

We show that the form of the correlation function is not
affected in the equilibrium state by considering the transverse
field.
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From (14.35) we find the expression for the spatial spectral
function ' :

(NN )i = 5- f (ON 8N, Yu 5 oo,

Bearing in mind that

nanbgab(k: P 'P’) = (6NaaNb)k— aabnaa(p —P’)f:'t H

we find an expression for the function g,f(k, p,p’) and then
substitute into it the Maxwell distribution (13.48). Here all the
terms associated with the transverse field drop out, and so the
expression for the function g, (k, p,p’) is

€.

Laslle, p. p°) = —Wﬂ(@fb(P')- (14.61)

This differs from the non-relativistic expression in that here
Ja and f, are the relativistic Maxwell distributions (13.48).

Using the foregoing formulae one can find spectral functions )

of the strange currents §§°, charges do®and flux densities &D,
the action of each of which is équivalent to thermal motion.
For example, for the longitudinal field, when

8D(w, k) = &' (w, k) 0B (o, I2),

(14.39) yields the following expression for the spectral function
(6D-8D),, ;. = —SC—; Im &"{(w, k) =T

or
3277

(8D-8D), i« = - olw, K) T, ‘ (14.62)

where o(w, k) is the electric conductivity.

This formula is analogous to Nyquist’s formula for the spectral
function of a “strange” electromotive force equivalent to the
action of thermal motion in an electric circuit:

(6%), = 2R(w) «T, (14.63)

where R(w) is the ohmic impedance.
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Corresponding formulae can be produced without difficulty for
the spectral functions of external (“strange”) charges and cur-
rents,

From Maxwell’s equations we find that

8je(o, k) = jT“-;; 8D(w, k), p%(w, k) = 4%: (k-8D(w, k).
(14.64)

Using these relations and also formulae (14.62), we obtain
expressions for the corresponding spectral functions:

(83 -85 ) 22 = 20(0, k) 2T = 2% Im &' (e, k) #T;

(14.65)
k2

! A
5 Im e (w, k) =T.

(14.66)

2
(60° 60w, = 2 -C—O—ZO'(GJ, E)xT =

These formulae were first obtained by Leontovich and Rytov
in a phenomenological way [Leontovich and Rytov, 1952; and
Rytov, 1953].

The results given in this section refer to the case of a spatially
homogeneous plasma, isotropic in momentum space, when the
distribution functions f, depend on the absolute magnitude of
the momentum, i.e. f, = f(Ip|, ).

Anisotropy occurs in momentum space, for instance, if the
components of a plasma move in relation to each other vnder
the action of an external magnetic field and so on.

In the anisotropic state the dielectric constant tensor depends
not only on the vector %, but alsc on other vectors. The sepa-
ration of the fields into longitudinal and transverse therefore
appears impossible in the general case and so the tensor gyleo, k)
is no longer determined by the two functions &' (w, k) and
et(w. k). '

We must mention the changes in the initia} expressions (14.8-
10} in the anisotropic case.

In eqn. (5.41) it is now imp6‘§§,ible to neglect the term
which contains ([@ A 6B]-87,/0p), therefore eqn. (14.8) in the
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anisotropic case becomes

N (o, k, p) = ON, (&, p, t = 0)

i
“w—(kv)+id {
1 s
*eana({éE(w, k)+=[oA3B(@, k)]} %)} (14.67)
We introduce the tensor
2
Au = % S,-j-l-k,-kj-—ﬁfjkz. (14.68)

The dielectric-constant tensor is now given by the expression

Eij = (3,]-

(k-v)\ of, v, e
?Ji(l“-——"—)—i'l-"—i(k' )
w /) w d
Ty i 2 P

@ w-(k-v)+id

43p.
(14.69)

In the isotropic case this formula changes into (7.27). Instead
of (14.9) we now have

dmw .
)

SE(w, k) = —z-A,.;l(

1
~ 3 Ok, 0)+—[kASB(k, 0)],

op

5 dmein,
+ o—(k-0)+iA

3

2, ([v/\aB(k, 0]- 3f°)
Fpl, (14.70)

where 47 is the inverse tensor of A4y, and

o _ e VN, p, 0)
5= ';e“fm—(k‘.p)+fddp‘

In the isotropic case

AGJ-:iZ. k,kj . avkz—klka .
: I )
e

(14.71)
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and so (14.70) agrees with (14.9). In the anisotropic case (14.10)
remains unchanged,

- Equations (14.67, 69, 10) serve as the initial equations for
finding the space-time correlation functions in the anisotropic
case. The way of forming the expressions for the spectral func-
tions is still the same.

The results obtained in this section can be generalized to the
case of a slightly inhomogeneous plasma in the same way as in
§ 11 (see expressions (11.48-56)).

Finally, we make one more important observation. The
foregoing expressions for the spectral fanctions in the equilibrium
state hold good both for the radiation region when the functions
Ime' and Imet are small, .and also for the “stop band” (the
“collision region™). In the latter case the imaginary part of the
tensor &, is largish, and so the thermal losses are mot small
either; they are proportional to Im gy

If the plasma is not in the equilibrium state and the functions
/2 depend on time, the resulting expressions hold only for those
regions of the space—time spectrum for which the conditions
(10.12, 13) are satisfied.

These conditions can be written

% _ L

3 < P (14.72)

i.e, the first functions vary little in the maximum correlation
time 7., = t(ky;,) for non-equilibrium processes in a plasma.
Inequality (14.72) is satisfied if the spectral functions are smail
fork<k_,.
Unless the conditions (10.12, 13) and (14.72) are fulfilled, it is
impossible .t express the spatial and space-time correlation
functions in terms of the first distribution functions over the
entire spectrum, ‘ ,

In this case we divide the spatial spectrum into two parts,
viz. the short wave part (large &) and the long wave part (small k).
The first part we call the “stop band” or “collision region”
{in this region large damping decrements occur). The latter term
is justified because only for this region can the right-hand side
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of eqn. (10.9) be expressed in terms of the first distribution func-
tions and so be written in the form of the “collision integral”.

The other region we call the “pass band” or “radiation region”
since for small k the damping decrements are small and so the
existence of waves in the plasma is possible.

Before tackling the description of nom-equilibrium processes
in a plasma with regard to radiation processes (see § 16), we shall
consider the kinetic equation for a plasma in a permanent

magnetic field.

15. Correlation Functions and Collision Integral in the
Presence of an External Magnetic Field

Consider a pon-relativistic plasma. In this case the transverse-
field strengths are small and so we can use the set of equations
for the functions 6N ,(g, p, ¢) and also the longitudinal electric

field strength SE.
‘We put B for the average magnetic field strength in the plasma.

It is assumed that
B =const, E=0. (15.1)

We shall consider the spatially homogeneous case. Slight in-
homogeneity can be treated as in § 11. The functions £, thus
depend only on the momentum p and time 7.

To determine the spectral functions and the collision integral,
we use the method propounded in § 14, for which the functions
£, are required to be slowly varying functions.

To satisfy this requirement, we confine ourselves to processes

for which the functions f, have the form
fulp, t) = fulpt, PP, 1) (15.2)

Here pt and p' are the transverse and longitudinal components
of the momentum relative to the vector B, i. e.

(p+-B) =0, [p" AB] =0. N (15.3)

It is thus assumed that the functions f; are independent of the
angular variable in momentum space.
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By making these assumptions the set of equations for the

_ functions &N, and 4E becomes

o8N,  (,. 9N, 9N,
ot ( Bq) ( p)

+eun, (aE af“) ~0, (15.4)

div 0E = 4= ZearzaJ‘ 8N, d*p; curl 6E = 0.

Equation (15.4) does not have a term
‘eana ( AB] af;)
¢ ap

since it vanishes by dint of (15.2).
The equation for the function f, in the homogeneous case is

Por2e(wnm)-22) = 22 5L N.3E =

n,(2m)*

1t differs from (10.9) in the term which contains the magnetic
field.

The same problem arises of determining the spectral function
(8N, 8E),, but now in the presence of an external magnetic field.

We use the method of § 14. It is required to express, using
eqns. (15.4), the function 8N,(g, p, ) at the instant ¢ through
its value at the initial instant ¢ = 0.

Note that eqn. {15.4) for 8N, agrees with (9.4) after the substi-
tution

€ (5%. J' Re (8N, 6E)k)d3k. (15.5)

oN,~f}, OE~E, B-B" (15.6)
so the expression (9.12) can be used directly. Putting 7y = 0
therein, when considered with (15.6), we get

3N(q, p, 1) = IN(R.(0, 1, p, q), P,(0, 1, p), 0)
- e“”“f @ (BE(Ra(O, t—1'p,q), 1) (afa(P))
o op

p—P 0, t—1t", p))
15.7)
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We assume that the conditions (10,12, 13) and (14.72) are ful-
filled, and so the dependence of the functions J2 on time cannot
be taken into account here.

The functions R,(0. 1, p, q) and P,0, ¢, p) are determined
by formulae (9.9, 10).

In (15.7) we carry out the onme-sided Fourier transforma-
tion with respect to 7 and the two-sided transformation with
Tespect to the coordinates. The resulting expression is

ON (., ke, p)+e.n, f ~ g~ dt+i{ot4 (k Ry(0, 2, 2, 0)] (6E(cu, k)

0

), )

_ J«m g—di+ilwr+(keRy(0, 1, p, 0))] 6Na(k’ PO, 1, P)) dt.
0
(15.8)
From this expression we can find the function 0F(w, k).
We muitiply (15.8) with — idme I’s'/k2 sum over a and then inte-
grate over p.

Using the relation between the functions &E(w, k) and
ON, (v, k, p):

SE(w, k) = —iy 4;:;.;,“;”T f SN o, k,p)dp,  (15.9)

which is implied by the second equation of (15.4), the required
expression is

dme ko
k) = ~1F B
Xf ) f = dttilort (ke Rul0.t 2. )] 8N (K, P(0, ¢, p)) dt &*p.
o

(15.10)

For the dielectric constant of a *“Coulomb” plasma in a
constant magnetic field, we have
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&=(o, k) - 1_1_2 4n8a”af fe:.dr-;-i[mr-z-(n Ry(0, 1, p 0)])
x (k-a’:;il) dtdp. (15.11)
p »—Pu(0, 1, p)

The term “Coulomb™ emphasizes that this expression is suitable
for those cases when the rotational electromagnetic field can be
neglected.

If B=0, (15.11} agrees thh (10.19) for the longltudmal
dielectric constant.

We transform (15.11) under the condition {15.2):

' _ ¥, dn
k.%a Yoy,
( ap )p — P, (0,2 P) apl dPa;
- (P,,(o, 4 k)- 3_13;’”)) . (15.12)

The vector P,(0, ¢, k) is given by the expression (9.9) if in it
p—Fk
We introduce cylindrical coordinates with the z-direction along
the vector B:
k,=klcosy, p,=pLcosep,
k,=klsiny, p,=plsing. (15.13)
Using these coordinates, we get

(B R0, t,p,q) = (k-q)—kVo's
kiol
[sin (p—p+2,2)—sin (p—v)]. (15.14)

AN A 9
(p.,(o, z,k)-ﬁ) = (k" gpT TS Py 2kt W)fa-

(15.15)

We substitute the expressions (15.12, 14, 15) into the formula
(15.11) and use the formula
- . . kipt
glasinp—v) = %' I ()e"®—v) with o =

0 (15.16)
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Then we perform integration with respect to the angle g,
using the expressions:

1 2 . L,
5 L f L) L ()e=im+ sty 4imo=3)

= Y I2(x) e~imar (15.17)

2
2% E J I () Im‘(“) gimE—y+2,7)—im'(e—v) pog (p—p+ 2.1 dop
m,m’ Yo

kLol

5 (15.18)

. m
=Y e T =
x
m

a

We finally integrate with respect to 7. We use the value of the
integral
1
w—mi,—kivl £id’

(15.19)

)

(15.20)

Foe
— iJl gTFdr+ifw—ml,—kWiyr Jo —
o

The resulting expression for the dielectric constant is

Zf Zﬂpldpf dp”I"‘(

et (w, k) = 1+Z4mb””

d mQ
[ku 3p“+ oL apj_}fb

X Rt 0, £ A

By using the expressions (15.8, 10) we find the spectrai functions
(0N, 0E), , and (8E.JSE), , in the stationary case when the time-
dependence of the functions f,(p, #) can be neglected.

By means of the formulae (15.10) and (14.14) we find that

" 24 e
(E-8E)o.u =¥ ¢ Tif “ lim o k)lzf dtf *
] 1] o

A—»o\

X f d*p f dBp’e= A+ +iwlt—1) gilk-Ra(0, 1, p, 0= Ry(0, 7', 0))

X (BN,(P,(0, £, p)) BN,(PLO, ¢, POk (15.21)
We substitute the variables of integration
»,p - P, P, (15.22)
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The Jacobian of the transformation from p to P is equal to
unity. In this connexion we use the transformation formulae

P,(0,t, P,0,7,p0)) = P,0, t+7,p); (15.23)
R,(0,1, P,(0,7,p), 0} = R,(0, 1+, p, 0)— R,{0, 7, p, 0).
(15.24)

The transformation (15.22) corresponds to a change from the
variables at the instant 7 to the variables at the instant 0, and so in
(15.23, 24) one puts T = —¢.

Considering that

P,0,0,p)=p; R,(0,0,p,0)=0, (15.25)
we obtain from (15.24)
R, (0,1, P, (0, —t,p),0) = —R,0, —1,p,0). (15.26)

As a result the expression (15.21) becomes

o (dn)Ye.e 24 =,
(OF 0B = ¥ " Im o h)|2f dtfo “

ak

% j dsp dspfe—A(r+:')+:‘m(r—r‘)e—z'(le-R..(D. ~t, 0, 0)—Ry(0, —£', 1", 6))

X (8N.D) BND))s- (15.27)

From now onwards we continue as in § 14.
Using the formula

(ONON ) = nanygap(ke, P, P+ 051,0(p —p') fas (15.28)

we divide the expression (15.27) into two parts.

For the collision region, whenever the conditions formulated
in §§ 10 and 14 are fulfilled, the first term, which contains the
function g,,, becomes vanishingly small as 4 — 0.

As a result the expression (15.27) becomes

(4)eln, 24 fm J.m
oF . 0FE o g = lim a «
( Yo, i Z s |elw, BY P [i o

xf d3pe—“'(‘+‘ Y+ia(t—1) g— iR Ra(0, —4, p, 0}~Ra(0, ', p, mf;(ll)-

{15.29)
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We change, in this expression, to cylindrical coordinates.
From (15.14) it follows that

(k-R0, —1,p, M)~ (k- R0, -1, p, 0)

L
= kipl(t—¢")~ ka-L (sin (p— 2,2 ~)

—sin(p—12,t"—y)). (15.30)

We substitute the expression (15.30) into (15.29). Using (15.186, .

17), we perform integration over ¢, ¢ and #. After this we carry
out the limiting transition 4 —0. Here we use the formula

lim 24 -
a o (W—mfd,— ki 4 2

= 2a8(0—mf, —kivh).

(15.31)
As a result the final expression is

o me g

Sl —kiv!l —m0
(wle(afk)iz St dprdpt. (1532

If B =0 this expression agrees with (14.25). The limiting
transition B -0 is simpler in (15.29).

To form am expression for the spectral function (0NV,8E),, ,,
we need formulae (15.8, 10) and (14.13, 14).

Consider the formula resulting from multiplication of the
right-hand sides. Discarding the term containing the function
gk, p, p"), we obtain

e R og f " dr f Tat | dipemawtirrina-iy
& (CD,IE) k-d‘—v-o o o

X R0 1. 0)-R0.12820) (P (0, £, p) — Po(0, £, ') fu(P')-
(15.33)

We have to integrate this expression over p’. For this we
first of all introduce within the integral the new variable

P~ P,0,1,p"). (15.34)
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The Jacobian of this transformation is equal to unity. Using
the formula (15.26) we rewrite the integrals in (15.33) as

f dt J. dr’fdap'e-A(t+r’J+n‘w(r—r')+r'(k-ﬂ.,(o. r.p,u)4R¢(o,—r'.p‘-0))
0 0

X 3(P0, 2, p)—p'). (15.35)
From formula (15.24)

R(0, —t', P,(0,1,p,0)) = R,(0, :—~¢, p, 0)

—R (0,2, p,0). (15.36)

Bearing this relation in mind, we integrate (15.35) over p'.
As a result for (15.33) we get

dnen, k. o

‘_—5'(010, 3 -]—6-51}1_1’1.10 24 i dt

Xfw dt’ e— A+t tiw(t—1)y+i(k-Ry(0, 1—1", p, u))f;_ (15_37)
A .

We substitute the variables t—¢' = v and (++¢%)/2 = 8 into
this expression, and then integrate over 9. Here the quantity
24 cancels out and so we get

. daen, k
e~ (o, k) &%

This formula was produced by multiplying the right-hand
sides of the expressions (15.8, 10), multiplying by 2! and then
carrying out the limiting transition 4 — 0.

We now multiply together the left-hand sides of the expressions
(15.8, 10) and use (14.13, 14). The resulting expression consists
of two terms, viz. one equal to (6N,0E), ,, whilst the other
contains the function (6EOE), \. We transfer it to the right-
hand side. Using (15.38) we get the following expression for the
spectral function (ON,0E), :

f " drellor+(eR,0,% p, )] fp). (15.38)

(8N, 6E:')w, E= —Egh, J.w g~ dt+i[wi+(k-Ryl0, 1. p, 9))]

. 0
of, i dnke.n,
op

PR e vl e S
Tl iA Is
J')p,—-P,;(o.r.pJ ke(w—id, )

Xfw g—ilet+ (kR0 12, M £, dz, A —+ 0, (15.39)

X (O, 0E Y, (
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Where

£ (OF - 6B)o, . ' (15.40)

= k&,
k

If B = 0 this expression is the same as the longitudinal part
of the expression (14.33).

By using (15.32) the spectral function (0N, 8E),, ) can be given
in the stationary case in terms of the functions f,.

The spatial spectral function is found from (15.39) by inte-
gration over w

(0N, 8E), = zlﬂ f " (8N, 8E),, , doo. (15.41)

In order to form the kinetic equations for the functions f,
‘the expression obtained in this way for the function (8N,0E),
needs to be substituted into (15.5).

Since it is assumed that the f, have the form (15.2), i.e. are
independent of the angular variable ¢, to obtain the collision
integral it is sufficient to know the expression, averaged over the
angle p, for the spectral funetion.

We do the averaging over ¢ in (15.39). For this we use expres-
sions which are obtained by means of the formulae (15.14-18),

fz“ dp J‘ " dte—dt+ilart(kRy00. ¢, p, 0))]

iyl i '
an: ( 2, ) w—klol —pm +id”’ (15.42)

fﬂ —f dreilwt+(k-Ry10. 1, p, 00)]
2n

=37 (
Using these formulac, from (15.39) we get the expression

L X , 5 [ kLot
ﬁ A (5N‘,(h-6E))m‘ I dgﬂ = _;ganaz Im ( %) )

I-..‘

) 28w — kol —m2.). (15.43)

a

[ (OE-3E)s
Xlw k"?)”—m.Q +iA ( ),f;,
6(60 E—:; L) 6(60 klv¥ —m& )fa} . (1544)
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) 3 3 mQa 3
Here and below (k%) kl 3p“+7j—'3p_i-'

Using (15.41, 44), the expression for the real part of the spatial
spectral function, averaged over @, is

—f dp Re (8N, (k- 8B)), = ~e, n,,ZIZ(

kL vJ-)
= S—kwt—
XJ. > é(m kot —m8,)

: 9 . 8xIme(w,k
X {(BE- SE)p i (k-%ﬁ+-—?|€(z€—k%—)ﬁ)}. (15.45)

To obtain the equation for the functions f,, we need to consider
the expression .

e, 1 [ E 9
fa - »
o fo dyp f &k ( 7 g Re (ON.G E))k)
= S,(pL. p", 1), (15.46)

In cylindrical coordinates

0 0 )
(La—pw) = k! BT apteos(p—y bkt opT

—sin (@p— w) 0 (1547

A T

To evaluate the integral over ¢ in (15.46), consider the expan-
sion of the function (8N, (k- 8K)); as a series in g—y

(8N (K - OE)),, = =52 0=9) T g=imto=9) (3N, (K + OF)),

v k;;” _ : (15.48)

a

Using the formula (15.16), the series in (15.48) becomes

(BB SE)) = T L (delr=m 0=» (8N (& - SE))7.
i (15.49)
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Averaging over ¢, from (15.49) we get

- f 7 (8. 8B), dp = @) (3N, - SE):

(15.50).

Comparing the expressions (15.50) and (15.41, 44), we find
the expression for the Fourier coefficient of (oN, (K- 0E))T.

We substitute the series (15.49) into (15.46). We use the expres-
sion (15.47), and the value of the integral

1 2
7 ¥ f cos (p—yp) e —mE=¥ I (o) dp
m, m’ g -

- é"([mﬂ(“)” 1) = 2 L@, (15.51)

As a result for the “collision” integral S,(p*,p", ¢) of (15.46)
we get the expression

S5 L | () =[]
X (6N,,(k . 6Ej);’g k. (15.52)

Comparing the formulae (15.50, 45), we write the expression
for the function

L
Re (8N, (k- 6E))p = ~€“2"" I, (kg’ )

a

X {caE OB -%)f.,

gt
8w Im ek 0! +mQ,, k) j;}. (15.53)

le(kio! +m,, k) 2

We substitute this expression into (15.52). We represent the
“collision” integral in two forms as in §§ 11 and 13.

Firstly, we write eqns. (15.5) for the functions f, as Fokker—
Planck equations. In this case the “collision” integral §, is
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st =3 | {(k 55) DE(@4.2)
X (k5 ) o410, 104 (1) ntoe, )
ap [3 3 2 ap a L]

Xflpt, ph, r)} d*k. (15.54)

The coefficients D}’ and A7 are given by the expressions

BE kipl
Dy = 167342 15 ( 2, ) BE - B sma,, ks (15.55)
- e (ktot\ Ime(k"ot +mQ,, k) '
A7 = T I ( 2, ) le(elo T +mea,, k)[E " (15.56)

Thus the diffusion coefficient in momentum space is deter-
mined by the spectral function (6E-3E), , at the frequency
o=k"»"4+mQ_.

The frictional coefficient A7 is proportional to the imaginary
part of the dielectric constant at that same frequency. If B = 0,
the expressions (15.54-56) agree with (11.6-8).

For the other form of the collision integral we substitute
into (15.53) the expression (15.32) for the function (8E-.SE), ,
and also the corresponding expression for the imaginary part
of the dielectric constant. We get

s=xn % J (o), 0 {(ko25),

~ (357 }ros 2t 0nter. 010

X 2apit dpit dp) 2ak dicL dich, (15.57)

, o klivt klod
mit = 2ee;l? ( o} )Iri ( Q: )

3" + m2,— ko) — ' Q,)
el +mid,, B

where

(15.58)
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The expression (15.57) agrees with that given by Yeleonskii,
Zyryanov and Silin [1962].

The collision integral in a magnetic field is studied in various
papers [Belyayev, 1958; Rostoker, 1960; and Yeleonskii, Zyrya-
nov and Silin, 1962].
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CHAPTER Y

The Kinetic Equations and Expressions for
Spectral Functions when the Radiation by
Plasma Waves Is Taken into Account

16. Non-stationarity. Spectral Functions for the Radiation
Region

In §§ 10, 13 and 14 it was shown that for the short-wave region
of the spatial spectrum (the collision region or “stop band™)
single- and double-time correlations in the case of slowly varying
processes can be expressed in terms of the first distribution
functions f(q. p. ).

For the long-wave region this appears to be impossible in the
general case. Actually, for quite small wave numbers, the cor-
relation times of the plasma excitations (k) become comparable
with, or greater than, the relaxation time 7, for the £,. In solving
spectral function equations ome cannot therefore ever assume
that the spectral functions do not depend explicitly on time.

But also in this region one may simplify the initial set of
equations for the first and second moments and so express more
complex moments in terms of simpler moments, though not
only by first moments [Klimontovich, 1959, 1962a, 1962b, 1963,
1961]. -

In §14 expressions were obtained for space-time spectral
functions for the spectral region where conditions (10.12, 16)
and (14.63) are satisfied. More general expressions will now be
found for the spectral functions which hold also for the radiation
region. :

193



Non-equilibrium Processes in a Plasma

So as not to over-complicate the calculations, consider firstly
the case of a Coulomb plasma, i.e., we neglect the transverse
electromagnetic field.

On this condition, as the initial equations we may take (5.31)
for the random deviations 6N, and 8E.

As also in § 14, we are attempting to form expressions for the
space-time spectral functions without having to solve equations
for our single-time correlations.

We write the first equation (5.31) for the time variable ¢" =
1+t and then, by means of this equation, we express the function
ON, at the instant #+7 in terms of its value at the instant r. We
use for this the Fourier transform in ¢ and =

N, (o0, E, p, ¥)
= fw dr f d3qe~4+iler-0ea) §N (q, p, t+1). (16.1)
0

As a result we find from the first equation of (5.31)
6Na (ks p? t)

Nalko o, ) = 1y id

_ ie,n, e 3 .3fa — drtjwr
_————wm(k-v)-[-iAL (aE(z., 4132 (t+1:,p))e dr.
' (16.2)

Using the second and third equations of (5.31), we obtain

OE(w, R, 1) = “54”%;% j 8N, (w, &, p, 1) d°p.

(16.3)

We eliminate the function &N, from this equation by means
of (16.2). Using the expression {10.19), we obtain the equation

- fm et(w, kB, t4+17) 0Bk, t+T)e— 4+t g
i ]

Codmek [ SN, 06D D)
—g L2 fw‘(k-v)+fd dp. (16‘4)

In the stationary case eqns. (16.2, 4) coincide with the longi-
tudinal part of eqns. (14.8, 9). )
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Consider first egn. (16.4). We write it in the form of Poisson’s
equation for the Fourier components of a random variation
in the induction
4 N, (k, p. t
aD(CU, k, f) — Z neak Na(’" p )

3
2 | o=(ewyria OP U6

where
oDw, k, 1) = f dee—&+iotet(w, k, 1+7) SE(K, t+7).
0
(16.6)

Performing in this latter expression the inverse Fourier trans-
formation with respect to time, we get

OD(E, 14+7) = o j * doe i 5D(w, k. 1)

1 oo oo i 4 o i
= — B’ pdz—)—iw(z~7") g+ . ’ . B
e f_m d‘”J; e etw, Kk, t+1) SE(K, t+7).

(16.7
Let us now try to simplify these expressions. )
In the radiation region one may suppose that the function
OE(R, t+ 1) varies at two rates, i.e. fast and slow variation with
time. The fast variation is due to oscillatory processes in the plas-
ma, and the slow variation to relaxation processes.
If the spectrum of the oscillations in the plasma is discrete,
then under such a condition (cf. (2.76))

SE(k, t) = Y SE(k, t)e vk (16.8)
I

The complex amplitudes 8E’ are slowly varying time functions.
We shall see below that they are non-zero at those frequencies
e, which satisfy the equation

o, k, 1) = 0. (16.9)

By substituting (16.8) into the right-hand side of (16.7), this
expression can be simplified the same as (2.72). Here we use
another method.

The function e (w, &, ¢} depends on time through the function
Ja(p, 1) and so in the spatially homogeneous case it varies slowly
with time. We put pt for the slowly varying argument of the
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function 8E. Thus, in the radiation region
OE(k, t) = SE(k, u1, 1).
‘We write the “slow” arguments in (16.7) as
1+ = t+7+(7'—7)

and then expand them as a series in 7" —+v. Keeping the first two
terms of the expression, we get

8Dk, t+7) = %Jm dew fm dr'e= 4~ i~
—sa 0

) e*(w, k, t+7) 6E(k, u(t+7), t+7').

X (“’“"’)ﬁ
: (16.10)

But

i (s 9 o
T —1)eleT —T) = —i e;m(r —1)
( ) o ’

and so we integrate by parts over & and get

&D(k, t+7) = 2{'5 fﬂn deo fm dt'e—Alr'—7) Fiw(z'—1)
Tr—ee 0

2

SoaEE) €@ b 1) OBk, ), 47),

(16.11)

X(l-!—z'

We write
SE(E, t, . p(t+7))

- J' T dve ot SE(K, ur 1), t4v)  (16.12)

0

for the Fourier component with respect to the fast time. In
accordance with this expansion as a Fourier integral in the fast
time, the function 6D(k, #+7) has the form

aD(k, t+1) = %on dwe’ 7 3IE, w, t, p(t+7)).
(16.13)
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Using (16.11-13) we find the expression for the Fourier com-
pounent 4D of the induction taking non-stationarity into account
8D(w, k, t, u(t+1)}
= e* (o, k, u(t+7)) 0E(w, k, t, p(t+7))
.0 det
g (%T 6E) : (16.14)

In the stationary case the Fourier c6émponents do not depend
on the slow time, therefore the second term in (16.14) vanishes
and

6D{w, k, 1) = ¥ (w, k) 6E(w, &k, 1). (16.15)
The argument ¢ in (16.14, 15) plays the part of the “initial mo-
ment” when using the Fourier transformation. In some formulae
this argument is omitted.

The second term in (16.14) takes the non-stationarity into
account’.
 Our isolation of the radiation region corresponds to dividing
the spatial spectrum into two regions, viz. the “collision” region
(or stop band) and the radiation region (or pass band). We use
the superscript “rad” to denote functions relating to the radiation
region, and ‘‘coll” for the collision region.

As previously, 7, is the relaxation time of the distribution
function f,, and z(k) is the relaxation time of a plasma wave
with wave vector k; v(k) ~ l/t(k) is the decrement of atte-
nuation; w(k) is the corresponding frequency.

It is assumed that the following condition is fulfilled for all
the wave vectors of waves which play a notable réle in non-

t If in the Fourier integral expansion one has regard to the dependence of”
the frequency on time, a further term appears on the right-hand side of

(16.14):

i o e S oc’ ' ge’

T ar méE, where T e
In this case, for instance, the formula (16.29) for the effective decrement of
attenuation becomes (see Klimontovich, 1965):

FONT SR TY <4Y:

VEIT ez w o) w
By using this expression the form of the adiabatic invariant can be established
for various actual cases.
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equilibrium processes in a plasma
(k) =1/, ' (16.16)

i.e. the relaxation time of the functions f, is much greater than
the maximum oscillation period in a plasma, In particular, this
condition is satisfied when it is not essential to have regard to the
radiation of plasma waves and we can therefore confine ourselves
to the collisions {see (11.43)).

in the collision region

w(l) Z yoik) > 1/,

i.e. the damping time is much less than z,. In the radiation
region (pass band):

(k) = y=4(k) ~ 1/7,. (16.17)

In formula (16.14) T ~ l/ew(k) and so, in accord with (16.17),
the functions ¢*(w, k,"t+1) and 8E(w, k, u(r+1)) vary little
during the time 7. Hence we expand (16.14) as a series in = and
confine ourselves to the first non-vanishing terms in the “station-
ary” term and the “non-stationary’ term. We then get

3w, k, 1, pt) = s+(w . ut) dE(w, k, t, ut)

det ;
i (3 aE) (16.18)

This formula also provides an approximate expression for the
left-hand side of (16.4) with regard to the non-stationarity of
radiation, and so eqn. (16.4) thus becomes

det
£

dae ke [ 0N, (k, p, 1)
=35 fm_(km";’m d*p. (16.19)

The right-hand side of this equation depends not only on the
““initial instant™ ¢, but also on the slow time uz through f,.
The expressions for the spectral functions only retain the slow
variation with ¢ through 7, (see below), and so the one argument
. 4t can take the place of the two arguments # and pt. -

e+ (w, K, ut) SE(w, K, 1, ,uz‘)-l—i%( 6E)
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By an analogous transformation of (16.2), we get

6Nﬂ(w’ k-” p’ t? lut)

L af;(p, ut)
+w_(k"€7)+zd (6E(CO, k, t, ‘u,t). _a_p____)

Y (R — R

ot (3&) w—(k-v)+id ( Bp))
_, N, (&, p, 1)
=@+ (16.20
Clearly, when considered with.(16.3), egn. (16.20) implies (16.19).
We use (16.19) to form an equation for the spectral function
(3E. SE),, ). For this, along with (16.19), we consider the complex
conjugate equation

-

RN N Ll
OF +F'm(375"3)
4:'zek SNk, p, :)
_2 p g (16.21)

In eqn. (16.2]) we have divided by ¢ and used the fact that
Y =z,

In the stationary case eqns. (16.19, 21) imply the expression
(14.23) which in § 14 yielded the expression (14.29) for the spec-
tral function (3E.6E), , in the collision region.

We multiply together the left- and right-hand sides of eqns
(16.19, 21). The resulting expression yields two equations after
equating in succession the real and imaginary parts of the left
and right-hand sides.

Consider first the equation obtained by equating the real parts.

We leave only terms of the order u and therefore discard the
terms which contain the product of time derivatives.

Later we shall require a definition of the damping decrement

o, B) = £"(o, k) / g%'. | (16.22)
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In the radiation region y™! ~ y and so terms containing
the product &’ and the time derivative are neglected, We then get

s'0E(w, k, ut) SE*(w, k, ut)
g (4n)e e,
le(w, kB, ut)[2 @ K
J‘ ON,(k, p, 1) dNy(k. p', ¢)
(0~ (kv)+id) (0— (F-v)—id)

d*p d3p’
(16.23)

We multiply this equation by 24 and pass to the limit £ - 0,
and then avail ourselves of the formulae (14.13, 14). Consider
the right-hand side of (16.23).

As previously in § 14, by means of the formula

(5N:r aNb)R, t = nanbgab(ka D: p’a t) + naaaba(p —"'p,).}:r

we divide the right-hand side of (16.23) into two.
The second part, which does not contain the function g,
after integration over p’ as A — 0 within the integral, becomes

' L3N
£ i 2(475?%:.271,, fZ:ccS(cu—(k-U))ﬂ, d*p.

le]

Here the following formula is used

fim—24  _ 228(e— (ke -v)).
(0—(Fk-v))2+
Consider now the term containing the correlation function.

It contains an integral of type (14.26).

As in § 14, we consider non-equilibrium states for which the
condition (14.27) is satisfied. To show what restrictions are im-
posed by this condition in the non-stationary case, we divide this
integral into three parts.

The first'is the non-resonant part The integrals are taken over
the range of values p and p’ such that (k- v) < w and (k- v") < o.
This part then takes into account the contribution from slow
particles which do not interact with the waves. By virtue of the
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condition (14.19) one can put
fim 4 f 2.k, p, p) dp dp’ = 0,
4 —Q

and this term therefore drops out.
The second part is the resonant part. In this case

o~ kv), o~ (Ev)
1.e. the contribution from the particles having velocity close to
the phase velocities of the waves arising in the plasma, is taken
into account.

In this region
24

lim
-0 (w—(k-v)+id}) (0—(k-v")—id)
= 228{ew— (F+©)) bge-v), ey 5
where 6(,‘ o), (v} is Kronecker’s symbol. The integral over
this region in (16.23) may therefore be written as

2z f 6(':0 - (k "UL)) 6("'”). (k2" gab(k: D, p’) dsp d.‘ip'.

Thus, in this integral the contribution from the correlation
function of the resonant particles is taken into account.

For slight non-statiorarity it is presupposed, in particular,
that the decrement (or increment) y(k) must be small, i.e.
there are few resonant particles for which w ~ (k.v).

For a few resomant particles the correlation between them
can be ignored and then the integral over the resonant region
also drops out.

Finally, the last part is the overlap region, the contribution
of which is negligible too. This is readily seen by means of the
isotropy condition.

As a result we obtain the following equation from (16.23);

e'(w. k, ut) {(BE-BE)W, k,

(4m)’eln, [ 2nd{w—(k-v))f(p, ut) Sl =
L f ECADE P} >

(16.24)
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This equation implies that the spectral function (8E- 0E),, 4, .
can only differ from its stationary value (14.29) at frequencies
w(k) which satisfy the equation

&'(ew, k, ut) = 0. {16.25)

We now equate the imaginary parts of the equation formed
by cross-multiplying (16.19) and (16.21).

We also multiply this equation by 24 and pass to the limit
4 - 0. We leave only terms of order u and use eqn. (16.25). As
a result we arrive at the eqﬁation:

3 ' a ra
£ . 5?_(5}9:-’515)“,,“5;‘, ur

o
= 4( ?;9? 3;)(55‘ OB
L 4i4 (d7)%e e,
Ah_leo Re 5—(50, k, ‘LLt) b k*
(ON; 8Nk, ue .
X f d*p d°p’.
(o—(-v)+id) (w—(Roy—id) TP
(16.26)

We divide by d¢’'/dw, discard the integral with g,, and have
regard to the fact that

—7 4

.9,
Re —— ' —zxsign 8; 8(e'(o, B, ut)).  (16.27) -

(@, k, ut)

To obtain this formula, it is necessary to expand the function
e~ (w—id, k) in 4 and then use the expression

doe

. dw de’
lim oo — = 7 sign — 5 3('(w, k).

4—0 8r2+dz(gz;)

After these transformations eqn. (16.26) becomes (below the
parameter p is omitted):
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g? (BB, = -2, k, 1) OE-3E)3S.

+eap e \(” 5 G2 [ so-te-v) s .
o

(16.28)
Here
, 9., 8
Y =ptginos, (16.29)

where y is the damping decrement (16.22).

The second term in formula (16.29) takes into account the
time variation of the function f,. In some cases the second term
in (16.29) can be néglected. For instance, if the roots of eqn.
(16.25) are close to the plasma frequency, the relationship w(k)

is determined by the time variation of the density », = f S dip.

In a spatially homogeneous plasma the n, are constant and so
dw(k)/dt = 0. In the following we drop the prime on ', assum-
ing that the second term in (16.29) is included in .

Also eqn. (16.28) takes the place in the radiation region of
expression (14.29) for the spectral function (8E-9E), .

We show now that the more complex spectral functions can
be expressed.in terms of the functions (8E-8E), , and f,. For
this we return to eqn. (16.20).

We multiply the left- and right-hand sides of eqn. (16.20, 21).
We then equate the real parts on the left and right, multiply
by 24 and pass to the limit 4 — 0.

As a result, from the right-hand sides of (16.20, 21) we obtain
the expression

. 2Az 41ebh
AhfloRe e {w, k,1) £ Z
(3N, 5Nk « , :
X a : dip'. 16.30
f (0= -v)+id) (0 —(k-v")—id) P ( )

This can be simplified if the state of the plasma differs 11tt1e
from equ1hbr1um In this case the term in (16.30) with the cor-
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relation function vanishes (see (14.27)) and so (16.30), when
considered with (16.27), becomes

1 8 ! 4 a'"a
— & mgua—; 8(e (@, K, 1)) ek—’:ka(m—(k ) £,
(16.31)

After the transformations we obtain two terms from the left-
hand sides of eqn. (16.20, 21). The first is Re(8N,0E), ,, ,; the
other is determined by the spectral function (8E -0E), p, . We
take it onto the right-hand side and so get the following expres-
sion for the real part of the spectral function (8N,0E), . , in the
radiation region:

Re (8N, 3E), \ , = —en,mb(cr— (k- v)) (F; 8E Dy . ,

1 a 3 e
g |57 05D 5

ofa
3pj

Ealla

s
+ 2(6EJ5E)I'IJJ, [ ,9_’2.%]
J

.o, ,
—8n® sign = 8(&'(w, K, 1))

€,

;{;’“ kd(o—(k-v)) f,.
(16.32)

By using (16.32) one can, of course, obtain egn. (16.28).

Thus, in the non-staticnary case, for the radiation region the
spectral function (6N,0E), , ,is not determined entirely by the
functions f,. It is also necessary to know the spectral function
(GE.8E), . .-

One can similarly express still more complex spectral functions
in terms of f, and (6E-.8F), , , for example, the function
(ON N, o

In the next section we shall see that for the functions £, and
(OE- SE)2S, , we are able to obtain a closed set of equations
which generalizes the set of kinetic equations for £, (see $§ 11
and 13) to the case when it is necessary to consider the radiation,

Using the solution of this set of equations, and by making
the same assumptions, we can find the spectral function for any
characteristic of a plasma.
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A very interesting case is that when only two roots of identical
magnitude of the dispersion equation (16.25) are important,
Any spectral function§ of a plasma may then be expressed in
terms of the functions f, and the spatial spectral function
(3B SE)R.

To show this, we represent the function éE(k, ¢) for the
radiation region in the form of (16.8).

Substituting (16.8) imto the expression for the space—time
spectral function

() bk — k') (BE - SEYSS, , = f SE(E, t+7) OB, D)
X &l d, (16.33)

we average it over in the interval T~1/4.
Leaving the principal terms, after integrating over ¢ and 7,
and then cancelling by (27)* 6(k—E") we obtain:

(OE-3E), , = 22 Y 8(o—ol) (OB - 3ED, ,.  (16.34)
I

Considering the two identical roots when o' = +m,, we find
that

2OE! 5B, = o '[ (E - 8BE)2%, , do = (8F - SE)3,

(16.35)

8w — o)+ 6w +oy,)

. (3 - SE)4.

(OE - SE)S, , = 2=

(16.36)

It follows from (16.35) that the function (SE-8E)R is the
spatial spectral function for the radiation region.

Substituting (16.36) into (16.32), we express the spectral
function (8N,0E),, ;. , in terms of the functions £, and (6E - SE).
The most general spectral function (8N,0N,), . , is also expres-
sible in terms of these functions too.

Though the function (SE-J0E), , is expressible through the
first distribution functions f, for the collision region (see (14.37)),
the radiation region’s function (3E- 6E’)}'§1 in the non-stationary
case is not expressible through f,. Substituting the expression
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(16.36) into (16.28) and performing integration over w, the
equation for (3E-SE)*¢ is

(aE SE) = —2p(w,., k) (B - SE)d

(4:'.':) e2n,

Ty E

In the last term it is taken into account that

wd f 8w, — (- v)) f, &p. (16.37)

8(¢'(w, &) = o] 5(“’—50;;)-;6(@ +,) ;

[

This is not a closed equation since it contains the functions £,.
The closed set for (3 - SE)2% and £, is formed in the next section.

The foregoing results may be generalized without difficulty
to the case of a relativistic plasma. The relevant results are given
elsewhere [Klimontovich, 1961, 1963].

It is very important to take nonm-stationarity into account
when an external magnetic field is present. So as not to encumber
the exposition by complicated formulae, we give the relevant
results for a Coulomb plasma.

Using the forecroino method, the expression for the spectral
function (SE.SE)™8 s

w, Kk, t

wk

)
5z OESENS, = —2y(w, k, 1) (3E - OE)3S,

+(2m)? oo, k)) 2(43)282’1 2f 2mpL dpL dpi

e’
N
. kLol
><1,,( 7 )6(co—k"v"—n.Qa)fa. (16.38)

Here y is the damping decrement connected with the dielectric
constan.t by formula (16.22). The dielectric constant with a
magnetic field present is determined by formula (15.20).
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As when B =0, the spectral function (6E-6E)Z,a,1'  for a
fixed value of the vector k is mon-zero at frequencies which
satisfy the dispersion equation (16.9).

If we can confine ourselves to the two roots of the dispersion
equation (16.9), by using formula (16.36) an equation for the
spatial spectral function (E - SE){24 can be obtained from (16.38).

As when B =0, the spectral function (0N, 0F), , , is expres-
sible in terms of the functions (8E-8E), . , and f,.

We now show that a closed set of equations can be obtained
for these functions.

17. Allowing for Radiation in the Kinetic Equations. Set of
Equations for the First Distribution Functions and for the
Spectral Field Function?

We begin with the case of a Coulomb plasma.

‘We obtain firstly the equations for the functions f,. We substi-
tute into (11.3) the expression for the real part of the spectral
function (6N,8E),, , and represent it as the sum of the two parts
relating to the ‘““collision” region and radiation region respec-
tively:

Re (8N, 0E), , = Re (3N, 0E)*+ Re (8N, 8E)R. (17.1)

The first term on the right-hand side of (17.1) is determined
by (10.35); the other comes from (16.32) by integrating? over o:

Re (8N, SEY = —4n?e,n, — k., B((k-v)- k) f,— 2= "
x J‘ [na(m“(k-v))(aE-aE)w,k,,
1 9 1 AOE - 3E)ui. 1 (1. Ma

‘E'BTO_P w—(k-v) ot H’ ap)d“"

(17.2)
We introduced the notation
ae’ '
B(w, k) = aiu 5(e' (@, k). (17.3)

+ Klimontovich (1959, 1962, 1963a, 1963b).
+1In §§ 17 and 22 for simplicity terms containing the time derivatives
af. /ot and ge'(ew, k)9t are omitted,
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Substituting into (11.3) the expression thus found for
Re(3N,OE), ,, we get

o J af,
ot _3?,-40” Bp‘: 8 (gt
This equation differs from (11.3, 6) in that now the coeffi-
cients Dj and Af each consist of two parts:
Dy, = _nglg) coll 4. -Dz('f') rad, (17.5)
Ag = Aga) :oll+A§a} rad_ (17.6)

(17.4)

The first terms on the right-hand sides of these expressions
refer to the “collision” region. They are determined by the
expressions (11.7, 8) in which the integration is over k in the
collision region {stop band) and the decrements are much greater
than the collision frequency:

1
k) = —
The DY and 4@ describe the contribution to the dif-
fusion and friction coefficients in momentum space from the
radiation region.
Using (17.2), the expressions for these factors are:

Ple)rad — _GZ_ ki kJ’ — rad 31,
f o 8(er — (k- ) (B  SE)24, , doo ke
_ ki, @ 1 ] -
o | 2 ( o v)) 5 (O - SEYS,  dodle
(17.7)
(W _ € [ K
Al rd EI?B((k-v)-k)d3k. (17.8)

Equations (17.4) for the f, with factors (17.5, 6) defined by
(11.7, 8) and (17.7, 8), are not closed equations, since (17. 7
contains the function (8E-6E), , ,, which is not expressed in
terms of the f,. To form a closed set of equations, it is further
necessary to use eqn. (16.28) for the function (SE-6E)SS, ,.

Equations (17.4) and (16.28) for the £, and (8E- SE)®, , with
coefficients (11.7, 8) and (17.7, 8) can be used as the initial set
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to describe nonequilibrium processes in a homogeneous Coulomb
plasma with regard to the radiation of longitudinal waves. If the
contribution of the radiation region is neglected, this set coincides
with the kinetic equations (11.3, 6).

The integration over @ in (17.7) can be replaced by summation
over the roots of eqn. (16.25). Substituting the expression (16.34)
into (17.7) and integrating over w, we get

Dl = a3 [ St ole

eg kek; (‘3‘ I
=)l ( o=k o)

~ (k- v)) (B! - 8EY), , d°k

) (3E!- O, , d°F.
{17.9a)

Confining ourselves to the two roots of (16.25) for fixed k
in the.isotropic case when

ICD.F];:-TL = lwﬁi = 0y and DG(P) ﬁ(_p):

the expression (17.9) can be written as
o ez [ kik;
Dipred = @f 2 Ol

eg kikj i 1 rad J3
AR awg( oL (& 1)) (CE- OB ak.
, (17.9)

—(k-v)) (O - 8E)ps d°k

I=1,2

Here it is assumed that (8E'- 8E'), , = % (OE-OE)Rdif I = 1,2.

The first term in (17.9) can be written as

kiky B((-)-k)

. . rad J37
.S ) (OE - SE) &Pk,

considering that for two roots the function (17.3) is

. (6(m—wk)42r«5(w+wk)) _ (17.10)

B{ow, k) =

To close the set of equations when only two roots are taken
into account, the simpler equation (16.37) for the function
(6E-0E),, , can be used instead of (16.28).
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Substituting into (16.37) the expression for the damping decre-
ment

Hew B) = 55 0, [ don—Gev)

.
X|k-2]| &p, 17.11
(-35) a7t
and using (17.10), eqn (16.37) becomes

(ar SE) = 2(4“‘) ety f [(k'%%) (OE -4iE)k.,

+ (k- v) £ B((k- ) k)] &p. (17.12)

Let us now consider some properties of this set of equations.
We start with the simpler equations (17.4, 12) for f, and

(OE- dE)M.
In the equilibrium case the solution of this set is
1 o .
fo=——— e (=)
(2mmmgeeT,) 2
(OE - SE)RS = 4mwT. (17.13)

Thus, in the equilibrium case the velocity distribution is a
Maxwell distribution, and so the radiation temperature,
(OF - SE)

— (17.14)

wlfed =
is the same as the temperature of the particles.

The Maxwell distribution separately turns to zero the terms
on the right-hand side of (17.4) describing the <collisions”
of the charged particles and the radiation respectively. These two
processes may have different relaxation times.

Consider the equilibrium solution of the more general set
of equations (17.4) and (16.28). From (16.28) it follows that in
the equilibrium case the function (8E-8E)L ’“d is determined by
the expression

8?52 sign o

& Pe

(OE - SE)RS, = 8(e' (e, k)T, (17.15)
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Formula (16.22) was used in obtaining this result. For the
two roots of (16.25) the expression (17.15) coincides with (14.50)

Clearly, the right-hand side of eqn. (17.4) with the coefficients
(11.7, 8) and (17.7, 8) vanishes when £, is a Maxwell distribution,
and (3E-8E)29, is determined by (17.15).

If the radiation temperature 75* is constant, the second term
in expressions (17.7, 9) vanishes. When the two roots k are taken
into account the expressions (17.9, 8) for D{? ¢ and 4™ can
be written as

kik;

Dignd = zenf xTed —0J 7 8w, —(k-v)) d*k,
T7ad = const;

2
AE:__:)md — %f%(lc-v)é(wn—(h'v)) a3k, (17.16)

The equations (17.4) and (16.28) for £, and (8E-SE)Z, , yield
the law of the conservation of the total energy of a plasma

(3B - aE),,, 4
W= an o e P+ (21)4.“ de> d*k.

(17.17)
By using the formula
GE-8B) = - | GE- 0Bk, do,
the expression (17.17) can be written as
- A GE- 3E)“‘“‘ -
W=y [ fdr iy | &k
(17.18)

The integration over k is carried out over the radiation region.

If the radiation is not taken into account in the kinetic equa-
tions, and we confine ourselves to the “collisions” (see § 11),
instead of (17.17, 18), we get

_ P
W—gnafzma

For a relativistic plasma also one can form a closed set of
equations for f, and (3E-40E), ,.

d®p = const.
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Also in this case the equations for £, can be written as (17.4),
Here the coefficients D{?*! and A{?*" are found by the for-
mulae (13.39, 40), whilst for D{?™¢ and AP ™4 we have:

2
DE}:) rad — i f 8(w—(k-v)) (CESENN, ,dw d°k

1 d
— ra d d3 2
32~z~1 3co( o—(F - v))ar(amﬁ)"”‘v‘ w &k

(17.19)
&2

=27;f (%B"((k-v)-k)

" (k-v) [['{‘:2/\'!.7]- AR]; B((k-v)- k)) 23E. (17.20)
As in § 14, the spectral function of the electric field strengths
for the radiation region

k

Aga} raidl

(BESENRS, , = "L (3B - SENY, ,
+§(%—ﬂﬂomL6Ewm @7.21)

consists of two parts, the first being determined by the longitu-

dinal electric field, and the other by the transverse electric field.
Having regard only to two roots of the equations

Ree(w, k) =0, ow’Reelf(w,k)—c**=0 (17.22)

we have: :

O(w —ew,)+ 8w+ )

(OE" - 0E")5S, = 2z "

(3B - BB

(17.23)
(BEL - SEL)2d, = 2 Oew— mk)‘;a(a"i‘wr.) (OEL - SEL)pd
(17.24)

The diffusion can therefore be expressed in terms of the spatial
spectral functions of the longitudinal and transverse fields.

The function B' (w, k) in (17.20) is given by (17.3), and the
function B+ (w, k) by the analogous formula

L
Bi(w, k) = sien ?)iw 8(ee L (o, k) — ck?). (17.25)
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If just two roots of each equation of (17.22), are taken into
account, the function B"(w, k) is given by (17.10), whilst
o Se—wy)+ oo +w,)

Bi(w, k) = -~

3 wi =+l
(17.26)

The spectral function of the magnetic field strength is found

by the expression

2k
(BBABo i, = g (SEFOEF ) . (17.27)

If formula (17.24) is used, then (17.27) yields the following
expression for the spatial spectral function (8B, 0By, .

cZk?

To obtain a closed set of equations, it is further necessary to
use the equations for the spectral functions of the field strengths
as well as the equations for f,.

The equation for (8E'.8E"), , , and that for (SE'- SE"),, ,
coincide with (16.28) and (17.12) respectively.

No equations can be written for (8E-L- SELYR, . since un-
less an external field is present, in the approximation under
consideration in the radiation region the transverse waves do
not interact with the charged particles of the plasma. This is
because the phase velocities of the transverse waves are greater
than the speed of light.

So in the second term of (17.19) one can leave only the term
JOE"-6E"), . jot.

In the equilibrium case the solution of the relativistic set of
equations is determined by the formula (13.48) and the expres-
sions

(0B:0By), , = (OELSED), .- (17.28)

(BE? -8BV, , = 4nxT; (3E+.0EL), , = 8uxT.
(17.29)
In the same way a closed set of equations can be formed for the
f. and (6E/6E),, , , when the plasma is in a constant magnetic
field and allowing for slight spatial inhomogeneity of the plasma.
The set of equations for f, and (6E-8E), ) , enables weak
turbulence in a plasma to be described.
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The plasma is said to be turbulent when the intensity of the
excitation in the plasma, as characterized by the function
(6E-OE), ., is greater than at statistical equilibrium.

In the approximation under consideration the turbulence may
be due to the initial conditions, or to kinetic instability when
the damping decrement y,(w,. k) of some component of the
plasma becomes negative®.

As a second-moment approximation one can describe the
turbulent states, the development of which is confined to the
variation of the distribution functions f,. Otherwise in the equa-
tions for f, and (OE.0KE), , , one must have regard to the
non-linear terms in (dE-38E), . ., i.e. the second-moment
approximation is not sufficient (see § 18).

Two different approches are open to us,

One can solve the equations for the higher correlation functions
Lapes Gapeas - - -» OT for the corresponding higher moments, as is
done by several authors [Silin, 1964; Kadomtsev and Petiashvilli,
1963; lordanskii and Kulikovskii, 1964a, 1964b. Koviizhnykh
and Tsytovich, 1964; and Gorbunov, Pustovalov and Silin, 1964].

Alternatively, the higher moments can be taken into account
by the method considered in §§ 14-16. This can produce the result
without solving complicated equations for the single-time cor-
relation functions.

Instead of the approximate equations (5.31) for the random
deviations 8N, and 8E one needs to use the exact equation
{(5.22, 23). Additional terms then appear in eqns. (16.2, 4). On the
right-kand side of (16.2)

J

e, u .
To—hk-o)+id (@ OF{w, K, p)), (17.30)

and on the right-hand side of (16.4)

drell 1 0 srar. 1. 3
LR fw-—(k-v)+id (ap ‘”(ﬂ”"’p))dp'
(17.31)

+ Leontovich (1963); Vedenov, Velikhov and Sagdeyev (1961); Vedenov
and Velikhov (1963); Vedenov (1962); Drummond and Pines (1961); Shapiro
(1963) and Karpman (1964). .
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In these expressions

61”(_@,1)) = J‘“d_vfdsqe_mﬂ(wr-(k.q))
0

- [8N,(q. p.1+7) 8E(q, t+7)— 8N, (q. p, t+7) OE(g, i+ )]

i
= Wf dQ'[éN,,(Q’, Pp) SEXR —2)

~8N,(7, p) B (@ —)], (17.32)

where 2 = o, k.

By allowing for these extra terms in the equations for
(0E-6E),, , , and (dN,0E), , ,new terms appear containing the
function (61°.3E), ), ,. By virtue of (17.32) this function is the
third moment in 6N, and éE. Thus the equations for the second
moitnents are no longer closed,

Assuming that the higher moments are small, the method of
successive approximations can be used. All the higher approxima-
tions are then expressed in terms of the first, as in §§ 14-17.
The higher moments are taken into account in § 18.

18. “Quasilinear Approximation” for a Set of Equations with
a Self-consistent Field. Allowing for Higher Moments

In § 17 in the second-moment approximation a set of equations
was found for the functions f,(p, ¢) and (8E-3E), . , which
may serve for describing weakly non-equilibrium turbulent pro-
cesses in a spatially homogeneous plasma.

As we have seen, in a spatially homogeneous plasma in the
absence of external fields the average strengths of the electric
and magnetic fields are zero. Consequently, the self-consistent
(average) field drops out of the equations for the functions fa
and so the variation of the f, with time in a spatially homogenpeous
plasma is completely determined by the correlations of the ran-
dom deviations 6N, OF and &B.

In Chapter 3 the other extreme case was considered when the
average flelds are large and so the correlations could be neglected.
Here Vlasov’s set of self-consistent equations was used —a closed
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set of equations for the first moments of the random functions
N, E and B. ‘

In the present section we shall show that a complex set of
self-consistent field equations can under certain conditions be
simplified for smoothed distribution functions and slowly
varying complex amplitudes of electric field strength. Such a
approximation is said to be “quasilinear” [Vedenov, Velikhov
and Sagdeyev, 1961; Vedenov and Velikhov, 1963; Vedenov,
1962; Drummond and Pines, 1961 ; Shapiro, 1963; and Karpman,
1964.]

‘We shall also show how the equations of § 17 are affected by
the higher moments.

In considering the self-consistent field equations, as previously
in §§ 10, 11, 16 and 17 two regions are distinguishable, viz. the
short-wave and long-wave regions. The former is analogous to
the collision region, and the latter to the radiation regiom.
In the self-consistent field approximation the short-wave exci-
tations quickly decay and so in most cases they are of no interest.
Here we shall consider only the long-wave spectral region.

In this region the plasma waves decay weakly. Hence, right
from the start we assume that the functions f,, E and B, as
functions of coordinates and time, depend on the fast and slow
variables, i.e. for instance, .

fo = Flut, 59, 1, q. ), (18.1)
whilst for the fields we use formulae (2.95).

As elsewheref, we split the functions £, E and B into “back-
ground” and “pulsations™ (i.e. slow and quick variations):

Ji = fa(“ta 4, P)+Fa(ﬂr= ugq.t.q, P); (18.2)
E=E+E1; B:B+B1. .

The method of division depends on the type of problem. Here
it is assumed that

¥ 3
fo= g7 | & [ ¢afies g 0.9) (18.3)

+ Vedenov, Velikhov and Sagdeyev (1961); Vedenov and Velikhov (1963);
Vedenov (1962); Drummend and Pines (1961); Shapiro (1963) and Karpman
(1964).
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The T and V are selected such that

3f° «F; | Ve o7 andsoon . (184)
dug
We conﬁne ourselves to the case when E = B = 0. Then
El - E; Bl =B- (18.5)

From (6.8), after averaging over the fast variables, our equation
for the smoothed distribution function is

af o7, e,
31‘ ‘I"(v' aq) = TV ( fF(Mt !«“L q:p)
X &ut, g, 1, q)) dtdiq = S,. (18.6)

As in § 2, the functions F,, E and B are expanded as Fourier
integrals in the fast variables, e.g.

Fo = Gyt | Pl 10, B) e ) do 15 (18.7)

for E and B we use the formulae (2.96, 97).
By these expansions the right-hand side of (18.6) becomes

€, /)
S, = _W (55 . f Re F(ut, pq, 0, k, p)

X &t g, o, k)) deo dORe. (18.8)
Here we put
&= E+ [wABI. (18.9)

If the functionf, is isotropic as regards p, i.e. depends only on
|p |, in (18.8), the term containing the magnetic field drops out
and so in place of & we have E.

To obtain the equation for F,, it is necessary to subtract (18 6)
from (6.8). We then get

ol -l
32‘ ( Bq)-l-e (855 = —g, % FL

- J'Fa;daq dt. (18.10)
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The equations for E and B coincide with (6.9-12) by setting
F, for £,. The resulting set of equations for £, F,, E and B is
equivalent to the set of self-comsistent field equations (6.8-12).
For the sake of simplicity we expand the Fourier components of
the functions F,, E and B as series in the small parameter u

F,= Y WF®, E=Y WE", B= i LB,

I =0 I=0
(18.11)

This presupposes that the functions F, E® and B in the
zero approximation are not in the general case small. We thus

allow for F, ~J_‘, but the energy of the electromagnetic field is of
the same order as the kinetic energy.

The terms of order pare the first non-vanishing non-linear terms
and also they are proportional to the number of resonant par-
ticles, e.g. the imaginary part of the dielectric constant temsor &,.

An expression for g; is obtainable, as usual, from linearized
equations for F,, E and B. It becomes the same as (14.69) if we
substitute £{ut, pg, p) for f,. So now the tensor &; depends on
the slow coordinates and time through the function f.

Knowing the tensor ¢;, one can immediately write the Maxwell
equations in the zero approximation in u, i.e. the equations for
E“ and BY. Naturally, they coincide with (2.102, 103). From
them it follows that in the zero approximation the strengths E@
and B, as functions of w, k, are non-zero only for values of
e, R which satisfy the dispersion equation.

From (2.103) it follows that

B = Z lAEO] = [l €] EO. (18.12)

Here e is a unit vector in the E@ direction. Using this relation,
the zero approximation equation can be written as

2
[k /\[Ie/\EfO)]],-+‘c°—2s;jE§0> =0 (18.13)
Substituting (18.12) into (18.9), we get

&0 = (e+-:; A oA [k/\e]]) E©, (18.14)
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From (18.10) for the steady state in the linear approximation
it follows that

. Py 31’;) (18.15)
Fa= w—(Fk.v) (6 op/’
We use the expression

] 1
prymr; e R ir; o)

but remark that the term containing &(w—(k-®)) is proportional
to the number of resonant particles and so should relate to the
first approximation. The resulting expression for F, in the zero

—izd (o — (k- v))

" approximation in g is

1 Bf)
0) — _;, _ | pe e} 18.16
Fio ie, P &-v) (6 P ( )

Consider now the corresponding expression for the first ap-
proximation. We represent the function F& as two parts (linear
and non-linear):

FV = Fly Fo, (18.17)
Using the method of § 2 and 16, the expression for the linear
part Fl is
1 A, )
1— (1, a . —(k-
F! ie,P oy 73 (cf D re,d (w— (k- v))

af) b 1 8
(), M a —_—p .
X(dﬂ ap. +e“{3mP w—(k-r) ot

Here
S0 = (e-{—%[v/\[k/\ e]]) E@  and so on. (18.19)

In (18.18) all the terms are of order w. In this same approxima-
tion we find from (18.10) that
Fol o fe, 1 A
Tt e—(k-v) dp
X 8(w—' —w") dfe—k' — k") F¥w", ") EP(w, R).
(18.20)

dCD’ dCO” dSIl:' dgkn
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We substitute here expression (18.16). In this case we omit the
principal value sign since in the non-linear terms the substractions
may apply to the non-resonant region and so their contribution
may be substantial. As a result we get

Nl — __e“z“.__.
a (2.7'6)4 ‘
@R ) e k)

o—Fv) Oy o —(k -v) op; " (18.21)

In this expression integration is only carried out over those values
of o', k' and ", k' which satisfy the dispersion equation since,
according to (18.13), the functions E®e’, k") and E9(w"”, k')
are non-zero only for these values.

Consider two possibilities.

(1) Suppose that the arguments w and k of the non-linear
function FZ'do not satisfy the dispersion equation. In this case
the non-linear term (18.21) in the first approximation in z has
no effect on the variation of the functions E®(w, k) and B®
since these are non-zero only for values of @ and k which satisfy
the dispersion equation.

(2) If, however, the values of w and % do satisfy the dispersion
equation, it follows from (18.21) that sets of three waves exist, the
frequencies and wave numbers of which satisfy the relations

Wy = Watws; k) =Fk,+k;. (18.22)
In this case, even in the first approximation, the non-linear term
of (18.21) affects the variation of E@(w, k) and B,

If the conditions (18.22) can never be satisfied, one has to con-
sider the following expression for the non-linear term—obtained
by eliminating the function F, from the right-hand side of (18.10)
twice—

f des’ dos' AR’ AR S~ — ") B — k' — ")

nl — feg
E (27)8

COQ) 9 ZO(0Q") 9
o~k Ip; o Fo —(F +k0) 9
Q) o,
PR CHES N7

f d'da"d" §(Q -2 - Q2" — Q")

(18.23)
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Here
dQ = do d°k, Q2 = (v, k). (18.24)

The function F2, as defined by this expression, even in the
first approximation in u, affects the variation of the functions
E{w, k) if the plasma’s dispersive properties permit the exis-
tence of at least one set of four waves, the frequencies and wave
numbers of which are connected by the relations

w = W1+CO2+603; k= k1+k2+k3. (18.25)

Following the terminology of Akhmanov and Khokhlov (1964),
we shall say that the term (18.21) describes three-wave interaction,
and the term (18.23) four-wave interaction.

To form the equations of the first approximation in p for the
fupctions E and B®™, we begin, as in § 2 also, by writing the
expressions for the electric-induction vector, but now in the form

D= DO LDy, (18.26)
Using the expressions (18.16, 21, 18, 23), we obtain
D‘(OJ = ¢ E® (18.27)

(X

N
D} = ejE +icij B +io (5} Efm)

_; (3% . (‘;‘2 E;o))) _ (18.28)

Here and also in (18.31, 33), it is important that £, is a function
of ut, ug, and |[p|. These expressions differ from (2.99) in that
the tensor &; now depends on the slow variables pf and uq. The
expression for D™ coincides with (2.100). For the tensors Liske
and 6, by means of (18.21, 23), we get the following expres-
sions:

0 Q' INY] . 47[82”:1] viA_;'
Tl 2, yeser = zg @ w—(k-v)
P A} Of

F oy R dp; (18.29)
op; o — (k" -v) dp,

X
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[Jkl(.Q Q’f Q”f QI?I)ele;cle;rf
4mein, J’ v}

T o w—(Fk-z)

(2 4y
apj wll+wlll_(kll+kfff .v)
9 A" O

X g e« 22 d3p. 18.30
e L (1830
Here A=e+(1/w)[v A [kAel], and e, e, € are unit vectors
determining the polarization of the waves with {7, Q", 2",

Using these expressions we find the Fourier components of the
time and space derivatives of the induction vector

‘@D d (dwe;
(—) = ——zweiJE(l)+wa”E(°)+—( JE(D))

ot ot
- (_f?__ ; (3‘"3;;‘ E(_o))) | (18.31)
oq ek ’
(83—?)“ = —ioD, (18.32)
div D' = ik,gl, EM—ke}] E<o)_§? (ﬁgij Ejgo))
+ (i . (ak‘E’j E(O))) (18.33)
" \dgq ok )
div D¥ = i(k- D). (18.34)

In the first approximation, equations are obtained for the
functions E® and B®W which coincide with (2.102, 103), and so
they drop out from the equations for E® and B®. Thus the
equations of the first approximation for E® and B® are

oD w
1 B©) = — i pnl
curl B . (Bt)m ) = D, (18.35)
1 oBW@
curl B = — T (18.36)
div B® = 0, div D, ,+i(k+ D) = 0. (18.37)
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Unlike the corresponding eqns. (2.107-109), these are not
closed equations because the expressions for the tensors ey, ¥y
and @, contain the unknown functions j_”a(,uz‘, vq, p). The
equations for these functions in turn comtain the functions E®
and B,

By means of the zero approximation equations the function
B can be eliminated from (18.37). Having done this, the follow-
ing equation is obtained:

dewe 7 0w’
5t () - (o i ) ekl £

+curl [RAE®]); = —w?e]] E{®+inDy.
(18.38)

If in the first approximation one can neglect the variation of
the direction of polarization of the waves, from eqn. (18.38) one
can obtain an equation for the scalar function (e« E) = E. Todo
this we find the scalar product of eqn. (18.38) with the unit
vector e, and use the vectorial identity

(e-{[kAcurl E]+curl [RAE]}) = 2((k-€) grad (E-e)
—(k-grad) E)

and also the notation (2.116, 118) for the group-velocity vector
and the damping decrement. The resulting equation is

(o) {0}
‘BET + (vgr- %) = —yE(°’+[z'w2(e-D“‘)

w’e e,

9
(ara

2

- (6‘;-«%) we; eueJ) E(O’] }'aica eele;.  (18.39)

To close the set of equations for f: and E, one needs to
express the right-hand sides of (18.6) in terms of E®. Using ex-
pressions (18.16, 18, 21 and 23), we obtain

S, = Sl+ 83, (18.40)
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Sl =g
a (21)4TV
o,
- —(%. (o) (0)* Ya 3
x5 f = (e-0) S0, ) 0@, ) 52 do P
& 9 ([2,_1 @
T DTV op; [5&3 o—(k-v) ot
(o p_ L 8
(Bk o—Ek-v) Bq)]
X ENw, k) £0™w, k) % do d°k. (18.41)
J

The operators §/3¢ and 3/0q do not act on £*

3
e,
Gol — e

0

" ’ tr {D)*

O f 4040’ 4Q" Q@' - 2") Re @) 5
(g(o)(pf) a cg(u)(gn) 3fo e

w—(Fv) 8p; o —(k"-v) Bp; (2n)1ﬂrr/
x [ 4@ a@ a2 ag" 5@- @'~ 0"~ 0" Re () £9)

3 P 2 PR
Xapr w— (k) B_R» ) o+~ +E" -v)
J cg(o)(_Q"' 3fa
X I o —RTT) op (18.42)

These equations form a closed set for the smoothed distribution
functions and the slowly varying Fourier components of the field
strength.

We will consider two cases.

(1) Coberent interaction of waves. From the structure of the
non-linear terms it follows that, for instance, in the case of three-
wave interaction one can satisfy the Maxwell equations of the
first approximation if the functions E“(ut, uq, w, k) and B©®
are of the form :

EV =02z ¥ EMo-o)dk-k),

1=«2=3

B9 = — [k A B, (18.43)

c
(4]
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where w;, w;, wy and k., k,, Ky are connected by the relations
(18.22). The equations of the first approximation for the func-
tions E, and B, are the same in form as eqns. (18.35) or (18.38).
The expression for the non-linear induction vector in the case of
three-wave interaction is

(e D) = (el (2., 2p) el

+ e 1(8,, 2,) €Pe?) EOED. (18.44)
In this approximation the expression {18.41) becomes:
9 A
Se = 1 -_=§53 {neg -771— 6(50 ~ (k. v)) 6(2)' i 3
s 0 [ 8 1 0 0 |
_eaa [(EP mrz_(k:: "U) -B_l:-_ (‘9_"1'213 wz_"(kx'v)
0 of,
) [ Cenior e (18.45)

Here it is taken into account that (27)! 6(w —w ) §(k—k)/TV=1.
The three-wave part of (18.42) is similarly transformed.

Thus, in this case, we get a closed set of equations for the
distribution functions f, and also three complex amplitudes E,
of waves, the frequencies and wave vectors of which are linked by
the relations (18.22).

In the case of four-wave interaction, instead of (18.43), we use
the following expression

EOut, ug, 0, k) = (27)* 3 do—w,) d(k—k)E,,
1=«=4
(18.46)

in which the frequencies and wave vectors are coupled by the
relations (18.25). In this case we get a closed set of equations for
/-, and four complex, amplitudes.

These equations describe the process in a plasma with regard
to the phases of the waves, i.e. they describe coherent interaction
of waves.

If the tensors ¢, y;, and @, can be regarded as constant, we
get the closed set of electrodynamic equations for complex ampli-
tudes, considered by Akhmanov and Khokhlov (1964).
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In the same way one can obtain equations which describe the
interaction of many waves.

(2) Further simplification of our equations is possible by chang-
ing to a hydrodynamic approximation. The equations obtained
thus are much simpler in solving stationary problems when the /&
and E_ are independent of time, or otherwise depend only on time.

Note that the division into fast and slow motion is not a uni-
versally applicable distinction. It is essential, in particular, that
the dispersion equation, which contains the real part of the tensor
&;, should have real roots. This stipulation is not satisfied, for
instance, in a beam of charged particles in a plasma when hydro-
dynamic instability occurs. The method of dividing into ‘“back-
ground” and “pulsation’ has to be altered if hydrodynamic in-
stability 1s to be taken into account.

In deriving the equations of the quasilinear approximation, it
is assumedT that the phases of the plasma waves are random and
that they are correlated for a much shorter time than the relaxa-
tion time for the functions £, E, and the wave amplitudes. But
any presumption of phase randomness essentially goes beyond the
self-consistent field approximation to which Vlasov’s equations
are applicable. In this case one should use the method of describ-
ing non-equilibrium processes in a plasma developed in §§ 16, 17.

In these sections the kinetic equations were formed with regard
to the radiation of plasma waves. Only the second moments of
the random functions éN,, 0FE and 6B were considered.

This second-moment approximation is suitable when the devi-
ations from equilibrium are small. With a large deviation from
equilibrium it is necessary to take higher moments into account.

So as not to over-complicate the problem, consider the case of
a spatially homogeneous plasma. The higher moments can then
be taken into account by the method explained at the end of
§ 17. I, however, we confine ourselves to the higher moments for
the region of low-wave excitations (the radiation region), the
required results are obtainable more simply.

t Vedenov, Velikhov and Sagdeyev (1961 : Vedenov and Velikhov (1963);
Vedenov (1962}; Drummond and Pines (1961); Shapiro (1963) and Karpman
(1964).
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We return to eqn. (16.28). The right-hand side contains two
terms of the same order for states close to equilibrium. In this

case the higher moments 6E,; 8E, O0E;; OF; OE; 8E, OE;; ..., are
small and so can be neglected, If, however, the state is far from
equilibrium, the réle of the second term, which is independent of
the field strength, is small and it too can be neglected, but one has
to take the higher correlations of the fields into account.

For this one can use (18.39) as the equation for the feld’s
random deviation 8E. In the spatially homogencous case we
obtain the following equation for 6E (see footnote on p. 197):

0SE , iw*(e - s D)
o Y bE+ dwtese;
dw
& . fwler; e

The expression for 6D™ is obtained from (2.100)

1
8D (ut, Q) = o f dQ'dQ" §(2— Q' — Q") (2, 2"

?

X 6(SE(Q") SEL(Q) +(7--—}5)s f dQr dQ' do
XHQ-Q =" —Q") O (R, 27+ 27, Q)
X 8(BELR") SE(2') BE(L2'")). (18.48)
Using (18.47) the equation for the spectral function (6E,6E;)
is

w, k.t

0
E (aEian)w, Kt — — zy’(aEiéE:f)m,k, t

—2w%ee, Im (3D(8E)), , /8 (wPes)e)/dw. (18.49)

Comsider now the case of three-wave interaction. Only the first
term remains in (18.48), and the threefold correlation OE,0EOF,
comes into (18.49).

By means of (18.47) we write down the equation for the three-
fold correlation. It contains the fourfold correlation 8E,0E;0E, 3E,.
Within the context of three-wave interaction this function can be
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expressed in terms of double correlations. We then get a set of

equations for the functions dE,0E; and 8E,0EJE,. If the tensors
&y and g, are constant, it is a closed set. But if they vary owing
to variation with time of the functions £(u¢, p), in order to close
the set it is necessary to use the corresponding equations for the
functions f,.

For four-wave interaction the right-hand side of (18.49) con-

tains the fourfold correlation 8E,8E;0E,8E;. A special case of
four-wave interaction is two-wave interaction. In this case the
fourfold correlation can be expressed in terms of double correla-
tions. If &; and @, are constant, a closed set of equations is
obtained for the double correlations. If &, and © 1 are variable,
these equations are closed by means of the equations for the f,.

If it is impossible to represent four-wave interaction as two-
‘wave interaction, one has to write the equations for the fourfold
-correlations. They contain the correlations of six values of the
lectric field strength. Within the context of four-wave interac-
‘tions such correlations can be expressed in terms of double cor-
relations. For constant functions 7, we get a closed set of equa-
‘tions for the functions of double and fourfold correlations.

The equations for the functions £, and for the field correlations
become much simpler if, for instance, for three-wave interactions
‘the random functions dE can be represented as (18.43), i.e.

SE(ut,0,k) = 20 Y Eut) o—,) dk—k,).
(18.50)

2, =0, = 0,

"The quantities ©, and k, satisfy the conditions (18.22). In this
expression the functions E, themselves are random functions.
It is important for the K to be real functions if the phases of the
waves are quickly varying random functions. We make this as-
sumption here, although it is not essential to do so.

Considering that

- )4f(6E 8E), ., do> K = R
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from (18.49) the equation for the function EZ is

BBE‘Z’ = ~ 2. E2~2F 4 E,E,E,. (18.51y
t
Here
2
Fzﬂy = i Im (egm)xijk(‘ga’ 'Qﬂ) egy)eﬁcﬁ)

50 (w2efe; ()

+ e, 2,) ePel).
Summation is not carried out over twice-recurring Greek suffixes.
We write down the equation for the function E,E,E,. Con-
sidering that :
EEEE, = EiB} if Q,=Q,,
we obtain the equation

d =—=— LN TR
- i EabeEy = —atvsty)) ELEGE,
—F.z E3E — Fy, EEE—F, ,E2E}3. (18.52)
If the tensors &; and g, depend on time, we also require the
equations for the functions #,. In the spatially homogeneous case
these may be written as
Yo sy spe. (18.53)
Here S=°! is the collision integral, as defined in § 11. The term
S¢ describes the variation of the functions £, due to the radia-
tion of plasma waves, defined in § 17 for states near to equilibrium.
If the deviations from equilibrium are considerable, it is necessary
to take the interaction of waves into account. For three-wave
interaction
Sad = S1 4 ol (18.54)
where ,

Si= ¥ 3%{::3(@ (k- v)

4 1 97 4 g0 P
—a—szm—_(k--;)-at}A APEEGE, (18.55)
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)] A8 d
Sat = g3 (a) _9__ ) AL
¢ eal-zg-:a"{! apx Re I:w:z_(kz "v) apj
AP AP ) AP
X g, ) o (Bn-®) Op; wﬂ—(kﬁ-v)}
af" 22 E EE,. (18.56)

3

Here
A= e-i-é[v/\[k/\e]].

We have thus formed a closed set of equations for the distribu-

tion functions f; and the moments E_;“' and E E;E, of the electric
field strength, By means of these equations one can describe the
turbulent state with regard to third moments. From the resulting
equations the conditions can be established for which a stationary
or quasistationary state will exist in a plasma.

If four-wave interaction is allowed for, in the same way we
obtain a closed set of equations for the functions f,, the second
E? and the fourth moments of the electric field strength. This pro-
cess can be continued. The number of moments of the field
strength that one needs to use, depends on the number of inter-
acting waves.

Further terms appear in the equations if in the expansion as a
Fourier integral one takes into account the dependence of the
frequency and wave vector on the slow coordinates and time. For
a Coulomb plasma in the spatially homogeneous case they are
introduced in § 16. A more general case is elaborated in a paper
by Klimontovich (1964). :

Finally, the foregoing exposition is an illustration of only one
of the problems in non-linear theory. The present state of this
problem and also the applications of quasilinear theory are
treated more comprehensively in the papers by Leontovich (1963},
Silin (1964), Kadomtsev and Petviashvili (1963), Iordanskii and
Kulikovskii (1964a, 1946b), Kovrizhnykh and Tsytovich (1964),
Gorbunov, Pustovalov and Silin (1964), Vedenov, Velikhov and
Sagdeyev (1961), Vedenov and Velikhov (1963), Vedenov (1962),
Drummond and Pines (1961), Shapiro (1963), Karpman (1964)
and Klimontovich (1963a).
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19. Quasilinear Approximation Taking “Collisions”
into Account

The results of §§ 16-18 can be generalized so as to take into
account simultaneously the self-consistent field and also the cor-
relations which determine the dissipative processes. To show up
the main features of the problem, we at once make some simplify-
ing assumptions.

(1) The plasma is a Coulomb plasma.

(2) The dissipative processes are determined in the main by
the short-wave spectral region—the “collision” region, where
|k| = 1/r;. Hence we can peglect the polarization effect in
evalnating the correlation functions, i.e. we can confine ourselves
to the approximation which in a homogeneous plasma leads to
Landau’s collision integral.

We write down the initial equations which hold good under
these conditions.

The equations for the functions f,, allowing for the average
field, are (5.21). For the function S (g, p, t) it is convenient to
use (5.18) since by neglecting the polarization no difficulties arise
in solving the equations for the correlation functions.

The equations for the correlation functions foilow from eqns.
(5.35) if we discard the last two terms on the left-hand side which
take into account the polarization. Thus the initial set of equations
can be written as -

Bf;+(v_3f;) (E(q,r) 313): (@) (19.0)

ot dq

_ _E)_ €265 i ’ " g3 31
Sa“gnbf(aq |q_q1! ap)gab(q:q=P’p)dqdp

(19.2)
divE =4} en, Jlfaa”p (19.3)
d 2 , 0 3_
ot (7rag) (7 ag) e (@0 55)
, 0 _ [ @ .2,

+e, (E(q :f)‘—:)]ga.s = (Tﬁ;w

{‘%ﬁ aﬁ’f}). (19.4)
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In Silin’s papers [1960, 1962b] these equations are fundamental
to the kinetic theory of quickly varying processes, i.e. the theory
in which the effects due to the correlations as well as to the self-
consistent field are taken into account simultaneously.

Consider now some supplementary assumptions.

We shall assume that the average electric field is a high-
frequency field, i.e. the following condition is satisfied

o= 1/, _ (19.5)

Using this condition we divide the functions £, and g,, into
their fast and slow parts
fo=fOHID; g = g+ (19.6)
The functions £ and g are obtained from f, and g, by
averaging over a time interval T ~ 1/4 such that

%‘E <« Txr,. (19.7)

‘We impose the following restriction on the value of the average

field:
eF

mosd

= 1. (19.8)

On this condition
f0w flo; g oo (19.9)

By making these assumptions equs. (19.1, 4) vield the following
equations for the functions £ and f®:

{0} (0) ——
e +(” afo) —e (i-Ef,s”)mﬂam (19.10)

ot dq
afam . 3f(1} = 3f @
o +(v dq)_"‘—e"(E p)+S (19.10)
The bar together with the superscript (0) indicates the slow com-

ponent.

We introduce new variables g—g’ = 7, ¢ = R in the equa-
tions for the functions g and g%%.

Consider the last simplifying assumption. The average field is
defined as :

E(R, 1) = Re E(w, K, ut) e=@t+i&-R), (19.12)
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Thus the average field is a plane wave with slowly varying

amplitude. The wavelength 2%/ K>»r,, i.¢. it is much greater than

the correlation radius. Hence in the equations for the functions

29 and g%} one can expand as a series in powers of (r-3/0R).
In the zeroth approximation in this parameter having regard to

(19.8) we get from (19.4) the following equations for the functions
(D) and g

befee -
*%L;:’,’ﬂm})_dggm (19.13)
O
— [ (om0 ) + (eoB, -5 |80
+(a La® {(%f.r, af"fa} ) 453 (19.14)

or |'rE

The superseript (1) of {} @ indicates the fast time component. The
supplementary terms —Ag®P, —AgY in these equations as a
rough approximation take into account the réle of the higher
correlations which are missing in the initial equations. The
quantity 4 ~ 1/T satisfies the condition (19.7).

Given these restrictions, £ = ff9(p, ut), i.e. the distribution
function does not depend on the coordinates and is a slowly
varying time function.

The solution of eqn. (19.13) can be written as follows

dne ek o
{0 L,, , N — a“b { 0)

be ffw}) (19.15)

Here g@(k, p, p"} is the Fourier component with respect to r of
the function g (r, p. p").
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For solving eqn. (19.14) we use the first approximation for the
function f®: '
S = —Re——rt ( I;e:v B (E(w, K, Mz)."{%’i) it +i(E- R).
(19.16)

The quantity », is not the same as 4. It will be determined
below,

The expression (19.16) follows from (19.11) provided that the
dissipative terms due to the “collisions” and Landau damping
have a higher order of smallness.

By the use of (19.12) the function g% becomes

SH@R.7,p.p',1) = Re gB(w, K, 7, p, p') e~ 5D,
(19.1D

After simple transformations, and using (19.16), we get for the

expression for the Fourier component in » of the function g,.(w,

K r,p, p)
WMo, Kk, p,p) =

i
o—(K-v)—k@—v)+ i1

_f_ (kv—v)—id ? LAY
x{ (1= e aens) (o (g v (B ) 8

(k'E) €a fr)
* e (me ) 2 (919

d

Consider now the expressions for the collision integrals S(p, ut)
and SU(R, ¢, p, ut).

Into the integral in (19.2) we substitute the variables ¢—q' = 7
and g = R, and then expand the integrand as a Fourier integral
in 7. As a result we get

1 0 k
Sa(R, P, I') = W; 43'Eea€bnb (W . f P Im gab) daiﬁ-

(19.19)
To find S it is necessary to substitute (19.15) into (19.19). We
then obtain

S0 = Z 2e2eln,

0 [ kikid((k-v)~(F-v"))
a_J K"

(0)
{05'; DA fm} &k dp', (19:20)
E
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In accord with our earlier assumption the integration over & in
(19.20) is restricted by the condition |J| > 1/r,.

Naturally, the collision integral S coincides with Landau’s
collision integral (see (11.4) and (11.28)).

To find the function SP(R, p, r) we represent it in accordance
with (19.17) as

SO(R,p.t) = Re Sm(m, K, p) ¢—{e—&-R) (19.21)
From (19.19, 21) it follows that
. 4a'ce €
(1) r Bt d )

(1) (1} -k ’
gab (OJ, I‘ k pap) Qf (QJ, I‘a h’p’p )) dsp dak

(19.22)

Substituting (19.18) into (19.22) we find the expression for
5P¢w, K, p).

We return to eqn. (19.11) for the fast part of the distribution
function. By taking the correlations into account in this equation
we are able to describe the dissipative processes in the fast mo-
tions. For a characterization of the dissipation an apt concept is
the frequency of “collisions” (the collision rate). Putting v, for
this rate, we determine it from the equation

S ak
O

The functions §$ and £ are expressed in terms of the function
O, so that

Vafau}+S¢(zl) =0 or v, = — (1923)

v, KK, p, f19)
Here there is no explicit dependence on the field strength since
the functions S% and £ are proportional to the field strength.
The dependence on E enters implicitly via the functions £0.

Using the definition of »,, the stationary solution of (19.11) is

] (0)

- o ie, afz"

S, B, p) = ~ gt (Bl B)- 555

(19.24)
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When considering the slow variation with time of E and f{?,
additional terms appear in (19.24).

To form the equation for the field strength E(w, K, ut), we
substitute (19.24) in Poisson’s equation. Using the expression for
the dielectric constant

(K- aﬁm)
3,

' 4me?n op
e=¢'+ig" =14+ 42 -
; K2 w—(K-v)+ iy, @p

(19.25)
we obtain the equation
2E(cw, K, ut)
SR T —YVerr E (19.26)
Here
Lo | 0¢
yeff' =& / a_m' + Vnon-stat (1927)

is the effective damping decrement; y_, ... represents the con-
tribution from non-stationary processes.

By means’ of (19.24) we can eliminate the function £% from
eqn. (19.10). We then get a closed set of equations for the
functions £ and E

" 0 KK [ e EP Ao

s (0)
At dp, K2 {w—(h’ 0212 + “"“‘5““} ap; 5
(19.28)
2B )
a#t = _zyeﬂ‘iEE-' (19'29)

Here D, ... represents the contribution from the non-sta-
tionary processes. '

The set of eqns. (19.28, 29) should also include the expression
(19.23) which associates the collision rate », with the distribution
functions 7,

Equations (19.28, 29) differ from the corresponding equations
of §§ 16-18 in that instead of 4 they contain the rate », which
itself depends on the type of distribution functions F9. 80 eqns.
(19.28, 29) more completely take into account the dissipative
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processes. In particular, they take into account the collisions as
well as Landau damping.

These equations may be used to form model equations which
can be rigorously solved. For instance, one can thereby investigate
the distribution function’s dependence on a given field, the field
distribution for a given source in momentum space and so on.

Our restrictions are not fundamental and in a similar fashion
more general results can be obtained ; for instance, the transverse
field, polarization, wave interaction, ..., can be taken into account.

Klimontovich and Logvinov (1966) have considered examples
of solutions of eqns. (19.28, 29) for the stationary case. In parti-
cular, they found the stationary field distribution in a plasma
perturbed by an electron beam.

20. Approximation of “Free” and “Bound” Charges for a
Plasma. Self-consistent Equations for Second Distribution
Functions

In the foregoing sections in deriving the kinetic equations of a
plasma it has been assumed that the conditions are such that the
correlation functions are small. Thus in the zeroth approximation
a set of self-consistent equations is obtained for the first distribu-
tion functions and average fields. Such an approximation may be
called the ““free charge’ approximation since in this case the
correlations are zero. In the next approximation the correlations
are taken into account, but it is assumed that they are small, i.e.
only slight deviations from the “free’’ charge approximation are
taken into account.

Naturally, this approach is quite unsuitable when, for instance,
for a partiaily ionized hydrogen plasma one must take into
account the “bound” states of the charged particles as well as
their ““free” states. With bound states the correlations bétween
the pairs of particles forming the atoms are large, so the requisite
approximation for taking them into account may be called the
“bound™ charge approximation.

Consider a two-component plasma.,
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For forming the kinetic equations taking bound states into
account, the equations for the microscopic phase densities are
convenient initial equations

Noolda: Qos P> Pos 1) =1 Z Na(Qa—Q'ai(t)) 5(%*%,{3))

=ix=

X 8(Pa—Pa1)) 3(Ps—p; (1)). - (20.1)

Here « is the subscript for ioms, & represents electrons, the q,,
and p,,; are variables of an ion with;number i, and q,, P, are
variables of an electron with number i.

The function N, determines at the instant 7 the virtual number
of electron—ion pairs in which the electrons have the coordinates
and momenta g, P, and the ions q,, p,.

In the Coulomb approximation the equation for the function

N, is
D (o) (o 2\ (002
(3, +(”‘ Bqa)“L(” aqb)“(aq,, 3pa)

(0% @ M .BN;“’
( = ajpb))N:,f,-uea(.i.'ﬂ (@ar ) ap,,)

ON,,
M, . a —
+ e (E (gs.1) . ) = 0. (20.2)

Here @, is the potential energy of a pair.
The equation for the field can be written as

div EM(q, 1) = 4= f (eab(g—q.)+e,0(q—q3)
X N d%q, d3q, &p, d°p,. (20.3)
Qur earlier microscopic equations (4.20, 21) for the functions

N, and E™, which hold for a Coulomb plasma, follow from
(20.2, 3). In this case it must be taken into account that

Ny = fNab ds‘_la d*p,, N,= fNab da!IdeP.s,
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where N, and N, are six-dimensional phase densities for the
electrons and ions, respectively.

In the “*bound” charge approximation it is convenient to use
the variables

R = M, q::‘l'mbq.b
ma+mb

s ’r=qc_qbs

MpPo— My |

I =(mA+m)V=p,+p,; p=pv= P

_ MM
p= (20.4)

For the function N, (B ,II, r,p, 1), eqn. (20.2) yviclds the

equation
ey, (V.aggb) + (v-a,;v,fb)‘ (%(m) 'a‘;\;b)
. ((g(-f-)(R, r)- %%’é + (6(_)(R’ " ‘%b) -
(20.5)
Here
EHR, r) = e, EM (R +#l_"_i'n..:r)
+e, EM (R‘E}feﬁ.’")’
SR, 1) = 76"4’-@5?{ B (R i ’"—T’”: r)
+%EM (R—ﬁr)’ (20.6)

v M — _ M,
div E _4::[ [eaé (q (R+ — r))

ma
ced (o (B )|
‘N (B, IX, v, p'. 1) @R 311 d*r &p. (20.7)

The sets (4.20, 21), (20.2, 3) and (20.5-7) of microscopic equa-
tions are equivalent. The superiority of some particular form
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becomes apparent after averaging on changing to the approximate
equations for the lowest moments.

The first moments approximation for (4.20, 21) leads to Vlasov’s
equations and so corresponds to complete neglect of the correla-
tions. The same approximation for (20.5-7) leads to a closed set
of self-consistent equations for the second distribution functions
fus = Ny/n and the average field. In this approximation the
correlation between the particles in the pair is taken into account,
but that between particles of different pairs is neglected.

If the function f,,(R , II, 7, p. ), as a function of R, varies
little over distances of the order of the correlation radius, one can
expand as a series in (#-d/9R ). In the dipole approximation the
set of equations for s Bnctions f,, and E is

Ot - s O at Pas s
o1 +(I" aR)+("' ar)‘( o ap)
AN e _
te, (1 BR) (E aﬂ)+ea (E(R, £ Bp) 0.
(20.8)
div BE(R, ) = —4ren (g“'fTﬂb)dSH dr d*p
= —4x div P(R, 1). (20.9)

Here P(R, ?) is the polarization vector.
In the quantum case, instead of (20.1), we use the function

1

N = Gy

1 ]
J. i) (R-;—Ehﬁ, r+ 5%’
R _% 19, —é—ﬁr) =@ M—ite-p 39 BBy, (20.10)

Here o is the density matrix operator.
If the spectrum corresponding to the relative motion of the
particles in the pairs is discrete, instead of (20.10) we use the

function

NyR, I, v,p,0) =Y NSRBI, 1) (s p), (20.11)
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where
1 1 1
Nnm R: H: )= ———00H —_ I

X e=(6-1D) 4%,

fumlr, D) = % f v (r-——;—ﬁr)

X (’"*é ﬁ’) eiw?) g ¢

and the p, are eigenfunctions of the operator H = pH%/2u-+

+o((r ).
The equation for the function N¥(R, IT, 1) is

anlab) dlab
nm /’- Lclied
TR (T R

1
) = g EED VD
-t (v (v (R+ L 28\ now,
2P | o | T ) km (B, 117)
— N R, IT) U (R—% ﬁﬂ)) @8- TT—IT") 439 4317

(20.12)
where

US(R) = f 1) U R, 1) p, () d°r

U(—J(R’g«)l-UM(R_l_ My N _pm(p__Ta .\
M+ my ny+my

The equation for the field EM = —9UM/3R is the same as
before.

If the motion as regards R and I7 can be deemed to be classi-
cal and we use the dipole approximation, eqn. (20.12) simplifies to

INLaD) . (V_ ONLab ) 1

— ) = — (o
Bt 3R ) T (E, Em)N,,mb)
_& Niabd {ab)
73 ; ((rnk km (Rs ﬂ)-N,,k ‘?'km) . E(R, r))
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55| (5 tre ER.0)- ol
- (%% : 8% (e E(R, z))” . (20.13)

For taking the transverse field into account, in place of (20.3},
the complete set of Lorentz equations is used. The microscopic
current in this case is given by the expression

Mg, t) = f (€060 —q,) + €0, 5(g —qs))
* Nabdaq.ﬂ dsqb dapa dapb. (20. ]_4)

The methods propounded in the foregoing sections can be used
also for the set of microscopic equations for the functions N,
and EM. More general kinetic equations are then obtained for
the field function and the distribution function N&(R, IT, 1).
For instance, with a zero average field we get the kinetic equation
NE = 5 N _(IT, ut). The equilibrium solution of this equa-
tion is a Maxwell distribution in 77 and a Boltzmann distribution
inkE,.

With a rapidly varying field we get equations corresponding to
those in § 19, but taking transitions between levels into account.

For simultaneously taking into account “bound” as well as
“free’” charges, the initial equations are the microscopic equations
in a mixed discrete-continuous representation.

To do this we use as the starting set of equations a coupled
set of the equations for four density matrix operators and the
equations for the microscopic field strengths. One of the density
matrices describes free states, a second one bound states, and
two density matrices describe transitions between free and bound
states. To obtain the kinetic equations one could also in this
general case use the methods considered in the preceding sections.
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Chapter VI

Hydrodynamic Description of Processes in a
Plasma

21. Hydrodynamic Equations for a Heavily lonized Plasma
Neglecting Wave Radiation

In the present section the kinetic equations for functions f,,
formed in § 11, are used to derive the hydrodynamic equations.t

Consider a heavily ionized plasma. In the equations for the f,
the collisions between charged and neutral particles can be ne-
glected and therefore one may confine oneself to collisions in
between charged particles. Only elastic collisions are considered
in which the colliding particles retain their kinetic epergy.

The hydrodynamic or gas-dynamic functions could be deter-
mined by means of the functions f (g, p, 1), but it is more con-
venient to use the distribution functions

Fq.p,t) = n.f(q. p, 1) (21.1)
The normalization condition for these functions is
f Flq.p.0)dpdq = N,, (21.2)

where IV, is the total number of particles of component .
Definition of the quantities in the hydrodynamic equations:
The density of the particles of component a is

2alg, ) = J-Fa(q,p, t) d°p, (21.3)
olg, 1) = Za 2.(q> 1)- (21.4)

t See Leontovich (1963), Braginskii (1958), Herdan and Liley (1960),
Gr ad (1949), Klimontovich and Ebeling (1962) and Zhdanov (1962).
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The average velocity of component a is

1
UJfg,t) = . f vF,(q,p, 1) d*p, (21.5)
a
the momentum density of component a is
mae.Us, ‘ (21.6)
the plasma momentum density is
2 M40, Us- 1.7

The deviation of the particle veloc1ty from the average velocity of
component 4 is

dv, =v—-U_; Jav F,d% = 0. (21.8)

The subscript @ of év is omitted whenever practicable.
The kinetic-energy density of component g, not connected with
the motion of this component as a whole, is

2 T2
e 0= | L pap- Tl o [ 50 s,

(21.9)
g, 1) =3 g 1). (21.10)
oxT, = %—sa(q, t) =maf (6? F.d%. (21.11)

The latter relation defines the temperature T, of component a.
pg: 1) = 0a(q ) 2T 1); P = XPa (21.12)

where p, stands for partial pressure and p for the total pressure.
The internal stress tensor is

5:mafév?6v§Fad3 ; G = 3P Pij:ﬂZP?j'

(21.13)
Py = Py—dypa; Py = 2.P5 PE=0 (21.14)

the **viscous’ stress tensor is
8% =m f&v“&v" dve F, d*p. (21.15)
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The contraction of this tepsor determines the thermal flux
vector

So = 5 = m, f Sof(3v P F,d%p, Sy = Y St.
(21.16)

Similarly, one can define still more complex functions which are
moments of velocities of higher order.

All the foregoing functions are functions of the coordinates g
and time t. We shall say that they are hydrodynamic functions.

Thus, by using the functions F (g, p, ¢). one can construct an
infinite number of hydrodynamic functions,

We show that the kinetic equations for the functions f,(q, p, 1}
can be replaced by an infinite set of equations for the simpler
hydrodynamic functions ¢,, U,, T, 7, . ..

Accordingly, we expand the distribution function F (g, p. t).
as a function of p, into a series in three-dimensional Hermite—
Chebyshev polynomials. As the independent variables we take the
components of the dimensionless relative velocity vector

v,
2T\
J(&)
In some formulae we shall omit the subscript @ of & and dv.
We write H}:') 1,(§) for the nth degree Hermite-Chebyshev
polynomial of the three independent variables §;, &, and &;. The
subscripts fy, is, ..., i, assume value I, 2, 3. The nth degree

polynomial is a tensor of nth rank. -
The Hermite—Chebyshev polynomials are defined as follows:

£, = (21.17)

tz 2
e o = ‘
l a1 = 1 2
SE) =(=Dre JE UL, e (21.18)
From this formula, in particular, we find that
H®=1; HWV=E; H(z) = EE.—8,;
=0 (21.19)

I

(3) &
H:;k = srfsjsk—asjsk ;k‘nx 3A;§
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The orthononormality condition of Hermite-Chebyshev poly-
nomials of three variables can be written as

£
oo f & THD OB &) &

= anma‘-:{ vevipyiraeaadn®

Here 6, ,, is the ordinary Kronecker symbol, and

(21.20)

1, if the set iy, ..., i, can be obtained by
Oy, niniii. i = 1 bermutation of the set jy,... j,; 0, if no
such permutation is possible.

The condition (21.20) implies that polynomials of different
degrees are orthogonal. '

We write the expansion of the distribution functions F, = #_ 1,
into Hermite—Chebyshev polynomials as
Fy( S D
D21 = G Ty nl

n=01, ... 0y

Xl g, VHS (D). (21.21)

The vector & is given by (21.17).

By the use of (21.20), we obtain from (21.21) an expression for
the coefficients of the expansion

a (g, 1) = Qi f Flq,py ) H® . (E)dp. (21.22)

‘This formula enables us to establish the conpexion between
these coefficients ag‘?‘f. .4, and the foregoing hydrodynamic func-
tions.

Setting # = 0, 1, 2, 3 in the formula (21.22) and then using the
expressions (21.3-16), we get

40 = 1; (21.23)
ale = 0; (21.29)
oo = (P?;;fap“) _ i_ijf; (21.25)

@Da m _ OUK (21.26)

a5 = 7]
Dy \/(m_a)
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Here and throughout we put 8, = «7, to simplify the notation.
If we substitute the expansion (21.21) into the kinetic equation
and use condition (21.20), we get a set of differential equations
for the functions & ;.
This set is an infinite chain of coupled equations insofar as
coefficients of higher order enter into the equation for the
coefficient &, .

Thus the solution of the set of kinetic equations for the func-
tions f, boils down tc the solution of an infinite chain of equations
for the hydrodynamic functions g,, U,, T, P, Si» - - - » which
depend only on the coordinates and time. Such a set is, naturally,
just as complicated as the initial equations for the distribution
functions. '

To break the chain of equations and thereby obtain a closed
set for a finite number of hydrodynamic functions, one needs to
confine oneself to a coarser description than that obtainable by
using the kinetic equations.

In the derivation of the kinetic equations in § 11 it was shown
that they can be used for describing the processes for which the
distribution functions notably vary during the <“free path time”

1 1

wr e Wy

Ty ™~

and over a distance of the order of the “mean free path”

r
de ~ Ly
€

Thus the main restriction on the functions f,(q, p, ¢) is that
they vary little during time of the order of the natural-oscillation
period and over distances of the order of the Debye radius.

If the characteristic time T is much greater than the relaxation
time 7., and the characteristic distance L is much greater than 4,
further “coarsening” of the description of the processes in a
plasma becomes possible.

In fact, provided that

T>1, L= (21.27)
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the processes for which the distribution functions and hydro-
dynamic functions vary little during the relaxation time 7, over
the mean free path 2. can be isolated.

So we introduce the small parameter

94
oq

IR (21.28)

#oo A

where A(g, ¢) is an arbitrary hydrodynamic function.
If the characteristic time interval is
ro L,
vr
where v is the average thermal velocity, the parameter u charac-
terizes the slowness of the variation of the hydrodynamic func-
tions in time.

By virtue of the smallness of p, a closed set of equations can be
found for the functions g,, U?, T,, i.e. the hydrodynamic equa-
tions. )

The changeover to hydrodynamic equations may be made by
the Chapman-Enskog method [Braginskii, 1958; Herdan and
Liley, 1960; Grad, 1949; Bogolyubov, 1962].

Another method of forming the hydrodynamic equations has
been propounded by Grad (1949).

According to him, the state of each component of a plasma is
determined by its density o,, average velocity U,, temperature
T,, the viscous stress tensor p; and the thermal flux vector S°.
Since the tensor pf is symmetric and the sum of its diagonal terms
is zero, it is defined by five hydrodynamic functions.

Thus the state of each component is determined by defining
thirteen hydrodynamic functions. All the other hydrodynamic
functions are expressed in terms of these thirteen.

For example, the tensor 57, is

1
Sy = ?(6ijSk+6:‘ij+ 8uiSD)s  Sike = Sk- (21.29)
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Comparing this with (21.26),

(3a —

G =gy
5P, \/ (Z)

Thus the first four coefficients of the expansion (21.21) are deter-
mined in this approximation by the formulae (21.23-25, 30), and
the others are assumed to be zero, i.e.

(85Sk+ 81S; + 0rS)- (21.30)

al L {g.0)=0, n=4 (21.31)
Using the formulae (21.30, 19),

Loy = —1
' 10p, /( )
VA

Having regard to (21.31, 32), from (21.21) in the “thirteen-
moment approximation” the expression for the function F, is:

- Pa ma(82,)"
Flq.p, 1) = Camgp T, eXp (—""'—23:"'")

a 2
o { PO PO (ma(éva) _1) Sq}.

FGEORS (21.32)

2p.0, “V 7 2p.8, \ 56, !
(21.33)

The part played by the terms discarded in the expansion (21.21)
can only be assessed qualitatively (see Grad, 1949), which is the
method’s main drawback.

We use the kinetic equations (11.46) to find the equations for
the functions g,, U,, T, {or p,), p§ and S8° Here we multiply
(11.46) by n,¢.(p) and then integrate over p.

We introduce the notation

Line@} = . | 7.0) 540,20 8. (21.34)

Putting successively ¢, = 1, p and p?/2m,, the balance equa-
tions for the number of particles, the momentum density and the
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kinetic energy density are:

do, ) A
?T+6Egpg_o, (21.35)
aanaU?_i_ BmaganUj = _i&_ ap?j

or 3q_,- 3q,- Bq,--

+4aE; + [joABli+ L{n.pi}; (21.36)

8§ mlU; 3 __ 9 (.  mU;
Bt{ga 7 +§9a3a}——a—q:{Ukm2

ol ol h sl = (GBI {my 2
Dl 2P k+§' k —'(J' )+ a nair—ﬁ: H
(21.37)

here g, and j, are the charge density and current density of
component d.
Equations (21.36, 37) contain four, as yet, unknown functions:

n,p*
7%, SE, L{npl), I, { z}f }

The latter two functions enter into the balance equations of
the momentum and of the energy of the individual components.

In the equations of the momentum and energy of all the plasma,
obtained from (21.36, 37) by summation over a, the collision
integrals are discarded since by virtue of the laws of the conserva-
tion of the momentum and energy of charged particles (see eqns.
(11.13, 14)

o1 P | _
;Ia{n,,p}—o, gfa {W}"O' (21.38)

Using (21.35, 36) we eliminate from (2!.37) the translational
kinetic energy of component & as a whole. We thus obtain the
following equation for the temperature 6,:

a8, a6, oug 2 LAY
[jaZ2a e it 3 LYik, Y~k
B UGy, T3 5‘4;; e 04:
1 a8t .
e Sor 32, = 3 Ia{nama(é'vn) 1 (21.39)
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In forming this equation it is taken into account that
Linma?) =20 {nam (U, - ©)} = L{ngm(3v,)%},

since I,,{n,,ma} = 0 by virtue of the law of the conservation of
the number of particles of each component.

Consider now the equations for the stress tensor P and the
vector S°.

We multiply eqn. (11.46) by n,mvw; and then integrate over
p. As a result we obtain an equation describing the variation
with time of the function

m, o, U U+ PF;.
Using eqns. (21.35, 36) to eliminate from this equation the
derivative d(m,0,U7U;)/dt, the equation for the tensor Fj 1s

) aus Uy | HPLUR) | 0
a P 17 1
TR R rRRE O PRI TR
= I{n,m,0vpév3}. (21.40)
We avail ourselves of the smallness of parameter g, as defined
by (21.28).
We make the assumption (justified by the result) that
Pfs S5~ e (21.41)

Hence (21.21)in the zeroth approximationin g vields the follow-
ing expression for the functions F,:
0 _ Ca _ m(8v,)?
F = ol exp ( ) (21.42)
Thus, inthe zeroth approximation, the functions F, are Maxwell
distributions in which the functions g,, U/, and 6, depend on
the coordinates and time (local Maxwell distributions).
From (21.13-16) we have in the zeroth approximation in u
r5=0, Sf=0. (21.43)
Therefore in the first approximation in u the terms in (21.36,
37, 39) containing the functions p; and S7, can be discarded.
Equation (21.39) then becomes

00, .2, Vg _ 1 e
-+ Uka_qk-;_? 8, .= 30 L{mn(dv,)).  (21.44)

251



Non-equilibrium Processes in a Plasma

. We write out eqn. (21.40) in the same approximation. Consider-
ing that P = -jp“ owing to (21.43), we obtain
A 2 als
ot +Bq (PaUD+3 73, )5
Uy aUy 2 QU

+ = 3
P(aq,J’ag, é,jaq) IL{nm,dvidva}.
(21.45)
Using the equation of state p, = g,0, and also the equation
of continnity, the first term in (21.45) becomes

99, .. 98, 2, Uw
ot 2,

Subtracting from (21.45) eqn. (21.44), multiplied by ¢,6
cet the equation

if?

are aUﬂ ol
(ag,- 00 6” 94, )
~1 {nama (avgafug—?a,,(aya)ﬁ)}. (21.46)

Similarly, we transform the equation for the thermal flux vector
8% We multiply the kinetic equation (11.46) by nm,w,»* and
then integrate over p. By means of (21.35, 36) we eliminate the
time derivatives of the functions g, and Uf. Leaving the first-
order terms in u, we get the equation

5 2o 00

= L{n.m, 8u(80,)" — 56,80g). (21.47)

Substituting the expression (21.33) into the right-hand sides of
(21.46, 47), the viscous stress tensor p§; and thermal flux vector
S% can be expressed in terms of the functions o,, U, and 8,,
and thus expressions can be found for pf and 8% in the first
approximation in u.

Using the resulting expressions for p7 and 89 we can find a
closed set of equations for g,, U, and 6,—the set of hydreo-
dynamic equations.

For this purpose we substitute the expression (21.33) for the
distribution function F, into the collision integrals I, {...} on
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the right-hand sides of (21.36, 37, 39, 46 and 47) and then carry
out integration over the impulses p and p’.

We take the collision integral in the kinetic equation (11.46) in
Landau’s approximation when the tensor Q“b is determined by
(11.28) or (11.40). The collision integral is thus taken for a homo-
geneous plasma, i.e. the second term of (11.56) is neglected. The
part played by this term will be elucidated below.

Substituting the right-hand side of (11.4) into (21.34) and then
integrating by parts, we obtain

L@} = ~S s | g0 {57
'9f Lot } Pp &', (21.48)

If this expression is summed over @ and then symmetrised, it
coincides with (11.13). Here the subscripts « and § take the place
of the i and j over which the summation is carried out.

For the tensor Q% we use (11.28) or (11.40).

To show how the integrals (21.48) are evaluated, let us consider
the collision integral on the right-hand side of (21.36).

We substitute into (21.48) @, = p; and also the expression
{11.28} for Con51denng that gp;/dp, = 0,,, we have

Linp) = ~23 et f s 5(-)—e-e)

oF, oF, q. 93 13
X{&p F,— aéFa}dkdpdp, (21.49)
bearing in mind that F, = n,f;.

We integrate firstly over the momenta. The direction of the
vector ke is taken || x. In (21.49) the functions F, and F, willthen be
differentiated only with Tespect to p, and p;and soit is convenient
to integrate first over p_, p,, Das p}',. In this case the following
functions appear

Fp,) = jFa@) dp,dp.; Fyp)= sz,(p’) dp,dp..

To determine them, it is necessary to integrate the expressions
(21.33) over p, and p,.
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" From (21.33) we get

ma(f04)3 a

S 14 m, 62

10p.8,

m,(Bv3)?
x (meeet —3)}. (21.50)
I
We substitute this result into formula (21.49) and differentiate
with respect to p, and p,, and then, using the property of the
function é(kv,—kv,) = 8(v,—v.)/k, we integrate over p,.

The resulting expression (omitting the subscript x of » and U)

is:
e2etp, ., k2
Lin,p} = ¥ "2t \/(’g ';;b) f do k75

€a
Folbx) = o g y5 ©

b i
g(B0R  my(Oug)? a
(L (o ) 5
Ba ﬂb lOp‘,@a
2 3 1, (80,)°
o (ml8v,) _1) Set ( 59U _1)5@ ., (2151
( 8, P 10pgB, Oy ‘ ( )

where dv, = v—UZ and &v, = v~ U2,

The calculations are now continued on the assumption that the
plasma comnsists of two components, viz. electrons and ions. The
suffixes @ and & in this case can only be 1 or 2. The index 1 is
used for electrons, and 2 for ions.

It is comsidered that the electron mass is much less than the ion
mass, 1.e. m; << Mo,

We assume that the relative velocity of the electrons and ions
is small compared with the thermal velocity of the ions, i.e.

U= Uy < \/(i—t) . (21.52)

Moreover,
81'—82 <& 61, 82, (21.53)
and so we can neglect the terms
(61—8,) e (6.—6y) . (_ﬂ_ Uz) se;

6, o, 2 \7g, 8,
U Uy,
( 7. 8—2) 5 (21.54)
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We introduce into the integral the variable of integration
dv, = y in lieu of ». Considering that dvy = dv, —(U,—U,),, we
obtain ' '

b0f = S0 —200y(U;— Up),+ (U~ Uo);
r Sud—280,(U;— Uy),- (21.55)

We substitute this expression into (21.51) and then, considering
that m, < m,, and also having regard to (21.52-54), for a =1
we get

e2e2 Lt _ﬂ# I3
Limp) =——2%12 2818 \/(__6:9—2—) fd% dye ** %

T
(Uy—Us); 3 myy* _
X{ B, 10p,0, ( 5, I)S} ’

In this expression we integrate over y and k, allowing for
the fact that in Landau’s approximation the integration over the
magnitude of vector & is to be within the limits

LI Y (21.56)
Td Fmin
We then get
3
Lingmw) = =27 (U, U)+2L 81, (21.57)
f1a 100,
Here
3/
ty = 3V(m,)0s" _ (21.58)
. 44/(27) gyele} In -2
Fmin

It is readily verifiable that the collision integral in the equation
of motion of the ions is

Iz{nzmz'v} = —Il{nlml'v}- (21.59)
This relation is in accord with the law of the conservation of
the total momentum of the electrons and ions.

Expressions can be found in the same way for the collision
integrals in eqns. (21.39, 46 and 47).
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The integrals in the equations for 6; and #, can be written in
the form ‘

1
Il{mlnl(avl)z} = —6o; 2—; . E (8,—6,),

I{mony(8v,)%) = —~ I {m,n,(6v,)%). (21.60)

The latter relation is in accord with the law of the conservation
of the total kinetic energy of the electrons and ions.

The collision integrals in eqns. (21.46, 47) on the conditions
(21.52-54) are linear functions of the tensor pf and the vector
S? respectively. By these equations one can therefore express the
functions pj; and 57 in terms of the functions g, U? and 6,
and also the derivatives of these functions with respect to the co-
ordinates.

By evaluating the integral on the right-hand side of (21.46), for
the tensor pj of the electrons and ions we have:

oS V@t OV OV} 2, OV
p'! 6 t12+'\/(_2) tll ( 3(], Bq, 3 ¥ Hgk) i
(21.61)

5ps oUE QU2 2 QU

2 = — ] —_—t s Yk
ph= - V@) rzz( T et X 3%). (21.62)

Evaluating the integral on the right-hand side of (21.47), for
the thermal flux vector S° of each component we get

St=_P1, _BvVQtute 0%

my 8, +13/2)1y; oq

72 15/@ty
+(U— T3 0,8, Btat 13/ 1y (21.63)

S2 = P2254/ (2t ?f__g

—_— = .

s T (21.64)

The expressions (21.61-64) determine the coefficients of “vis-
cosity” and thermal conductivity of the electrons and ions.

Note that the thermal flux vector in an electron—ion plasma is
determined not only by the temperature gradient, but depends
also on the relative velocity of the electrons and ions. '
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In turn the friction coefficient in the equations of motion (21.36)
which is given by the expressions (21.57-59), is determined not
only by the relative velocity, but also by the temperature gradient,
in the presence of which the so-called thermoforce arises.

If we substitute the expressions (21.57, 59-64) into egns.
(21.36, 39) we obtain a set of hydrodynamic equations for a two-
component electron—ion plasma. The electric and magnetic field
strengths enter into eqns. (21.36) and so eqns. (21.35, 36 and 39)
for the functions g,, U, and 8, must be solved simultaneously
with the Maxwell equations.

Under certain conditions this set can be simplified as a set of
equations in magnetohydrodynamics (see § 3). This is possible
for sufficiently slow processes when the inertia of the electrons is
negligible, but provided there is sufficient homogeneity so that
the space charge is negligible. Under these conditions a plasma
can be regarded as a single-component conducting medium.

In forming the hydrodynamic equations use was made of the
kinetic equations in Landau’s approximation.

These equations can be bettered in two respects:

(1) the more precise expression (11.4, 5) can be used for the
collision integral;

(2) the collision integral (11.56) in which the plasma’s spatial
inhomogeneity is taken into account can be used.

In the hydrodynamic equations this permits corrections to the
equation of state, equation of emergy and so on, owing to the
interaction of charged particles.

For instance, if the conditions {(21.52, 33) are fuifilled, the
expression for the pressure of component a is

e
Pa= 0, [BG_E] -

The second term in this expression determines a correction to
the equation of state of an ideal gas. This correction is small
since the quantity

2 3
e ¥
o [ = ]
rdﬂ Tq
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The corrections to the other thermodynamic functions are of
the same order.

If the more precise kinetic equation (11.4, 5) is used, one can
have regard to kinetic coefficients of waves having relaxation
times much less than the first distribution functions (see Leonto-
vich, 1963; Gorbunov and Silin, 1964; Akhiezer, Daneliya and
Tsinzadze, 1964). If waves having relaxation times comparable
with the relaxation times of the particle distribution functions
are excited in a plasma, to form the hydrodynamic equations it
Is mecessary to use the set of equations for the particle distribution
function and the spectral function of the field. It is to th1s that the
mext section is devoted.

22. Taking Plasma Wave Radiation into Account in the Hydro-
dynamic Equationst

To discover the changes in the hydrodynamic equations when
plasma wave radiation is taken into account, consider the case of
a homogeneous and isotropic plasma.

As the initial equations we use the set (17.4) and (16.28) for
the functions f, and (E.8E), ,, or the simpler set (17.4),
(16.37) and (17.12). '

As in § 21, we tepresent the function £, as a series in Hermite
polynomials. In the isotropic case when the functions £, depend
only on the absolute value of the momentum, only terms with
even polynomials remain in the expansion (21.21).

We consider the simplest approximation when the first term
alone remains in (21.21). Considering that in the isotropic case
the average velocities U, are zero, we obtain the expression

JoP, 1)=Qmum=T,) =" exp ( - 2mp ;T ) . (22.1)

We thus assume that the functions £, are Maxwell distribution
functions with a different temperature for each component of the
plasma.

T Klimontovich (1963).
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In this approximation the hydrodynamic equations of § 21,
neglecting the radiation, are
00, _ oU, _ .. oT.—T;) _
ot 0, T—'On T_ Zap(Ta—T5)-
(22.2)

These equations imply that in the absence of radiation only heat
transfer takes place, leading to an equalization of the tempera-
tures of the charged particles of the different components of the
plasma. If the temperatures of the components are identical, all
the hydrodynamic functions in this approximation are constant.

Corresponding equations will be obtained when the radia-
tion is considered. Consider the simplest case when the tempera-
tures of the components are identical, i.e. T, = T.

We shall show that when the radiation is taken into account,
the temperature of the particles can vary owing to heat exchange
with the radiation.

We multiply equation (17.4) by n,p*/2m,, integrate over p and
then sum over a. Using the definition of the particle temperature

P )
nﬂfzmafﬂdp QGZMT

after integration by parts we obtain the equation

= —Zf {'u DE; 3fa+@ A‘:j;} d*p;

- = Z QEZ' (22_3)1

a

According to (17.5, 6) the coefficients Dj and 47 each consist
of two parts which relate respectively to the collision region and
the radiation region.

From (11.13) it follows that collisions in a homogeneous
plasma do not alter the total kinetic energy of charged particles
and so in (22.3) one only needs to take into account the contri-
bution from the radiation region.

Consider the first term on the right-hand side of (22.3). We
substitute into it the expressions (17.7) and (22.1). Using the
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expressions for the real and imaginary parts of &(w, k):

o e
; 419 ", a()_ (ng)

s,,=_§4—1:enJ'5w & 'v))( Bfa) *p,

we obtain for the first term on the right-hand side of (22.3)

1
) @J. {wﬁ”(CO, EY(OE-SE)2Y,

e'(w, k) = d*p;

1 9 , o
+ 3350 [w(e'(w, k)— 1)]3? (6E - 6E)m,k',} deo d°le;

(22.4)

in the second term it is taken into account that

4:rr:en J'(k ”)3 (—m'":(“l}hT))(’l 3_::) p

= 5%)— (&' (e, B)—1)].

We transform the second term on the right-hand side of (22.3).
We substitute into it the expressions (17.8) and (22.1) and then
use the formula (17.3) and, after a simple transformation, we
obtain the expression

z

v) S(w—{k-v)) sign % 8(e'(ew, ))

fa d3p dey d%k.

."IE

Using the definition of &'’{w, k), we write this expression as

—% f (o, k) sign-g-%é(e’(w, K)) do k. (22.5)

The sum of the expressions {22.4, 5) determines the right-hand
side of (22.3). To simplify it, consider eqn. (16.28). We substitute
into it the expressions (22.1) and then, using the definition of

ﬁ(()
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¢''(vv, k), this equation becomes
2 6By, , = ~ 2w, W) (OB - SEN.,
+ 167 Eﬂ%?ﬁ))— & (w, B) »T.
w —_—
dw

The last term can be transformed by using the definition of the

damping decrement (16.22).
We thus get the following equation for the spectral function

2 OB -0B)34,, = =2/, ) {OB 0B,

872

gi (£'(w, ) /T} (22.6)

This equation in the equilibrium case yields an expression for
the spectral function which coincides with {17.15).

We now trapsform the right-hand side of (22.3), which is
determined by the sum of the expressions (22.4, 5).

We add together the expressions (22.4, 5) and then eliminate
the time derivative d(8E-8E), . /0t by means of (22.6).

The resulting equation for the particle temperature T is

3 a/T (OE - 0E)u,
gwaj( L){ 82t

FT 8z
1. 0 o N 27
= sign == 8(e'(w, 1) ,cr} de> k. (22.7)

Equations (22.6, 7) form a closed set for the functions 7" and
(SE-8E)™9, ,. This set describes, in the hydrodynamic approxi-
mation, the energy exchange with the radiation and charged
particles in a homogeneous and isotropic plasma.

So the law of the conservation of the total energy of the plasma

1s

3 1 (6F - 6E)24, s
EQ/'T-I_ Tt J - deo A2k (22.8})

This expression is a special case of the more general expression
(17.17).
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In the equilibrium case the spectral function (OE-SE), , is
determined by the formula (17.15).

In the two-root approximation, instead of (22.6, 7), a simpler
set of equations is obtained for 7" and (8E- SE)RS.

Using the notation of (17.14) for the radiation temperature,
this set becomes

3 oxT 1 0 3.,

305 = 5 | e BTR-T) % (22.9)
rad

a:;,; = —2(w,, k) (T4—T). (22.10)

Clearly, equilibrium is attained when the particle temperature
is equal to the radiation temperature, i.e. 7 = T and then the
law of the conservation of energy can be written as

3 1 2T
EQAT—}—@— J‘Td E = const. (22.11)

In this example the plasma is stable in the sense that the
damping decrement is constant for all values of T.

To describe the development of turbulence within the frame-
work of the hydrodynamic equations, more terms need to be
retained in the Hermite polynomial expansion.

Unless the growth of instability is confined to variation of the
fu» €0qns. (16.28) and (17.4) must be supplemented by terms which
have regard to higher moments. The right-hand sides of eqns,
(22.9, 10) then contain supplementary terms which are non-
linear in 779, For this the equations of § 18 are used.

The foregoing hydrodynamic equations can easily be general-
ized to the case of a weakly inhomogeneous plasma.

23. Magnetohydrodynamic Equations for a Non-isothermic
Plasma without “Collisions”’

The hbydrodynamic equations of §§ 21 and 22 are unsuitable if
the dimensions of the system are less than the mean free path and
if the characteristic times are less than the free path time,

In §§ 6-9 it was shown that under these conditions the Processes
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in a plasma can be described by a set of self-consistent equa-
tions—the equations for the first moments.

The set of self-consistent equations is very complicated, so it
is important to discover the conditions under which this set can
be replaced by a set of simpler hydrodynamic equations.

In the present section we show how to describe the processes
in a strongly non-isothermic plasma, when T, » T;, by hydro-
dynamic equations which differ in the dissipative terms from
their conventional form (see Klimontovich and Silin, 1961; and
Lovetskii and Rukhadze, 1962).

In a strongly non-isothermic plasma in many cases one can
neglect the thermal motion of the ions, then in the absence of
collisions for describing their motion one can use the equation of
continuity

do (0 _
E+(a_q_ gu)_o (23.1)

and Newton’s equation

.
mo (aa—f+(U-3%) U) =~ g (E+%[U/\B]), 23.2)
where o is density, g; is the charge density of the ions, U] is the
velocity of the ions, and E and B the electric and magnetic field
strengths. The suffix i of ¢ and U is omitted.

To describe the motion of electrons in a non-isothermic plasma,
one may use the self-consistent field kinetic equation

% (o L) s ({E +%rw\m}- ) =0 @

ot T\ g op
For frequencies o which are low in comparison with the ion
Larmor frequency (in the frame of reference linked with the ions),

from the equation (23.2), neglecting terms of second order of
smallness, we find that

E = —% [UAB]. (23.4)

263



Non-equilibrium Processes in a Plasma

Substituting this expression for E into the fleld eguation
ccurl B 5 —aB/dt, we get

aai? = curl [UAB] (23.5)
Equation (23.5) is one of the set of magnetohydrodynamic equa-
tions for a plasma. Owing to neglecting the collisions the conduc-

tivity turns out to be infinite. The second equation is
divB = 0. (23.6)

If the ion plasma frequency is much greater than the particular
frequency w, the field equations in which the displacement current
is negligible become

. c’ ;

where j = qU+e f vf, d°p is the current density, and g = g;

+e f f. d®p is the charge density of the plasma.

To form a closed set of magnetohydrodynamic equations, it is
necessary, using eqns. (23.3, 7), to define the electric field in terms
of the electron characteristics and then eliminate it from egn.
(23.2).

We shall do this first neglecting dissipative processes. If the
characteristic magnetohydrodynamic velocities are much Jess than
the thermal velocities of the electrons [ ¥y, = +/(xT,/m)], then
in deriving the hydrodynamic equation without dissipative terms
in the kinetic equation (23.3) for the electrons, the term 4f,/d¢ can
be neglected. This implies that one is always able to establish a
stationary distribution for the electrons.

We put (g, ) for the electric potential, and in terms of the
electron drift velocity we try to satisfy (23.3) by a solution of the
kind

fo=F (etp(q, O+ mfo- U, 2) : (23.8)

where Fis an arbitrary function. As a special case, for mstance
F may be a Maxwell-Boltzmann distribution.
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It is required to find an expression for E as a function of g, T,
U, and B, for which the expression (23.8) satisfies eqn. (23.3).
Accordmgly, we multiply eqn. (23.3) for 8f,/0t = 0 by v; and then
integrate over the momenta. As a result we obtain the transport
equation for the density and momentum of electrons

me- [ vontidp = 0. B+ S10ABL). @39)
k
Using the expression (23.8), we get

[esr=2lousnZl  @o

Here

=T 1 o
= [fops 2Z= 5 [e-vriap

Substituting the expression (23.10) into eqn. (23.9) and using the

equation of continuity (—Q- (g-a— [ 5] )) = 0, we get
oq \e

me(Ue‘a—Z")Ue-i-; (qexT>—e(E+ (0.5
(23.11)

Comparing eqns. (23.11) and (23.2), we see that in calculating
the electric field strength E, owing to the smallness of the mass
ratio m,/m;, we can neglect the first term in (23.11). The required
expression for E therefore is

1 2
= — ——— - —_—— B 23.12
el et (genT) [D AB]. ( )

Substituting this expression into eqn. (23.2) and considering
that, in accordance with (23.7), g;U+¢. U, = ccurl B and
g. = —g; = —e,0, the magnetohydrodynamic equation of mo-
tion neglecting dissipative processes is

oU D\t A
W+(U BQ)U e 9q 4'69 :

B/ \curIB]
(23.13)

where v, = 4/(xT/m) is the velocity of sound in a plasma and
T = constant. Equations (23.1, 13, 5 and 6) are also a closed set
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of magnetohydrodynamic equations coinciding with the corre-
sponding set of equations for an ideal fiuid if the pressure is
p = myie.

To take into account the dissipative processes which take place
in a plasma without collisions, we proceed as follows.

Assuming that the dissipative terms are small, for their deter-
mination one can use the solution of eqn. (23.3) for the distribu-
tion function £, of the electrons in the linear approximation.

Such a solution was obtained in § 9.

Using the expression (9.68) for the electron current, we express

E in terms of §,. We then get

391

emB(q, 1) = —mp?-—= " 3q

)
? [JeABD]','Fdiss' (23'14)

Here g, = f fy d®p is the non-equilibrium addition to the electron

density, B, is the external magnetic field, and Fy.. is the
“density” of the force due to the dissipative processes (see below):

F giss = mpno? {(bu (bo . BZ) [bu/\ [bo/\ ;I_IH)
d 411 9
% (bo--;ﬁ) boj—[bo/\[bo/\%—“a—qj}
><f Pqq—qYUlq’, 1), by = By/B,. (23.15)

In this expression
1 . 7T 1
r) = —— | (k) eitkr) g8 = ) e,
Q( ) (27?-’)3f ( )e ¥, T(L) \/(ZHT) !(bg'k)|
(23.16)
From the expressions (23.15, 16) it follows that the dissipative
force is proportional to the square root of the mass ratio m i
The expression (23.14) without the term Fy in the linear
approximation coincides with (23.12) and therefore by using the
linear approximation for calenlating F s, the expression (23.14)
can be wrilten as

.0 1 .
qiE = ‘_‘lnip;“ga"'? DEAB]-'_FdiSS‘
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Substituting this expression into (23.2) and considering that
c
J=j.+qU= chrlB,

we get in lieu of (23.13) the equation

15 0 — _?12._3_9_ 1 B Acurl B]
5+ (Uag) U !

mlnl Fdxss
It is this equation and eqas. (22.1, 5 and 6) for a given tempera.t-
ture T, which are the required set of magnetohydrodynamic
equations for a plasma without collisions. .

These equations differ from the conventional equations of
magnetobydrodynamics (see § 3) in that now the dissipative force
is of a different nature. The dissipation here is due to the absorp-
tion of magnetosonic waves by the electrons of the plasma. Sc? th.e
dissipative force Fy, is non-local, ie. at the point ¢ it is
determined by the values of the velocity U{q’, t) in the domain
of space as a whole, including the point q.

For B = 0, egn. (23.16) simplifies to
oU . 0 o 2 dp

. S W
ot ( dQ) e dq

+u%— f Q°(q—q"divUig', t)d*q’ (23.17)

5 aq
The kernel Q° differs from Q (see 23.16) in the replacement of

This equation, together with the equation of continuity (23.1)
for a given electron temperature, forms a closed set. The kernel
0, or Q° in the absence of the magnetic field, slowly decreases
with increasing r. This is due to the fact that the integrand has
singularities if & = 0, in conpexion with the fact that in the case
un&er consideration the characteristic dimensions of the spatial
inhomogeneities are small compared with the mean free path.

For distances r comparable with, or greater than, the mean free
path 4, in lieu of the expression for O one can use the approximate
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expression

eitem), (23.18)

mmy
k- by)?
[y
where » is the collision frequency.
For the one-dimensional case when the O depends on the co-
ordinate x and on 2, the kernel Q needs to be integrated over y
and z. In this case, in lieu of the expression for O, we get

Q(x)=WJbloer°(llboxt) :=2_\/(%). (23.19)

In the absence of the magnetic field the 1/|5,, | in this expression
is to be replaced by unity. The K is a MacDonald function.

Let us comsider the possibility of stationary shock waves exist-
ing in a plasma without collisions. We begin with the case B= 0.

It suffices to consider eqns. (23.1 and 17) in the one-dimensional
case.

We introduce a frame of reference fixed to the surface of the
shock discontinuity, and the x-direction is perpendicular to this
surface. Using eqns. (23.1, 17) we find the continuity conditions
of the flux of matter and the momentum flux on the surface of
discontinuity. Putting oU = j, and eliminating ¢ from these
continuity conditions, the continuity condition of the momentum
density flux is the integral equation

AN = Xx—x
(U+?)J0—“’i’590£mKo(——f i )

dU(‘c)
dx’

dx' = Cjg, (23.20)

where
a = +/(ume{2:T).
We introduce the constant U~ and then write C as U/ — 42 U,
Equation (23.20) then becomes
_ ofl 1 avepe = jx—x'|
U-U 2 e | = —22 _—_
( )_IL'?’S(U U—) ﬂjﬂ J;mKO( l )
o AU
— dx’,
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Equation (23.21) is satisfied by definite constant values of the
velocity U. To determine these constant values, egn. (23.21)
yields the equation

1 1
i 2 e} = 3.22
(U=-U-)+2 (U U_) 0, 23.22)
wheice we get two constant values for U:
1}2

= [/ =5 +
UU,UU_U

Both values are the same if U~ =

To answer the question whether shock waves can exist in a
plasma, one has to consider the possibility of a solution of eqn.
(23.21) which for x= 4= e gives U* and U~ with Ut s U~.

From (23.21) it follows that this solution exists whenever the
transition from x= + o to x= — e is such that U(x, 1) varies
little over distances of the order of the mean free path. In fact,
in this case the dU/dx can be taken outside the integral and then
the integral equation in the first approximation becomes the dif-
ferential equation

U—U=+0? (

! 1) a1 B0 U (23.23)

U U- Jo dx’

This equation has a solution which is equal to Ut and U~
for x=1 e, and then for the solution’s stability it is necessary
that U~ >, and U™ <u,: the width of the transitional region is
determined by the mean free path. In our approximation this case
is analogous to that considered in gas dynamics.

From (23.21) it follows that no statiomary shock wave can
exist in a plasma in which the transition from x= — oo to x= -+
is much greater than the mean free path, i.e. under conditions
when the collisions can be neglected.

In fact, in this case, supposing that the transition fromx= — oo
t0 X = + <o takes place near x,, eqn. (23.21) can be written approxi-
mately as follows:

. 1 — (pr— prey @Us00
U—U—+v (?‘_U‘_“) = U-rn e

x K, (—]i;x—"l) . (23.24)
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Since the right-hand side is also non-zero for X—Xg~ A, the as-
sumption made in forming (23.24) is not justified.

Thus no stationary shock waves exist in a plasma with width

" much less than the mean free path.

Recapitulating, the conditions under which our magneto-
hydrodynamic conditions are valid, are:

(1) Mean free path infinitely large:

(2) Plasma highly nom-isothermic. Zero ion thermal velocity.

(3) Notable variations of the functions o, U and B take place
over distances much greater than the Debye radius, the Larmor
radius and the length c/w, .

In the paper by Lovetskii and Rukhadze (1962) the foregoing
magnetohydrodynamic equations are supplemented by dissipa-
tive terms taking the ion collisions in the plasma into account.

24. Hydrodynamic Description of Charged Particie Motion
in a Wealdy lonized Plasma

A plasma is deemed to be weakly ionized if the concentration
of the charged particles is so low that the natural oscillation fre-
quency ¢y, of the plasma is less than the frequency v, of colli-
sions between charged particles and neutral atoms:

QJL <van. (24.1)
The subscript @ refers to charged particles, and n to neutral
atoms.

According to (11.42) the collision frequency of the charged
particles in a rarefied plasma is much less than o, s0 (24.1)
implies that in a weakly ionized plasma the frequency v, of
collisions between charged particles and other charged particles
is much less than v, i.e.

Vyp =< V. (24.1a)

If these conditions are fulfilled, the time taken to establish
the local Maxwell distribution for charged particles, which is of
the order of 1/»,,, may be less than that taken to establish the
equilibrium or quasi (local) equilibrium of the correlation func-

tion g,,. Hence, in a weakly ionized plasma (asin § 16) it is impos-
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sible to express the correlation functions in terms of first distri-
bution functions and then obtain closed equations for the
first distribution functions—the kinetic equations for the fune-
tions £,. '

For this reason, for deriving the hydrodynamic equations which
describe the motion of charged particles in a weakly ionized
plasma, one has to use, not kipetic equations, as in § 21, but a
set of equations for the functions frand g, or a corresponding
set of equations for the moments and random functions N,.

Here we give the hydrodynamic equations of the first approxi-
mation {see papers by Klimontovich and Ebeling (1963) and
Falkenhagen and Ebeling (1963) for the derivation].

In forming the equations of the approximation in § 21 for the
functions f, we used the local Maxwell distribution (21.42):

(p—maUalg, N)*
avd? ¢ T aT
najr;z(q: n, E) = HQEQ?T’EHE*T;”; € 2maxT . (242}

Unlike (21.42), here T is the neutral gas temperature and ¥,
is the average velocity of the charged components.

Suppose that the neutral gas temperature is constant and that
the average velocity is zero. We assume also that in the first
approximation the correlation functions 85 g, p, p, 0
can be written in the form

&
_{p—rmaWag. g, 0)t (p—m,Wya, o, )2

_ 7a(q. 4, 1) T BmyaT .

Bap = (4ﬂzmamb(xT)2)°f= e 2 4 >
(24.3)

VarlQ-q', 1) = f L. Qs p. p’, 1) PPp dip’; (24.4)

we= L [ 50 atp
f’ab

1
W; = —f Vg dip dip’. (24.5)
Yab
The function g, is thus determined by the following hydro-
dyramic functions: y,,—the spatial correlation function: and
W?, Wi—the correlation velocities,
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By using the expressions (24.3, 4 and 5), the equations for f,
and g,, provide equations for the functions g,, U,, ¥, W,2, and
we.

We write down first the equations for the functions g, and U,.
For this we use eqn. (5.21) for f, with the right-hand side in the
form (5.18), supplemented by the term

({E-!——[v/\B]} ‘%)

which takes into account the action of the external fields E and B,
and also the term

Van (% . (t:fa)) ; (24

which approximately takes into account the interaction with

neutral atoms.
The equations for the functions ¢, and U, are

Yo , (D -
2 +( g (@U2) =0 @43)

d a arra — L
9f Qa a EaU' UJ - m, aql (anT)

€

L Loy, (E+l [Ua/\B])
m, < ;
_._“Z”b [‘i.L&’y b(%q’, t)dsq'
my g v BQz IQ*Q i i
— Vanla U5 (24.9)

To form equations for the functions y,,, W2 and W%, we use
eqn. (5.35) for the function g, . supplemented by terms analogous
to (24.6 and 7).

The equations for v,, and TV are

Kap (D e\ (2 ) =
f “I"(F(I—'/abwa)'}'(aq.' yabWb)._ 0.

1 9
Wb +. Wb Wb - 2T
at (?ab m) (?ab ) m, aq’ (Vab" )

(24.10)
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€q 1 0.0, @ e,e,
E+— W —_Lale ¢ | G
+ my Vb ( * ¢ IWQAB]); mnn, 9q; lq—q’|
1 eqe,
— . re t da "

- vau?aaWa- (24.11)

The equation for the function Wj is obtained from (24.11)
by the substitution e 25, ¢ 7 q'.

Equations (24.8-11} form a closed set of equations for the
functions g,, U,, ¥ss» W’ and W2.

If the following inequalities are satisfied

0
2 (U) < ru0Usi (W) < v W2 (24.12)

and the terms containing the functions p,U?U? and v,, W?,,
W?, are small, one can eliminate the functions U,, W2, W? from
eqns. (24.8-11) and so obtain a simpler set for the o, and y,,,
which coincides with the corresponding set of equations in the
theory of electrolytes [Klimontovich and Ebeling (1963) and
Falkenhagen and Ebeling (1963)].

Consider two examples.

(1) For a spatially homogeneous electron plasma (g, = n,), in
the absence of externazl fields (E= B=0), and if the conditions
(24.12}) are fulfilled, in licu of the set of egns. (24.8-11) we have
one equation for the spatial correlation function of the electrons

Vel d—q's 1) = peo(T, 1),
P 92 2T 1 2e0?
L4 Ve 4 Pee = (szec_"?g ?ee) - n L a(r),

e or or? m,
(24.13)
where
o = dme’n . xT
Lm0 fa= 4re®n,’

In the eguilibrium case eqn. (24.13) yields an expression for the
Debye correlation function. From (24.13) it follows that the
equilibration time of the Debye function depends on the relation
between w; and »,, and the initial distribution y, (r, ¢ = 0).
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If the condition (24.1) is satisfied and the initial correlation is
non-zero for distances r>r,, the equilibration time is

en 1

)
Tl = -@ = v—g; . (24.14)

Alternatively, this may be written as

T, = rg = r—g
Vil
where D= V.4 is the appropriate diffusion coefficient. Hence
T, is of the same order of magnitude as the time required for a
charged particle to diffuse over the distance ra.

(2) We use eqns. (24.8-11) to calculate the conductivity and
diffusion coefficients in a weakly ionized plasma which is in con-
stant electric and magnetic fields.

It is assumed that

Bllz, Ellx, g.=gx), U,=U(x),
T = const, y,, =y, x). (24.15)

On these conditions egns. (24.8, 9) yield the following expres-
sions for the components of the average velocity:

s Pm_ € | _zT dg,
v v2 4+ 02 magal e, “ox ToE
k 2.,
= Imy(k, x)d*l—
~3 | T ImrGn ) Pon2t®
f > Im y,(k, %) d"k} (24.16)
U= Do pa___ ol s tmvi, ) d°R,
P Ve 5 20mgvgep, ) RE AN
(24.17)
. — _ €., - 3
Ue ey J' 75 Im yo(k, %) &k, (24.18)

where @, = e _B/m_c is Larmor’s frequency and y,(k, x) = Z e,

X 7.5, x) is the spatial Fourier component of the corre]atlon

function.
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Without the correlation (y,, =0), eqn. (24.16) yields o .well-
known expression for the diffusion and conductivity coefllcicnts.

_ ”Tvan aea an 24.[9)
D= = mpnim

In having regard to the correlation in these expressivis one
needs to find, using eqns. (24.10, 11), the non-equilibrivm addi-
tion to the Debye function due to the action of the external liclds
and the presence of the concentration gradient.

Performing the appropriate calculations (see Klimontovich and
Ebeling, 1963; and Falkenhagen and Ebeling, 1963), we pet the
lollowing expressions for the diffusion coefficient of the clectrons:

ZT _ '\/2 82 . - U.
De = PR (l 6(1++/2) 'r,,x'r)’ it B 14.20)
(24,

D %Iy, 1L V2 0, &
¢ m,gg( 8 I+4++42 o, r,,/r)

if Q> ,,. (24.21)

The second terms in the brackets determire the additums due
to the correlation of the charged particles. In a strong magnetic
ficld the relative addition is greater than for B = 0 by a fuctor
ol 2/v,,. Here the supplementary term depends on the mugnctic
ficld as 1/B, i.e. it is less than the first term, which is determined
by the collisions and so depends on the field as 1/5°.

If condition (24.1) is replaced by the less rigorous condition
(24.1a), so permitting the equations to hold also for vy, = e
(though ewp ~ v, =< »_), the second term in (24.21) way be
comparable with the first.

In the papers by Klimontovich and Ebeling (1963) awl lal-
kenhagen and Ebeling (1963) eqns. (24.8-11) have been wlved
{or variable external fields also.

It must be emphasized that the. substantiation of approxin-
tion (24.3), and thus of eqns. (24.8-11) too, still remains a0 open
question.

The results of the present section are given to illustiile the
varicty of possibilities for hydrodynamic descriptions of prowesses
in a plasma.
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In conclusion, note that in calculating the kinetic coefficients
by the equations of §§ 16-18 (or by more gereral equations
taking into account higher moments) the coefficients of diffusion,
electrical conductivity, viscosity, and so forth, can each be re-
presented in two parts as in (22.20, 21).

Their first part is determined by the ““collisions”. This implies
that this part is expressed in terms of the integrals of the spatial
spectral functions over the short-wave region of wave numbers—
the “collision region”.

The other part is determined by the spectral functions for the
radiation region. For a non-stable plasma the contribution from
the radiation region may considerably exceed that from the colli-
sion region. '

Naturally, the hydrodynamic methods of describing the pro-
cesses in a plasma, considered in this book, do not exhaust all the
possibilities. For instance, by using the results of § 18, two other
hydrodynamic approximations can be considered. Firstly, the
bydrodynamic equations can take coherent interaction of waves
into account. Secondly, one can construct the hydrodynamics
from a consideration of eqns. (18.51-53), which provides a de-
scription of the turbulent state with regard to the interaction of
three waves and so on.

276

References

ABRIKOSOV, A. A, L. P. Gor'kov and [, YE. DZYALOSHINSKIL (1965) Quantum
field theoretical methods. in staristical physics. Pergamon Press, Oxford.

AKHIEZER, A. L., I A. AKHIEZER and A. G. SITENKO (1962) A contribution to
the theory of fluctuations in a plasma, Seviet Phys. —JETP 17, 462.

AXHIEZER, . A., I. A. DaneLiva and N. L. Tsivsapze (1964) A contribution
to the theory of transformation and dispersion of electromagnetic waves
in a plasma. Soviet Phys.— JETP 19, 208.

AKHMANOV, 8. A. and R. V. KHOXHLOV (1964) Non linear optics (Electromag-
netic waves in non-linear dispersive media). English translation to be
published by North-Holland.

Barescu, R. (1960) Irreversible process in ionized gases. Phys. Fluids 4, 85.

BerLvavev, S. T. (1958) Kinetic equation for rarefied gases and strong fields
in plasma physics and the problem of controlled thermo-nuclear reac-
tions, vol. 3. fzd. Akad. Nauk SSSR, p. 50, Moscow.

BeLyavev, 5. T. and G. Bupker (1957) Relativistic kinetic equation. Sovier
Phys.—Doklady 1, 361.

Bogoryusov, N. N. (1962) Problems of a dynamical theory in statistical
physics. Studies in statistical mechanics, 1, 1.

BoncH-BrugvicH, V. L. and S. V. TyasLikov, (1962) The Green function
method in statistical mechanics, North Holland, Amsterdam.

Bracinskir, . 1. (1958) Transport phenomena in a completely ionized plasma.
Sovier Phys.— JETP 6, 358.

DrummoND. W. E. and D. Pmes (1961) Non-linear stability of plasma oscil-
lations. Report to the conference on plasma physics, Salzburg.

FApDEVEVA, V. N. and N. M. TereNT’EV (1954) Tables of values of the proba-
bility integral, Gostekhizdat, Moscow. English translation published by
Pergamon Press,

FaLkenuaceN, H, and W, EgeLiNG (1963) Zur kinetischen Theorie schwach
ionisierter Plasmen in Magnetfeld. Ann. der Phys. 10, No. 7-8.

GINZBURG, V. L. (1964) Propagation of electromagnetic waves in a plasina.
Pergamon Press. Oxford.

Gorsunov. L. M.. V. V. PustovaLov and V. P. S1un (1964) On the non-
linear interaction of electromagnetic waves in a plasma (in Russian),
Pre-print Lebedev Institute of U.8.5.R. Academy of Sciences. :

Gorsunov, L. M. and V. P. Siin (1964) Theory of transport pheromena in a
non-isothermic plasma, Soviet Phys.—Tech. Phys. 9, No. 3—4.

Grap. H. (1949) On the kinetic theory of rare gases. Comm. Pure and Appl.
Phys. 2,331,

HerpaN, R. and B. LiLey (1960) Dynamical equations and transport rela-
tionships for a thermal plasma. Rev. Mod. Phys. 32,731,

277



Re:._ :nces

TorpaNsky, S. V. and A. G. KULIKovSkn (1964a) On the stability of higher
correlation functions in a plasma. Sevier Phys. — Doklady 8, 969,
(1964b) Quasi-linear approximation and correlation functions in a
plasma. Soviet Phys,—JETP 19, 499,

Kapomrsev, B. B. and V. I. PETviasHVvILI (1963) A weakly turbulent plasma
in a magnetic field. Sevier Phys.—JETP 16, 1578.

KARPMAN, V. I. (1964) A contribution to the theory of a weakly turbulent
plasma. Soviet Phys.— Doklady 8, 919.

KrimonTOvICH, Yu. L. (19582) On the method of “second quantization’ in
phase space. Soviet Phys.—JETP 6,753,
(1958b) On the space-time correlation functions of a system of particles
with electromagnetic interaction. Sovier Phys.—JETP7,119.
(1939) Charged particle energy losses in the excitation of oscillationsin a
plasma Soviet Phys,—JETP 9,999,
(1960} Relativistic kinetic equations for a plasma I, 1. Sovier Phys. —
JETP 10, 524; 11, 876. .
(1961) Some aspects of the statistical theory of non-equilibrium pro-
cesses in a plasira (in Russian). Doctor’s thesis, Moscow State Univer-
sity.

(1962) On the kinetic description of quasi-equilibrium turbulent pro-

cesses in a plasma. Soviet Phys. —Doklady 7, 530.

{1963a) A contribution to the statistical theory of turbulence in a plasma
(in Russian). PMTF1, 14,

(1963b) A contribution to the statistical theory of homogeneous iso-
tropic turbulence in a relativistic plasma. Sovier Phys. — Doklady 7, 1122,
(1963a). Allowing for non-linear interaction of waves in the kinetic equa-
tions for a plasma. Sovier Phys.~Doklady 9, No. 4.

(1965b) On the non-linear interaction of waves in a plasma. Sovier
Phys.—JETP 21, No. 2.

(1966) Approximation of “free” and “bound’ charges for a plasma.
Self-consistent equations for second distribution functions. Seviet
Phys.—Doklady 10, No. 6.

KLIMGNTOVICH, YU. L. and W. EBeLING (1962) Hydrodynamische Naherung-
en in der Theorie stark oder schwach ionisierter Plasmen. Wiss, Univ.
Rostock, issue 2, 355.

(1963) Hydrodynamic description of the motion of charged particles
in a weakly ionised plasma. Sovier Phys. —JETP 16, 104,

Krmonrovich, Yo, L. and V. V., Logvivov (1966) Stationary solations of
the equations in the quasi-linear approximation for a plasma with
collisions, PMTF (in course of publication).

KrmMonNTovIcH, Yu. L. and V. P. Sitiv {1961) Concerning magnetohydro-
dynamics for a non-isothermic plasma without collisions. Soviet
Phys,—JETP 13, 852.

(1962) A contribution to the theory of fluctuations of the particle dis-
tribution in a plasma. Seviet Phys.—JETP 15, 199,

(1963) On the fluctuations in a plasma without collisions. Sovier
Phys.— Doklady T, 698.

Konstantivov, O. V. and V. I. Perer’ (1961) Particle collisions in 2 high-
temperature plasma. Sovier Phys.—JETP 12, 597.

278

A

Referen.. _s

KovrizunykH, L. M., A. A, RukHapzEe and V. P, SiLiN (1963) On the oscil-
lations of a low-pressure inhomogeneous plasma. Soviet Phys.—JETP
17,1314,

Kovrizunyki, L. M. and V. N. Tsytovice (1964) A contribution to the
non-linear theory of beam interaction in a plasma with transverse waves
(in Russian). Pre-print. Lebedev Institute of U.S.S.R. Academy of
Sciences. -

KuLikovskir, A. G. and G. A. LyusiMov (1960) Magnetohydrodynamics.
Fizmatgiz, Moscow. .

Lanpau, L. D. (1937) The transport equation in the case of Coulomb inter-
actions. Zk. eksp. i teor. fiz. 7, 203, In Collected Papers of L. D. Landau,
p- 163, Pergamon Press, Oxford, 1965.

Lawpau, L. D. and E. M. Lirsmitz (1960) Electrodynamics of continuous me-
dia. Pergamon Press, Oxford.

(1962) Theory of fields. Pergamon Press, Oxford.

LeENARD, A. (1960) On Bogolyubov’s kinetic equation for a spatiaily homo-
geneous plasmia. Ann. of Phys. 10, 390. '

LeoNTOVICH, M. A. (ed.) (1963) Questions in plasma theory. Atomizdat. Mos-
cow.

LeontOvIiCH, M. A. and O. M. RyTov (1952) On the differential law for the
intensity of electric fluctuations and also how they influence the skin-
effect (in Russian), Z4. eksp. f teor. fiz. 23, 246.

Loverskr, YE. YE. and A. A, RukuapzE (1962) On the hydrodynamics of
a non-isothermic plasma. Soviet Phys. — JETP 14, 1312.

MazuUR, P. (1958) On statistical mechanics and electromagnetic properties of
matier. Adv. in Chem. Phys., Vol. I, p. 309.

Pinves, D. and J. ScHRIEFFER (1962) Approach to equilibrivm of electrons,
plasmons and phonons in quantum and classical plasmas. Phys. Rev.
125, 304.

Romanov, YUu. A. and G. F. FiLiprov (1961) Interaction of streams of fast
electrons with longitudinal plasma waves. Sovier Phys.—JETP 13, 87.

RosToKER, N. (1960) Kinetic equation with a constant magnetic field. Phys.
Fluids 3,922,

(1961) Fluctuations of a plasma. Nuclear Fusion1, 101.

RUKHADZE, A. A. and V. P. SN (1964) Method of geometric optics in the
electrodynamics of aninhomogeneous plasma. Soviet Phys.—Uspekhi 7, 1.

Rytov, 8. M. (1953) Theory of electric fluctuations and thermal radiation. Izd.
Akad. Nauk SS5R, Moscow. .

SHapro, V. D. (1963) A contribution to the non-linear theory of interaction
of “mono-energetic’” beams with a plasma. Soviet Phys.— JETP 17, 416.

SN, V. P. (1960) Kinetic equations for fast varying processes. Sovier
Phys.—JETP11, 1277.

(1961, 1962a) Oa the collision integral for charged particles. Sevier
Phys.—JETP 13, 1244, FMM 13, 180. ’
(1962b) On high frequency dielectric constant of a plasma. Soviet
Phys.—JETP 14,617

(1963a) Triple correlations in a plasma and also the “collision integral™
for a paired correlative function (in Russian). Pre-print, Lebedev Insti-
tute of U.5.5.R. Academy of Sciences.

279



References

SN, V. P. (1963b) Oscillations of a weakly homogeneous plasma. Sovies
Phys.— JETP 17, 857. '

(1964) A contribution to the kinetic theory of the interaction of plasma
waves (in Russian). PMTF, No. 1. i

{(1965) Non-linear high-frequency conduction of a plasma Soviet Phys.—
JETP 20, No. 6.

S, V. P. and A. A. RukHaDZE (1961) Electromagnetic properties of a
Plasma and plasma-like media. Atomizdat, Moscow. English translation
published by Consultants Bureau.

STRATONOVICH, R. L. (1961) Selecred questions in the theory of fluctuations in
radio engineering. Sov. radio, Moscow. ) o

VEDENOY, A. A. (1962} Quasi-linear theory of a plasma [theory of a weakly
turbulent plasmal. (English translation in J. Nucl. Energy, part C.)
Atomnaya energiva 13, 5. ‘

VEDENOV, A. A, and YE. P. VELIKHOV (1963} Quasi-linear approximation in
the kinetics of a rarefied plasma. Soviet Phys.— JETP 16, 682.

VEDENOY, A. A., YE. P. VELix#aov and R. Z. SaGpeEvEV (1961) Stability of a
plasma. Sovie: Phys.— Uspekhi 4, 332. '

Veasov, A. A. (1938, 1950) On the vibrational properties of electron gas
(in Russian). 2k, eksp. i teor. fiz. 8, 291, Theory of many particles. Gor-
don and Breach, New York.

YELEONSKIL, V. M., P. 8, Zyryanov, and V. P, SiLiv (1962) Collision integral
of charged particles in a strong magnetic field, Sovier Phys.—JETP 15,
619,

Zupanov, V. M. (1962) Transport phencmena in a partially ionized gas.
Prikl. mat. i mekh. 26, 280,

Zuparev, D. N. (1960) Two-temperature Green functions in statistical phy-
sics. Sovier Phys. — Uspekhi 3, 320,

Zyryanov, P. 8. and G. G. Taruts (1963) On non-equilibrium systems of
electrons and phonens in an externzl magnetic field. Sovier Phys. —
JETP16,1510.

280

Index

Absorbing medium 25

Absorption 105, 267

Absorption of electromagnetic waves
25

Adiabatic invarjiant 197

Background 216, 226

Boltzmann equation  ix, 62, 130,
133

Bound charges 3,4

Bound charge approximation 237,
239

Capacitance 26

Cauchy integral 16

Central moments 59, 62

Chapman— Enskog method 248

Charge density 2, 81

Circular polarization 108

Coherent interaction of waves 225

Collision frequency 208, 268, 270

Collision integral x, 130, 139, 180,
190, 191, 192, 229, 231, 235, 253,
257

Collision rate 233

Collision region 179, 185, 193, 197,
198, 199, 205, 207, 208, 216, 231

“Collisions™ 116, 210, 211, 234,
235, 236, 243

Conductivity 8, 274, 275

Conductivity tensor 8,21, 82, 102,
106

Conservation of energy 210, 262

Conservation laws 2, 130, 140

Conservation of momentum 71,
142

Conservation of number of particles
141, 251

Continuity equation 41, 49

Correlation of the fluctuations 161

Correlation functions  x, 58, 60, 62,
‘65, 69, 121, 156, 160, 167, 169, 200,
231, 237

Correlation radius 137, 156, 233,
240

Correlation terms 144

Correlation velocities 271

Coulomb law 5

Coulomb plasma xi, 144, 182, 194,
206, 207, 230, 231, 238

Current density 2, 81

Damping coefficient 19

Damping decrement 36, 45, 94, 95,
98, 115, 116, 179, 197, 199, 203,
206, 210, 214, 236, 262

Damping increment 167

Debye correlation function 273

Debye radius  x, 63, 126, 137, 156

Density matrix 240

Dielectric 6, 12

Dielectric constant dispersion 15

Dielectric constant function 15, 18,
19, 82, 88, 124, 129, 132, 182, 134,
191, 206, 236

Dielectric constant tensor 22, 83,
84,103, 105, 114, 155, 177, 178

Dielectric susceptibility 8

Diffusion coeflicient 129, 191, 274,
275

Diffusion constant 154 )

Dipole approximation 240, 241

Dipole moment 12

Dispersion 79

Dispersion equation  43,45,97, 115,
205,218

Dispersion refations 17, 87, 88, 92,
93, 104, 107, 174

281



b, _x .

Dispersive medium 25, 26, 30, 35

Displacement current 9

Dissipative medium 30

Dissipative processes 98, 103, 231,
266

Distribution function ix, 57, 62

Distribution function for quanta 37

Effective range 127

Electric charge density 72

Electric conductivity 176, 276

Electrical induction 6

Electrical stress tensor 74

Electrolytes 273

Electromagnetic energy 30

Electromagnetic fleld, energy density
75 .

Electromagnetic stress tensor 73,
142

Electromagnetic tensor 54

Electromagnetic wave 10

Electron-ion plasma 68,127, 133

Electron temperature 95

Energy balance equation 75, 143

Energy density 35 )

Energy of electromagnetic field 24

Energy flux vector 35

Entropy 76,98, 130, 132

Entropy density 42

Equation of continuity 263

Equation of motion of an electron
11

External charge 3

External current 3

Extraordinary wave 108

Faraday's law 5

Fluctuation spectrum 154

Fluctuations of the charge density
161

Fluctuations of electric field strength
154

Fokker-Planck equations 153, 190

Four-wave interaction 221, 225,
228, 229

Free-charge approximation 237

Free-charges 4

Free-path time 136, 247

282

Friction coefficient 129, 191, 208,
257
Fusion coefficient 208

Gas-dynamics equations 1, 38
Gas-dynamics functions 58
Green function method  xii
Group velocity 36

Gyrotropic medium 105

Hamiltonian 47

Hamiltonian equations 47

Hydrodynamic approximation 226,
261

. Hydrodynamic description 275

Hydrodynamic equations 116, 243,
248, 257, 258, 271, 276

Hydrodynamic functions 245, 247,
248

Hydrodynamic instability 226

Ideal liquid approximation 76
Induced charge 3

Induced current 3
Inductance 2§

Induction vector 82
Instability condition 91
Interaction of waves 276
Ton-oscillations 97

Ton temperature 95
Irreversible processes 1, 117

Joule heat generation 42

Landau damping 94, 234, 236

Landau’s equations ix, 135, 156,
157

Langmuir frequency 89

Larmor frequency 263, 274

Larmor radius 39, 112

Local equilibrium 39

Local Maxwell distributions 251,
271

Longitudinal dielectric constant g4,
122, 165

Longitudinal electrical field 60

Longitudinal excitations 145

Longitudinal permittivity 34

Longitudinal waves 34, 36, 88, 95,
104, 107

Long-wave region 216

Lorentz system of equations 50,
242

Lorentz transformations 53

Low-frequency waves 114

Magnetic field strength 4
Magnetic flux density 4
Magnetic susceptibility 8
Magnetization 6, 10
Magneto-active medium 105

Magnetohydrodynamic equations

42, 264, 266

Magnetohydredynamic waves 42,
44, 45,109, 111, 115

Magnetosonic waves 44, 111, 115,
116, 267

Material equations 8

Maxwell distribution 92, 210

Maxwell equation ix, 2, 50, 72, 79,
147, 177

Maxwell stress tensor 73

Mean free path 1, 136, 247

Metals 19, 39

Microscopic state 49

Momentum density 244

Momentum flux density tensor 71,
74

Navier-Stokes equation 41
Non-dispersive medium 25
Non-linear medium 30, 87
Nyquist’s formula 176

Ohm’s law 19, 39, 40, 82
Ordinary wave 108
Oscillating circuit 26

Pass-band 174, 180, 197
Permeability 8
Permeability tensor  §

LI} 4

Permittivity 8

Permittivity tensor 8

Phase-randomness 226

Phase velocity 18, 92

Plasma 46

Plasma frequency 89, 90, 94, 96,
97, 173, 203, 264

Plasma momentum 73

Plasma momentum density 244

Plasma parameter . x

Plasma polarization x

Poisson equation 83, 138, 139, 195,
236

Polarization 6, 10, 12, 34, 108, 133,
156, 222, 223, 231

Poynting vector 25, 75

Principal value of an integral 17

Pulsations . 216, 226

Quasi-equilibrium processes 1

Quasi-linear approximation 216,
226

Quasi-static processes 1

Radiation region 174, 175, 180,
193, 197, 198, 205, 207, 212, 216,
226

Radiation-temperature 210, 262

Random functions 38

Rarefied gases 62

Rarefied plasma, parameter for
120

Refractive index 18, 108

Relation functions 214

Relativistic invariance 34

Relativistic Maxwel] distribution
159

Relativistic plasma 206, 211

Relaxation processes 195

Relaxation time 68, 116, 118, 120,
127, 136, 193, 197

Second distribution functions 240

Second moments approximation
64, 215

Seif-consistent equations 237, 263

283



oy

Index

Self-consistentt field ix, 69, 87, 215

Self-consistent field approximation
69, 76, 118

Self-consistent field equations 1186,
216

Shock waves 268, 269, 270

Short-wave region 216

Smoothed distribution functions §7

Sonic waves 44, 116

Sound velocity 97, 114, 265

Sound waves 97

Space-time correlation functions
171,179

Space-time correlations 161, 163

Space-time spectral functions 165,
193, 194 T

Spatial correlation function 271

Spatial dispersion 24, 27

Spatial spectral functions 118, 120,
121, 124, 147, 165, 188, 205

Spectral functions 119, 154, 180

Stop-band 179, 193, 197

Stress tensor 72, 244

Thermal conductivity 256
Thermal flux vector 245, 252
Thermodynamic functions 258

‘Thermodynamic parameters 1

Three-wave interaction 221, 225,
227, 228, 229

Transverse diclectric constant 84,
148, 165

Transverse excitations 145

Transverse magnetosonic waves 45

Transverse permittivity 34

Transverse waves 34, 36, 97, 104,
107

Triple correlation function 64

Turbulence 262, 276

Two-component electron-ion plasma
52

Two-component plasma 237

Unstable states 92

Velocity of sound 42

Viscosity 276

Viscosity coefficient 256

Viscous stress tensor 244, 252

Vlasov equations ix, 70, 215, 226,
240

Wave attenuation 114
Wave dispersion 95
Waves in cold plasma 104

PRINTED IN HUNGARY



