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PREFACE

Tens book is a translation of a review by Academician B. B. Kadomtsev of
the I V. Kurchatov Institute, Moscow, which was written at my suggestion
in order to have available in concise form the essence of the large body of
papers on this difficult yet important subject. It was originally published
in Russian in Volume 4 of “Problems in Plasma Theory ”, edited by
M. A. Leontovich (1964).

Academician Kadomtsev is a leading authonty on plasma turbulence,
and he and his colleagues have contributed many of the original papers on
the subject. It is now well known that some form of turbulence is very
frequently and often disastrously present in experiments on the confinement
of hot plasma. It is not impossible that in the quest for a thermonuclear
plasma we shall ultimately have to deal with a more or less turbulent state,
and the understanding of this state is therefore important to nuclear fusion
research. I believe this book will contribute greatly towards such an under-
standing and help to stimulate forther work on the subject.

The translation and editing of the book have been carried out by Mr. L. C.
Ronson and Dr. M. G. Rusbridge of the Culham Laberatory. ¥ am grateful
to them and to Mrzs, Mary Hardaker who typed the manuscript.

J. B. Apams
April 1965

United Kingdom Atomic Energy Authority
Culham Laboratory

q.; Abingdon, Berkshire
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NOTATION

THE notation conforms as closely as possible to that of the original, which
isin general conventional or explained in the text. The only major exception
is the substitution of curl for rot, which is not so familiar to English readers.
Vectors are shown by bold type. The vector product is denoted by square
brackets, thus [hk]. No special notation is used in general for the scalar
product, but round brackets, thus (kk'), may be used if required for clarity.
Otherwise two adjacent vectors imply the scalar product. Note the appearance
of the scalar triple product in equations such as (IV. 128) and (IV. 129).
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INTRODUCTION

It is well known that a real plasma is rarely quiescent; as a rule many forms
of noise and oscillation arise spontaneously in the plasma. Langmuir
pointed out that these fluctuations represent more than just harmless oscil-
lations about an equilibrium position and often wholly determine the charac-
ter of the phenomena occurring in the plasma. Ir particular, interaction
between eclectrons and oscillations accounts for the ““ strong ™ scattering of
electrons in a gas discharge, first described by Langmuir (1, 2). The collec-
tive interaction of particles also accounts for the well-known Langmuir
paradox; namely, that even at very low gas pressure the velocity distribution
of the electrons in a glow discharge is, to a high degree of accuracy, a Max-
wellian distribution. The decisive part played by oscillations in the inter-
action of an electron beam with a plasma has been demonstrated in the
papers of Merrill and Webb (3) and Looney and Brown (4).

Experiments with plasmas in a magnetic field and in particular experi-
ments on magnetic containment of a high temperature plasma in connection
with controlled thermonuclear reactions have revealed further unexpected
pbenomena essentially connected with oscillations in the plasma. Prominent
amongst these is the “ anomalous diffusion of a plasma across a magnetic
field. This effect was first observed by Bohm, Burhop and others while
investigating the operation of ion sources (5) and later the enhanced diffusion
of a plasma, related to its instability, was observed in a series of experimental
devices.

Following the work of Bohm (5), who suggested that the enhanced dif-
fusion of a plasma is due to random oscillations of the electric field set up
by an instability, the term turbulence ~ has been increasingly applied to
this process. Af present we understand by turbulence the motion of 2 plasma
in which a large number of collective degrees of freedom are excited. Thus,
when applying the term * turbulence ” to a plasma, it is used in a broader
sense than in conventional hydrodynamics, If hydrodynamic turbulence
represents a system made up of a large number of mutually interacting
eddies, then in a plasma we have together with the eddies (or instead of themy),
also the possible excitation of a great variety of oscillations. Depending on
the degree of freedom which is excited, the character of the interaction
between the excitations may vary considerably.

During the eddy motion of an ordinary fluid the separate eddies, in the
absence of their mutual interaction, do not propagate in space. ‘When their
interaction is included the eddies “ spread out ” in space with time, though
the corresponding velocity is not large and therefore each separate eddy has a

I b+



2 PLASMA TURBULENCE

considerable time available to interact with its neighbours. In this case we
are faced with a strong interaction of excitations and correspondingly with
a strong turbulence. On the other hand, during a wave motion the separate
wave packets can separate from one another over large distances. In this
case the interaction of separate wave packets with one another is weak, and
we can therefore refer to 2 weak turbulence. The motion of the plasma in the
weakly turbulent state, constituting a system of weakly correlated waves,
shows greater similarity to the motion of the wavy surface of the sea or the
oscillations of a crystal lattice than to the turbulent motion of an ordinary
fluid. ‘
The theorstical consideration of a weakly turbulent state is considerably
facilitated by the possibility of applying perturbation theory, i.e. an expan-
sion in terms of a small parameter such as the ratio between the energy of
interaction between the waves and their total energy, The problem of the non-

linear interaction between waves in a plasma has been considered by Sturrock

(6) for the special case of interaction between Langmuir waves in a cold

homogeieous plasma;

For the case of very small amplitude, when the interaction between the
oscillations can be neglected, one can use the so-called quasi-linear approxi-
mation in which only the reaction of the oscillations on the average velocity
distribution function of the particles is considered. The quasi-linear approxi-
mation was referred to by Romanov and Filippov (7) and has been further
developed in papers by Vedenov ¢t al. (8), as well as by Drummond and Pines
(9). Section I of the present review is devoted to the quasi-linear approxima-
tion.

Unfortunately the quasi-linear method has only a faitly narrow field of
application, since non-linear interaction of the oscillations already begins to
play a considerable part at not very large amplitudes. In the paper by
Camac et al. (10), the non-linear interaction of Alfvén- and magneto-sonic
waves is described by the kinetic wave equation, which is well known in
solid state theory (11). Camac et al. (10) applied this method to describe the
structure of a collisionless shock wave. The problem has been considered in
somewhat greater detail by Galeev and Karpman (13), while the interaction
of Langmuir waves has been studied in reference (19).

In the simplest variant of the kinetic wave equation only three-wave
processes are considered, namely the decay of the wave k, o into two waves
K, o' and k', 0", and the merging of two waves into one. Such processes
are important only for dispersion relations wy = @ (k) for which it is possible
to satisfy simultaneously the laws of conservation of energy and of momen-
tum: k" = k—K', wu~ = coy—owyp. When these conditions are not satisfied,
scattering of the waves by the particles is a more important process and can
be taken into account only on the basis of a full kinetic theory. Such a
theory has been published by Kadomtsev and Petviashvili (14), who ob-
tained a kinetic wave equation including the thermal motion of the particles.
This equation was obtained later by a slightly different method by Karpman
(15). The kinetic wave equation is deduced and considered in Section IT.
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INTRODUCTION 3

Unfortunately, in numerous practical cases one is faced not by weak
but by strong turbulence, In particular, strong turbulence is related to an
anomalous diffusion of the plasma across the magnetic field. To determine
the fluctuation spectrum in a strongly turbulent plasma and the effect of these
fluctyations on the averaged quantities, it is sometimes possible to use the
analogy with ordinary hydrodynamics and, in particular, to apply 2 pheno-
menological description of the turbulent motion.

Such an approach has been used by this author in two specific problems,
referring to turbulent diffusion of a plasma in a trap with magnetic mirrors
(16) and in the positive column of a glow discharge (17). In these cases the
concept of the mixing length was used. The results of this discussion are in
good agresment with experimental data, which indicates the success of this
approach.

However, in a plasma other strongly turbulent motions which are dif-
ferent from the eddy motion of an ordinary fluid may develop. It is therefore
desirable to have available more systematic methods for describing strong
turbulence. In our view, such a method may be the weak coupling approxima-
tion discussed in Chapter ITI. In this approximation, which ought preferably

. to be called the intermediate coupling approximation, the turbulent motion

is described by a system of non-linear integral equations for the spectral
density fi, and the Green’s function Gy, describing the response of the
system to an external force. As the coupling between the oscillations
decreases, this system of equations goes over into the kinetic wave equation.

In conventional hydrodynamics, the weak coupling equations have been
obtained by Kraichnan (18) who showed that in their simplest form the weak
coupling equations lead to a spectrum which is different from Kolmogorov’s
spectrum in the region of large k. As will be shown in Section IIL.2, the
reason is that in Kraichnan’s equations the adiabatic character of the
interaction . of the short wave with the long wave pulsations is not
taken into account. The consideration of this adiabatic interaction makes it
possible to obtain improved weak coupling equations.

In Section IV, specific examples of turbulent processes in a plasma are
considered. In particular the interaction of Langmuir waves and the excita-
tion of ion oscillations by an electron current are considered, but the main
attention is devoted to the turbulent diffusion of a plasma in a magnetic
field.

As we have mentioned earlier, the turbulent diffusion problem goes back
to Bohm (5), who put forward the hypothesis that an inhomogeneous
plasma in a magnetic field must always be unstable because of the presence
of a drift current of the electrons relative to the ions. If this be in fact so,
the corresponding instability must lead to a turbulent ejection of the plasma
with a velocity of the order of the drift velocity. According to Bohm, this

process can be considered phenomenologically as a diffusion with coefficient

of diffusion of the: order b 10T
2T H

L



4 PLASMA. TURBULENCE

where 7' is the electron temperature in electron volts and H the magnetic
field in kilogauss.

Bohm’s argument gave rise to the illusion of a universal validity for this
coefficient and as a result attempts to obtain Bohm’s coefficient from more
general considerations have continued to this day, It has now become
evident, however, that the coefficient of turbulent diffusion cannot be ob-
tained without a detailed investigation of the imstability of an inhomo-
geneous plasma and in particular of its drift instability.

Investigations of the drift instability of a plasma in a magnetic field were
started by Tserkovnikov (19) who limited his investigations to perturbations
constant along the direction of the magnetic field. Rudakov and Sagdeev (20)
went a step further by considering instabilities at oblique angles with a trans-
verse wavelength considerably larger than the mean Larmor radius of the
ions. The complete investigation of the drift instability has been. carried out
only quite recently, following the work of Rosenbluth, Krall and Rostcker
(21), with the investigation of perturbations with transverse wavelength of
the same order as the mean ion Larmeor radivs. The principal results in this
field were obtained by Mikhailovskil (22). In a dense plasma where an
important part is played by collisions between the particles, the drift instability
changes to a drift-dissipative instability first observed by Timofeev (23). Ina
note by Sagdeev and Moiseev (24), it was stated that this drift-dissipative
instability may lead to an escape of plasma of the order of the Bohm
diffusion.

The principal results of the investigations of the drift instability of a
plasma are discussed in Section IV.3. The following section considers the
problem of the type of diffusion resulting from the drift instability in specific
conditions.

In Section IV.5, various turbulent processes in speeific experimental
devices are described and briefly discussed. Turbulent processes are con-
sidered in toroidal discharges and in magnetic traps and brief reference is
also made to experimental data on turbulent heating and diffusion of plasmas.

In writing this review, we have aimed at maximum clarity of expression;
where rigour appears to conflict with simplicity, simplicity is given preference.
Attention has been given chiefly to processes occurring under laboratory
conditions; problems of astrophysical application are completely omitted.
In partjcular no reference is made in the present review to a broad group of
investigations in which the turbulence of an ideal conducting fluid (ie.
magnetohydrodynamic turbulence) and turbulent shock waves are con-
sidered.

3
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|, A QUASI-LINEAR APPROXIMATION

1. INSTABILITY AND TURBULENCE

As a rule, turbulence develops as a result of an instability of an initial laminar
state. In order to visualise the transition from the laminar to the turbulent
state, it is convenient to examine the behaviour of the system while changing
some parameter, R, the increase of which results in a loss of stability. In
conventional hydrodynamics such a parameter is the Reynolds munber,
whilst in a plasma there are 2 number of cases where the magnetic field
strength plays a similar role. :

Let us recall first what occurs during the loss of stability of a system
with one degree of freedom, for instance, a valve oscillator, where the part
of the parameter R is played by the feed-back. If the feed-back R is smaller
than some critical value R, then all small oscillations are damped. When
R > R,, on the other hand, the state with zero amplitude is unstable and
oscillations of finite amplitude are excited. In other words, the value R = R,
is a bifurcation point above which the oscillator is in an excited state.

Tn these conditions two types of excitations are possible—a soft type and a
hard type. In the soft regime the amplitude of the oscillation varies continu-
ously with R, vanishing for R = R, (see Fig. 1). In the hard regime the ampli-

A2 A

P »~ R
Re

Fic. 1. Soft excitation

tude increases abruptly to some finite value as soon as the value R exceeds

the value R, and when R decreases it drops abruptly to zero for R = Re < R,

(see Fig. 2). In the region R, < R < R, the circuit is stable with respect to

infinitely small perturbations, but unstable to perturbations of sufficiently

large amplitude. The unstable equilibrium state is represented in Fig. 2 by the
5



- 6 PLASMA TURBULENCE

Frg. 2. Hard excitation

dashed line. In the case of a small non-linearity of the system this picture of
the excitation is fully described by means of the widely known Van de Pol
method, i.e, a small amplitude expansion.

Landau (25) has shown that the transition to the turbulent state also
constitutes an excitation of the system as a result of an instability. To
examine Landau’s argument let us consider a continuous medium, ie. a
system with an infinite number of degrees of freedom, and assume that the
excitation is soft. Then, as R is increased the following picture will be ob-
served. For small R we have the laminar state in which all quantities are
completely defined by the initial and boundary conditions, i.e. the system
has no superfluous degrees of freedom. For R greater than some critical value
R, a normal mode of the system is excited whose amplitude increases mono-
tonically with R; in other words, an additional degree of freedom appears
in the system. As R is further increased further degrees of freedom may be
excited and ultimately we arrive at a turbulent state.

When R only slightly exceeds R, the amplitude 4 can be determined by
expanding with respect to R— Ry, similarly to Van de Pol’s method. This
method was first applied to the problem of thermal convection of a fluid

AZ

n

) [ R3

Fic. 3. Mild excitation of 2 system with many degrees of freedom
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(Sorokin (26)) and was later used by Stuart (27) to describe the eddy cellsin a
fluid between rotating cylinders. This method is now known as the quasi-
linear method and leads to satisfactory results for R—R; <€ R,.

The behaviour of the system as R is increased also depends on its specific
properties. We may find that numerous strongly interacting modes are
excited and in this case the transition to turbulence takes place fairly rapidly.
Alternatively we may find that all the higher modes are harmonics of the
fundamental mode first excited and are synchronised with it. In other
words, we have a non-linear oscillation of finite amplitude which really
represents only one degree of freedom. (The losses in the positive column of
a glow discharge are an example of this situation.) Finally, there is the pos-
sibility that the excited modes will interact only weakly with one another
and a weakly turbulent motion will develop. If the interaction between the
modes can be neglected, weak turbulence can be described by the quasi-
linear approximation.

2. Lavmar CONVECTION OF A PrLasMa

" Let us consider two simple examples where the instability of a plasma
leads to the appearance of a convective flow.

(@) Convection of a Weakly Ionized Plasma in an Inhomogeneous Magnetic
Field

As a first example, let us consider the convection of a weakly ionized
plasma in an azimuthal (toroidal) magnetic fisld (28). As is well known, a
fully ionized plasma in such a field is convectively unstable; because of its
diamagnetism it is pushed out radially. If the magnetic field is sufficiently
high, then a weakly ionized plasma is subject to a similar instability. Let us
consider here what happens to a plasma when the magnetic field exceeds the
critical value H, at which the instability first appears.

Suppose that the plasma is located between two ideally conmducting
cylinders of radius R and R+d respectively, (4 € R), and ionijzation is
achieved in such a way (for instance using heated grids in caesium vapour)
that a constant density n is maintained at the inner cylinder and a density
n—&n at the outer cylinder, where én < n.

We shall assume both the electrons and the ions are *“ magnetized , i.e.

ed . . .
Q;1; = —-—1; > 1, where; is the mean free time and m; the mass of particles
m;e

i
of type j. Then from the equation of motion for the electrons
T.Vn = enVe — %[VEH] - "f;”ve @1

F-]

we obtain the following

ny, = % [h, nVe + %Vn] ~D,Vn+nb,Vo (1.2
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D, . . e .
where D) == = s is the transverse diffusion coefficient, ¢ the
Q7 myT L
el
potential of the electric field, T, the electron temperature and b= TL the
e

transverse mobility of the electrons. Since we assume Q.. » I, the last
term in 1.2 which contains &, can be neglected.

Substituting 1.2 into the continuity equation and neglecting the curvature

of the magnetic field, we obtain

én

ot

where v = I%(tho) is the drift velocity in crossed electric fields and h = H/H.

+VVn=D,An (1. 3)

On the other hand, from the ion equation of motion, assuming T; = 0, we

have
et

. _ .
, = — _——_ Tt . 4
Vi H [hve] mfy1,)? Ve (I 4)

We now substitute the expressions for nv, and nv; in the quasi-neutrality
condition div #(v;—v,;) = 0. Considering that

div[hVﬂ] énid (r)N 2 an

H dzror\H/~RH &7
we obtain
c .. 2D, dn
Ed.w(ana) ="R 7 (1.5)

Tt
where D, = ==
m

is the ambipolar diffusion coefficient in the absence of a

magnetic field.
In the equilibrium state n = a (), ¢ = ¢ (r), and consequently there are
1o convective fluxes. Let us consider the value of the critical magnetic field
H, at which convection starts. Since én < », the density » can be assumed
constant on the left hand side of relation 1.5 and the perturbation of the
X

density and potential can be chosen in the form sin 7 CXp (kz — iwt) where

x = r—R. The linearised eqns. 1.3 and 1.5 then take the form
co™ dn

[—iw+D (kK + k) ]n'Y = — ik T 7 (L. 6)
€112 12yt — i 2Leli 1)
—(k“+k =—ik——— 1.7
H( +ko)o kR (L.7)
where k, = n/d. From this we obtain
2D, k* on

— i =— 2oy A~
o ==D,(kK"+k) + g = gz g

1. A QUASI-LINEAR APPROXIMATION 9

w, B o
R (K*+k2)* nd
maximum value of D, is attained for k = k, and is equal to

wD,d on
2R n &8

Clearly D, < D,. The critical field H, is defined by the relation D = D;

for H> H,,ie. D < D, laminar convection develops in the plasma.
When H is only slightly larger than H, the convective flow can be deter-

mined using the quasi-linear method. The total diffusion flux is defined by the

For w =0, i.e. D, = the plasma becomes unstable. The

dn
relation g=g,+8g, where g, = D, p 5g = (x> and the angular

brackets indicate averaging with respect to time. In the first approximation
o can be expressed in terms of nt!? with the aid of (I.7) and for n') we
insert the dependence on x and z given above. Integrating the resulting
expression for the flux with respect to x with ¢ = const gives
1D,nd
Don+--—2—A%=qd 19
On + 3"R q 19
where 4 is the amplitude of the density oscillations defined by
(1)
n X
m sin—re
A second relation connecting g and 42 is obtained by substituting ¢‘*)
obtained from (1.7) into (I.6), setting @ = 0, and multiplying the result by
a1, Representing the derivative of the density in the form
dn _ g Ml
dx D, D,
averaging the result with respect to x, and using (L.8), we obtain

ikz — it

D? 3D.nd ,
DC5n+Z R A*=gqd 1. 10
From the relations (1.9) and (1.10) we obtain
on\?* 2 D
2 _ {2y 2 2Ly
A% = (n) - (1 Dc) (L 11)
_ ZénDJ_ DJ_
g=4qo+ 7 (1 Dc) (1.12)

Thus, the flux g depends on the magnetic field as shown in Fig. 4. For
H > H_the flux increases instead of decreasing with increasing field.

This picture is completely analogous to the picture of the development
of convective cells in thermal convection between two parallel plates; here
the onset of convection is also sharp. In more realistic conditions of a chamber
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G4

» H

' SR

(3

Fia. 4. Plasma flux against magnetic field during development of convection

bounded along the magnetic field, there may be no well-defined critical field,
the flux ¢ varying smoothly with the field.

The increase of the effective diffusive loss due to convection has been

clearly observed by Bostick and Levine (29) and has been investigated more
recently by Golant er al. (30), who investigated the decay of a plasma in a
toroidal magnetic field. The plasma was contained in a toroidal glass vessel
of major radius R with a circular cross section of radius a. A fairly long inter-
val of time was allowed for the density distribution to become established
and the decay of the plasma density was then observed and found to follow
an exponential law n = nee™*". :

The loss can easily be determined by assuming approximately that the

. . . 0
convective velocity parallel to r can be. neglected, ie. ks =~ 0. We then

0z
obtain from (I.5) v = 2}2" e, and eqn. (I.3) takes the form
on 2D,
B + R eVn=2D, An {1 13)

where e is the unit vector parallel to the x axis.

Neglecting the field curvature in the expression for the Laplacian, eqn.
(1.13) can be considered as the equation for diffusion in a straight cylindrical
tube in the presence of a transverse flux. It is easily seen that the solution of
eqn. (1.13), with the boundary condition that the density at the wall vanishes,
is given by the expression

nznoexp(——5+—v-x).fo(w) (1. 14)

where x is now measured from the tube axis. In (1.14) n, = const, oy = 24
is the first root of the zero order Bessel function J; and the decay constant is
given by the relation ‘
1 /D, Dy
=——|~=+-— 115
210 (Do - DJ.) ( )

I. A QUASI-LINEAR APPROXIMATION il

where
a av 2D,

Taw PTm TR
According to (I.15), the decay constant as a function of the n:.xagnetic
field must pass through a minimum at D, = D,. In Fig. 5, which was

T
1B N
14 .

-1 8 I

e
Lok O LN -

| 1 L { I
o2 04 05 081 2 4

by
Ta
Fig. 5, Lifetime of a decaying plasma in a toroidal tube
(helium, R = 28 cm, a = 03 cm)
® p=0025mmHg

Q p=004mmHg
¥ p=0055mmHg
O p=0-12mmHg

taken from (29), a comparison is given of the experimentally determined
relationship between 7o/t and D /D, (where 1/z, and D, are the decay
constant and the diffusion coefficient respectively at the minimum) with the
theoretical formula (I.15). As may be seen, the experimental results are in
good agreemment with the theory.

(b) Convection of the Plasma of the Positive Column in a Magnetic Field

Let us now consider the convection of a plasma in a homogeneous
magnetic field in the presence of a longitudinal current. The development of
convection of a weakly ionized current-carrying plasma was described by
Lehnert (31) while investigating the diffusion of charged particles from the
positive column of a glow discharge located in a strong magnetic field. It has
also been studied in greater detail in a paper by Lehnert and Hoh (32).

In these investigations the relationship between a longitudinal electric
field E and the magnetic field H was studied. In the positive column a
decrease of the diffusion coefficient leads to a decrease of the electric field,
so that if the diffusion is classical, the electric field E should monotonically



12 PLASMA TURBULENCE

decrease as the magnetic field is increased. This relationship between E and
H is in fact observed experimentally, but only for not too strong magnetic
fields. As soon as H exceeds a critical value H,, the dependence of E on H
changes markedly: the electric field begins to increase, ultimately attaining
a saturation value E, (Fig. 6).

£}

PR (el

> H

T

(3

Fic. 6. Dependence of longitudinal electric field on magnetic field in the positive column
of a helium discharge: 1. Region of classical diffusion. 2. Region of laminar convection
(helical discharge). 3. Region of turbulence

The general nature of this effect was explained in a paper by the author
and Nedospasov (32) where it was shown that the positive column of 2 glow
discharge loses its stability for H > H,. The mechanism of this instability,
which is known as the current-convective instability, can be illustrated by
considering a plasma filament slightly curved along a helical line, To fix
ideas suppose the discharge is vertical, then in the presence of a longitudinal
electric field E, which we suppose directed upwards, the electron * corkscrew ”
of the curved filament is displaced downwards relative to the ion corkscrew
and charges appear at the surface of the filament, namely a positive charge
at the upper surface and a negative one at the lower surface. These charges
set up an azimuthal electric field E, which leads to a drift of the plasma
along the radius, i.e. to an increase of the initial perturbation. In a weak

magnetic field this effect is suppressed by the diffusion. In a strong magnetic

field, when the transverse diffusion decreases to such an extent that it cannot
eliminate the density perturbations, this mechanism leads to instability of
the plasma filament with respect to a helical distortion.

To estimate the value of the critical field, let us consider the stability
problem in the W.K.B. approximation; this is accurate for short wave
perturbations only, but describes qualitatively correctly perturbations with
a longer wavelength, of the order of the tube radius a. In this approsimation
it is assumed that the density of the plasma is a slowly varying function of a
co-ordinate x, and the perturbation is selected in the form of a plane wave
exp (—iwt+ikr). At a neutral gas pressure of the order of 1 mm Hg, the

I. A QUASI-LINEAR APPROXIMATION 13

instability begins when Q.z; < 1, so that the ion velocity can be assumed to
be given by v; = —b,De. Substituting this expression into the continuity
equation we obtain for the perturbation of the ion density the following
expression:

n; b k>

—=—i—— .16

=i ¢ (I 16)
where ¢ is the perturbation of the electric field potential.

The perturbation of the electron density », can be determined from the
continuity equation in which the electron velocity v, is given by the relation
(1.2). In the W.K.B. approximation the linearised continuity equation for the
electrons takes the form

. 2 2 . . CE_,, ikyc dn 2 2
_lw+kzDe+kJ_D_L+lkzu—lky? Re— \ —— 5 + bekz +bJ_k_L @ = 0

H dx
L. 17)
where b,, D, are the longitudinal, and b,, D, the transverse mobility and

Jdiffusion coefficient respectively of the electrons, # = b,E the mean velocity

of the electrons in the longitudinal electric field E, and E, the transverse
electric field in the equilibrium state, which in the case of ambipolar diffusion
is given by
dlnn

dx

E,=—D,b; "1 +y)7*

b; . 3 i

(y = B—Qﬁrﬁ). The z axis is parallel to the magnetic field and the x axis to
the direction of decreasing demsity. Using the quasi-neutrality condition
n, = n;, we can substitute (I.16) for »,/n in (1.17), obtaining the following
dispersion equation

by k2D + k3D, +ik,u—ixk, D,(1+ 1 H Q)

- T
0=l e ) e

dl
where K = —%i. According to (I.18) the instability condition Im w > 0

can be represented in the following form:
k2 b, uk
X Q4PXE + 1+ 4t T Doy BT

“ 1+y b, DK
where X = k£ Q./k,.

According to (I.19) the instability occurs only in the presence of a longi-
tudinal current, # # 0. Since the right hand side of (I.19) increases when k&
decreases, a perturbation must develop in the first place with the minimum
possible k, i.e. & ~ x. The corresponding perturbation has the form of a
curvature of the filament as a whole. Since usually b,/b; ~ 102~10° » 1
and uic/D, ~ 1, the instability may arise even for y < 1. In this case X ~ 1,
ie k, ~ x(Q7)"! <€ x. In other words the longitudinal wavelength of the
perturbation is considerably larger than the tube radius.

X {119
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All these qualitative conclusions correspond adequately to the experi-
mental data and more exact calculations lead to quantitative agreement
with the experiment also. Figure 7, for instance, shows a comparison be-
tween the theoretical relationship between H,./p and ap (@ being the tube

3

ap

FiG. 7. Comparison of theoretical and experimental dependeng:e of critical
magnetic field on pentral gas pressure, discharge in helium

radius, p being neutral gas pressure) and experimental data of Lehnert and
Hoh (32). The appearance of a helical curvature of the filament for & > H,
was demonstrated directly by Allen er al. (34) using streak photography.
Paulikas and Pyle (35) have published a detailed investigation of the transition
through the critical ficld. Figure 8 shows their experimental relationship
between the pitch of the twisted filament and the frequency of its rotation,
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Fic. 8. Comparison of theoretical and experimental depcndence_ of pitc_h of _helical
discharge 4 and frequency of rotation w on neutral gas pressure (discharge in helium)
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and the neutral gas pressure for a discharge in helium. The theoretical
relationship is shown by the full lines. As may be seen, the agreement
between theory and experiment is very satisfactory.

The helical distortion of the filament for a magnetic field slightly exceeding
H,_ is simply the result of the convection of the plasma. For small H—H, it
is again possible to use the guasi-linear approximation to determine the
convective loss of the plasma and the amplitude of the distortion. Such a
calculation (33) shows that the outward flux of plasma increases with H—H,
and the amplitude increases as JE —H,. The curved section 2 on Fig. 6
represents the dependence of E on H calculated from this theory. As may
be seen, for a magnetic field only slightly greater than the critical field, the
theoretical and experimental dependence agree very well. For H » H, the
positive column goes over into a turbulent state which will be considered in
Section (IV.4).

3. QUASI-LINEAR APPROXIMATION IN KINETICS
We now turn to the opposite extreme -of a collisicnless plasma and con-

- sider first the application of the quasi-linear method to the excitation of

Langmuir oscillations by an electron beam (7) (8) (9).

() Electron Beam in a Plasma

Suppose that the electron distribution function has the form shown in
Fig. 9 by the full line. The second maximum represents a diffuse beam of

drn

F1c. 9, Initial (full curve) and final (dashed curve) distribution functions
during excitation of Langmuir oscillations

electrons of mean velocity ¥, superimposed on the main group of thermal
electrons,
As we know, such a velocity distribution is unstable: Langmuir waves

with phase velocities in the region where E-J; > 0 will increase with time,

since the number of electrons overtaking a wave and transferring energy to it
will be larger than the number of electrons withdrawing energy from it.
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Thus, as a result of Landau’s inverse damping mechanism a group of waves
will be built up, the phase velocities of which cover the whole interval where
df 0
% >0

If the number of resonance particles is small, i.e. the particle density in
the beam is considerably smaller than the density of the thermal electrons,
the growth rate of the waves y will be considerably smaller than the frequency
o. For yjo < 1 the interaction between the waves can be neglected and we
can use the quasi-linear approximation, in which the only non-linear effect
considered is the teaction of the oscillations on the ** background »—the
averaged distribution function.

In the unidimensional case the motion of the electrons will be described
by the following system of equations:

oF oF eECF

5;4-05—;1—5;:0 (. 20)
0E ‘
= =4m{ [ qu—n} x21)

where 7 is the ion density and F the electron distribution function.

Let us split up the distribution function into two parts: F = f+f W
where f is the mean distribution, regarded as a slowly varying function of ¢,
and fis the oscillating part which averages out to zero. The function
represents a system of oscillations with randomly distributed phases

F0 = [fedk (L 22)

where @, is the characteristic frequency of the k™ mode, For the Langmuir
'11 ﬁ 7 he g = /\/ i@ = .ﬂ_c.o_.g_ ai
osculations oy == 600+l'yk, where g = m y Yo = 2k2n 0 U=mik.
From the linearised form of eqn. (1.20), we determine the relation be-
tween f; and the amplitude of the electric field E; in the ™ mode
e i of
=——=F S —k 1.2
i m ok 39 o+ Ay 8(0— kv) (.23
Here the second term allows for the possibility of the injection of weakly
modulated beams into the plasma. ¥For simplicity we assume that such
beams are absent, i.e. 4; = 0.
The equation for the averaged function fis obtained by writing F = f+/™
in equation (1.20) and expressing /) in terms of E from (1.22) and (1.23).
~ Averaging with respect to the statistical ensemble, i.e. with respect to the

. d) .
random phase, and noting thatg'-’-; =0, E; = E_;, we obtain

a6t dv\ ‘ov

of_ 2 (D g) (L.24)
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where

m* ) (wp—ko)*+v; '
For a constant mean distribution function the dependence of Ej on ¢
would be simply exponential, EZ ~ ', but for a weak dependence of f on
time Ef is given by

D, =

a5}
dt

" Equations (1.24) and (1.26) are the basic equations of quasi-linear kinetic
eory.

With the aid of these equations we can now cxamine the development of
unstable osc%llanons of a plasma. Let us consider first the group of resonance
l_:lectron&:,. Since y < o, for this group of particles the coefficient of diffusion
}n velocity space D, can be written sufficiently accurately in the following

orm ‘

=20, E¢ (1. 26)

ne?
0,="5 f 8o, —ke)EZ dk (L.27)

This coefficient of diffusion is different from zero only in the region of

B N
velocities where v > 0, i.e. 6{ > 0. Because of the diffusion the distribution

function will be flattened in this region until the growth rate vanishes, ie.
until a “ platean ” appears in the distribution function. At this time a
stationary spectrum of supra-thermal oscillations will be established in the
plasma. To determine the spectrum we use eqns. (1.24), (1.26), (1.27) and the

w3

relation y, = ﬁz—; to obtain the following equation
! 8 &n _,
ot {f+ v (mzwovz' E")} =0

8/ éen
f+ % (W Ef) = const

whence we obtain

where @nstead of & we use the variable v = wy/k. From this relation we
determine the oscillation amplitude in the steady state

EXt=o0) = %5?;903 f{f(t = o0)—f(t = 0)} do (L. 28)

where f(t = o) = const. In (1.28) the value v = v, represents the lower
boundary of the region of velocities where the plateau is established. It is
determined by the condition of the conservation of the total number of
resonance particles, namely [jdv = const..



18 PLASMA TURBULENCE

Let us now consider what happens to the non-resonance thermal electrons.
For such electrons (w—kv)? > 2 and, consequently, the corresponding
coefficient of diffusion, broadly speaking, is /y times smaller than the
coefficient of diffusion for the resonance particles. But since the aumber of
thermal electrons is just w/y times greater than that of resonance electrons,
their diffusion cannot be neglected. From (1.25) the corresponding diffusion
coeficient can be represented approximately in the following form:

e Bk

D, = 2 | ety dk (1. 29)

Since the coefficient of diffusion of the non-resonance particles is small,

we can replace £ by f(z = 0) in this region on the right hand side of eqn.

(1.24). Considering (1.26), the integration of (I.24) with respect to time is

straightforward and we obtain the following expression for the change in the
distribution function of the thermal (non-resonance} electrons:

e* d
o= 0) == 0= 5oz [ B = o) | = 71

Thus, the full dlstnbutton function for ¢ = oo will have the form repre-
sented on Fig. 9 by the dotted graph. All the momentum and half of the
energy lost by the beam in building up the oscillations are transferred to the
thermal electrons, which leads to a distortion of their distribution function.
The remainder of the energy lost by the beam is stored in the electric field.

We can show for instance that the total momentum of the beam and of
the plasma are conserved. By multiplying eqn. (I.24) by mw and integrating
with respect to » we obtain

e Tk of 2
—fmufdv ——fé(wo—kv)Eka dkdy — jm E? dkdv
where in the second integral the range of integration covers the region of the
27,

thermal electrons |v| ~ v, = ~=.
21 2k

Since in this region (wo—kt)™* = mz +— P we can integrate with
g

respect to v and, substituting for y, its expression given above (following
(1.22)), it can be seen that the integrals on the right hand side of this expression
exactly compensate one another, Hence the total momentum is conserved.

(b) Waves in a Plasma

In the general case the problem of describing a weakly turbulent state
in the quasi-linear approximation can be split into two parts: the determina-
tion of the wave field and the consideration of its reaction back on the par-
ticles. Let us consider the first of these problems in greater detail. Since in
practice the plasma is almost always inhomogeneous, we must understand
the propagation of waves in an inhomogeneous plasma. Since we have in
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mind a turbulent plasma in which a large number of waves has been excited,
the wavelength for the main part of the oscillations must be considerably
smaller than the characteristic dimensions and consequently the inhomo-
geneity can be considered weak.

We recall that in a homogeneous unbounded plasma all characteristic
oscillations are plane waves of the form exp (—iwe+ikr). Maxwell’s equa-
tions for such oscillations have the following form:

[kH,] -+ ?éE,m, =0 (1. 30)

[KEyo] = 2 Hy, = 0 13D

where & is the dielectric permeability tensor of the plasma.
Expressing H in terms of E from (I.31), we obtain a single vector equation
for E, which in Cartesian co-ordinates has the following form:

wZ
> (k’&aﬁ ok kp) Ejk,0)=0 (L 32)
£
so that the frequency w of the characteristic oscillations must satisfy the
dispersion equation _
D(k, w) = Det |k*6,5— w*c™ 2e,p—k,ky|| = 0 (I. 33)

‘In general the characteristic frequencies are complex: from the point of

" view of the quasi-linear approximation we are interested mainly in the special

case in which the imaginary part of the frequency is small compared to the
real part and is due to the interaction of the wave with resonance particles.
The growth rate of the wave is determjned by the anti-Hermitian part of the

%
Eap— Caa

2

dielectric permeability ie;; = which is small compared with the

®
Hermitian part &;; = M.

If ;5 is meglected the characteristic functions represent a plane wave of
constant amplitude. When these waves are uniformly distributed in space
and are statistically independent, the correlation function for the electric
field has the following form

{E(k, DE;(K', ")) = Z aLas I (k)o(k—KkNs(0—0)6(w—o)) (I 34)

where the summation is over all characteristic frequencies wg belonging
to the wave vector k, a; is the unit polarisation vector (which is in general
complex) defined by the relation E = aFE, and I(k) is the spectral distribution
of the electric field.

In the presence of a magnetic field, several dJ.iTerent characteristic fre-
quencies correspond to one value of k in general, In this case all waves
can be considered uncorrelated, in contrast to conventional optics where it is
necessary to consider the correlation of the polarisations, and for a complete
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description of two transverse oscillations it is necessary to introduce the four
Stokes parameters. ,

When the small anti-Hermitian part &z is taken into comsideration,
the amplitude of the oscillations varies with time and the correlation function
will not be simply proportional to §(ww—w’). But when considering a large
number of waves in a wide frequency interval, it is still possible to use the
relation {1.34) as an approximation, by allowing I' (k) to be a slowly varying
function of time. Differentiating this relation with respect to time gives

— i — ")} E,(k, @)E; (K, w))=
=2 gt(“i“fv*f (k. )5(k—k"S(w— )0 (w—o) (I35

from which it is immediately apparent that the variation of I with time leads

to a “ broadening * of the & function of w—aw’ in the expression for the °

correlation function. .

A spatial inhomogeneity must lead to an analogous broadening of the
function d(k—k"), and this can be considered approximately by allowing
a weak dependence of 7 on r. In this case the operator V corresponds to
ik—k". :

The approximate representation of the correlation function in the
form (1.34) corresponds physically to the concept that the electric field of the
oscillations forms a set of statistically independent wave packets. If the
characteristic wavelength of the oscillations is considerably smaller than the
dimensions of these packets, then over limited intervals of time we can neglect
their dispersive spreading. To obtain an equation describing the behaviour
of such packets we use the following averaging operation: we multiply
eqn. (1.30) by Ef., egn. (1.31) by Hj,, subtract the one from the other
and then anti-symmetrise the resulting relation, ie. subtract from it an
analogous complex conjugate relation with k,  and k', o’ transposed.
In the relation so obtained the value of the quantity &, (k, 0)—& (', @)
can be expanded in series for small k—k’ and w—«'. Finally we insert

—iVand i % respectively for k—k’ and - e’. An analogous exchange must

be carried out in the other components where corresponding differences
appear. For a homogeneous plasma we thus obtain the following energy
balance equation

oW
5 TS == %Im CEE By ,> (L 36)
where W is the energy of the k* wave given by
_ 1 a Ear _}_ﬂ #
=3n 6w<wE §E> + 8:'1:<H H>
18 N k. e .
= Ey - — = E 1.
8n6w{<mE gE> > <E E>+w<(kE)(k ))} (L. 37)

%

[
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and S is the energy flux
S=- 1 {(coE*é’E) - ikz (E*E) + f-z <(kE*)(kE)>} (I. 38)
8”,\ @ @ )

& is the Hermitian part of the tensor & In the expressions for W and S
the differentiation with respect to « and k can, in view of (I.32), be carried
out at constant E*, E.

Multiplying eqn. (1.32) by E, and summing the result with respect to «,
we obtain '

2
~ ST ENE - KPE*E+ (KE) (KE) = 0 (L. 39)

and it is clear that W and S are given by the derivatives of the mean value
of the function G, defined by

wz
(G = {Ez— (a*é‘a)—kz+]ka]2}1 =D,I (1. 40
. The quantities D; and D (see (1.33)) vanish at the same frequency c,

so that at some other @ = ey they can be supposed proportional to one
another. We then obtain

_ ImD, _do, @Dy [oD,\"!
W="7p,’ BT “"E(%) (I 41)
dm

where yy is the growth rate of the k™ wave, Uy its group velocity. Using
these relations we transform the energy balance eqn. (I.36) to the following
" simpler form
ol

4 Uk% =21, (L. 42)

r
Let us now consider an inhomogeneous plasma. The inhomogeneity
leads to several additional features. Most important, in the tensor .5 some
small additions appear which are proportional to the gradients of the mean
distribution functions for the electrons and ions. In the presence of amagnetic
field these additional terms represent the effect of the drift currents. More-
over, the permeability ¢,; becomes a slowly varying function of the co-
ordinates and therefore, in the expression for the determinant Dk, w), g
must be differentiated with respect to r wherever it appears multiplied by k,
which is equivalent to —iV. Let us assume that all these corrections have been
made; we retain the previous designation D(k, w) for the resulting determinant.
The other new feature in the propagation of the wave packets in an
inhomogeneous plasma is related to a correlation of waves with wave vectors
which are close to one another induced by the inhomogeneity. In a homo-
geneous plasma, the components of the tensor e, in co-ordinate representa-
tion depend only on the distance between the point of observation r, where
the current is calculated, and the source point r’, the field at which excites the
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current. Therefore in the k representation the components &, are simply
numbers, In a weakly inhomogeneous plasma, however, &3 must be a func-

r+r
tion of both r and #/, but can be represented in the form &g (r——r’,—-z——)

where the dependence on the second argument is weak. Transforming to a
Fourier representation, the dependence on the first argument changes into a
dependence on k, while in the case of the second argument we may expa:}d
about the point r, where the wave packet is located. To first order we have in
the co-ordinate representation ‘
r+r , r—ré .
Eap (r—r', _2_) = gt —1,1) + —2—-5:_5,,,(1' ¥,r)
where the differentiation of ¢ in the second componcnt_is performed oz}ly
with respect to the second argument. Now transforming to the Fourier

. .0 i
representation r'—r goes over into —izs and the second component wi

have the following form
1 Pe 5k, @,¥) ; 2
2 o ¢k

Thus in the relationship between e,5 and 1, ¢ in eqn. (1.32) we must a_dd_
some small terms proportional to the derivatives of the electric field with
respect to k and w. If we now repeat the derivation of the energy balance
eqn. (1.36), we find that these additional terms lead to a term containing the
derivative with respect to k of the spectral function. Asa result eqn. (1.42)
for a weakly inhomogeneous plasma assumes the following form (see refs.
(12, 362 don 0L, 0o, I

Ol 00 0L OOk Ok _ 5, 1 .43)
2t Tk ar or kKK a

where g = wy(r, 1) is the characteristic frequency qbtai,ned from the dis-
persion relation D(k, o, T, #) = 0. Its derivatives with re_:spec't to k a1_1d r
can be determined from the rule for the differentiation of implicit functions

Baoy BD/f"D. duy _ ?2/@ (L. 44)

%k okl dw’  or  orfdw

Note that for longitudinal oscillations the determinant D becomes simply the
dielectric permeability &. -

Equation (L.43) has a simple physical meaning. The_ second term on t.he
left describes the motion of the wave packet in space with a group velocity

Uy = %c%, and the third shows that simultaneously the wave packet is

distorted in such a way that the oscillation frequency remains constant,
Note that we have assumed throughout that the wave vector gnd the

frequency wy vary continuously. In fact the characte;istlc”o:scﬂlauon fre-

quencies of an inhomogeneous plasma must be * quantised 7, i.e, must pass
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through a discrete series of values (see ref. (36)), but since the difference
between adjacent characteristic frequencies of short wave perturbations is
very small, this effect can be neglected.

It must be remembered that eqn. (1.43) corresponds to the zero order
W.K.B. approximation. To this degree of accuracy it is completely irrelevant
whether the term representing the divergence of the energy flux is writien
in the form shown in (1.43) or in the form div (Uy f). When we consider a
large number of modes covering a broad band of wave numbers this approxi-
mation is obviously quite sufficient.

From the point of view of the quasi-linear approximation, we are in-
terested in the case in which yy is small. In this case the time derivative of
I can also be considered smali, so that in zero approximation we shall have

by 8, Oy Bl
ok or or 6k (1. 43)

It follows, therefore, that I, = I (ey) i.e. the dependence of L onrand k
is mainly determined by the relationship of (@) and ay(r). In other words,
I represents a set of waves with different frequencies, the amplitude of each
of these waves is independent of r, and the corresponding wave vector
k = k (1) is defined by the relation wy, = w, = const. In the next approxi-
mation we must consider the dependence of Ly on the time and a possible
weak dependence on r. For waves with frequency o, we shall have
L =11 0 (wy—wg). Substituting this expression in (1.43) gives

el oI,

Consider for simplicity a one-dimensional case when the plasma is
inhomogeneous along one co-ordinate only, say x. Suppose moreover that
@y is a symmetrical function of k&, i.e. to each frequency correspond two
waves propagating in opposite directions. Suppose further that the waves
are reflected without absorption either from the walls or from the turning
points (points at which &, = 0).

d
For small y and Py the function I, can, according to (1.46), be considered
independent of x. Multiplying eqn. (1.46) by U; ! and integrating with respect
to x, we eliminate the second term and obtain
ol

5 = 2k (L 47)

' S(x)d dx |
where {7,» =f% / f 7 E;) is the mean growth rate of the wave w,.

Clearly the stationary state will be reached when < y, > = 0, but for
this to occur it is not necessary for y, (x) to vanish everywhere. It is now

trivial to include in this scheme absorption at the walls, and if this absorption

is large enough we may have a steady state or even damping, even when the
local growth rate is positive everywhere in the plasma.
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(c) Absolute Instability

In the preceding section, we did not take inio account the digpers-ive
spreading of the wave packets. In several problems such an approximation
is fully justified, but this is not always true. 'We shall consider here a specific
example where the spreading of the wave packet must be taken into
account.

In Section 3(2) we considered a beam instability in an unbounf,lcd plasma.
However, in practice all experiments with beams except experiments with
toroidal systems are conducted in bounded tubes. The problem therefore
arises as to whether an instability can develop in such a tube. _If we approach.
this problem from the point of view of geometrical optics, within the frame-
work given in the preceding gsection on nom-spreading wave packets, we ought
to describe the build-up of perturbations with the aid of eqn. (I.43). Accord-
ing to this equation, in the absence of a feed-back between the entrance
and exit of the beam, which can be realised, for example, by waves propa-
gating against the beam (*“ backward ” waves), any perturbation will move
along the tube with. a certain group velocity. The plasma and beam .the.n
operate as an amplifier rather than as an oscillator. Such an .1nstab111ty is
called a convective instability, in contrast to an absolute instability where the
perturbation grows at every point in space (refs. 25, 37-41).

We shall now show that the necessary feed-back can be produced by ‘fhe
dispersive spreading of the wave packet. We shall find that there is abounding
group velocity U, such that for U/ < U, the instability is absolute, while for
U > U, it is convective. We shall follow the treatment of x_ef. (41).

Suppose the growth rate y, as 2 function of & has a maximum fit_!g = ky.
Obviously, after the lapse of & sufficiently long time, any given initial per-
turbation will be deformed so that it will have 2 sharp maximum at k = ko.
It is therefore sufficient to consider a wave packet consisting of plane waves
with wave numbers close to ko. Itis then possible to make a series expansion
of 7, and o, with respect to the small difference k—ko:

ot 2P, o= ok Uk + 3Gkl (449

dw P w
s U= —* ’ ﬁ = _—2k
k=ko ak k=ho ak k=kp . . .
moving co-ordinate sysiem in which @y, = 0. The evolution with time of
the wave packet is then given by

E(x, 1) = A, e5p (i1 — 1Ko x)
J. exp {i(x-— U (k—ko) — @ 21 £) k— ko)z} dk (L. 49)
where A, is the initial amplitude of the electric field. Provided that the

difference x— Ut does not increase t00 rapidly with #, this integral can be
evaluated and we obtain for the dependence of the electric field E on time the

. We now transform to a

where o = %
oK
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following expression

: (x=UD*
E(x,0) = Ay, exp{—akox+'yk°t - m(oﬂ+tﬁ)
where the last component under the expoment sign describes the spreading
out of the wave packet. As may be seen, for
. 2 C€2+ﬁ2 5
U* < 2y, = U; (1. 50)

the amplitude of the wave packet will increase with time at each point
x = const. In the opposite case U > U, the amplitude increases with fime
only in the moving system of co-ordinates.

Since (1.49) is accurate only near the maximum, i.e. not too far from
the point x = U, the expression (1.50) for the critical value of the group
veloity is only approximate.

(d} Resonance and Adiabatic Interaction between Waves and Particles

Let us now consider in greater detail the question of the interaction
between waves and particles within the framework of the quasi-linear
approximation. As we have already stated in Section 3(a), it is convenient to
distinguish a resonance and an adiabatic interaction of particles with waves.
Each separate particle has a resonant interaction with those waves whose
phase veloeity coincides with the particle velocity. During resonant interac-
tion the electric field of the wave is constant in a system of co-ordinates
related to the particle, and therefore during such interaction a considerable
encrgy exchange takes place between the particle and the wave.

In the electric field of non-resonance waves, a particle performs oscil-
lations with an amplitude governed by the electric field of the wave. A slow
variation of the field amplitude leads to an adiabatic variation of the ampli-
tude of the particle oscillations.

In the example 3(a) which we considered, the adiabatic interaction was
described by a diffusion coefficient (1.29). In order better to visualise the
effect of the adiabatic interaction and at the same time to clarify its representa-
tion in the form (1.29), we consider a simple example where the external
field Ee™"* with k = 0 is imposed on the plasma. For a slow variation of the
amplitude E, according to (1.29) we obtain

af e @ (@E2 af )

dt  2w*m? dv

Suppose that the square of amplitude of the field varies linearly E?= ngf

(L. 51)

where T > o™, Equation (L.51) becomes a diffusion equation according
to which the distribution function of the electrons, assumed cold at ¢ = 0,
will be at time ¢t = T given by

e—uzl’uoz eZ EZ

=L = 152
f ‘\/?‘EUO Vo mzwz ( )

P.T. 2
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An exact consideration would obviously give

) = o=ty = = s a. 53)
=

The difference between (1.52) and (1.53) demonstrates the inaccuracy of the
quasi-linear approximation when it is used for a single wave. When the
number of modes of oscillation is increased the accuracy of (1.52) will im-
prove, since the distribution function f(v) as the probability density of the
sum of a large number of random quantities must tend toward the Gaussian
form.

dne*n

For Langmuir oscillations, @* = of = , and the kinetic energy of

2
v
2 is equal to the potential energy of the electric field E?/8x.

mn
the electrons

Thus, in the presence of an jsotropic distribution of Langmuir oscillations
the effective temperature T.y, which defines the width of the average distribu-
tion function, is given bzy T,p = T,+Ty, where T, is the true electron tem-
perature, and Ty = §<8E >
the oscillations and arises from the adiabatic interaction of the particles with
the waves, Note that because T, > 0, the effective temperature T, cannot be
smaller than T.

The division of the interaction between particles and waves into reso-
nance and adiabatic interaction becomes slightly more complex when going
over to an inhomogeneous plasma. Let us for instance consider the simplest
case of the Langmuir oscillations of an inhomogeneous plasma in the absence
of a magnetic field.7 We assume that the effect of the mean electric ficld E
on the oscillations can be neglected, In the quasi-classical W.K.B. approxi-
mation the kinetic equation for the perturbed distribution function fy, is
then written in the following form

The value of T, determines the kinetic energy of

af *f OBy, | Of OB,
_{ Beoti ) oo ok, avor ﬁw} {@-54)

where f'is the averaged distribution function. In this equation the function

d . N . . .
5‘5 and its derivatives with respect to r and ¢ are considered independent of
1, ¢, and the distortion of the wave packet due to the inhomogeneity is in-

cluded through the second and third terms in the curly brackets.

(—iw+ikvify, =

4 In an inhomogeneous plasma the longitudinal waves are decoupled from the other
modes only when the electric field of the wave acts paralle] to the gradient of the un-
perturbed density. For any other direction the longitudinal oscillations are coupled with
the transverse ones and the Langmuir oscillations must therefore be accompanied by
electromagnetic radiation. However, thé intensity of this radiation is small and the oscil-
lations can still be ¢onsidered approximately longitudinal.
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The kinetic equation for the averaged distribution function has the
following form
éf af
YWf = —E
TV R

where the term S, ., which represents the collisions between electrons, and
waves, is given by the relation

Sef = ff <Ek'm fl:m) dk dow dk’ deo’ (I. 56)

The expression undcmeath the integral sign in (I.56) can be written in the
symmetrical form 3<Ef o fro T Exnfirery and we can then substitute for the
function fi,, its expression in terms of Ey, from (I.54), The contribution
due to the first term in the right hand side of (I.54) is proportional to

1 i i .
- — e I .
2 (co —kv+iv o' —k'v— iv) Eidar Era (. 57)

Bearing in mind that the correlation of the electric field approximates to a
delta function, we can replace the real part in the round brackets in (1.57) by
2mé (w—kv), and the imaginary part can be represented in the form

. N RN A o _[_88 o8], -
[I(w—w)£+10i—}i)a](wukv) —[ 6t6w+vak](m kv) 7!
(1. 58)

The last two terms in the curly brackets in (I.54) lead to terms which are

=S, (1. 55)

. . L. , . k
proportional to the derivatives of I, with respect to k and w. Since Ey =% Ey

we finally obtain

2
S, = %%fk(; af)a(w kv)I,, dk do —

kof
e & J k2 8v

Ty o— kv {VIkw kz (kVIkm)} dk dw -

2m? ov
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e 9 ol,, & ol @ 3 o, | Ko
— k {iv] e e __w I m
Im? vi {az o o T eme T Tk V}w—-kvdkdw

(L 59)

where the singularity (w—kv)~! is integrated in the sense of its principal
value. We have omitted a small term proportional to L, (i.e. not containing
a derivative of I,,) becanse within the framework of our adepted zeto order
W.K.B. approximation we also neglected similar additions in the transfer
eqn. (1.43). In (1.59) the first integral corresponds to the resonance interaction,
the other two to the adiabatic interaction between the particles and the waves.




28 PLASMA TURBULENCE

Multiplying ([.59) by mv and integrating the result with respect to v, we
obtain the force F acting on the plasma due to the interaction with the
waves. Since for longitudinal oscillations ¢ = 0 we obtain

1 2k
F=——| |[VI-—
r:f [ I kz(kVI)] dkdew +
W INCE L f
gr)  \@téw owor orék  okar

where ¢ is the dielectric permeability of the plasma given by

+2Im aI} dkdw (1. 60)

of
E_1+4_-7£_32J'__}{6__Vd I.61
- mk? o—kv" (L. 61)

According to (I.43) the second integral in (I.60) vanishes and consequently
the force F reduces to the divergence of the Maxwellian stresses. The second
part of the force, related to the kinetic energy of the oscillations, is obtained
from the averaged function and, according to (1.52), can be represented in the
form of a gradient of the pressure tensor .

. eln [ kk; 1 [kk;
o= 20 [ T dider = 4 f S dkdo (L 62)
4 2
where we have replaced w” by wj = ﬂ:z 7

The total force exerted on the plasma by the Langmuir oscillations is
thus simply the negative gradient of the energy density of the electric field.
Consideration of the adiabatic interaction of the particles with the
waves is important in other cases when the energy and momentum balance
in a plasma supporting oscillations is discussed; in particular this interaction
must be included when discussing the * anomalous ™ diffusion of a plasma.
It must be remembered that the division of the total interaction into
resonant and an adiabatic parts is only possible for sufficiently small growth
rates when one can refer to near-periodic oscillations. The condition
'y < max (o, kvy) must be fulfilled and this is also a necessary condition for
the applicability of the quasi-linear approximation (vy is the thermal velocity).

(¢) Enhanced Diffusion of a Plasma

The expression for the collision term (1.59) can be generalised without
difficulty to include longitudinal oscillations of a plasma in a magnetic field.
For a two-component plasma an expression of the type of (1.59) must be
written down for each component. The force F; acting on the component f

. F
can then be represented in the form F; =_-2-9 + F,, where ¥, is the total
force acting on the plasma as a whole and Fy, is the “ frictional ” force
between the electrons and jons which is transmitted through the oscillations.

By using a relation of the form of (1.60), it is not difficult to show that the
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total force F, is the divergence of the Maxwell stress tensor. This force
can only lead to a macroscopic motion of the total plasma, including the
frozen-in magnetic field. The diffusion across the magnetic field is determined
by the frictional force between the electrons and ions, F,,, or more precisely
its component across the density gradient. This conclusion follows immedi-
ately from the hydrodynamic equations of motion for each of the components
which, as we know, describe fairly accurately the slow mean motion of the
particles across a magnetic field.

This result is very important and must always be borne in mind when
investigating the possibility that some given oscillations affect the diffusion
of a plasma. In particular, it follows that high frequency oscillations, in
which the ion motion can be neglected, cannot lead to diffusion of the plasma.
At first sight this assertion might seem improbable, since each separate
electron in such a field performs random motions which may be considered
as diffusion. The corresponding coefficient of diffusion for a separate
particle can be determined either by calculating the mean-square of the

displacement (Taylor (42)) or from quasi-linear theory (43); for resonance

particles this diffusion is described by the first term in (1.59). But if together
with the diffusion of the resonance particles we also consider the displace-
ment of the remaining electrons due to the adiabatic interaction, we obtain an
expression of the type of (1.60), according to which the total current vanishes
identically. Thus, the interaction of electrons with waves, if the jons are
stationary, leads only to a diffusion of separate particles, i.e. to effects such as
an intensified thermal conduction, rather than to a diffusion of the plasma
as a whole. The interactions of these oscillations are therefore equivalent to
electron—electron collisions.

The neglect of this important conclusion in papers dealing with enhanced
diffusion has often led to erroneous statements. For instance, in some experi-
mental papers attempts are made to relate the anomalous diffusion direcily to
the high frequency oscillations in which it is known that ions cannot partici-
pate. Theoretical considerations of enhanced diffusion are sometimes
limited to only one component, for example, the electrons; in this case the
problem of the mechanism making the diffusion ambipolar needs further
consideration. This problem is automatically resolved when we determine
the diffusive loss directly from the frictional force between the electrons
and the ions-

A similar error is incurred by not taking into account the dragging
along ” of the waves by the particles, as a result of their interaction. For
instance, in Taylor’s paper (42) quoted above where Langevin’s equation
is used for the investigation of the random motion of the particles, a rather
vague assumption was made that the oscillations are isotropic in the labora-
tory system of co-ordinates. This assumption, which is equivalent to assum-
ing a strong coupling between the oscillations and the walls surrounding the
plasma, led that author to the erroneous conclusion that the coefficient of
enhanced diffusion cannot exceed Bohm’s value. A similar error was also
committed in ref, (44) where the coefficient of diffusion of the electrons was
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calcu_latcd on the basis of the thermal cyclotron oscillations, which were
<_:on51dered isotropic in the laboratory system of co-ordinates, rather than
in the system of co-ordinates moving with the electrons (this error has been
corrected in a later paper by the same authors (45)).

In a complete discussion of the diffusion problem all these paradoxes are
automatically resolved, and complete clarity, as we have seen, can only be
achieved when the adiabatic interaction between the particles and the waves
is considered. In those cases in which resonance interaction is impossible,
the enhanced diffusion can be determined from the adiabatic interaction
alone. As an example, we may quote the problem of the diffusion of a plasma
due to drift waves excited by an external source, treated by Petviashvili (46),
in which the electrons diffuse due to the resonant interaction with the waves,
and the jons due to the adiabatic interaction. -

Il. INTERACTION BETWEEN WAVES IN WEAK TURBULENCE

TuE quasi-linear method investigated in the preceding chapter has a very
limited field of application, being suitable only for the description of states
which are so weakly excited that strictly speaking they ought not to be called
turbulent, since the most important property of turbulence—the non-linear
interaction between the oscillations—is not yet apparent. In real turbulent
processes in a plasma, the interaction between the oscillations generally
plays an important part. The consideration of this interaction is the subject
of this and the following chapters.

1. KmeTic WAVE EQUATION

(a) Derivation of the Kinetic Wave Equation

We are considering here only states where the interaction between the
waves can be considered weak. This situation can be expected when the

. growth rate of the unstable perturbations is sufficiently small, i.e. e <€ 1.
‘This condition as it stands, however, may be misleading because the value of

o depends on the choice of the co-ordinates system. For instance, in the
case of a set of sound waves travelling in. the same direction, say parallel to
the z axis, the frequencies of all the waves vanish when we transform to a
co-ordinate system moving with the sound velocity. Even for a very small
growth rate this must be considered a case of strong furbulence. However,
for the same sound waves distributed isotropically, the weak interaction
approximation can be used. Thus, although in what follows we shall use the
condition y/w < 1 as the weak coupling criterion, we must remember that the
condition would be expressed more accurately by the statement that the
growth time of the perturbations must be considerably larger than the
characteristic time of conservation of the relative phases of the different
waves.

Let us first consider oscillations in which the resonance interaction with
particles plays no part. This would occur, for example, in the case of a cold
plasma where the thermal motion of the particles can be neglected, and the
magneto-hydrodynamic equations can be used to describe the motion of the
plasma. Now a whole series of such problems lead to equations whose basic
structure is similar, and can be represented in Fourier space by the following
general scalar equation

(@~ = 1)Cuo = | Vio,wor Crver Cuit,omwr W d0’ (L 1)

We shall use (IL1) as a model equation to explore the character of the
31
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interaction between the oscillations. The expression on the left hand side of
eqn. (IL1) represents the linear part of the equation of motion and the
expression on the right represents the Fourfer transform of the quadratic
terms. These quadratic terms describe the interaction between the various
harmonics and the quantity of Vy,, we represents the matrix element of this
interaction.

Note that since Cy,, represents the Fourier transform of a real function,
G, = C—y -, Using this relation in the complex conjugate of egn. (IL1),
changing the signs of k, @ and k', »’ and noting that w_y = —wy, Y-k = &
we obtain an equation analogous to (I1.1), but with a different matrix element.
Comparing these equations we obtain

T/l:':x), ke — T V—k, —w; —K, —w' (II 2)

If the growth rate y. > 0, small perturbations will increase with time
until the non-linear interaction comes into play. In conditions approximating
to equilibrium, the right hand side of (II.1) must be considered small, since
in zero approximation we have

(0—w)CE =0 (L 3)

If the oscillations developed from random thermal motions, the individual
modes can be considered completely independent. Multiplying equation
(IL.3) by CiO% and averaging the result with respect to the statistical ensemble,
i.e. with respect to the random phases of the separate oscillations, we obtain
for a stationary and spatially homogeneous system of oscillations

(Clor Cundo = I~ )3k~ K)o — ') L. 4)

If we replace Cy, by Cf% on the right hand side of (IL.1), the non-linear
term will play the part of an inducing force. The amplitude of the induced
oscillations will be denoted by Cfi. The presence of induced oscillations
does not lead directly to damping of the waves, which becomes evident only

in higher approximations. It follows, therefore, that the quantity C¥ must

be of order ~/y/c, and therefore in the equation for Ci5; the growth rate y can

be omitted. Moreover, since the beats must attenuate more rapidly than the
main oscillations, it is necessary to add to the right hand side of equation
(I1.1) for the beats in place of — iy a small term iv, which represents the damp-
ing due to the higher correlations. We thus obtain the following equation for
the first approximation

) = (@~ 6t )™ [ Vi O O - A’ de0’ (IL5)

By a similar method we could determine the higher order corrections to
the amplitudes. However, we are not so much interested in the correction
to the amplitude as in the effect of the wave interaction on the characteristic
frequencies of the oscillations, and more precisely on their imaginary part,
i.e. the damping. To determine the magnitude of the additional damping
we multiply eqn. (I1.1) by C#. and then average the result with respect to the
statistical ensemble, assuming, as before, that in zero approximation the
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oscillations are uncorrelated (the random phase approximation). The right
hand side, containing the product of three random variables, vanishes in zero
approximation; the next approximation is to include successively in each of
the three factors the first order correction C?, which leads to

(= op~ Ve = Lo f Vio, ko’

Veror kot Virar, =k =o'

Tyroy dK' deo’
CD”-(Dk"'I'iV kw +

View kot Vicw, k- o
o —wp+ iy

+ Iy f Vkm, ko' Ik”a)" dk’ dw’

1

pr—— f Viosor B o+ Vi e Micar Lo AK' dos’ (1. 6)
where k" = k—Kk', 0" = w—’, .

The first two terms on the right hand side of this equation are proportional
to L, and contribute therefore to altering the characteristic frequencies.
For our purposes it is sufficient to consider only the imaginary part of these
terms, since it is this part which describes the damping of the waves due to
the non-linear interaction. Their real parts, giving the frequency, can be
neglected on the strength of the condition y/w < 1. Transferring the terms
proportional to I, to the left, they can be combined together with y.fy, and
we obtain the total growth rate ¥y (more precisely speaking the damping
rate, since in the steady state the value of ¥, must be negative). Since the
non-linear terms are small we can, within the framework of our approxima-
tion, replace the small imaginary part v > 0 by —%; > 0 in the last term,
and the relation (IL6) can then be rewritten in the following form:

{(0—e)® +7 M, = %f [k, o | Tior Tyrar A de” ~ (EL7)

where Uy kot = Veok'e’ + Vio, k7o and the right hand side of (IL.7) is nowina
symmetrical form., '

With a small 7 the expression [(@—o)*+75] ™' = — x 8(w— ), so that
x
as previously [y, = I, 8(co— ). Substituting this last relation in (I1.7) and

considering that Im (@'~ @y, +iv) ™! = —2é(w’—w,), we obtain the kinetic
equation for sustained oscillations:

=Pl =— ?’ka +nly Re f Vi, ko Veom, ke Ok — Wy — Wy )Ty dK' —

Im (g yoer O )

e, Ko Ve
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Fi
=3 f |k, e i Faer B0, — @030 — o0yr) (IL. §)

where the integral with respect to k' in the last term: on the left hand side is

_ the principal value, and k" = k—-kK, 0’ = o—w'.

In a transparent medium oy, o is réal. For simplicity we shall only
2%
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consider this case here, leaving the general case to Section (2) where we shall ‘

consider the thermal motion of the particles.
Note here that the addition to the right hand side of eqn, (IL.1) of a cubic
term of the form

J Vkm.k’m'. k"w” Ck’m' Ck”m" Ck—k’-k”, w—o'—-o" dk’ dk” dwr dw” (II' 9)

would lead to the appearance on the right hand side of eqn. (11.6) of an
additional term ‘

[ Vs TuaTicor A’ d’ (I1. 10)

where }
Vo ke = Veo ke, ~k—o T Vo, ko, 5o T Viw, ko', ke (IL. 11)

Equation (IL.8) defines the spectrum of the oscillations in the steady state,
where the growth of the waves due to the instability is exactly compensated
by their damping due to the non-linear interaction. In the absence of equili-
brium the oscillation amplitude will vary with time with a growth rate equal
to the difference between the linear growth rate and the non-linear damping.
The kinetic equation for the waves, including non-linear effects, can therefore
be obtained from (1.43) simply by replacing y; by %, to give
oI I, Bwy 0l

5 T U% o ok

= Zyka— T j {ZUkkr Uk'kaIk" - ‘Ukk'lz-[k' Ik»}a(mk— (Dk: - mk") dk’ (II. 12)

This equation, together with the equation for the averaged function,
constitutes the basis for describing weakly turbulent systems. In the case of

) o . L
a homogeneous medinm, where a—rk = (, this equation is analogous to the

well known kinetic equation for phonons, the sound quanta in a solid (see
ref. 11). The kinetic equation for waves has only very recently been applied
to a plasma (refs. 10 and 13). ’

In this wave eqn. (IL.12), only “ three-wave ™ processes are considered;
these are the decay of the wave k into k’, k” and the inverse process of the
merging of the two waves k', k" into one. The é-function of the frequency
difference appearing in (I1.12) requires wy = we+oy, and this condition,
which can be shown to represent the conservation of energy, considerably
limits the permissible region of interaction in k-space, and indeed for many
forms for the dispersion relation @ = w(k) three-wave processes are com-
pletely forbidden. It is natural therefore to divide the possible dispersion
relations into two groups, decay and non-decay relations, according to
whether decay of one wave into two is or is not permitted.

In an isotropic medium, for instance, a relation of the form 1 (Fig. 10)
where the phase velocity decreases with £, is a non-decay relation, while for
a spectrum of type 2, where the phase velocity increases with k, the decay
conditions can be satisfied.
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For a non-decay dispersion relation, we must go to the next approxima- -
tion to obtain a non-vanishing interaction, and we then consider * four-
wave * processes in which the scattering of two waves on one another gives
two further waves. In the kinetic wave equation such processes lead to
terms which are cubic in the spectral function I. But as we shall show below,

Wy

K

F16. 10. Dispersion relations of decay (2) and non-decay (1) types

when the thermal motion of the particles is taken into account, additional
terms quadratic in T appear, and these will in general dominate the cubic

" terms. We shall not, therefore, consider non-decay dispersion relations in any

greater detail here.
Let us now discuss the two simplest examples of decay interactions in a
plasma.

(b) Interaction between Langmuir Waves and Ion-sound Waves

Let us consider the simplest possible case, the longitudinal oscillations
of a plasma in the absence of a magnetic field. We shall assume that the ion
temperature T is considerably smaller than the electron temperature T, 50
that we can put approximately T; = 0. Under these conditions both Lang-
muir and jon acoustic waves can propagate in the plasma. Each of these
oscillations taken separately has a dispersion relation of the non-decay type.
The dispersion relation for ion acoustic waves is of the form of curve 1 in
Fig. 10, and the frequency of Langmuir oscillations approximates to g, 50
that the sum of three frequencies cannot vanish. Therefore the only possible
three-wave processes are those in which Langmuir waves are scattered by
ion-acoustic waves, and we shall consider these in detail.

11_1 t.jna hydrodynamic approximation the oscillations are described by
continuity equations

on; )
5t + dw(njvj) =0 (I1. 13)

for the electron density #, and the ion density »;, the equations of motion for
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each of the components

dv; €;
mn——-'-V(nT):—-'——J n-V(D (II. 14)
JJ dt J 4 m; J )
and the equation for the electric potential
Agp = —4dme(n;—n,). . (II.15)

We shall use the index s for the ion-sound oscillations, the index I for the
Langmuir oscillations. Let us consider first the Langmuir oscillations. In
the case of the Langmuir oscillations the ions can be considered stationary,
ie. n = 0, so that eqn. (I.15) takes the form

Agt = dnent (1I. 16)

Further, since decays within the Langmuir oscillation branch are pro-
hibited, the non-linear term in the electron continuity equation and the
non-linear term quadratic in velocity in the equation of motion for the
electrons can be omitted. The non-linear coupling between the Langmuir
and acoustic oscillations is given by a term on the right hand side of the
electron equation of motion (11.14). Transforming to the Fourier representa-
tion we express r, in terms of ¢ from (IL.16). Taking the divergence of the
electron equation of motion and expressing div v, in terms of n, (IL.13), we
obtain the equation for the potential of the Langmuir oscillations

kk' [w}
R

n (Plt»:'m’HZk—k',m—m’— .
k_k.l 2
- iﬂ_) qpli’m’qoin—k'.w—m’} dk, d(D’ (II 17)

where w? is the square of the frequency of the Langmuir oscillations given by
3T, .
w? =wf + m—ekz. For k, k' small compared with the inverse Debye length
the second term in the curly brackets in (II.17) is negligible, and recalling that
n!

n; = T ¢* we finally obtain
-4

ew) (kk'

(@~ ek = 52 [T ok dK do (IL. 18)
[

where k' = k—X', v = o—'.

For the acoustic oscillations, the ion continuity equation and the equation
of motion can be linearised, since decays within the jon branch are again
prohibited. Expressing #; in terms of ¢* from the linearised equations, we
obtain from (IL15)

QZ
(1 - E)’g) kqulsm: = —47187’1:]‘0, (II‘ 19)

4 2
where Q2 = % is the square of the ion Langmuir frequency. At small k

i
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the frequency of the ion-sound oscillations is considerably less than £,
go that in (I1.19) the unit in the brackets can be neglected.

To obtain the coupling between the ion-acoustic and Langmuir oscilla-
tions, we must take into account non-linear electron terms which would
give low frequency beats, Taking the divergence of the electron equation of
motion and notirg that the term in V¢ can now be linearised, we obtain in
Fourier representation

w’
nm, f (k¥iee) (k’vL»a,» - ?nf‘umn) dk’ do' + k*T,n,, = k*nepy, (1L 20)

Since the frequency of the ion oscillations w; is small, we have approxi-

#_ L

1l _ i . .
mately @' fgegr X — @ My = — 1K V0. Neglecting the thermal corrections

ek
- I » .
we can write Vg, =— — ¥y and then expressing v' in terms of ¢’ and »*
N e

in terms of ¢° we obtain

ew? [ (KKK
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‘ T, . . ‘
where ©f = c2k* = ﬁkz. This equation describes the interaction between

the Langmuir and ion-acoustic oscillations.

In the linear approximation, to each wave vector k correspond two fast
waves, wy = +;, and two slow waves, wy = +w, The spectral function
of the potential ¢ for these oscillations will be denoted by L and I respec-
tively so that, for instance,

ko = L 00— ke + I *0(0o + ke (IL. 22)

Iq addition, since Xy, = Y-y, -, we shall assume that w_; = -, and
consequently the transformation w, k - —w, —k changes neither Iy nor
6 {w — o).

In principle it is possible to choose another method of differentiating
between the two waves with the same wave vector, but propagating in oppo-
site directions. Often, for instance, the frequency is defined to be positive
and then the direction k defines the direction of propagation of the wave,
In this system, however, a more complicated notation for the collision term
between the waves is required. The iransition from one representation to
the other is simple and we shall use only the representation introduced above.

Near each of the characteristic frequencies, the difference w”—wf can
be approximated by 2wy (w— wy), and the eqns. (IL18) and (IL.21) assume the
form of the model eqn. (II.1). The kinetic equations can therefore be written
down by analogy; we obtain the following system for the longitudinal
oscillations of a homogeneous plasma

8l |y 0h  méw}
aa ' ker 4 T?

f cos? (LIS, — IL IE.)6(wk — ol —08) dk’ (11 23)



38 PLASMA TURBULENCE
eIy &I = dfwl
ot “or 4 mﬁwé‘

f k'*(k—k' cosa)? cos? alf Ik, x

7 elot
X &{wf — ol — ot ) dk’ — szcosa(k—k’cosm)x
@h-of-al &k -5
x (k' — k cos )I§ I 8(cof — wobe ~ ) dk’ (1L 24)
where
kk’ 3T, '
cosa=X,  Ufimi-olek U =ien

kk” T muwy . 'k

It is evident from these equations that the main part in the interaction
between the waves is played by the electron oscillations: beats between these
oscillations excite ion-acoustic waves which then scatter the electron
oscillations strongly. Let us for instance consider the case where a single wave
with wave vector k, propagates in the initial state in the plasma, so that
o' = @od(w—wk)5(k—ko) (Oraevskil and Sagdeev (47)). Such a wave may
decay into a2 Langmuir wave with &" & —k,, propagating in the opposite
direction and having a frequency w}. close to e}, and an jon-sound wave with
wave vector k" = 2k,. In this case the condition wl — o} — o}, =0 can be
satisfied,

To investigate this process it is convenient to revert to the eqns. (I1.18),
(I1.21) for the amplitudes. For each of the excited waves we write @ = o+
and linearise the equations for the amplitude relative to the perturbations
©'0(k+ kg)d(w— k) and o°6(k— 2k,)é(cw— w}), we obtain

2iyo'el = —w? ;‘)qo (I1. 25)
2
2iyer, ¢ = ——= Kb oo o' (11, 26)
M, 0
whenee, assuming @' & @, we obtain
1 T, k% o, fepy\?
2 __—et0 s a
i o (r) @ 27

Thus y can be > 0 and for a single Langmuir wave a * decay instability »
occurs, in which the amplitude of a small perturbation representing a super-
position of Langmuir and ion~acoustic waves, related to the main wave by the
decay conditions, increases exponentially with time.

We could describe this process with the aid of the kinetic equatlons for
the intensities I' and I*, However, in this case a difficulty arises because
the. substitution in the kinetic equation of functions of the form I d(k— k),
I'S(fc+ ko) and IF8(k+2k,), leads to a divergence of the quadratic term. But

if we recall that the function é(wy— @y — wy~) Was in origin an approximation

to a function of the form-z-: [(0 — ox)? +y2] ™%, we see that this function must

be replaced at the resonance peoint by L/ny and we again obtain (¥1.27).
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s

This example shows again that the kinetic equation for the waves is
strictly correct only for wave packets which are sufficiently broad in wave
number space, with a smoothly varying function Z4.

According to the kinetic egns. (I1.23), (11.24), the Langmuir oscillations
alone cannot interact with one another and they must first excite ion oscilla-
tions. This process is a relatively slow one. But as soon as the amplitude I*
increases appreciably, the main process is the rapid scattering of the Lang-
muir waves at the ion inhomogeneities. Since the interaction between. the
Langmuir waves depends explicitly on the electron temperature, we should
expect that an important part in this process may be played by processes
involving the thermal motion of the electrons, which will be considered in
Section 2.

{c) Interaction between the Alfvén Waves and Magneto-acoustic Waves

As a second example, we consider the oscillations of an ideally-conducting

~ plasma in a homogeneous magnetic field (49). For simplicity we assume that

the plasma pressure is much less than the magnetic pressure, so that in the

equation of motion the plasma pressure can be neglected. Then the plasma

oscillations will be described by the following system of magneto-hydro-
dynamic equations

4— [curl H, H] (IL. 28)
—aairl = curl [vH] (IL. 29)
én , '
Frimie divnv (I1. 30}

Suppose that in the stationary state the plasma is quiescent (v = 0)
-and its density is constant. Linearising and transforming to a Fourier
representation the first two equations become

— M ROV, = —— [[ kw]HJ (II' 31)

—wHy, = [k[vka]] (IL. 32)

The component of the velocity paralle]l to the mean magnetic field H has

disappeared from these equations, so that it is sufficient to consider only

oscillations transverse to the field. Expressing Hy, in terms of V., with

the aid of (11.32) and substituting the result in (I1.31), we obtain the equation
for the velocity

0*Vy, = ci[kzzvkm +k(kvy,)] (IL 33)

2

dnamn
of the wave vector parallel to the unperturbed magnetic field H. From this

where ¢ = is the square of the Alfvén velocity and k, the component
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we obtain for the velocity component v, in the plane (kH),

w? = o} = A k* (I1. 34)
and for the component vy, perpendicular to both k and H we have

w? = 2 = i k2 (IL. 35)

Thus, for a low pressure plasma, ie. § = 8np/H* <1, two types of
waves can propagate, namely Alfvén waves with a frequency ,, and magneto-
acoustic waves with a frequency w,. In addition stationary perturbations
of the density (w = 0) are possible; these correspond to the slow magneto-
acoustic waves which are obtained when the plasma pressure is not neglected,
but these will not be considered here.

The phase velocity of the magnetosonic waves is a constant ¢, It
follows, therefore, that the non-linear interaction is very important for waves
propagating in the same direction. This interaction leads in particular to the
steepening of the wave fronts of an initially sinusoidal wave by the generation
of higher harmonics. But for waves propagating in different directions, the
dispersion relation does not permit decay processes.

The Alfvén oscillations propagate only parallel to the magnetic field H, and
this with the same phase velocity ¢, We might expect, therefore, that these
oscillations would interact strongly with one another. However, the matrix
element of the interaction of two Alfvén waves propagating in the same

direction can be shown to vanish, and as a result a single Alfvén wave can

propagate with any finite amplitude.

Thus, neither the Alfvén nor the magneto-acoustic waves by themselves
are decay waves. However, each of them may decay info a pair of Alfvén
and magneto-acoustic waves. The matrix elements of this interaction can be
obtained from the equations of motion (I1.28)-(11.30). Because of their
cumbersomeness we shall not quote the general form of the expressions
(these can be found in ref. (49)), but shall confine ourselves to the limiting
case of almost transverse propagation where k., < k. Neglecting in the matrix
elements the quantity k, compared with &, it is easy to transform the equations

for v and ¢® into the following form -
’

kk .
(® — K2y, = f o [V} Vi — Vo Vkvep) $1D 0L COS 00—
— Uy Vi Sin* o} dk' deo’ (11 36)
!

kk' 2
(w?~ k2, = f e (511 6 COS 0 U rgpr U F+ Vi cor Vit ST 04+
s
o thearcosta) K d’ + | s
o U}y U COS™ 1) o’ -+ o sinccos o X

k:z_ ;kz
xGHdﬂtﬁ?%@MMJKM’(HN)
kk'],
where sina = LE’]
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In the equation for »* we have deliberately conserved the second integral
term although in fact it vanishes for oscillations of such low intensity that
the frequency shifts are negligible, so that we can write

' w'? =cik?, w?=ciki
In actual fact, at very small k, and k;, and a sufficiently large amplitude of
the oscillations, we may find that the spectral function |¢f,|? is broadened to
cover a frequency range which may be comparable to or even larger than
k,c,. In this case we can no longer neglect the Alfvén—Alfvén interaction
because a transition takes place to strong turbulence where the restriction
on “ three-wave ** processes due to the §-function of frequency disappears.

We shall not here write out the kinetic equations for the Alfvén and
magneto-acoustic waves, since they can be obtained without difficulty by
analogy with the case of the Langmuir and ion acoustic waves considered
above. It is sufficient to note that according to eqns. (J1.36) and (I1.37), the
matrix element of the interaction is of the order of unity for v*, v°* ~ ¢,. It
follows, therefore, that the lifetime + for decay in the case of a single wave
with amplitude v, is determined by the quantity ¢ 2w, o, and the character-

. jstic energy exchange time between different modes in a diffuse wave packet

is of the order of ¢2/w, 3.

2. INTERACTION OF WAVES IN A PLASMA WITH CONSIDERATION OF THE THERMAL
MOTION OF THE PARTICLES

In the derivation of eqn. (I1.8) we did not take into account the specific
properties of a plasma, i.e. a system of charged particles interacting with an
electromagnetic field, as the medium supporting the oscillations. However, as
we know from linear theory, the discreteness of the medium gives rise to a
specific damping of the waves, namely Landau damping, related to the reso-
nant interaction of the waves with the particles. We should naturally expect
that some corresponding effect should appear in the non-linear case.

As we have seen above, the principal effect of the non-linearity is to lead
to the appearance of beat oscillations with combination frequencies w— '
and wave vectors k—k'. The resonant interaction between the particles
and these beats gives rise to an additional damping of the waves which we shall
call non-linear Landau damping. In the terminology of waves and particles
this process corresponds to the scattering of waves by particles, i.e. in
absorption of the wave k and re-emission of the wave k', whereas the linear
Landau damping corresponds simply to an absorption of the wave. This
non-linear damping effect is of the same order of magnitude as the decay
processes, and when the dispersion relation is of the non-decay type it is the
most important non-linear effect. To consider the non-linear interaction of
the waves with the particles we must set up a kinetic equation for the waves
on the basis of the non-linear kinetic equation for the particles. 'We then
obtain simultaneously the effect of the waves on the averaged distribution
function.
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(2) Kinetic Wave Equation with consideration of the Thermal Motion of the
Particles o

In order to keep the discussion as simple as possible we consider, to
start with, the case of longitudinal Langmuir oscillations, and we then show
how the equations can be extended to the general case. Suppose that in the
equilibrium state the plasma is homogencous and there are no electric and
magnetic fields. We divide the electron distribution function into two parts,
one averaged with respect to time f and one oscillating part f* which we
expand as a Fourer integral. Separating the kinetic equation into two by
taking suitable averages, we obtain

af .e 0 * P et
T W= 12 2 [ Koo Ak d @
f

. e 0
_l(w_kv)fkm == ;’L lk_é;, Pra—

L€ g . ’ /
it f K@y fror oo — (i Fimi, oo ) K ded” (11 39)

where @y, is the Fourier component of the potential of the electric field, given
by

(I1. 38)

4dne
Oro == 5 | o (1. 40
Neglecting the quadratic terms in the eqn. (I1.39), we can express fye
linearly in terms of @yq:

a
D (L. 41)

dv
where we have introduced the small positive quantity v —+ 0, allowing for a
small damping, in order to pass round the pole correctly. Substituting this
expression into (I1.40), we obtain

8k, )y, = 0 (L 42)
which gives the dispersion relation e(k, @) = 0. The quantity
i)
dre? J kﬁ_{
ek,w)=1+ m? ) @KV ) dv (II. 43)

represents the dielectric permeability of the plasma.

Now let us consider the solution of the non-linear equation assuming
that the amplitude of the oscillations is small. We write eqn. (IL.39) in the more
compact form _

freo = @K fOxn + [ (B K HOwo fumkr, 00— {Pro fimi,0-o) Ak d’
(11.44
where g represents the following operator

g = (m—kv+iv)"1£-a— (I1. 45)

ov
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In eqn. (I1.44) the quadratic terms can be considered small. Making
use of this, we integrate this equation and represent f, in the following form

Fuo = ol fPun + [ (@xok) B R~k (Ourwr G-, 0mw—
—{Puer Pumrc0mor 2} AR 0" + [ (@K'} (i K X
X (Be-i—te(k K —KNf {Prar o Prcmio - 007 -
- qok’m'(';ok"m" Py -k = k' w—w— w”) - <(Pk’m’ Prog Pru—k' —k”, 0—o' ~ w>} X
x dk'de’ dk" dw"+... (11 46)

_ Within our approximation we can neglect the terms of the fourth and
h}ghﬁ_:r orders in the oscillation amplitude in (I1.46). Substituting this equa-
tion into (11.40) we obtain the following non-linear equation for the potential
Pren

E(k, W)Qﬂkm = f ka,k’w‘{‘pk'm' q)k—k‘, w—a' <§Dk'm' qok-'-k', cu-—w')} dk! d(JJ’ +
+ f cho, K'ey', k"m”{@k‘a)‘ Py Prc— kLo —w
— P Prrer Pu—k -k, 0—w -0 — L Pl'w’ Pkra” Ph—k ~1",a—o’ —w P} X

dk’ deo’ dk" dw” (1L 47)
where the matrix elements are given by the following relations -
‘ . dme ,
Frore == | @) @ucram o k=K L. 48)
4me ‘
Vew, ko, war = — e Jl (ro k) (g - K (k- g — ek — K’ ""k”))‘de (1L. 49)

Equation (I1.47) is similar in structure to our model eqn. (IL.1), supple-
mented by a cubic term of the form (IL9). We can therefore immediately
use the results of the preceding section and, by analogy with (I1.6) and (I1.7),
obtain the following kinetic equation for the waves with consideration of
the thermal motion of the particles

4re
o, M = Feo T | (K) {0 Koy
+(k'gyr o) (ko) Hieo dv dK' do’ +
Yo, k" o" Vk" o, ko
I, | 22X Konkep . dk do’
+ .“,,f e, (K", 0" Ty dk" deo +
1
+ mj\ lvkm,k'm'|2Ik’m‘ Ikarwn dk’ dw’ (II. 50)
where
k” =k—k"’ S+(k,w) = e(k,w+iv)
vkm.k’m' = Vkm,k’m’ + Vkm. k"m"=vkm,k"cn"
The guadratic terms on the right hand side of eqn. (I1.50) describe the
additional damping and the shift of the characteristic frequencies due to the

" = w_w!,
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non-linear interaction between the waves. For yp/w <1, ie. &'/ <1
where ¢ = Reg and &’ = Ime, eqn. (I1.50) can be solved by the method of
successive approximations. The zero approximation gives &'fy, = 0 which
has the solution Ji, = Iy 6{cwy —y), where wy is the characteristic frequency.
In the next approximation it is sufficient to consider only the imaginary part

Kl .
of eqn. (I1.50). Denoting by 7 the linear growth rate yx = — s"(éfs)"l and

adding a term including the derivatives with respect to time, we write down
the imaginary part of eqn. (I1.50) in the following form

ge\ 1 dme
Loh 141, (m) 1 5 [ (68) (o) (-
800/ v, K

- W) (ki) e 49 4K +

ge'\ ! TR W
+ Ik (_) ]-mf kw;rk @’ YKk"w ,km-k dk, +
80/ o, e(k”, wy — -+ 1v)

+Z (6&’)“2 f f25( My F di’ (1. 51
AN |U|m,k'm' 0y = Dyer — Wyee Mg Lyer (L. 51)

The last term and the subtracted part of the penultimate term describe
the wave decay processes and the remaining non-linear terms describe the
scattering of the waves by particles; they include the linear Landau damping.

We have written down this equation for the electrons only. To include
the ions it is sufficient to consider their contribution to £ and to the matrix
elements tye, ar» and also to sum the second term in the right hand side of
(I1.51) over the two particle types. No difficulties are encountered in genera-
lising these equations to the cases in which the plasma is located in a magnetic
field: the only change is in the form of the operators k- The generalisation
to the case of randomly polarized oscillations gives considerably more
complicated expressions, because the full dispersion function given by eqmn.
(1.33) must be used in place of & and the one eqn. (I1.51) must be replaced by
separate equations for each of the possible polarizations.

(b) Thermal Fluctuations

So far we have throughout understood by f the distribution function
averaged over small macroscopic volumes in phase space and therefore a
continuous function. Similarly we have omitted from consideration the
thermal fluctuations related to the discreteness of matter. We shall now drop
this assumption and discuss the effect of thermal fluctuations.

The kinetic Vlasov equation without the collision term can be also written
down for a microscopic distribution function

FulT, V1) = Z S(r—rx)6(v—v;)

where the summation is over all particles of the given type. Let us splitup the
function f,, into two parts: an averaged part fand a fluctuating part f*, which
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vanishes when averaged over the macroscopic volume, Neglecting the inter-
action between particles, which is admissible for a rarified plasma for which
the Debye number N, = nD* » 1, we obtain the correlation coefficients

A DAV ) = S —V)aE—x =¥ —tDf) (L 52)

in co-ordinate representation and

D 0> = k=Ko — )30 —) (f;'; L 53)

in the Fourier representation.

The correlation function (I1.52) corresponds to freely moving particles
and satisfies the kinetic equation with no interaction. In the presence of
oscillations the macroscopic function f(r,v,?) also becomes random, ie.
macroscopic fluctuations arise, and only these have been considered earlier.
It is easily seen that the thermal fluctuations were omitted when we expressed
fiw in terms of @y, In fact the general solution of the linearised kinetic

. equation for the longitudinal oscillations has the form

e, 0f  Px
=—k - — 1 .
Fia m ovo—Ekv+iv + falY) (L. 54)
where the function fi%, satisfies the following equation

(w—kv)fl, =0 (1. 55)

In the absence of external beams we can understand f&, as a fluctuating

fanction satisfying relation (I1.52). Previously we neglected this additional

term, assuming that the amplitude of turbulent oscillations comnsiderably

exceeds the thermal level. With the inclusion of the term fii, the equation for
@y, becomes

4
e(k)py, =— klf f S dv (II. 56)

that is, an additional noise source appears. Accordingljf, in eqn. (IL.50)
additional terms appear taking into account the thermal Auctuations, and it
assumes the form (see (213))

2
T

sk, = F9)w—kv)dv+

eZ
ol
dne
22 | [ ) () Ko+
() () ¥ Ty 0K+

Uk, k” o Ukro", ke ’ ’
+Ikmf e (00") I dk do’ +

1 ! r
+ ZET(:kE)J‘ 1vkm,k'm'lzIk'aJ’ Ik"m" dk da) (_II. 57)
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The first term on the right hand side of this equation represents the
thermal fluctuations. We can represent eqn. (II.51) symbolically in the form

o ol tg—al? (IL. 58)

&t

where the first term describes the build-up of the oscillations with growth
rate y, g represents the source due to thermal noise, and the non-linear term
describes the interaction between the waves. Thus in the stationary turbulent
state for a large growth rate, we may neglect g, and thus [ = «/2y. On the
other hand, when 7 is negative and not very small, we can neglect the non-
linear term in eqn. (I1.58) so that 7 = g/2|y|. In this case only thermal
noise is present in the plasma. For y — 0 this noise level diverges and to
determine J we must presérve the non-linear term. This is illustrated in
Fig. 11 which shows the transition from thermal to turbulent fluctuations.
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Fic. 11. Dependence of noise intensity on growth rate of small oscillations

(¢) Wave-particle Interaction ,

Let us now return to the equation for the averaged function (I1.38). The
expression on the right hand side of this equation, which we shall again
denote by S,,, represents the collisions between the particles and waves
and can be written in the form

e @
S, = —Im——
ef Immav

where the correlation function Py, is defined by
Pro(Md(w— )k —K') = (@i o fiar (IL. 60)

Utilizing eqn. (IL.46) for fi, and adding to it the term ff;, related to the
thermal fluctuations (see (I1.53)), we obtain in the random phase approxima-
tion .

kP, (v) dk do (IL. 59)

_ 4gef
P '“”(‘f) =T 2Kk, o)

- j K Be) (ko) (K8 s o)+ (K By (KEa)f Hior A’ d00” +

oo —k¥) + (ko) —
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Dy o
I ._km—’km— ¢ ey 'y, o , ,
+ ke f £+(kll’ m,u) (k gkm) {(k gk ' )f+ (k gk @ )f}Ik @ dk dw +

1 ’ " 1.7 ’
+ mfvf:m,w(k 810 (KB ) Ty Ty A de0’ (1L 61)

where k" = k=K', 0" = wo—0w’, 8,0k, w) = ek, w+iv).
In this expression the first term describes the slowing down of the particles

. due to the polarization of the medium and the radiation of longitudinal

waves by the Cerenkov effect. The second term, which is linear in [y, has

already been considered earlier when treating the quasi-linear approximation,

and the remaining terms in (IL.61) arise from the non-linear interaction.
Let us first consider the simple case of a stationary stable plasma where

~ the quadratic terms in J in (II.57) and (IL.61) can be neglected. Determining

from the kinetic wave eqn. (IL.57) the equilibrium intensity of the fluctuations
L, and substituting the result into the second term in (I.61), we obtain

«J
;P @ =~ 4mef $(cr—kv) i AN 2e?
AT @)kt (k,0)  mo—kvtiv mfek, o)kt

ff(v’)é(w —kv)dv
(IL. 62)

Substituting this expression in (IL.59) and remembering that according to
(I1.43) - : _ :

42 [ @
¢ =Tme=— z—k"z fka—':é(m—kv) dv (1L 63)
we obtain .
2e* [ S0v=KY) [ BY) 6!} ,
v f SR /gy ~ Ok kY (L6

In the region kD > 1 (D being the Debye screening radius), the dielectric
permeability can be set equal to. unity, and the integral (IL.64) may be shown
to reduce to the collision term in the Landau form (where the integral has
to be cut off at the upper limit for k ~ 1/py, where p, is the minimum
separation of the particles in the case of binary collisions).

In the form (I1.64) the collision term has been obtained in refs. (50), (51),
(55) (see also (53, 66-69, 214, 215)). It represents both binary collisions
with impact parameter less than D, and also the interaction through longi-
tudinal waves. It has been shown by Davidov (52) that in a plasma approxi- -
mating to equilibrium, the contribution to the collision term due to the

~ Langmuir waves is only about one order of magnitude smaller than the

contribution due to the binary collisions. In a non-equilibrium plasma the
contribution due to the oscillations may be considerably larger. For instance,
Gorbunov and Silin (54) have shown that in a strongly non-isothermal
plasma 7,/T; < m,/m; the interaction. due to ion acoustic waves predominates
over the binary collisions. Another case where the interaction through the
waves is larger than the collisional interaction has been considered in refs.
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(44), (45); this is the interaction between the electrons and the cyclotron
radiation in a strong magnetic field.

As we approach instability the thermal noise level increases, and conse-
quently in (I1.61) the second term becomes more important, which in the
quasi-linear approximation leads to the diffusion of the particles in velocity
space. In this case, and also in the case of a weak instability of the plasma,
it is more convenient to consider an initial-value problem, so that in the kinetic
wave eqn. (I1.57), we have to take into account the term containing the time
derivative of the oscillation intensity, and in the expression for the collision
term S, it is necessary to consider the adiabatic interaction of the particles

. . . . .. oh
with the waves, i.e. the term with the derivative ZX  In other words, we -

ot

arrive at the quasi-linear approximation considered in Section 3 of Chapter L.

For large oscillation amplitudes, when the plasma goes over into a turbu-
lent motion, it is necessary to consider the non-linear terms in the kinetic
wave eqn. (I1.57) and in the wave interaction term (11.59). Some examples
of such processes will also be considered in Chapter IV. We shall see that in
many cases low frequency oscillations can be excited in the plasma by a
longitudinal or transverse electron current. When the phase velocity of these
oscillations parallel to the magnetic field is smaller than the thermal velocity
of the electrons, a resonant interaction may occur between the electrons and

the waves, and for the electrons it is then sufficient to consider only the quasi~

linear terms. For the ions, the thermal velocity of which may be considerably
smaller than the longitudinal phase velocity of the waves, it is necessary to
consider the non-linear terms. We then find that the energy and momentum
of the electrons is transferred by a resonance mechanism to the waves, and is
then absorbed by the ions due to the non-linear damping of the combination
waves. Processes of this type may give rise to an anomalous resistivity of the
plasma, which determines both the anomalous diffusion of the plasma across
the magnetic field and its turbulent heating.

. METHODS OF CONSIDERING STRONG TURBULENCE

1. THE WEaK COUPLING APPROXIMATION
(a) Wave Equations in Weak Coupling Conditions

Hl_THERTO we have assumed any interaction between waves to be small and,
strictly sl?eakjng, infinitely small. Let us now try to examine what occurs as
the matrix element of interaction increases. We shall again consider the
model eqn. (I1.1) which we write in the form

(00— 0)Cry =f Vo, wor Crvor C—t, - or Ak’ do’ (1L 1)

where the frequency wy is now complex.

Sulzfposc the matrix element of interaction Vi, we, though remaining
smgll, increases, approximating in order of magnitude to unity. The inter-
action between the separate waves broadens out the frequency spectrum of the

=+, oscillations and in the limit of strong turbulence the dependence of L., on the

frequency no longer bears any resemblance to a J-function (see Fig. 12).
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Fia. 12.  Speciral functions for weak (1) and strong (2) turbulence

We cannot, therefore, use the kinetic equation in the form (II.12), but as
long as the matrix element remains less than unity, we can use the weak
coupling method as an approximation even for turbulence which is not weak.
] It should be noted that according to eqn. (III.1), a separate mode k, @
interacts only with two other modes k' " and k" w”. Since the numbel: of
modes is large and the amplitude of the oscillations of an individual mode is
dete_rmined by its interaction with all other modes, it might be thought that
the interaction of the wave k, o, with each separate wave k', o', would be
comparatively small even for ¥V ~ 1. Moreover, as we have seen further
49
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above, one of the principal non-linear effects is an additional damping, which
is implicitly determined by the right hand side of (IIL1). It is natural to
isolate this part of the interaction earlier from the right hand side by writing

equation (IIL.1) in the form
(&= @y +10)Co = Mo i + | Vi, Civr Gt 0= A" 00" (111 2)

The terms #y. Cio Which we have added to both sides of this equation
represent the part of the non-linear interaction proportional to Cy,. In the
right hand side of eqn. (I11.2), from which we have thus removed the self-
action (i.e. the damping) of each mode, only the input from the beat interac-
tion of different modes remains. These inputs will be considered small,
which.is justified for ¥ < 1. Accordingly we again put Cpp = CO4-CEY
where C) < €. To.determine the amplitude of the induced oscillations
C{) we need only the non-linear term on the right hand side of eqn. (1IL.2)
and we obtain

C) = @—oy o)™ [ Viora CEYCEYdk'dn” — (IL.3)
We now multiply eqn. (II1.2) by C#, and average the result over the

statistical ensemble, assuming that the amplitudes % with different ko are:

statistically independent. We now substitute Cyp = Cl9 . C{Y) into the non-
linear term, and just as in the case of (I1.6), this term reduces to a sum of
three, two of which are proportional t0 Jie, and a third to the integral of
the product fyor fyror- Defining the quantity fi, SO as to eliminate the terms
proportional to Jie, W obtain the following system of two integral eqns.

(111.4) and (IIL.5)
l(D — Wyt nkmlzIkw = % f lvkw,k'w’\zIk'm’Ik"m” dk' do’ (III' 4)

vkm.k"a)" Uk”m", ko ' r
ﬂk =J'_""’_'_"_Ikr Pdk da) (III- 5)
¢ @ — Ot Mg
where
Uka, k'’ = ka,k’m’+ Vkm,k"w"
We now introduce Sye = (@ — 0k +1ke) 1, and eliminating #y., obtain

o = 3Ss0f? [ 1o, Ticwr Lo ' 0 (L. 6)
Ste = 52— 5% Sso [ S Vo warberer ol A d0' (UL

where 8¢, = (0—a) ™ .

The quantities Sy, and S? have a simple physical meaning which can be
seen by adding a small external source fiw to the right hand side of (111.2).
By repeating the argument, it may be verified that Sy, represents a Green's
function which describes the response of the turbulent medium to a small
“ force™ fiw, While SO represents the same Green’s function in the linear

approximation.
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In the theory of fluid turbulence, e i

/ : , equations of the form of (I11.6) and
(IIL.7) were obtamed,b.y Kraichnan (18}, and Wild (56} has shown({lhat)these
equations can be obtained from partial summation of terms in perturbation

theory. To obtain Kraichnan’s equation we wri i
. } . e write the Navier-Stoke i
in Fourier representation kes equation

(@ + ivkDuy, —kpyy — f (g Ky dK' d0" = S, (111, 8)

w_here Puo is tl}e pressure, Jfre the external force, v the coefficient of kinematic

‘::_stclzlosﬂty.l Us1?g the incompressibility condition kuy, = 0, and assuming
ithout loss of generality kfi, = 0, we can eliminate th

eqn. (TIL8) and obtain c © pressure from

. ‘ k
(CO + 1Vk2)ukw = fkm +f (ul:'m' k) {uk"m" —_ ? (kukrrwfr }dk, dCO, (III. 9)

Repeating the prfeceding arguments and averaging the result over angles,
assuming fi,, to l_ae 1sotropic, we arrive at the following system of integral

k- cquations

¢ Ly = [Sea) o+ 1Sk J‘ k2a(k, k"o T dK' deo’ (111 10)
K2b(k, kK)o
o = — Cm%;dk’ do’ Ly
where Iy, is the spectral function defined by
Iio0(w— )5k ~k'} = Uy, Uy
Sy = (O+ V2 1)1
Gro 0@ — @)k —K') = { frpn fiew?

and the matrix elements a(k, k") and b -
by the relations (k, k) and b(k, k") are defined (see refs. (18, 56))

w1 (k) (kk")? | (kk') (Kk") (k'k")
a(k’ k ) - E l:l -2 k4k:2ku_z + kzk.-zkuz ] (HI 12)
_ (k r)3 (kfk")(kkrf)
N - L2[2

These equations represent a Fourier transform of Kraichnan’s equations.

b(k, k")

(I1L. 13)

It has been shown by Kraichnan that they lead to an incorrect asymptotic

behaviour of the spectral function for &k — o) inste

_ N ad of the well-kn
Kolomogorov law Idk ~ k=37 dk we obtain the spectrum Ldk ~ k=% : cvivk]']
We shall show below that this occurs because in the weak coupling approxi-

» ¢ d]'

(b) Weak Coupling in Kinetics
We shall show by the example of electron Langmuir oscillations how the

;T. weak coupling equations can be set up for strong turbulence in a collisionless
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plasma. We take as the initial equations
o = — %ﬁf Frod¥ (I1L. 14)
e f e @ ) e
01 = = ok Tt £ 2 [ W fiw—COrafia)} dK @
(T11. 15)

We again represent fi, and @y, in the form s _'fogé.), ol + QDﬁ,_), Whm'“f; I‘ihe
superscript (1) denotes the part representing the mt:luced oscﬂlatlonz N er;
these forms for f and ¢ are substituted in the non-linear terms, we shall Jus
as before be able to extract  self-action ™ terms proportional respectively tr}
fro and @, and it is again patural to separate out these terms. Because 0
the non-linearity these ferms are not proportional to one another, or in
other words their ratio is a random value. We therefore write the self-action
terms as a linear combination of f,, and Pra Mo Frot _ém Pl whfalje nX, is
an operator acting on the variable v, and &, is a function of velocity. Asa

result we obtain

4dze ‘ |
P =— = f £ gy (Li1. 16)

(1y £ (Pﬁu)k

&f e @ [\, 0 £ A Ao
(C!)“'k"'l‘ﬂkm)f]gé) - ékw Dlees . —fk (Pk'm’fk”w" dk dCO

m gy madv
(111 17)
From these equations we express £ and o) 'in terms of an integral of
@\%, £9), and substitute the resulting expressions in the no*n-hnear term.of
eqn. ([11.15). Then, multiplying eqns. (IIL.14), (IIL.15) ‘Py Pre and averaging
over the random phases of i3, @{%, we obtain, dropping the superscript ©

ke »
dne (111. 18)
Ikw = — —k'z— Pkm d\’ *
e. of g 0
(w—kvV)Py, = —m”k'a—vfkm m dv X

e 0
b jk’ﬁk"m”(kp—k’ wardke™ k'Py, Ik'm') dk’ do’ +Jiq E "a_v %

-

vk”mrr ke
k" KDLt
x J‘k (gk o k f) {g(kﬂwu) k

ik'w' ke ' *
222 e - dK A" +
ko) ¥ }

e o ﬁfw k' w’ ¢ ’ I
0 [, krf)ydexe r . .dk'de (1L 19)
+mavlj‘k(glxal kf)g*(km) k k

E nnie e ]
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where
e @
(x, = (0—kv to—
Uy ( +nkm) m 6v
J’ -
4me? av dre [ & dv
Bk,w)=1 av + — | ————
Bk, ) + mk?J o—kv+n,, + ) o-kv+np,

g 4 e = L = it - it = ’
vl:cn,lc’m' =- T;Ez_f {(gkwk )(gk"m"k f) + (gkmk )(gk’m’kf)} dV (III 20)

It can be seen from (11.19) that in this approximation the non-linear term
reduces to a sum of two components, of which the first is proportional to Py,
and the second originates from averaging in the following form {o*p>.
Identifving these correspondingly with #ie, Pre 20d Exe Jiw, gives

e a r 51 7 r
Moo = o= f K G Yoo Lo K de0 (L. 21)

‘v e a - ~ I
Cio == f (K Gura )P g dK' doo’ +

€ a ey o i\jk"m".l{w
" f K @york f){ Low +

Vi, ke i )
E(k”m" Ik"w"} dk dCD (III. 21&)

e(k’w’)

where HFra = Pkco/IkoJ-

Considering these relations and substituting the expression for Py, from
(II1.19) in egn. (I111.18), we obtain the first integral equation in the form

606, ) = 3 [ [P | T i K de? (IIL. 22)

3 Equation (II1.21) can be used as the second equation and the third is
¥ _ obtained by substituting the expression for &y, (II1.21a) in eqn. (TIL20)

. dze [, 4ne . rm P g
Mow)=1+-7 f Gk ) fdV + k—’i f (&) (K G P o o K 0’ AV +

4ne [ Vi, k0" Vx'or, ko Py
k?. g(krrwrr) Ik‘ﬂ-" dk dCO
If we write approximately py, = Gx.kf; eqns. (I1.21), (I11.22), (II11.23)
constitute a complete system of equations for the three unknown quantities
Niws £(kew), and f,. Since #y,, is an operator, these equations are symbolical,
and to explain their meaning it is necessary to perform an expansion into a
B power series with respect to J,. A series expansion in the amplitude of
i oscillations and the selective summing of this series is also necessary for the
B rigorous justification of the above equations, which we have obtained
¢ -essentially from semi-intuitive considerations. (It has been shown by
I Mikhailovskii that in the case of a plasma in a strong magnetic field integral
- equations of the form (II1.21), (II1.22) can in fact be obtained by selective
¥ summing, similar to Wild’s summation, which as a first approximation leads
to Kraichnan’s equations.)

(III. 23)
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(c) Resonance and Adiabatic Wave Interaction

Tn the arguments given above we implicitly allowed only resonant interac-
tions between waves. However, the interaction of modes of very different
wavelengths does not necessarily have to be of the resonance type. (Both
here and below we are discussing only that part of the interaction which
leads to secular terms, i.e. to a damping of the modes, and not the part whose
effect is to shift their characteristic frequencies.)

In order to analyse the character of the interaction rather more carefully,
we shall again consider the model eqn. (IT1.1). Suppose for simplicity that
the frequency wy increases monotonically with &, and the ratio of the growth
rate to the frequency, yx/@x, is small. As we explained earlier, in a stationary
turbulent state the damping of each mode is compensated by the input due
to the beat interaction. The wave k, o then exists for a time ~ y~! and

. . @ . . -
occupies a region in space of size ~ & During a period of the order y Y
an individual wave disappears completely and is replaced by another wave,
> which originates from the beat interaction and consequently cannot be cor-
related with the first. Although the mode may initially be localised, it in
general spreads out as time passes, to £ill a region of space whose characteristic

size I will be of the order of the distance through which the wave propagates

e Lo 40 ©
during its lifetime, ie. L ~ ¥ pradrs

Thus the state of turbulent motion of a continuous medium must be
regarded as a system of many wave packets. For y/m < 1 these packets
exist for a very long time and are very extended, so that one can describe them
as waves which are almost completely unlocalised in space. But as y/o
increases, we must explicitly consider that the elements of the turbulent
motion are not the Fourier components, but wave packets. In other words,
for a finite y/w, nearby Fourier components can no longer be considered
weakly correlated.

We ean put the matter in another way as follows. Consider the region
of wave numbers of order k. Since the waves in this region exist for a period
t ~ 5}, when we average the quadratic terms over time it is sufficient to
cover times of the order of yx T All slower oscillations, with frequencies
@' < 7k can be considered fixed during this period of time and need not be
averaged. These modes can be regarded as forming an inhomogeneity of the
background. For short waves, this inhomogeneity may be considered in the
guasi-classical approximation discussed earlier. As we have seen, the wave
packets are deformed and the wavelength changed as they propagate through
such an inhomogeneity. As a result of these changes, the wave packets
move about in wave number space, which leads to a strong correlation of
nearby Fourier components, which now describe essentially one and the same
wave packet.

Thus the interaction between the wave k, @, and the slow wave k'o’ leads
to0 an adiabatic variation of the wave vector k and of the frequency o of the
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wave packet under consideration. This interaction cannot be considered
as the resonant input to the wave k, « from the nearby wave k" = k—k’
" = w—ow’, because the Fourier components Cy,, and Cyr,» describe thé
same wave packet and cannot be considered independently of one another.
_Thu's, for finite y/w we must make a distinction between resonant and
adiabatic wave interactions. To bring in this distinction we must change
from the Fourier representation to a representation in terms of the wave
packets. For each packet with a mean frequency o and mean wave vector &
the region of integration with respect to k', @’ in the non-linear term is
conveniently broken up into three parts: (1) the principal region where
K~k o~ao, (2) the long wave region where w' ~ 7 and (3) the short
wave region where ¥ ~ o (y/c is assumed small). -
For small y/w the spreading of the wave packets in the principal region

 can be neglected. In this case we can use eqn. ([IL.1) for the Fourier com-

ponents. In the regi'ons ;(2) and (3) the quasi-classical approximation can be
used, i.e. an expansion in k'/k, w'/w and kfk’, w/w’ respectively. Limiting
t%ﬁatment to the first (or more precisely to the zero) approximation, we
0

(©=0)Cu0 ¥ | Vi war Curor Curar K’ deo” +
(1)
+ Cuo | o + Vio,wrer)Civr Ak d +
@) :
+ [ Vo war| Curwf? i’ deo’ (0L 24)
3

where for simplicity we have omitted the exponent exp (—iw's+ik’r) in the
mttegral over the region (2), assuming Cy-,- to be a slowly varying function of
Lt
In (II1.24) the last integral term can be omitted, because when we divided

the equations for C int'o two—ifor the averaged function and the oscillating
P part—we should have included it in the equation for the averaged function.

The second integral on the right hand side of (IIL.24) is proportional to
Gy, and consequently it leads only to a shift of the characteristic frequency.

e In the region (1) this shift can be considered approximately constant. If the

matrix element Vi, xor depends only on the frequency difference w—a’,

g or is-independent of o, o', whicp is often the case, the frequency shift can be
eliminated by changing the variable appropriately. The final result is that

We recover equ. (I11.1), with the difference that the range of integration in the
non-}mear term is restricted to cover the region (1). It follows that separate
conmfieration of the adiabatic interaction is important only for wave numabers
suﬂicleptly large that the lower limit of integration of region (1) is greater than
the main turbulence scale &y, @g-

It is now obvious why the simple weak coupling approximation led

3 Kraichnan to an incorrect spectrum.: this approximation over-estimates the
3 part played by t_he large-scale fluctuations, which is in fact no more than the
£ convection of higher modes which are deformed adiabatically in the process.
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If we make the corresponding change in the wea}k coupling eqns. (II1.10),
(IIL.11) by setting the lower limit of the integrations over k', o’ equal to

Zk, &, say, respectively, where £ is a small constant number (say &£ ~ 1), . 3

these equations become self-modelling and lead to the correct sp'ectral forin
ILdk ~ k™% dk. However, it is obviously sufficient to use the simple weak
coupling equations for modes in the region of the main scale.

(d) Improved Weak Coupling Approximation .

To improve our understanding of the interaction between modes in a
turbulent medium, we shall here give explicitly a series expansion of the gecoqd
term on the right hand side of eqn. (II1.24), to take into account the ad1al_3at1c
distortion of the modes under consideration by the long wave perturbations.
Assuming for simplicity the matrix element to be independent of the fre-
quency, we obtain

(@~ —0)Crp = f Vi Cuvar Cxm e, w— o K" d00" —
(1)
ackﬂ’ I ’ '
J‘ k"ukkf Ck'w' dkl d&)' - am o w Ukk; Ck"m' dk d(D '|"'
2) 2)

ackm
ok

+4 f D Cutar Crrar s A do' A" deo” (I 25) .

(3}
where
vae = Ve +Veeos 0= | tiae Cuer K’ de' (11L. 26)

)

The last term in (I11.25) has been written as an average over high frequency
oscillations, denoted by {...>s, which is permissible since only the secular
effect of the oscillations in the high frequency region (3) can be important
for the modes under consideration.

The second and third terms in the right hand side of (IIL.25) are propor-

tional to %% and %5 They describe the distortion of the wave packet k, o,
r

due to weak spatial inhomogeneity and its slow variation in time. A}; we
have said, this effect is the same as the distortion of the wave packets in an

inhomogeneous medium which we considered earlier (se_e Section 1.3b). '
In eqn. (IIL.25) it is convenient to change the vgnable to the relative
frequencies v = & — o, with the corresponding amplitudes denoted by Cu-
Tt is easily seen with this transformation that the third integral on the right
oCy, ( dowy 0

hand side of (IIL25) vanishes, since ia—z V‘E%) Cyy. - The re-

maining terms retain their previous form, apart from the change of the 3%

frequencies w, @' to v, ¥

Using the argument of the previous section, we again separate out from" 3
the right hand side of (II1.25) the quantity #x, Ci,, proportional to Cy,, and ]

write the amplitude in the form CfY+C{, where C) describes the induced

portionaﬂ to Gy
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oscillations. According to (II1.25) the amplitude C{%’ can be written as a sum
of two components, C8 4+ C{L) where the first is due to resonance inter-

action in the region (1) and the second given by

(0)
6;1: f Ko C dk'de’  (IIL 27)
2)

originates from the distortion of the wave packets at the long wavelength
inhomogeneities.

Multiplying by (i, and averaging over the random phases of the ampli-
tudes C{%, we obtain, in addition to the contribution due to the resonance
interaction, terms of two new types. Two terms of the first type originate
from the second on the right hand side of eqn. (IIL.25). Their sum is pro-
(1)*@ + C(O)*@
3k ok
of the wave packet k, v in momentum space due to the distortion introduced
by the long wave length modes. The value of the corresponding diffusion

Cil =—(v—on+n,)7?

These terms describe the diffusion

" coefficient will be proportional to the integral over region. (2) of the quantity

kL. Since the wave number &’ in this region is very small, this diffusion
can be neglected.t Additional terms of the second type originate from the
last integral in eqn, (II1.25), where instead of Gy OF Cirgr We must put CfY.
Since Cpor and Cyr,» enter perfectly symmetrically, it is sufficient to replace
only one of these, say Cy., and then to double the result. Now for region (3)
the long wave region (a region (2”) as it were) is represented by our region (1),
and using this the corresponding contribution may be obtained without
difficulty. It is proportional to IL,, and should therefore be included in the
equation for #,. We finally obtain

A' . ' or Y f Iyt + Uy af oyt
ﬁkv‘_“_f“mdk’dv'-{*fv, DBy SRV gy gy (I 28)

V! — Wy + gy

(1) (3)

T = 3Sul? j foae|2Fiey T K v’ (IIL. 29)
)
K =k-k', o'=o0-0] §,=-o+i)"!

We have marked ‘the intensity I, and the Green function Sy, with a

tilde to. emphasize again that these values are calculated in a system of

co-ordinates moving with the long wave pulsations. The true functions £,

Sk are defined by the relations

Ikno = (Ik,ca—au>ts Skw = (gk,m—m;>1 (HI' 30)

which are averaged over the long wave pulsations (we recall that w, is still a
random value).

— Oy K

where

T This assertion is no longer valid where for the modes under consideration there is no
resonance interaction: in that case the distortion of the wave packets due to the long
wavelength modes becomes the dominant effect. Such a situation occurs for instance,
in the short wave (viscous) region of ordinary turbulence (see (57}{58)).

T, 3
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According to eqn. (IIL.26), @, can be represented approximately by
o, = vy, where C; = j Cy, dkde is the amplitude of the whole set of

2
long wavelength modes (r;prcsented by region (2). Cis a random quantity
given. by the sum of a large number of individually random and weakly
correlated amplitudes; thus the distribution of C;, and consequently also
that of ,, is Gaussian. Thus the relations (IIL.30) can be put in the form

1 ol 1 ~a2
Iy =TE_C-O: € m.osz,w—m doj, Sy = 'J?C; e @ k,m—m;dwl (IIL. 31)
where
w3 = 20> = 2o f 1y dK' doo’ (I1I. 32)

2)

The calculation of ., Ske is of course only necessary if we are in fact
interested in the temporal correlation of the fluctuations. In a number of
problems it is quite sufficient to know only J = [ fxadw = [ li,dv, and we
need then only calculate the relative values [y, and Sg,.

Equations (II1.28) and (ITL.26) together with the relations (IIL.30) con-

stitute the equations of an improved weak coupling approximation. The main

contribution to the damping of the waves is supplied by the resonance region,
but, according to eqn. (II1.27) a small additional damping arises in the short
wave region (3). According to eqn. (IIL.29), the intensity of the oscillations
I, is determined by the resonance interaction, but there is in addition a small
contribution which we omitted, of the type of a diffusion in velocity space,
which arises from the interaction with long wave fluctuations in region (2)
and also, finally, an altogether insignificant addition may also be supplied
by small occasional impulses due to the short wave oscillations of region (3).

If we now reduce the coupling between the oscillations, we see that region
(1) expands and in the limit y/e — 0 it occupies the whole of k space apart
from isolated regions where the damping is not weak, and the perturbations
can reach equilibrium with the remaining fluctuations fairly rapidly. Ina
plasma, there is a region of this type at short wavelengths kD > 1, where all
oscillations are damped. This region in particular defines the binary collision
term. Because of the weak (logarithmic) dependence of the collisional
term (IL.64) on the upper cut-off parameter, it is possible to write it in-
advertently in the investigation of any given set of oscillations. In fact short
wave fluctuations follow the oscillations adiabatically, although from the
point of view of the quasi-linear approach (see Section II.2(b)) they must be
considered as equivalent to all other oscillations.

7. PHENOMENOLOGICAL APPROACH TO THE DESCRIPTION OF A STRONG
TURBULENCE

As we have shown, a quantitative theory only exists for the limit of weak

turbulence where a kinetic equation for the waves can be set up. For 'Ehis
theory to be applicable the interaction between the waves must satisfy

£l s i R b aee
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several important limitations; the growth rate of small perturbations must be
small compared with the frequency, the dispersion relation must be such
that the laws of conservation of momentum and energy can be satisfied simul-
taneously at discrete surfaces in momentum space, the interaction between
the waves must provide additional dissipation in each region in momentum
space, and so forth. In practice these limitations must fairly often be in-
fringed, and then strong turbulence develops.

Starting with the kinetic wave equation, we have shown above that the
transition to strong turbulence leads to integral equations in the weak
coupling approximation, in which the resonant and adiabatic interaction
must be separated. At present we have no rigorous method of performing
this separation and of reducing the integral equations, and the description .
given by this theory is inevitably only approximate. We have as yet no indica-
tion of the accuracy of this approximation.

However, in describing strong turbulence in a plasma we can use an
analogy with ordinary turbulence. Here the principal results have been
obtained from a purely phenomenclogical approach. It is natural, therefore,
to use this approach in plasma turbulence theory.

To the next section we summarize some of the results of the phenomeno-
logical description of ordinary turbulence, and will show later how similar
concepts may be used when considering plasma turbulence,

X (@) The Turbulent Jet

Using the phenomenological approach, the mean velocity profile across
a turbulent flow may be obtained without discussing the spectral function.
We use the mixing length concept introduced by Prandtl (59), and consider
one of the simplest problems, the velocity profile in a submerged turbulent
jet.- Such. a jet is formed when a liquid or gas flows out of an orifice into a
medium of the same state, When it emerges from the orifice the velocity of
the fluid is nearly constant over the cross-section; as the distance from the
orifice increases, the velocity profile becomes more and more deformed until,
at a fairly large distance the jet becomes self-modelling, i.e. the velocity
profile retains the same form but its width increases in proportion to the
distance from the orifice.

For simplicity we consider a flat jet emerging from a slit. The mean
velocity depends only on the co-ordinates x parallel to the jet and y transverse
to it. The mean pressure in the free jet can be assumed constant, and the
longitudinal component of the averaged equation of motion can be written
in the form:

G o 10,
dx ay p dy
where » and ¢ represent the x- and y-components of the mean velocity

respectively, p the density of the fluid, 7,, = —p<u'v’'> is the tangential
Reynolds stress arising from the transfer of longitudinal fluctuating momen-

(I1L. 33)

tum pu’ by the transverse fluctuations »”. The value of ¢ is of the same order
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as that of «', since they are related by the continuity equation. To obtain an
estimate of «’, Prandt] assumed that the velocity fluctuations arose essentially
from the conservation of the mean longitudinal momentum of a fluid element
during its transverse displacement. This gives the estimate

du
ay
where [ is the mean transverse displacement of the fluid elements, which is
the so-called “ mixing length . In a free jet the mixing length can be assumed
to be approximately constant over the cross-section and proportiongtl to the
thickness of the jet, i.e. I = ex, where x is the distance from the origin of the
jet, and ¢ is 2 constant. Thus we obtain approximately

!

Wzl (I11. 34)

I

du |0u
= 2x* —|=— 111, 35
and eqn. (II1.33) becomes
du du ou d%u
=2 — — III. 36
R (IIL. 36)
This equation and the continuity equation
du ov
— +—=—=0 1L, 37
ox + dy ( )

are a complete set of equations, and determine the mean velocity profile in a
turbulent jet. This system contains only one unknown constant ¢, which can
be determined by comparing the theoretically calculated velocity profile with
that measured experimentally,

)
F1G. 13. Velocity profile in turbulent jet

Equations (I11.36) and (I11.37) were solved by Tollmien (60). Figure 13
shows a comparison between Tollmien’s profile and the experimentally
measured profile (this figure has been taken from ref. (61)). With an appro-
priate choice of the constant ¢ the theoretical profile agrees very well with
that determined experimentally, The mixing length turns out to be an order

smaller than the half thickness of the jet.

While other authors have proposed different hypotheses relating to the
character of the momentum transfer across the jet (see, for instance, ref. (61)),
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the general validity of Prandtl’s description of the process in terms of mixing
length theory has remained unchallenged.

. " (b) The Kolmogorov-Obukhov Law

Let us now go on to the problem of the fluctuation spectrum in a turbulent
fluid. Tt is natural to limit the discussion to scales which are considerably
smaller than the principal scale, so that it is possible to refer to local proper-
ties of the turbulent flow. The theory of such a locally isotropic turbulence
was developed by Kolmogorov and Obukhov (63, 64) and later by Heisen-
berg (65). We shall discuss here only the principal results of this theory, and
B this in considerably simplified form.

: When the Reynolds number is very large, the fluid viscosity is negligible
over a wide range of scales of the turbulent motion. Over this range the energy
cannot be dissipated, but can only diffuse in wave-number space. This
principal region of the spectrum of the turbulent fluctuations is called the
inertial range. On. the other hand, in the region of lengths, less than some
.small scale Ap—the so-called internal scale of the turbulence—the viscosity is
dominant. In this region the energy of the motion is dissipated into heat.

According to Kolmogorov, in the inertial range of the spectrum a quasi-
equilibrium is established, in which there is a constant energy flux ¢ through
the spectrum into the short wave region A < Ao, where dissipation occurs.
The value of this flux & determines the local properties of the turbulence.
This hypothesis .is equivalent to the natural assumption that the energy
transfer between modes is of a resonance character, in which, as we have seen,
the energy of a mode of scale A can be transferred only to modes with nearly
the same scale. Thus a portion of energy handed down from large to smaller
scales must pass through the entire range of scales of motion almost to Ap.
We may assert, therefore, that for each scale A the value of z is determined
only by the fluctuation level at this scale, that is by the value of the spectral
function for & = 2x/i. In other words, ¢ must be expressible in terms of k
and [, only. The only dimensionally correct combination is

e~ K pI k (I11. 38)
since Iik® has the dimension =2, and kI, the dimension of a square of the
velocity. From eqn. (IIL.38) the well known 5/3 law of Kolomogorov-
Obukhov follows immediately:

2/3

Lidk=C (%) k=53 gk (111, 39)
where C is a universal dimensionless constant.
This law agrees well with experimental data. It has recently been shown
- experimentally that ¢ js itself a random quantity undergoing large fluctuations,
. and in accordance with this Kolomogorov and Obukhov have made some
changes in the theory, but we need not go into details of these in this review.
Thus the 5/3 law can be obtained from very general considerations of
. dimensional theory and the hypothesis of the absence of strong interaction
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between pulsations of very different scales. To obtain the spectrum over the
whole range of wave-numbers, including the viscous region i—Ai,, more
precise ideas about the character of the interaction between the pulsations
are required. So far a large number of various hypotheses of a phenomeno-
logical character has been proposed to represent this interaction. The
spectra which can be obtained from these hypotheses are very similar to each
other (see ref. (62)), and in the inertial range all phenomenological theories,
except those which are obviously wrong, lead to the 5/3 law.

(c) Wind Waves

As an example very similar to phenomena which occur in a plasma, let
us discuss the development and interaction of waves on a high sea. The
dispersion relation for gravitational waves is defined by the relation

w=+gk (IT1. 40)

where g is the gravitational acceleration.
This dispersion relation is of non-decay type. This means that for small

amplitude of the oscillations the principal part must be played by four wave

processes involving the conversion of two waves into two other waves.
Using perturbation theory we can obtain a kinetic wave equation for this
type of interaction, but this equation is very complex and its solution is
difficnlt. A much simpler method is the phenomenological approach in which
the general form of the spectral function is established from physical con-
siderations (refs. 70, 71). '

Suppose that at some initial moment a wind starts to blow with. a constant
velocity above the surface of the sea. At first, when the surface of the sea is
almost unperturbed, the principal mechanism governing the development of
the waves will be their build-up by resonance with turbulent pulsations of the
atmospheric pressure. The energy of each mode increases linearly with time.
But as soon as the slope of the wavy surface attains some finite value, an
instability mechanism will begin to play the principal part. The physical
origin of this instability can be explained by reference to Fig. 14. When the

Fic. 14. Excitation of waves on water surface

‘'slope of the wave is large enough, the air pressure will be slightly larger on the
side A facing the wind than on the side B screened from the wind. This
difference in pressure, due in the last analysis to the eddying of the wind
above the region B, leads to an effective resonant transfer of energy from the
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wind to the wave, since where the surface is rising the pressure is slightly
smaller, and where it is falling, it is slightly Jarger than the average pressure.

The instability mechanism, which is in fact non-linear, leads to an
exponential increase of the amplitude of the wave. But since it operates only
for a considerable slope, which for a given amplitude will be larger the smaller
the wavelength, only perturbations with wavelength smaller than some
critical wavelength will increase exponentially at any given time. In going
towards longer wavelength the spectral function must therefore decrease very
rapidly with 2, probably more or less exponentially,

In the short wave region of the spectrum the amplitude in the steady
state is determined by the nmon-linear interaction between the modes. The
simplest sufficiently strong interaction between the waves is their collapse, as
a result of which the “ white crests ” appear af the surface of the sea. This
interaction Jirnits the amplitode of the oscillations to such an extent that
pointed “ tips ” appear on the waves. These “ tips ”’ correspond to dis-
continuities of the gradient so that the second derivative of the surface

_displacement ¢ must contain d-functions, and for large & values the Fourier

transform of & must decrease as & ~ k™2, It follows, therefore, that the
spectral function of the vertical displacement ¢ for large & values in the
equilibrium region must behave as I dk ~ k~*dk where dk = dk,dk, ~ kdk.
Transforming from the variable k& to @ we obtain I,dw ~ dofw®. This
spectrum has been obtained by Phillips (70). It agrees well with experimental
data relating to the short wave region of the spectrum. The total spectrum
of the oscillations of the surface, measured experimentally, can be repre-
sented satisfactorily by the function

I, = aglew™ % e wele? (TIL. 41)

where o and w, depend only on the time. This spectrum agrees perfectly
with the above physical argumeni.
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1. NON-LINEAR DAMPING OF LANGMUIR WAVES

Tur discussion of specific turbulent processes in a plasma is best begun
with the simplest case, that of Langmuir oscillations. In particular we shall
consider here in some detail the non-linear damping of waves due to the
resonant interaction. Assuming that the mean wave number of the wave
packet under consideration is appreciably smaller than the reciprocal Debye
radius D™t we can neglect the linear Landau damping and retain only the
second and third terms in the kinetic wave eqn. (I1.51) (the last term dis-
- appears since Langmuir oscillations are of the non-decay type).

In the matrix element

dre
koo, 'y = — "ka {(Euo KD (Euro K+ (Buo KV B KD} v (IV. 1)

we keep only the first term, since for a small frequency difference w” = w—w’
the quantity gy, > Beor Biar- By integrating by parts we replace gk’ by
e kk'

— W’_‘—: T o and the remaining integral can be expressed

in terms of the dielectric permeability (I1.43). Thus, in zero approximation
€ (kkr) k”Z " ﬂ'

Uﬁ,) ke r: m w kz [ (k :I (IV' 2)

In this expreésion unity can be neglected compared with s, since for
2
kz T 25 1. Thus s(k"w”) cancels in the third term in (IL.43).
kk' e kK

e
;W & ——~— in the
first integral, it is easily seen that this integral is proportional to y-y*, ke,
and the two integral terms compensate one another exactly. This means
that we must consider the thermal corrections which we initially neglected.

To determine which small corrections we must consider in pa.ttlcu.lar
let us examine the matrix element

o < kv, ska) ~

Replacing k'gy,, by its approximate value —

dre
oo = 75 | (oK) @b+ (oo D @K} Y - AV.5)

The main contribution to this integral is supplied by the region where
B g/ 0, ie. where gu» % 8w Therefore the term with the second
65 3+
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derivative of f with respect to the velocity, arising from the operation of gy~
on f, is very small. Neglecting this term we can assume that the operator
g7 acts only on gy, and gy, - Performing the differentiation and keep-
ing only the largest term, we have

e (kK"

4ne ¢ kK’
2 Tt oo [ ek ar = 25260001} (V.9

vl(l'%o" Yw = 3,2 o
» K k.'.'Z m CDZ
This shows that it is pointless to consider small real correction terms in
the matrix element vye, 1w, Since the corresponding contribution will be
proportional to 1—e~% (k"w"), and its imaginary part of the order of
le(k"w")|~* < 1 and thus extremely small. It is sufficient to consider only the
small terms of the first and second order of smallness with respect to kv/w
in the operators gy, in the first integral term in eqn. (I1.43) and in the matrix

r

s &
element g,y Collecting all these small terms and writing o o o we
]

finally obtain

aI, L} J‘ af

Tk 60 k()25 kWK dvI dk’ (V.5

8t 2mk®n’0’® &) vy ol — Kk 5o dv Ly _ (V-3

Since for Langmuir waves o" ~ oy(kD)* € oy, kv = k'v+o” = k'v

and with an accuracy up to higher order than the second in kv/w (kv)* can be
replaced by (kv) (k'v). In this approximation the factor multiplying J
inside the integral in the expression (IV.5) is anti-symmetric under the
interchange of k and k', It follows, therefore, that in this approximation
Langmuir waves are scattered without energy loss (9)

a 2
aJk I, dk =0

According to (IV.5) the characteristic reciprocal diffusion time of the waves in

k-space is of the order

ko, 1 f Kk, dk (V. 6)
w2 aT k '

where k; is the mean value of the wave number. The damping of the waves
is described by small terms, not considered here, and the corresponding
damping decrement is of the order of (kD)*v.
The energy damping rate can be determined from the following considera-
tions. By integration by parts it can easily be shown that
k”2

Uk ke = ? Ugre, ko

Y

(V.7

and we can see from the expression (IV.3) for the matrix element vyrer, ko that
if the exponentially small remainders at the points ¢ = kv and o’ = k'v are
neglected, and only the remainder at the point " = k"v retained, the ex-
change of k and k' is equivalent to taking the complex conjugate. In other
words, the matrix ¢lement satisfies the symmetry condition

Vi ke = Ve . oot {v.8)

- inhomogeneous plasma, we must add terms of the form Uy
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From this relation and relation (IV.7) it can easily be seen that the imagi-
nary part of the coefficient of Ji, in the expression below the integral in the
third term on the right hand side of eqn. (IL.51), is simply muitiplied by
—k*/k’* when k and k' are interchanged. The second term in eqn. (I1.51)
has a similar symmetry. Making use of this symmetry we find that in the
absence of decay the non-linear terms in egn. (XI.51) conserve the * wave

2 14
number * Ny = & oy = %Ik ";% . In other words, during the scattering

of Langmuir waves on the electrons, the wave energy decreases in proportion

2 ~ to the frequency

. 32T
& oy = const, ie.. &y, =&, (1 + 2mm§) (Iv.9)

where the constant &, represents the energy for k-0, ie. 1—¢0. From
eqn. (IV.9) the rate of damping of the energy can be determined from the

* rate of decrease of the wave number.

The result so obtained admits of an explicit quantum mechanical inter-
pretation. This process represents a scattering of plasmons at electrons.
The condition @” = k"¥ required by the §-function represents in fact only
conservation of energy:

Ay, — Aoy +Apy =0

where Ap = —Ak” is the momentum transferred to the electron. When the
electron energy states are populated normally, with % < 0, each plasmon
loses energy on the average during scatiering, so that its frequency and hence
its wave number decrease. Since the frequency of a Langmuir plasmon
depends only very weakly on the momentum %, the variation of its energy
during, scattering will be considerably smaller (by a factor k2D?) than the
variation of momentum, For an inverted population of the electron states
(i.e. for 2 “ negative ”* temperature) scattering is associated with an increase
in the energy of the plasmon (74).

For small amplitude of oscillation where higher wave interaction pro-
cesses can be neglected, the scattering of the waves at the particles considered
above is the main process. In contrast to conventional hydrodynamic
turbulence where the interaction of the modes leads to a cascade of the energy
towards large k, in the case of Langmuir oscillations the energy flux is
directed towards the region of small &k, where the linear damping is expo-
nentially small. _

It can be seen from (IV.9) that for small values of koD the energy of
the Langmuir oscillations changes only slightly for ¢ — cc. In other words,
single scattering processes of Langmuir waves on the electrons do not lead

. to their total relaxation in a homogeneous plasma. But when we consider an

g 99Ok
ar 2 or ok
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to the kinetic equation for the waves. The second term, which is the more
important, describes the energy flux in k-space due to the distortion of the
wave packets. At small %, the corresponding rate of change in the mean

g
wave vector associated with this flux ko = E = Ko becomes comparable
to vk, and k, ceases to vary with time. Using egn. (IV.6) we can write the
D &
=(koD)Y*—=xD. F
(ko D) nT K rom

. 0
this we find that & = —v (ko D)* & = —xkD?w,#. Since the equilibrium

Vv
condition for this in the following form

%
value koD = (KD %) depends only weakly on & and x, the damping

time of the Langmmr waves in an inhomogeneous plasma is to order of
magnitude given by (Dxwy)~'. The time necessary for a deformatmn of
the wave packet such that the wave number k attains the value D~! will be
of the same order of magnitude; at this wave number Landau damping
becomes important. In a homogeneous plasma, where this mechanism does
not operate, the relaxation of the Langmuir waves is determined by the slower
4-wave interaction processes and by the scattering of the waves at the ion
fluctuations.

2. EXCITATION OF IoN OSCILLATIONS BY AN ELECTRON CURRENT

(a) Excitation of Ion-sound Waves

Let us consider the problem of the excitation of ion-acoustic waves by an
electron current (72). Suppose that the ion temperature T is considerably
smaller than the electron temperature 7,. Such a situation arises for instance
in a weakly ionised plasma where the ions lose energy in collisions with cold
neutral gas atoms, or in non-stationary conditions where the ions are not
heated by the electrons. The results of the stationary problem considered
here can be used for the non-stationary case, since the time necessary for the
establishment of the stationary oscillation spectrum is relatively small.

For T, € T, ion oscillations are excited when the directed (current)

velocity of the electrons u exceeds the velocity of sound ¢, = J = (see (75)-

(77)). As u increases above ¢, the excitation of oblique wavcs becomes
possible as well as of those propagating parailel to the current, and for
u ¥ ¢, the cone of permissible directions of the unstable waves opens up, so
that practically all waves having a positive projection of the phase velocity in
the direction of « are unstable.

Two waves with wave numbers of about the same size and propagating
at an angle to one another set up beats with small phase velocity since in this
case ' = w—o' = 0 and &" 7 0. Since the decay of ion-acoustic waves
is prohibited, the non-linear Landau damping at the beats makes the main
contribution to the non-linear interaction of the waves. This damping limits
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the amplitude of the waves, and in stationary conditions some oscillation
spectrum independent of time must be established.

The non-linear damping of ion-acoustic waves on the ions resembles
the damping of Langmuir waves on the electrons. The considerations of
the preceding paragraph can therefore be largely repeated. We can again
omit the last term on the right hand side of the kinetic wave eqn. (IL.51),
because decay is prohibited. Moreover, the non-linear damping of the waves
on the electrons can again be neglected because it will be described by the
same terms as for Langmuir oscillations, except that m, is replaced by m;,.
As in the case of the electron oscillations, the non-linear terms in zero

e T,
approximation with respect to the small parameter kv/w ~ J Ti cancel cach

e
other out. The first order correction, which is in fact of the same order of
magnitude, also vanishes and the next two terms of the expansion have to be
considered.
In zero approx.lmatlon the matrix elements are determined only by the
ions and are given by the following relation:

k2 4ne*(kk’ 2kk"w" Ofir v ymn
ADer = e = = e (14 ) [ W B @ -y ds

mik*e® k"
(Iv. 10)
i.e. they are proportional to the integral fk" " —k"¥) "L dv.
The dielectric permeability also contains this integral
i 1 41{2 M af " 1¥, - 4ne2n
o', ) = 1+ k,,sz Dok v+ G V1D

In this case the integral term in (IV.11) is considerably (of the order of
T./T; times) larger than unity, which may be neglected. Thus in the second
integral term of the wave eqn. (I1.50) it is sufficient to consider the corrections
of the second and third orders of smallness in the imaginary parts of the
matrix elements only:
kﬂz kk’ 1 1. " af
7 I 0 = (-m_—kv)zna(m —k")k a—‘:dv (Iv.12)

These corrections can be obiained without difficulty and the kinetic
equation for ion-acoustic waves reduces to the following form:

18¢' 8 0Ll kk" "
'2'% E + Imely = 6]; 3 J-(kk')z {(1 -3 0 )(k‘i’)z +

Im ukm, k'a" = T3

o H 3 2
+ (3 41;]f,2 )(1:? (k;fm w"Z} (e’ — k”v)k"-i'f,‘, dvdk’  (IV.13)
2

' dne*n )
where Q3 = — L is the spectrum of the potential and &’ == Ree
; i
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For T,/T, — 0 when the main contribution to the integral comes from
the region @" = 0, this equation takes the form

Qz a.rk Q4TI

0 G Tmely = gt | (R~ (YK @) e K

(V. 14)

where & denotes the derivative of the §-function and w” = ¢,[k—K&'|.

For T; < T, the linear Landan damping on the ions can be neglected
and there remains in Im & only the contribution due to the electrons which
leads to the build-up of the oscillations. Including the wave damping due to
collisions betweenions and neutral gas atoms, and supposing that the electrons
have a Maxwellian velocity distribution displaced by a velocity « along the z
axis, we obtain the following expression for Im &:

_ 4 22 7 Q1
~KIme ”fkfea(m —kv)dv —42
. 2 QZ 1
= \/2 (u cosf—c,) — 4c c:m: (Iv. 15)
UE
T, , 4ne’n 1

2 . ..
where 12 =—%, wi= , — is the mean collision frequency of
m

e i

the ions with the meutral gas atoms, and cos 8 = k,/k. Thus the collisional
damping decreases as o increases. For a sufficiently large z; it is appreciable
only at very small o and its effect may be included by simply cutting off
the spectral function towards low frequencies at the frequency at which
Ime changes its sign, so that the waves damp. In this approximation the
quantity £*Ime in the principal region of wave numbers can be considered
independent of k. It follows immediately from (IV.14) that I, ~ 1/k3. We
can demonstrate this in more detail. Snppose for simplicity that the waves
are built up only in a relatively narrow cong of directions within an angle f,,.
(Such a situation arises, for instance, when the plasma is contained in a
cylindrical tube which absorbs waves which propagate in the transverse
direction.) In this case k" ~ 8ok, and consequently the quantity kk” ~ k"2
can be neglected compared with k%k”. Transforming to k-space and using
spherical co-ordinates, and integrating the ¢’ term in (IV.14) by parts, we
obtain

Q2 ar Osz
w" ak —Imel+ I, ——= T

where 8, is the angle between & and &' and Q' is the solid angle element.
Integrating this equation with respect to Q assuming <6,>2 = #2, and
denoting by 7, the integral of L over Q, we obtain

o
{ f kzefa MY A0+ 3k f 21,0 dg'} (IV. 16)

oI,
=k o oyl Al (2k5— + 6k41,,) av. 17

ot
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3
w
where y = — Ty {Ims) is the mean growth raie of the small perturbations,
0

Q21,62
and 4 = #ﬁ This equation can be written in more explicit form:
5te .
af K 12 )

— E'IE =2 4 .

Noting that the energy of the waves is proportional to [, and is given by
Z
5 e'n

=mnpd =——] :

&, = m;nv; mi T, (Iv. 19)

' we can interpret eqn. (IV.17) as the wave energy transfer equation. The

second term on the left hand side describes the diffusive energy transfer
towards the smaller wave numbers due to the scattering of waves on the ions,
and the second term on the right hand side describes the non-linear damping
of the waves at the ions. As we have established earlier, in the principal
region of wave numbers k*Im ¢ = const, so that y, is proportional to k,
1 = ok say. Thus from eqn. (IV.17) in steady state conditions, when
oI, =0, I=
ot kT 2Ak3
mined from the condmon that the spectral function vanishes at & ~ D!,
since at larger values of k the growth rate becomes negative. From this we

-2 where ko, = const. The value of &k, can be deter-

obtain k, ~ D1, Moreover, the spectrum J, ~ &3 ln% must be cut off

at small k, where Im & changes its sign.

‘We note that the non-linear terms in eqn. (IV.18) do not have a *“ wave
number ” N, = €Jw|”*. In other words, according to this equation
J M dk = const for y = 0. This result follows immediately from eqn. (IV.14).
Thus the non-linear.interaction of the ion-sound waves constitutes a coherent
scattering at the ions, during which the *“ wave number  is conserved and the
energy decreases in proportion to the frequency.

We obtain the frequency dependence from the relation Ldk = I.dw,

] . - Q . I .
which gives I, ~ o™ ! In ~5°. Thus the energy of ion oscillations in the
steady state is concentrated in the region of low frequencies, that is near the
lower limit of stability. On the other hand, the spectral function of the
electric field E7 = kI, which determines the effect of the oscillations on the
electron distribution function, reaches a maximum for k ~ D™,

Substituting for the growth rate in eqn. (IV.17) the value given by linear
theory, we obtain the following expression for the spectral function I, for
U

| uL 1 TP o1
kv, T 762 Ame®k® . kD
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This is a very large value, and it is obvious that in the presence of oscillations
of this magnitude the distribution function of the longitudinal electron
velocities cannot be Maxwellian. In other words, we need to consider the
feed-back of the oscillations on the averaged distribution function. For
this purpose it is sufficient to use the quasi-linear approximation.

In the presence of a sufficiently strong longitudinal magnetic field, such

that Q, = ;—HE > £, the motion of the electrons across the magnetic field

(-]
can be neglected, and the oscillations lead to the development of a platean
on the longitudinal velocity distribution function in the interval from ¢; to ».
1, e2E2 k
As a result the growth rate is reduced by the factor ;25 m:"zg where

5
ko ~ D! and v, is the mean collision time between an electron and the
neutral gas atoms. Taking this effect into account the speciral function
becomes to order of magnitude

1 J um, T. 1 1 712
—— B e ls In— V. 20
% 108, N ¢, m; T, wot, kD ek’ a )

so that even when the formation of the plateau is taken into account the
oscillation amplitude is still fairly large.

In the absence of a magnetic field the effect of the oscillations on the
electron distribution function becomes even more important. In this case
each separate wave with wave vector k sets up a plateau in the k direction
over a small region of velocity space of the form of a thin layer. This layer is
perpendicular to k and situated at a distance ¢, from the co-ordinate origin
(see Fig. 15). Since ¢, < v,, the aggregate of all oscillations sets up a platean

Fic. 15. Isotropisation of distribution function by ion acoustic oscillations

in the angular dependence of the distribution function in the resomance
interaction region. Thus the ion acoustic oscillations developing in some
cone of directions with aperture angle 6,, must tend to make the electron
distribution function isotropic in the external volume of a cone with aperture
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angle 7/2—0,. For u ¥ ¢,, so that in an unbounded plasma practically all
waves with a positive projection of the phase velocity on the z axis are un-
stable, the angle 6,—7/2, and the oscillations should lead to a complete
“ blocking  of the current, so that the directed velocity of the electrons
could not exceed ¢,. In a bounded plasma, let us say in the plasma of the
positive column of a glow discharge, together with the effects just described,
we should also take into account the energy transfer of the waves to the walls

I} . . . .
by adding the term Ua—ll_‘ to the kinetic wave equation. Accordingly waves

propagating across the discharge should be damped, and the angle 0, may be
fairly small even for # » c..

Let us note yet another circumstance. Above, we estimated the value
of the spectral function averaged over the angles. If we wished to refine
this calculation by determining the angular dependence, we would have to
solve an integral equation with a degenerate core, and such an equation by
no means always has a solution. In other words, the angular dependence of
Tm & may turn out to be different from the angular dependence of the integral
term in (XV. 16). The integral term then cannot completely compensate the
growth rate, and there must be directions in k space in which the oscillation
amplitude will continue to increase. We might expect, therefore, in the case
of jon sound oscillations in an unbounded plasma, a tendency towards the
formation of separate wave packets with fairly sharply defined angular
dependence.

Moreover, from (IV.16) we see that the interaction of the waves increases
as the angle 8, between their wave vectors increases. Thus an individual

mode may strongly interact with its  distant neighbours > but only weakly

with waves travelling in the same direction as itself. Therefore the non-lincar
interaction not only does not resist, but even strengthens the tendency
towards a localisation of the waves in a few separate directions. In an
unbounded plasma this process will obviously develop until four-wave
processes become important. In a bounded plasma we must add the term
%% %% jnto the kinetic equation for the short wave oscillations and this term
will also affect their angular dependence. However, for the oscillations with a
long wavelength of the order of the dimensions of the inhomogeneity, this
approach is not suitable and in those cases where the condition for their build-
up is fulfilled, we should expect a predominant development of one of these
characteristic oscillations.

(b) Build-up of Cyclotron Oscillations by the Electron Current

"The ion-wave instability considered above only occurs in a non-isothermal
plasma where T, » T;. For T; ~ T, ion acoustic waves do not occur be-
cause of the strong damping on the ions, and the growth of oscillations is
possible only for # 2 v, (77). However, in the presence of a magnetic field,
which increases the * elasticity > of the plasma, oscillations can be excited
at smaller values of the directed velocity «.
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Let us first consider the case of a strong magnetic field where the ;nagnetic

. Ty
field pressure is much larger than the plasma pressure, 1.e. f= g £ 1.
Drummond and Rosenbluth (78) have shown that in this case the longitud:mal
electron flux may excite ion cyclotron oscillations. For f < 1 t]}ese oscilla-
tions are purely longitudinal, so that we can write E = — V. Their frequency
is given by the relation (73): <

T - = ’I'E - kzu-Ql}
_oli L L. i dudm Iv. 21
@ Q,{l + Tie Li{s)+in I}e I,(s) Py ( )
H KT,
where Q; = 2 is the ion cyclotron frequency, s=k3p} = me;, I,(s5)
2T,

is the Bessel function of imaginary argument, and o, =

L4

Equation (IV.21) refers only to waves with small k_, since the ion damping

: lo A
omitted in this equation can be neglected only for k; 3 —v—' Since the

i

-Q; T } T :
quantity wTSL o ?e e”*1,(s) attains a maximum of ~ 0-2 1—.,': for s = 1‘-5,

Fic. 16. Dependence of frequency and growth rate of cyclotron oscillations
on wave number
1T,
15T v’
develops only for -
T, N [m,
u>u :::15—-ﬁv-=15<—) ,\/-——v V. 22)
) [ ]-1e i TE m!' e (

v, [T\
For a hydrogen plasma this condition becomes uzf(?) The

dependence of the frequency o and the growth rate y on the wave number k '\
is shown qualitatively in Fig. 16. This relationship between y and k, applies
when the instability condition (IV.22) is satisfied by a considerable margin.
As u decreases the band of unstable wave numbers becomes narrower.

we have k. 5 and then according to eqn. (IV.21) the instability
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Within the framework of the guasi-linear approximation, the problem of
the sustained oscillations has been studied in the paper quoted above (78).
These authors evaluated the oscillation amplitude at which a plateau appears
in the electron distribution function. However, in the presence of a longi-
tudinal electric field the development of the oscillations does not stop at this
stage, since the electric field tends to destroy this plateau, and the distribution

7 . function will always tend to relax towards a displaced Maxwellian distribu-

tion, and the oscillation amplitude will continue to grow until the non-linear
processes enter into the picture.

Oscillations with a frequency slightly larger than the cyclotron frequency
set up beats at frequencies close to zero and to double the cyclotron frequency.
The oscillations with very low frequency transfer energy to the ions very
effectively and it will be these in particular which will lead to the limitation
of the oscillation amplitude. The problem of sustained cyclotron oscillations
has been considered by Petviashvili (79) and Karpman (80).

Since the phase velocity of cyclotron waves parallel to the magnetic field
w/k, ~ uis considerably larger than the thermal velocity of the ions, the
non-linear damping of the waves, as in the preceding paragraph, will be
described by a term containing the function é(w—c") beneath the integral.
When we integrate the & function with respect to &k, we obtain a factor of the

form T which vanishes at the point where w reaches its maximum

L
as a function of k,. Consequently, at this point the amplitude of oscillation
in the steady state must vanish, even though according to Fig. 16 the growth
rate is greatest at this point,

. 'When we consider the formation of the plateau in the electron distribution
function, we obtain from the non-linear damping the following estimate of the
equilibrium spectral function

T.T,/ u® \*dk,
ko'f Tdk, =4 e* (vev?Qer) e

(IV. 23)

eH 1
where 4 is a numerical factor of the order unity, £, = iy is the
€ L3
electron collision frequency and I, the spectral function of the electric
potential. This expression refers to the case where « is much greater than
the eritical value z.. It gives a fluctuation level considerably exceeding the
thermal fluctuation density which in this region of wavelengths is of the
2

‘ T, _
# order of magnitude offfk dk ~ e (nop?)™ %,

(c) Magnetic Sound Build-up
The phase velocity of the oscillations under consideration is of the

5"_ order of magnitude of u, and as we increase § = 8mp/H” so that the phase
velocity approaches the AMvén speed, they can no longer be considered
p: longitudinal. In other words, in this case curl E # 0, the oscillations
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become much more complex, and the growth of longer wave magnetosonic
oscillations becomes possible.

The dispersion relation for magnetosonic oscillations including Landau
damping has been determined in (81, 82). Extending these results to include
the case of a longitudinal current, we obtain for @ < Q;:

\/;(k —ke )—Te—‘ K
vk, e S A

w?=cik? {1 +1i (IV. 24)

This shows that instability occurs for u > ¢, but the growth rate is com-
paratively small, given by y/o ~ UE

Equation (IV.24) can be used approximately almost up to w ~ L,
corresponding to kp; ~ v B. When the wave number increases above this
value, the magnetosonic oscillations change fairly rapidly into purely elec-
tromic oscillations corresponding to the so-called * atmospheric Whistlers ™.
The ions do not participate in these oscillations which cannot therefore be
excited by a longitudinal current. Also for shorter wavelengths we have the
cyclotron branch, which we considered earlier, which for f € 1 connects
with the jon acoustic or slow magnetosonic wave. _

Thus the magnetosonic oscillations can be excited only for kp; < Nj B.
Their dispersion relation is of the non-decay type (see Chapter IL.1(b)).
It is true that they can excite Alfvén waves by resonant transfer, but since the
latter are practically not absorbed by particles, this effect does not lead 10 a
limitation of the oscillation amplitude. Consequently even in this case the
amplitude of the steady state oscillations is determined by the non-linear
Landau damping at the beat frequencies. The mean square of the amplitude
of the steady state oscillations EZ can be estimated from considerations
of the energy balance. We compare the rate of energy transfer from the
electrons to the ions with the rate of absorption of energy by the ions, and
obtain approximately

...Ez — (Ee__e_z_ _1_ EZ)_IEZ - BE4-
P =7 vg mg uk k X %

(IV. 25)

) -y /= u
where EZ is some mean value of the spectral function, k ~ p; ! VB ~ of o

2
is the linear growth rate and § the growth rate as reduced by the formation
of the plateau in the electron distribution function. The right hand side of
(IV.25) represents the non-linear damping of the waves. To estimate the value
of B we observe that the amplitude of the low frequency beat oscillations is
directly related to the non-linear terms in the equation of motion for the ions

) m;k c2EZ
and can be estimated as Ej ~ —~

The energy of these oscillations

2 61.2
.. ) c c .
is in order of magnitude equal to minff-gEf=m?n-é§—IFE,‘} and its

& 3 2.2

¢ E2
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] czkz cz
absorption rate can be estimated as ﬁcAkW EZ.m,nE} T where the
i

factor B takes into account that the interaction leads to damping only for
oscillations with frequencies sufficiently close that the phase velocity of the
beats is of the order of the ion thermal velocity (cf. the factor T,/T, in eqn.
(IV.16)). Comparing this result with eqn. (IV.25) and noting that the energy
. 2

- - . . L3 c
of the main oscillations is of the order of magnitude ~ m;nE} i we obtain

approximately B ~ v;kf Substituting this value in the relation

C
QiH*
. (IV.25). and setting k ~ pi! \/ﬁ, we finally obtain an approximate value
¢ of the intensity of the oscillations of the electric field

H%! u 1
E ad —_
T e Ve /A,
3 It is apparent that the kinetic energy of the steady state oscillations is
broadly spea!cing' _\/Qere times smaller than the thermal energy, and is
2 concentrated in oscillations with frequencies near the cyclotron frequency £2;.
- Boi;h magnet_osonic and cyclotron oscillatyens lead to a plateau of width
i . In the eélectron distribution function. As a result the electron current decreases
by a _small fraction of order w/v,. This decrease of the current for a given
electric field can be represented as an additional * anomalous ™ resistivity.

Consequently the effective conductivity of the plasma ¢ is defined by the rela-~
tion

. 1 1( ﬂ
3 —a—{1+—
B ' ¢ 0Oy D,

where ¢, is the conductivity dne to binary collisions.

.It'c'fm l?e shown that one-third of the energy dissipated by the additional
resistivity is transferred to the oscillations and so to the ions. As a result
additional heating of the ions occurs. In stationary conditions, when there
are no energy losses from the ions, and the electron temperature is maintained
at a given level, the anomalous heating of the ions must increase their

=2
temperature to such a value that the energy transferred to the ions L
) M 1 )
is equal to the energy - ’L'_(Ti_ T,), transferred by the ions to the

ive

(IV. 26)

Iv. 27)

electrons, Writing g, = €%nt,/m,, j = enu we have
1mu®
T ~T ol Nl
R e(l + Im, v;*) (IV. 28)

Thus for a sufficiently large value of w/fv, this turbulent heating of the ions
may lead to a considerable ** breakaway ** of the ion temperature from that of
the electrons.
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Tn addition to this anomalous heating these oscillations must lead to
an enhanced diffusion of the plasma across the magnetic field, since both
the electrons and the ions participate in the oscillations. The diffusion is

determined by the magnitude of the mean drift along the density gradient, 3

parallel to the x axis, and the diffusion flow can be represented by
d [ c?
q=- Ef }TinEjfk d(o—kv)f, dvdk {Iv.29)

Substituting here the value given by eqn. (IV.26) for E} and considering that
the only contribution to the integral comes from the resonance region, we
obtain for the diffusion coefficient the approximate value

u2 DB

D.LN

ve\/ueca eTe

where Dy ~ p.v, is the Bohm value.
The cyclotron oscillations lead to a diffusion coefficient of the same order

of magnitude.

3, DrirT INSTABILITY OF A PLASMA

In this section we shall deal with the drift instability of a plasma which j:

gives rise to anomalous diffusion of a rarified plasma in a homogeneous
magnetic field, The drift instability was described by Tserkovnikov (19)

who showed that in the presence of a temperature gradient in an inhomo- .

geneous plasma oscillations may be excited with a phase velocity across the
magnetic field of the order of the drift velocity of the particles. Such oscilla-
tions are naturally called drift waves., o

In Tserkovnikov’s paper (19) only waves which propagate across the
magnetic field were considered. Later Rudakov and Sapdeev (20) considered
the more general case of oblique drift waves which transform into ion acoustic
waves as the angle between the wave vector and the magnetic field decreases.
It has been shown in (19) that in the presence of a temperature gradient these
may be growing waves.

A considerable influence on the further development of the theory of ’

drift instability was the paper by Rosenbluth et al. (21) on the finite Larmor
radius stabilization of the flute instability of a plasma. This paper stimulated
a whole series of further investigations of the drift instability of the plasma
with. respect to short wave perturbations with transverse wavelength of the
order of the mean Larmor radius of the ions.

These papers were concerned with the investigation of the stability of
a plasma of such low density that particle collisions could be neglected.
On the other hand, drift waves are also obtained in the investigation of the
stability of 2 weakly ionised plasma where collisions between charged particles
and neutral gas atoms are dominant. Timofeev (23) (see also (91, 92)) has
shown that as the neutral gas pressure in a weakly ionised plasma is reduced,
a peculiar instability appears which arises from a combination of the drift
motion of the charged particles across the magnetic field and the diffusion

. Ds_ V.30 5
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along the field. We shall call such an instability a drift-dissipative instability.
It has been shown by Moiseev and Sagdeev (24) that such an instability also
occurs in a dense fully~ionised plasma. It has also been shown in (85) and
(92) that thermal conductivity and viscosity may appear in addition to dif-
fusion as dissipative processes leading to instability.

In this section a brief survey will be given of the drift instabilities in an

* . inhomogeneous plasma (a more comprehensive survey is due to Mikhailovskii

(22)). We shall assume that the plasma pressure is much smaller than the
pressure of the magnetic field, i.e. § = %i;- <€ 1. The magnetic field will be

assumed homogeneous.

3 (@) Drift Waves in an Inhomogeneous Plasma

Consider a low pressure plasma in a homogeneous magnetic field &
para!lel to the z axis, and suppose that the plasma density varies along the
x axis. For simplicity we shall assume that the plasma temperature is con-
stant, and that the ions are cold. Then in equilibrium the ions are at rest,
T. dn eH

mun T where Q, =

and the electrons drift with a velocity tp = — .
m.c

e

This is the so-called Larmor drift. We assume that d—i < 0 so that vy > 0.

d
We consider perturbations with transverse wavelength comnsiderably

smaller than the characteristic dimension @ = k™%, where x = %% Such
perturbations can be represented as plane waves of the form exp (— it +ikr).
We limit the discussion to start with to the case in which @ <€ k,c,, and we
assume the electric field curl-free, so that we can write E = —Vp. Thus
we are discussing first the longitudinal oscillations of the plasma. Provided
k, is not too small, so that the phase velocity of the wave is considerably
smaller than the thermal velocity of the electrons, the latter follow a Boltz-
mann distribution, so that the perturbation of the electron density », can be
expressed in terms of ¢@:

ne _ep
n T

where n is the unperturbed density and T, the electron temperature. The

expressien for the perturbation of the ion density »; can be obtained from
the continuity equation

(IV. 31)

6?1,- N

P + div(nv) =0 (Iv.32)

where v; is the macroscopic ion velocity, which can be determined from the

equation of motion
: oy, e

e
Frie - r—n—dio + ;’!TE [\’;H] (Iv.33)
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For o < Q; we then obtain the transverse and longitudinal components
of the velocity

[+ c
LN L% V. 34
v =iglhkle + g0 kio (Iv.34)
and
e k,
otk V. 35
Vg miqu { )

For @ < €, the second term in (IV.34) can be neglected and then the velocit-_y
of the ions is determined entirely by the drift in the electric field. In thlls
approximation, using relations (IV.33), (IV.34) and (IV.35), we obtain

2
£f=(‘&k_ k,Tez)g - (IV. 36)
n o mo) T, <
2>
where Los J:E AN q-v
& T.k,x
= f g, = =2
2y yvo miﬂi

In a dense plasma, where the Debye radius is negligibly small,. all f_)scilla}-
tions can be considered quasi-neutral, i.e. m; = 7. Substituting in this

relation the values for the perturbations of the electron and ion densities '

obtained above, we arrive at the dispersion equation
0?—ow,—kicZ =0 (Iv.37

where ¢, = ,\/ I is the velocity of sound. This is in fact the required

my; )
dispersion relation for drift waves. The dependence of w on k. determined
by this equation is shown in Fig. 77. Curve (1) refers to a wave propagating

! HzCs
’

- Ky

=Kz Cg™

Fic. 17. Dispersion relation between e and k. for longitudinal
oscillations of an inhomogeneous plasma

1V, TURBULENCE IN A PLASMA 81

in the direction of the electron drift, for which w/k, > 0, and Curve (2) to the
wave propagating in the opposite direction, i.e. with w/k, < 0. As we can
see, the absolute values of the frequencies of these two waves differ slightly
from one another. In particular, for k, — 0 the frequency of the first wave
tends towards w,, while the frequency of the second tends towards zero.
The transverse phase velocity of the first wave for k, = 0 is equal to the
drift velocity of the electrons. In order of magnitude it is equal to corg/a,

| T. . .
where ry= —oF 8 the Larmor radius of the ions at the electron

[ i %

. . T .
temperature (for the usual Larmor radius of the ions J - ;12 we retain the

=i

.. notation p;). For k,/k, > rafa both drift waves go over into ion acoustic

waves. Therefore it is natural to call the first the accelerated, and the second
the decelerated ion acoustic wave. In a strong magnetic field ry < a4, and in
this case the transition to a simple sound wave takes place for almost trans-
verse propagation where k,/k, <€ 1.

Returning once more to the derivation of the dispersion equation, it is
easy to see that the effect of the inhomogeneity on the oscillation frequency
arises from the transverse drift of the ions. By itself this motion is incompres-
sible, i.e. div v;; = 0, and in a homogeneous plasma it does not lead to a
change in density. . However, in an inhomogeneous plasma, even an in-
compressible displacement of the plasma & along the density gradient leads to

d
a perturbation of the density #; = —¢ £ This perturbation of the density

leads to the change of the dispersion equation.

These considerations remain valid when the ion temperature is different
from zero. For if the transverse wavelength is considerably longer than the
Larmor radius of the ions p,, and the phase velocity parallel to the z axis
is considerably larger than the thermal velocity v, we can still use the hydro-
dynamic equation of motion (IV.33) only including the ion pressure gradient,

This term leads to the Larmor drift é[th‘]’ which for H = const is

incompressible and therefore supplies no contribution to the change in-
density. Thus, for T; # 0 the dispersion relation (IV.37) is unchanged
provided w/k, > ¢, It follows, therefore, that even for T; = T,, so that
¢, ~ v;, and ion acoustic waves do not occur in a homogeneous plasma, a
drift wave (the accelerated sound wave) may propagate in an inhomogeneous
plasma with a frequency w ~ w,. The phase velocity of this wave parallel
to the magnetic field may considerably exceed the thermal velocity of the
ions, and consequently it is not subject to strong ion Landau damping.

As k. decreases the phase velocity of the accelerated wave increases
and when k_ is sufficiently small it may reach either ¢, or v,, whichever is
smaller. We limit our consideration here to the case ¢4 <€ v,, ie. f =
8ap/H? > m,fm,.



82 PLASMA TURBULENCE

For T?- ~ ¢4 the electric field can no longer be considered curl-free. For

z

kﬂ ~ ¢, the lines of force of the magnetic field may be said to be no longer

c;mpletely rigid and they become slightly bent. In this case it is possible
purely formally to introduce a longitudinal potential , determined by the

relation E, = —%—f, while since in the case of the slow oscillations under
consideration the transverse component of the electric field can be assumed
curl-free, we can retain the transverse potential ¢; E, = —V,¢. By using
these two potentials we take account of the bending of the lines of foree, but
continue to neglect any changes in field strength due to compression of the
field. For y = ¢ of course even the curvature of the field disappears.

Since according to our assumption the thermal velocity of the electrons

considerably exceeds the phase velocity of the wave ok, ~ ¢4, the electrons-

reach equilibrium along the lines of force leading to the following relation
H. dn

Teik,ne—{—TeFa; = ik eny (IV. 38)

where H_. is the x-component of the perturbation in the magnetic field given

by Hi= :—O[I:E]J= = ic—‘; k,k(p—). Thus we obtain for the perturbation

of the electron density
ne

_0 &y O

We need to relate @ and . For this purpose we use the z component of

& ¢ ) )
the eguation a—‘: =~ i curl curl E, where jis the current density, For these
oscillations we obtain I
r — cz
= o
To determine j,, we use div j = 0, from which we obtain

jz = ik;l diij_ = ik;iediv n("u_— e.L)
Thus the longitudinal current arises from the small difference in the trans-
verse velocities of the electrons and ions, o that in the expression (IV.34) for
the ion velocity we must consider the second (inertial) term. In addition there

is a small difference between the ion velocity and the electric drift velocity

arising from the effect of the finite Larmor radius (21). In a strong magnetic
field, the mean Larmor radius of the ions, although small, is nevertheless not
negligible and the electric drift of the ions is not determined by the electric
field at the centre of the Larmor circle, but by some value averaged over the
Larmor circle. ‘Tt is easily verified that when we average the electric field of

kKo -¥) av.4 |
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a plané wave over a circle of radius v, /Q; and subsequently over the Max-

wellian distribution in »,, the effective electric field is less than the value
) BT,

at the centre of the circle by a factor ™ Iy(s}, where s = EL—Q—; and I, is the
§Rsi

Bessel function of imaginary argument. For small 5 this factor is approxi-

mately equal to 1—s, and in this case a more accurate expression for the ion

velocity may be written down in the following form
ic ic kT, c
== g o Py TRt - =
=gkl - gkl Tse 7o,

Substituting this expression for the ion velocity in div j, and noting that

Y, = ;—; [hk]e we have

whence, using (IV.40), we obtain the following relation between ¢ and ¥
gb—(p=—ga%2~_—;?-"-‘2 (Iv. 43)
& L.Tsin% this relation and (IV.31), we obtainztlfe perturbation of the electron
ensity :
S n AN
()T (V.44

Finally, comparing this equation with the perturbation of the ion density
(IV.36), neglecting the second term in brackets, we obtain the dispersion
relation ‘ ‘

(0 —wy) (@ +ogo—cik?) =0 (IV. 45)

This splits up into two: @ = w,, which describes the drift wave which we
already know, and

wtw,o—ciki=0 (IV. 46)
which shows that for k, — 0 the Alfvén waves in an inhomogeneous plasma

b also go over into drift waves. To differentiate these waves from those con-

" sidered earlier, we shall call one the accelerated Alfvén wave (w/k, > ¢4),
the other the decelerated Alfvén wave (w/k,<cy).
Retaining small terms of the order k2p previously neglected, we: obtain,

for § > ﬁ, instead of an actual intersection of the branches, the picture

« - 4 . 3 -
¢ shown in Fig. 18. There, as previously, waves with positive frequency

(branches 1 and 3) propagate in the direction of the electron drift, and waves

,," with n.ega.tive frequency (branches 2 and 4) in the direction of the ion drift.
> In an inhomogeneous plasma, the usual sound and Alfvén waves are replaced

by four different waves.
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4

FiG. 18. Dependence of frequency of drift waves on wave number

In the following sections we investigate the stability of an inhomogeneous
plasma to drift waves. In a collisionless plasma the instability arises from the

interaction between the drift waves and resonant particles represented .by
Landau damping, which must be discussed on the basis of kinetic considera- - &

tions. This calcnlation is carried out in Sections (b) and (c) where we consider

separately long wave (k,p; < 1) and short wave {k,p; 2 1) perturbations.

In Section (d) we consider the stabilization of the flute instability due to
finite Larmor radius. In the following Section (¢) the instability of a plasma
with cold jons (T = 0) is considered in a weak magnetic field, when the
Larmor radius of the ions calculated from the electron temperature exceeds
the characteristic dimension of the inhomogeneity. In Section (f) the growth
of eyclotron oscillations in an inhomogeneous plasma is considered. The fol-
lowing three sections are then devoted to the consideration of the drift-

dissipative instability, related to collisions between particles, and in the last

section non-linear drift oscillations will be discussed.

(b} Drift Instability for k. p; €1

To describe the oscillations of a collisionless plasma with a wavelength
much greater than the mean Larmor radius of the ions, the drift kinetic
equation can be used (the same approximation has been used in yef. (20)
which we follow in the present section). We shall limit the discussion to the
case of longitudinal oscillations, and for these the linearised drift kinetic
equation for particles with mass m and charge e has the following form

o _crod_o (V. 47)

' € I =
(—m+kzvz)f mkzqaavz H yqoax

where fis the unperturbed distribution function. With the aid of (IV.47) we . 4

obtain the density perturbation
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. k,of K of\  dv
"= eqof (m dv, + Eé;) w—k,v,+iv (IV. 48)

where we have added the small positive quantity v -+ 0 to pass the pole
correctly. In the special case that the distribution function fis Maxwellian
and the temperature constant, the density perturbation #’ can be expressed

~ in terms of the function

+ 0 ' z
1 e_xl dx —z2 2 — 2
Y(z) = ﬁ.f poor i Ze fe‘ dt—ine™* (IV. 49)
- ]
aof mu, , of )
‘Alsoa—vz =— T’ e —&f, so that we obtain from (I'V.48)
n [0+, w e
- Y — 1L
Lo { kz Ur (kz UT) 1} T (IV. 50)
where vy is the thermal velocity. Using the quasi-neutrality condition we
obtain the following dispersion equation
W Wy w W— Wy w
Y =
kz 43 (kz U‘) * kz U, Y (kzve) 2 (IV. 51)
where '
_ @ [T
v; = E’ v, = E;’ T,=T,=T, Wy =k, v,

Let us consider the drift waves with phase velocity along the z-axis in the
@
range v; < T <7, In this range ion Landau damping can be neglected.

z
For generality we allow the temperature to vary in the x-direction and the
electron function to be shifted relative to the ion function by a velocity « so
that there is a longitudinal electron current. In this case the dispersion
relation assumes the form
o @ ke (1 +ﬂ—§) L
0w o T,)] kv,

(o—ku—om,+to,m) =0 (IV. 52)

dln
where 5 = d—].nne For T; = 0 this equation differs from (IV.37) by a small
imaginary term which arises from the interaction of the wave with the
resonant electrons, the longitudinal velocity of which coincides with the phase
velocity of the wave. For w/k, > ¢, the third term in (IV.52) can be neglected
so that we have approximately

- v 1 o,
W=, ) =T0 =S V. 53)
-] zve
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For vﬁ < land % < v, the growth rate is much less than the frequency.

e z
Moreover, in the absence of a longitudinal current the instability occurs only

dinT, . e . ¢
forn = ? « . In practice, the quantity # is usually positive, and conse- - j

dinn
quently long wave perturbations for k,p; < 1 are unstable only in the pre-
sence of a longitudinal current, although for sufficiently large values of #, to

be precise for 7 > 2, perturbations with k, ~ %’ become unstable (20).

. e
The instability of the drift waves for u 3 Ois an extension of the ion wave

instability (see (IV.2)) to the case T; ~ T,, when there is no normal iow

sound. On the other hand, the instability for u % 0 can also be regarded as
similar to the current-convective instability (see 1.2). In effect, as in the latter
case, the perturbation increases due to the drift of the particles in the electric
field of an oblique wave. The transverse component of the fieldzwhich leads
to the drift, arises simply as a consequence of the perturbation of the longi-
tudinal electric field due to the interaction of the resonance electrons with the
wave. The only difference between the instability considered here and the

current-convective instability is that in this case the effects of collisions are . f-

produced by Landau damping.

(c) Drift Instability for k,p; 2 1

It is evident from (IV.52) that for # = 0 and u = 0 the growth rate
vanishes only because of what would appear to be an accidental circumstance,
pamely that the frequency of the oscillations exactly coincides with cu,l Any
effect which shifts the oscillation frequency from the value @, leads to growth
or damping of the drift waves. In a plasma with cold ions (T; = 0) it may be
necessary not to use the drift approximation for the ions but to include the
inertia term in the equation of motion, i.e. the second term in (IV.34). When

the corresponding change in the expression for the ion density is made, it can F

be shown that egn. (IV.52) takes the following form

KT, w, ki? in
ftl————+
mgL); i) o k.v,

The transverse inertia term becomes important for k ry ~ 1, where ry
is the Larmor radius of the ions at the electron temperature. There is then an
instability even in a currentless plasma for 7 = 0.

When the jons are hot a similar effect occurs for kyp; ~ 1. For
T, = T; = T and n = 0 the dispersion equation for longitudinal oscillations
(w < k,c,) can be obtained by solving the kinetic equations for both the
electrons and the ions and has the form

- W+ Wy w W — Wy w
§ — —] = V.S
croS (G (i)

(O—ku—oy+iou) =0 (V.54 3
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2T 2T KT
where vi=,\/E, v, = ;;1-;, s=kip?= ;n—}l—?’ I, is the Bessel

function of imaginary argument, and ¥ is the function defined by egn.
v 49) Equation (IV.55) differs from (IV.51) only in that in the first term an
additional 'factor e~°I,(s), appears, which represents the decrease of the ion
drift velocity due to the averaging of the wave field over the Lammor orbit

" (see Section (d)).

This equation was investigated in ref. (83); the results were that only

- the accelerated sound waves, which propagate in. the direction of the electron

drift (Curve 1 on Fig. 17), are unstable. For v; <€ 2 < v, in(IV.55) we may

k

: ) kv @ -
put ¥ (k v) > \ Y( ) o —i\/n and we then obtain

k.o,
B ol B(—B)
= ”‘2‘/“%;52 2—F)

where f; = e *Iy(s), and for kv, > w, the growth rate is small compared
to the frequency. However, if we decrease &, until the phase velocity of the
wave parallel to the z axis approximates to v,, the growth rate y becomes of

@

(IV. 356

0-05

Fig. 19. Dependence of growth rate y on longitudinal wave number k,
for the drift instability

" the order . The results of the numerical calculation of the growth rate as a

function of %, near the maximum are shown in Fig. 19 for three values of s
and for k., = 0.

For small 5 the unstable oscillations can be divided into two branches.
The frequency of one of the branches is giyen by the relation (IV.56) and the
corresponding growth rate decreases as s% for s = 0. The frequency of the
second branch can be obtained by using the asymptotic expansion
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Y(2) & ! + 51—3 for z > 1. Equation (IV.55) then becomes the cubic
z 2z
ooy _20% & @av. 57
ot+o, ko2 ol
z Dy . . . 3
z . this equation
where ©? = QiQEI—CE. For - > 0-4 complex roots appear in this eq

4nd the corresponding growth rate is of the order of w,. On Fig. 19 section 1

sponds to this instability. B
Congigpure 20 shows the boundary of instability for k, = Oandm,/m, = 1840,

T

f(za

(o]
nfi+s}

20, Region of drift instability in a low pressure plasma
Féﬁnstable below the solid curve). For dashed curve see text

i+ 1 defined by the condition © < @, andis given a;_)prommately- by
flg ' fiuéﬁglgi%or 5 ¥ the limiting value of k.a is determined by.thg ion
da;nping and is almost independent of s. The dashed curve on this figure
is the locus of maximum growth rate asa function o_f k.a. >
The above relations refer to the case @ < k.,c,, i.c. they are correIcn tﬁr
the whole region of k, only if v, < ¢y, and consequently f < me/m,-.li ?f
opposite case f R m,jm;, we must consider the curvature of the rlllestg
force when k, is small. Mikhailovskil and Rudakov (84) have shov&;ln]g a lﬁ
this case the instability develops only on the accelerated soun 'llr'?incs
{Curve 1 on Fig. 18). Fory = 0ands 3 1 the frequency of these oscillation

is given approximately by

L 0x Bl (IV. 58)
O Pk
and the growth rate y by ~
e Yo (IV. 59)
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where { =_2kza/~,/ E The growth rate y as a function of &, reaches a maximum

w [m .
“EANm f@ for { 1. As k,p, increases, the frequency of the oscillations
s i

m;
remains approximately constant, the growth rate increases and for s ~ El B

e

it becomes of the order of the frequency.

These results refer to the case of constant temperature. However, when
we include a temperature gradient the instability still exists at practically
any given ratio between the density and temperature gradients (85, 86).

As f increases, the ion thermal velocity approaches the Alfvén speed
and the ion Landau damping becomes more and more important. At suf-
ficiently large § values, as has been shown in ref. (93), this effect completely
stabilises the drift wave. Figure 21 taken from ref. (93) shows the critical f

T T T T

[o}]]

0-03

1 1
1072 o™ 1 10
o

Fig. 21, Region of drift instability as a function of §
(unstable below the curve)

at which the oscillations become stable as a function of k| p; (stability occurs

above the curve). For f > 0-13 the drift instability is completely suppressed
by the ion damping.

In addition the drift instability must be absent in systems which are not
very long. For, as is apparent from Fig. 20, the drift instability develops only
for perturbations with small k&, ; more precisely, k,a must be of the order of
10~*, In devices of limited length the wave number &, cannot be small and
the plasma must be stable.

A further effect contributing to the stabilisation of the drift instability
is the shear of the lines of force, refs. (88, 89). We shall characterize the
magnitude of the shear by the parameter 8 = a/L, where ¢ is the transverse
dimension of a plasma column and L is a length along the column such that
the rotational transform angle referred to this length (94) varies across the
column by a value of order unity. Broadly speaking 8 is the angle between

BT, 4
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two lines of force separated from each other by a distance a. The projection
of the wave vector on to the line of force varies across the column by about
k. If we assume k, ~ p; ', then even for the very small value § ~ p;fa we
have k8 ~ a~1, so that at some point in the column we must have a region
where k, ~ a”*, i.e. a region of strong absorption at the ions. Thus, for
L ~ a?/p, we expect stabilisation due to shear. For some perturbations the
value of 0 necessary for stability may be slightly larger than p,ja because of
the reflection of the wave at “ potential barriers ”, i.e. turning points where
for the frequency o, k, becomes imaginary (see refs. 88, 89). But even in this
case the values of 8 required for stability are very small.

(d) The Stabilisation of the Convective (Flute) Instability

As we showed above, the inhomogeneity of the plasma leads to a consider-
able change in the dispersion relation e(k) in the region of small frequencies
of the order of @w*. In other words, for oscillations with phase velocity of the
order of the drift velocity the properties of the plasma are appreciably dif-
ferent from those of a conducting fluid described by the magnetohydro-
dynamic equations. Rosenbluth er al. (21) have shown that the drift effects
may, in particular, considerably influence the magnetohydrodynamic flute
instability of a plasma and under certain conditions complete stabilisation
of this instability appears possible.

Qualitatively the possibility of this stabilisation may be seen directly from
Fig. 18. From the magneto-hydrodynamic point of view, the frequency of
Alfvén oscillations is given by o = k,e, and for k, = 0 it becomes zero.
Perturbations with k, = 0 remain constant along the lines of force of the
magnetic field and it is these perturbations which are referred to as flute
perturbations. The fact that the frequency of the oscillations vanishes means
that for these perturbations the plasma shows no * glasticity * whatever,
and they can therefore be destabilised by any curvature of the lines of force
or any gravitational force acting in the direction of decreasing density, no
matter how small. When we consider the drift effects, however, we can see
from Fig. 18 that the relationship between the oscillation frequency and k,
becomes more complex and the transverse motion cannot be considered
completely inelastic.

Let us consider this effect in some detail. Suppose that a cold plasma
(T, = T, = 0) is situated in a strong magnetic field acting parallel to the z
axis, and subject to the effect of a gravitational force with acceleration g.
We shall assume that g is parallel to the x axis and in the direction of de-
creasing density. In the equilibrium state, in a co-ordinate system where the
mean electric field vanishes, the electrons are at rest and the jons drift parallel
to the y axis with a velocity vy, = g/Q;. In the perturbed plasma the velocity

of the electrons is determined by the electric drift %[tho], and the perturba-

tion of the ion velocity v; can be determined using the equation of motion
which for perturbations of the form exp (—fwt +ikr) takes the following form
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. ; €
—iw'myv, = —ieke + - [v.H] (V. 60)
where ' = w+k,g/Q;. For ' € Q; we obtain approximately

ic cw
Vi = o [hkle + Eﬁtkm (Iv. 61)

al‘;? §ubstituting this expression into the continuity equation for the ions, we
obtain

—io'n —ic—k”d—" +in co'ki 0
; dxqo "o, Q= (Iv.62)
and the perturbation of the ion density is given by
' ck x k? ep
n —_ .__:.P_ — ......J.'_ [,
= e (Iv. 63)

Fpr the electron density perturbation we obtain instead of (IV.63) the much
simpler expression

ck,x

. wH @

because we can neglect the electron inertia term.
Substituting the values for #; and r, so obtained into the equation k%¢ =

4ne (n;—n,} and assuming for simplicity k, = 0, we obtain

Qix 1 1 3
k (m+k,,g/Q, (D) —1=2 (IV. 65)
The terms in brackets are due to the difference between the drift velocities
of the electrons and the ions arising from the gravitational field, the unit.
represents the inertia term in (IV.62) and the right hand side represents
the effect of possible departures from quasi-neutrality. In a dense plasma.
where ¢, < ¢ this right hand side can be neglected. ’

There is a large factor of approximately €, in front of the brackets in
(IV.65) and therefore the oscillation frequency is considerably larger than
k,g/Q,. Expanding (w +%§)“1 to first order in this quantity, we obtain
from (IV.65) the much simpler dispersion equation ®*+gx = 0 and thus
@ = :j:z'\/ gx so that the plasma is convectively unstable.

According to (IV.65), the instability originates from the small difference
betv_veen the drift velocities .of the electrons and the ions. Naturally any
add11_:iona1 factors which may influence this velocity difference must also
considerably influence the stability of the plasma. One of these factors is the
effect of the finite Larmor radius of the ions, and including this, using (IV.50)
for small 5, we obtain, instead of (IV.63)

n,fn = (IV. 64)

n, (o
n (5 (1_5)-5) o v. 66)



92 PLASMA TURBULENCE

This shows that the effect of the finite Larmor radius of the ions can be
included in the dispersion eqn. (fV.65) by simply introducing the factor 1—#
in the first term in the round brackets. For ¢, < ¢ the equation can then be
represented in the form

wl+wyw+ge =0 (IV. 67)
whence we obtain ‘
2
Oy w3
——ox g [T .
w 7 £ J 1 xg (.IV 68)

2
2]
This shows that for gx < —f the plasma is convectively stable. If we introduce

the effective radius of curvature instead of g according to the equivalence

T oo .
g = —, the stability condition takes the form

m R
4a
2,2. 1@
Kot > 2 (IV. 69)
where pi = and g = x~L. Thus for ¢ <€ R which is often the case in

mig‘iz .
practice, even perturbations the transverse length of which considerably
exceeds p, will be stable.

For s = 1, Mikhailovskil (95) has shown that there is also a slight change
in the first term in the dispersion equation for the flute perturbations, and the

dispersion equation valid for all s has the following form
Q:x ( e Io(8) E) _ 1—e " I4(s)

i _% (Iv. 70)
o+k,g/ @ s ’

k 5 ¢

The result of the investigation of this equation carried out in (90) is
shown on Fig. 22. As this figure shows, in a dense plasma (¢4 < ¢) all
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Tic. 22. Region of flute instability (hatched)
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perturbations with sufficiently short wavelengths are stabilised, and the
stability condition is that given by the relation (IV.69). As the density
decreases the plasma becomes unstable, but for a very small density the stab-
ility is again restored, since ultimately a transition will take place to separate
non-interacting particles which can no longer be described as a plasma. In
the intermediate region there is a gap where the plasma is unstable. This gap
extends into the high density region, but only for extremely short wavelength
perturbations, which cannot make amy appreciable contribution to the
transverse diffusion.

We comsidered carlier only short wave perturbations for which the
quasi-classical approximation is valid. Qualitatively the conclusion that the
flute instability may be stabilised also refers to long wave perturbations
except the so-called m = 1 mode, corresponding to the transverse displace-
ment of the plasma as a whole. With this type of displacement the perturbed
electric field in the filament is almost constant over the cross-section so that
the drift velocities of the electrons and ions coincide closely and the stabilisa-

' tion due to the finite Larmor radius is absent.

An instability of the m = 1 mode is more conveniently described by the
momentum equation. For ¢4 <€ ¢ the momentum of the electromagnetic
field and the electrostatic forces can be neglected, and the equations for the
momentum for the displaced plasma filament can be written in the following
form:

dP
= =F (Iv. 71)

d
where P = my N %’ is the momentum of the filament, N the total number of

ions per unit length, r, the radius vector of the mass centre and F the gravita-
tional force. Suppose that g increases linearly with distance from the sym- -
metry axis: g = br. Then the force F = m Nbr, and we obtain from (IV .71)

“§, = br or w* = —b, and consequently the plasma filament is unstable

relative to this displacement. In an actual case of plasma in a trap with
inhomogeneous magnetic field, the force F is determined by the integral
. (Ti+Tn ] ]
over the volume of the quantity (I—R.i’ where # is the clectron density
and R the mean radius of curvature of the lines of force. When the mean
curvature of the lines of force is proportional to the distance from the

. 1 r
symmetry axis, 1.e. R 2R’ where 2 and R, are constants, the force F
0 :

. P
can be represented in the form F =EQO_rT’ where P, = [pdr ~ const,
. 0
and rp = P,”ftp dr is the radius vector of the * pressure centre ” of the
plasma. If the temperature of the plasma is constant over the cross-section,
r; is equal to r. We then again have t, = br,, so that the plasma is

unstable.
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(&) Ton-sound Instability of an Inhomogeneous Plasma

We have considered so far only oscillations with frequencies much less
than both the electron and the ion cyclotron frequencies, so that both the
electrons and ioms were * magnetised ?, Let us now conmsider the other
limiting case where the magnetic field is so weak that its effect on the ions can
be neglected (50). In other words, we shall consider oscillations with a fre-
quency considerably larger than Q,, but we shall still assume that the frequency
is less than ©,, so that for the electrons we may use the drift approximation
(we assume kp, € 1). For simplicity the ion temperature is assumed to be
zero. We shall limit the discussion to the case of a low pressure plasma in a
homogeneous magnetic field and to “ potential ” oscillations for which

= —Vo. With these assumptions the equation of motion for the ions,
which we shall suppose at rest in the equilibrium state, takes the form

wm,v; = kg (av. 72)
from which, together with the continuity equation
' wn,—kvyn=0 (IV.73)
we obtain the perturbation of the ion density
2
e
ni/n = C!—J_z-.; (IV. 74)

The density of the electrons is determined by relation (IV.50). Comparing
n, and », we obtain the dispersion relation for these oscillations

2 —
KT @ w*Y(i)=1 Iv. 75)

. mew® kv, kv,
For oscillations with phase velocity w/k, < v, this assumes the simpler form
K22 | —o—wy
— - i o = 1 (IV. 76)
Fjiom this we obtain the frequency of the oscillations @ = k¢, and the growth
rate
y = \/kik J % (ws—w) (Iv. 77

From this relation we see that for @ < o, the plasma becomes unstable.
We have already established that the same condition applies to the growth of
drift waves. In the case considered here, the condition means that the drift
velocity of the electrons must be higher than the velocity of sound. It can
also be put in the form

rak > 1 (V. T8)

T, . . .

where rg = J - _ is the Larmor radius of the ions calculated from the
| Al

electron temperature.

e mw—a g e DALY VW SWAGLLY G VLIUGVALY JUL Tz, I (LY.04), DU SINCE The

— - p—— o
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According to (IV.76), the growth rate increases as k, decreases. This
increase continues as the longitudinal phase velocity approaches the thermal

e

. m
velocity of the electrons, ie. almost to k.l ~, /?n-, when the growth
rate attains its maximum value y ~ @ ~ ke, For a further decrease of k&,
both the frequency of the oscillations and the growth rate decrease,

(f) Cyclotron Instability of an Inhomogeneous Plasma

When the magnetic field increases condition (IV.78) is infringed, and
the ion-sound instability goes over into the drift instability considered eatlier,
which develops for oscillations with a frequency considerably smaller than £2;.
Mikhailovskii and Timofeev (96), (97) have shown also that oscillations with
frequencies near multiples of the cyclotron frequency, @ = nf;, may also be
unstable in an inhomogenecous plasma. From this point of view, the drift
instability can be regarded as a cyclotron instability with » = 0, and the ion
sound instability as an instability at very high harmonics of the cyclotron
frequency.

For oscillations with a frequency close to #€;, when the contribution of
the other harmonics to the density perturbation can be neglected, the disper-
sion equation for T, = T, takes the form

W4 0y m—nﬂi) - O— Wy (w)
s Y(—)=2 V.9
k.o Y( o) AL R Ve av. 9

where I, is the Bessel function of imaginary argument of order », and the
other symbols are the same as those introduced earlier (see (IV.55)). For
kp, z 1, we must introduce the additional factor e~ %p2l(k?p2) in the
second term on the left hand side of eqn. (IV.79). In addition, for very
large values of the wave number & the quasi-neutrality condition may be
infringed, and it is necessary to add the term k2 D? to the right hand side of
eqn. (IV.79).

Equation (IV.79) can be considerably simplified for small k., where

- Q' kzvi - . -
Y L ’) p~ . The condition for the growth of such oscillations
kv, ow—nl;

can casily be shown to have the form obtained previously, @ < @y, i.e.
xkp? > n (IV. 80)

when waves propagating in both the electron drift and the ion drift directions
are unstable.

It is interesting to note that cyclotron oscillations can also be built up
for purely transverse propagation (k. = 0) if the following condition is
fulfilled

‘ .
M. €1

=z2nl—+ 5 V.81

Kpy n( i+c2) I )

where 7 is the number of the harmonic considered. In the case of a rarefied

s mm ey awwwsbd WU LW LUDLAULLIL v it -
¥ COnAIuon 41 >,\/ b
€
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where b, is the electron and &; the ion mobility. When the magnetic field
decreases condition (IV.88) is replaced by the inequality p, << a, where p,
is the mean Larmor radius of the electrons, since for p, > a the effect of
the magnetic field on the electrons can be neglected, and there will be no
instability.

Let us now consider waves with frequency w < Q;. The perturbation
of the.electron demsity is again given by (IV.85), and including the effect of
friction between ions and neutral gas, the perturbation of the ion density is

given by
. ckx k2 i\ep
ol -1+ )2
7 wH' Q7 * wt) my
for Q,r; > 1, where 7, is the mean collision time of ions with neutral gas atoms
(see (IV.63)). Comparing 7, and n; we obtain the dispersion equation which
can be conveniently written »

(V. 89)

1 D.k?
w?+iw (cos+Dek§ + 'c_,) — 0,004 — ; 2=0 (IV. 90)
L i
where
cT, dn k2
Wy = — ’EI";E’ = EQETEQ;
kiT,

It is readily seen that D k2w, = Y k2rZ. Therefore in a strong
it |

magnetic field, when wry < 1, for perturbations with &, ry < 1 we may neglect
D compared with e, If in addition the collision frequency v; = 7,71 is
sufficiently small, then (IV.90) can be simplified to
w?+inw,—io; 0w, =0
This equation is also valid for a fully-ionised plasma (24), if by 7.~
we understand the mean collision frequency of electrons with ions. It follows
from eqn. (IV.91) that for o, > w,

(IV.91)
i

oF
w = O)*‘I‘l"_,
Wy

v. 92)

W, = —iw;

and for o, € wy

Wy,2 = im0 (IV. 93)

In either of these limiting cases one of the roots has a positive imaginary part,
giving an instability. For @, ~ wy the growth rate attains its maximum
value y ~ @ ~ Wy ’

In a weakly ionised plasma the collisions between ions and neutrals give
rise to an additional damping, and for x¢,7; < 1 all perturbations are damped
©0). |

In the other limiting case xry > 1 drift waves with frequency @ < £
may grow as well as ion-sound waves, but their growth rate, which is by
definition smaller than Q,, is therefore smaller than the growth rate of the

el At ol == B
IV, TURBULENCE IN A PLASMA 99
ion-sound oscillations. Drift waves can grow only for Q,7; > 1, when the
: .. c[hVe] .
drift velocity s larger than &,Ve.

The entire region of the drift-dissipative instability in a weakly ionised
plasma is represented schematically in Fig. 23. The abscissa is = rg'x™?

~la 1| \ ::://
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FiG. .23. _Rlc.giop of i.on acoustic (vertical hatching) and drift (horizontal hatching)
instabilities in an inhomogeneous weakly-ionised plasma. For diagonal hatching see
text. (1) results of Geller (131), (2) results of Golant (111)

which is proportional to the magnetic field, and the ordinate the quantity

T,
&= ﬁrﬂc which is proportional to 1/gp, where p is the neutral gas

i

pressure and @ the tube radius. For # less than unity but greater than

m .
~ i, where the Larmor radius of the electrons is of the order g,
13

an ion-sound instability will develop. The corresponding region is marked in
Fig. 23 by the vertical hatching. The region of the drift instability proper
(w < ) is marked by horizontal hatching. For # > 1 it has a lower limit
¢ = 1, but for n < 1 the instability develops only for Q,z, > L.

~ Thus, for sufficiently low neutral gas pressure, a weakly ionised plasma
ina homogeneous magnetic field is unstable even in the absence of a longi-
tud}nal current. In the presence of a longitudinal current, the instability
region e:xpa.nds towards smaller & values, since even for A; < a the current-
convective (spiral) instability previously discussed may develop in a plasma
with a longitudinal current (see 1.2.b). Moreover, the longitudinal current
may also have an effect on the drift-dissipative instability. In the presence of a
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longitudinal current the expression for the perturbation of the electron
density changes to

n, Kk2+ik,r(Q.1)"" e,
Be_ e 1v. 94
n  Dki—iw+iku me(p (aIv. 94

where u is the longitudinal (current) velocity of the electrons.

Accordingly, in expression (IV.87) for the square of the frequency of
the jon-sound oscillations, we obtain an extra factor 1+iu/D,kZ, and in this
case the maximum value of the growth rate again occurs for k2~ kx/Q.t,.

For a sufficiently large £),7, the maximum growth rate may increase by a
2

u?Q, 1 \*
factor ( D kg Ke) compared with the maximum value y ~ k¢, obtained
elfvy
previously.
The longitudinal current also strengthens the intrinsic drift instability.
Using eqn. (IV.94) the dispersion equation becomes more complex than

eqn. (IV.91), taking the form

k
w2+ i+ th,u)— iy cos+i—~25~u3) =0 (IV. 95)
kirg

kz
where, just as before w; = E%Qeteﬂ,-, wy = CskyKrg.
L
As we established earlier, in the absence of a current the increment
attains its maximum for @, ~ y, iL.e. for k2 ~ k3 xrg(Q,7,)”". The effect of
the current becomes appreciable if at the maximum the value of k,u/k3 1% is

K
comparable with w, i.e. for u > u, = e, rgk? J -k—Qere. We assume that u
L

exceeds this value. Then the point of maximum growth rate shifts towards
large k,, since the value of uk, increases with k., and the actual maximum
value slightly increases compared with the currentless plasma.

For sufficiently large k, values, when e, > k.u we have approximately

oo 1+ik,u) o 1+i— )
~ — i) = i—],
TN T okl N vkl
where A, is the electron mean free path. We must assume k,A, < 1 because
otherwise the diffusion approximation could not be used for the longitudinal
motion of the electrons. Equation (IV.96) shows that as k, decreases the
growth rate increases. For small rgk, this increase continues until w? attains
values of the order w,ku/kirZ, and then the growth rate begins to decrease
with k,. The maximum value of the growth rate, of the order of

2 )*
= YK
& UpVadeK

kyp; fuxi.c\¥
is reached for k, ~ 2! (u_x;_c,) :
Ae \ UL

(V. 96)

(IV. 97)
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For not very small values of &7y it may be found that the value of ku
becomes larger than o, before we reach this value of k,. In this case we can
neglect w, compared with k,u in the dispersion equation (IV.95), and then the
maximum value is
(IV. 98)

for ku ~ wg/kiry. Thus, in the general case y = min (y,, y2) > wy. For
k, ~ x eqn. (IV.97) can be used if

& %
Pk < (TE’) (A, 5)¥ (E’>

() Transition to Collisionless Dissipation

“To conclude our discussion of the drift-dissipative instability, we shall
briefly consider thetransition from dissipation due to collisions to collisionless
dissipation (90). Using the simplified expression for the collision ferm,
assuming that after scattering at the neutrals the electrons have a Maxwellian
distribution, the linearised kinetic equation for the electrons can be written
down in the following form

72 = OufKirE

(IV. 99)

C . €, af ¢, of .
(_Iw+1kzvz)fkm + Elkztpkmé;; _lﬁkya Prp = —vefkw+ve;f (IV‘ 100)

where v, = 7, *, and from this we obtain the electron density perturbation
n, W=y fO+iv iv w+iv,\]1"1 ep
—L=d1- *Y £ 11— EY( ] —= .
= f- e () - ()] 17 av
where the function ¥(2) is defined by equ. (IV.49).
For v, = 0 we recover the result previously obtained for a collisionless
plasma. In the other limiting case kv, = 1.k, € 1 and wz, < 1 we obtain

the hydrodynamic result ({V.85). The transition from collisional to collision-
less dissipation occurs broadly speaking at 1.k, = 1. A more ezact treatment

- of this transition (90) shows that oscillations with @ ~ v, lead to some

broadening of the region of the ion-sound instability. This additional
region is marked on Fig. 23 by the oblique hatching.

At very small k, values the function ¥ can be expanded in inverse powers
of the argument. For wt, > 1, retaining the first two terms of this expansion
leads to the expression

_ 2

o fiosey, _TH_ e

n 0 w(w+ivoml) T,

) Comparing this expression with the ion density perturbation which, for
drift waves with 7, = T} and ofk, » v, is given by

E_(%_sﬂff_w_ ep
n @ W T

(1V.102)
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according to eqn. (IV.66), we obtain the dispersion relation

W=Dy _ co(cu-: vy : av. 103)
0 ey w?

k2

where o? =PQiQe! ve=1.'. We have found earlier (see eqn. (IV.57))
L

that in this equation complex roots appear for v, = 0 and‘% > 0-4. In the

presence of collisions the region of instability expands towards large £,
values, when w, » ,, and we have approximately
2
» = o, +2ivei))—='z° (IV. 104)
This expression is similar to eqn. (IV.92) which was obtained in the
hydrodynamic approximation, and for T; = 0 it can be shown that the factor
2 in the second term of (IV.104) disappears and the two expressions are then
identical.

(i) Current-convective (Spiral) Instability
We shall now show that the instability of the positive column described in
(L.2.b) transforms into the drift instability as the collision frequency decreases.
Consider the simplest case Q;7;, » 1. We can then use eqn. (IV.89) for
the perturbation of the ion density and (IV.94) for that of the electron
density. Comparing »; and », we obtain the dispersion equation

ik
@ +io(v+ D K2+ o+ ik, 1) —v{(D k2 + ik, u) — i, (cus + ;F’%) =0
(IV. 105)
For 4 = 0 this equation goes over into (IV.90) and for v; = 0 it coincides
with (IV.95). For rgx < 1 the term k2D, can be neglected compared with o,
in the second term of (IV.105) as well as in (IV.90). In addition, for k,ry < 1
we can neglect £ u compared with ¢, in the second term, and in the last term
o, compared with kufklrf. In this approximation for @ < @, we obtain
from (IV.105)
_ ktgV: | .4k, u/ki?'fr"’iDe kf]
T 0,4y w0, + v
"For sufficiently small k, values the first term in the expression for the imagi-
nary part of the frequency is larger than the second, and the perturbations
increase with time. This constitutes the current-convective instability which
originates from the gradient of conductivity across the magnetic field.
According to (IV.106) the expression for the growth rate can be represented in

the form
b,dlnnk, b B o
-=bEN/—"—-—-—’——’——D~1~—*-—“— V. 10
V=5 b, dx k,w,+v, “°b, Q% w4y, a 7

(Iv. 106)
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where b; is the ion and 5, the electron mobility, E the longitudinal electric

field, related to u by » = b,E. For perturbations with not very large %,

values, the second term in (IV.107) can be neglected, and the first attajns a

maximum at w, = v; given by

dinn
dx

U=3bE ﬁ ' (1V. 109)
(§) Non-linear Drift Flows

If the conditions for the drift instability are fulfilled, small perturbations
will increase with time until the non-linear interactions come into play. To
help to visualise at least qualitatively the character of these non-linear oscil-
lations, we can reduce the equations for the non-linear motion to a single
equation of the hydrodynamic type. We shall discuss here the derivation of
equations of this type for non-linear flows corresponding to the drift-dis-
sipative, current-convective and flute instabilities,

Let us start with the drift-dissipative instability in a currentless plasma.
For simplicity we neglect the collisions between the ions and the neutral gas
atoms, and assume that 7; = 0. In these oscillations with a characteristic
scale parallel to the magnetic field considerably larger than that across the
field, the longitudinal motion of the ions can be neglected. The transverse

y=U (IV. 108)

where

motion is principally governed by the electric drift v = %[tho], with a small

correction due to inertial effects. In the continuity equation this correction
can be neglected, and using the incompressibility of the drift velocity, div
v.= 0, we obtain

%; L YVn=0 (V. 110)
Furthermore, summing the electron and ion equations of motion, we
obtain the hydrodynamic equation
d 1
o +Vp=[jH] (IV. 111)

dt

where j is the electric current density and p the plasma pressure,

Applying the operation (curl), to eqn. (IV.111), we obtain on the right hand
. . qH . . H .
side the expression, - divj,, which because of div j = 0 equals - é
The value of j, can be determined from the electron equation of motion,

neglecting the longitudinal ion current, giving
2 i) T al
j,=—ﬂﬁ(—‘°-— “") (V. 112)

m;n
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We thus obtain
Cdv 2 8
H— | = —— —(ep—TIn V. 113
curl; (m,n dr) "% Q.7.n % (ep—TlInn) ( )
‘ hV.
Equations (IV.110), (IV.113) together with the relation v = dAvel qu] are

then the required equations of non-linear motion. From the hydrodynamic
point of view, the potential ¢ can be considered as a function of the current
of two-dimensional motion (v, = 0). Equation (JV.110) describes the
variation of density in each plane z = const, and the right hand side of egn.
(IV.113) establishes the connection between the flows in the different planes.
1t is easily verified that in the linear approximation these equations lead to the
dispersion eqn. (IV.91).

In the special case of a helical flow where all quantities are functions of

only two variables, namely the distance r from the symmetry axis and
{ = 8—kz where @ is the aximuthal angle, eqn. (IV.113) can be integrated
once, giving

dv H% , ., cT @ )
— = —— - 114
m;ndt +Vp, 2 rék e,.(v,, Hr aZ;lnn av. 114)
2
where ¢ = L is the conductivity of the plasma, e, the unit vector directed

along the radivs and P4 an arbitrary function of the co-crdinates. Equation
(IV.114) together with the continuity eqn. (IV.110) and the incompressibility
condition

divy =0 av. 115)

describes a hydrodynamic helical flow during which the fluid is subjected to
an additional force determined by the right hand side of eqn. (IV.114). The
second term in the expression for this force leads to the instability.

We can similarly obtain equations for the non-linear flow corresponding
to the current-convective instability, To this end we need only replace the

8

inertia term by the frictional force muvv; in eqn. (IV.111) and add to — -Eg
the external electric field E in the expression for i. The result is to replace
(IV.113) by

curl,(m,nvv} = — E-Qe'r,,n (2-52 — eE— fIl.’"2 In n) (1V. 116)

dz ot 0z
and for the helical flow we then obtain
H% , , ¢cE Tc @ ‘
mpy Vv Vpe= — =T ke, (v, ~ i oHr a(:].um) (Iv. 117

For small k the dominant term is the second term in brackets, which for
Elk > 0 corresponds to a force acting in the radial direction. Neglecting
the other terms, we obtain the equation of motion for an inhomogeneous
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incompressible fluid in a porous medium in the presence of a radial gravita-
tional force. '

Finally let us consider the case of a flow corresponding to the flute
instability including the effect of the finite Larmor radius. For simplicity we
again replace the diamagnetic expulsive force by an effective gravitational
force with acceleration g. Since the velocity of the electrons and of the ions is
c[hVep]

H
a two-dimensional incompressible flow. This flow can be described by
the magnetohydrodynamic equations including a collisionless “ oblique ”
viscosity (see for instance (99)). It has been shown in (100), (101), that in the
linear approximation these equations lead to exactly the same results as are
obtained from the kinetic equation for k, g; < 1.
For Q7; » 1 the equation of motion assumes the following form

again determined mainly by the electric drift v= , We again have

dav .
m"nﬁ}' +Vp,=mng+F (Iv. 118)

where the force F is given by the expression

’ T
F= % (VrAp—(VnV)Vp) = ) {Vncurl,v + (VaV)[hv],} (IV.119)
i (3 2

. H curlv
and the effective pressure p, is given by p,=2nT + —8—+ nT q
T i

For the incompressible flow considered here, p, can be taken to be an
arbitrary function of the co-ordinates r, 6.

Now it is the force F which leads to the stabilisation of small flute per-
turbations. However, there need not be such a stabilisation for finite per-
turbations. For it is obvious that an isolated plasma tube in a vacuum, at
a point where g # 0, must be ejected in the direction of g. Such a motion
is similar to that occurring in the m = 1 mode; the electric field is constant
over the tube cross-section and there is no difference between the motion
of the electrons and of the ions. One might think that such a tube cannot be
in equilibrium when it is immersed in a plasma of considerably smaller (or
considerably larger) density. In fact we assume the opposite, that a steady
state flow is set up in the plasma which does not lead to any flow towards the
walls. Such a flow is stationary in some moving system of co-ordinates. In
this co-ordinate system the equipotential surfaces ¢ = const must coincide
with surfaces of constant density # = const, since (vV#n) = 0. Considering an
individual plasma tube bounded by a surface n = const, we can show that
the integral of the force F over the volume of this tube vanishes. For instance,
for the integral of F, we obtain by integration by parts .

¢T 3 R ‘
Fodr = —— Sl A PR o _
f Ldr HQé"(@x@y X+ y) (IV. 120)

5

where the integration on the right is taken over the surface nm = const.



106 . PLASMA TURBULENCE

Therefore we can remove x from the integral, and obtain the integral over a

closed path of the complete differential d(%%), which must vanish. Similarly

we cain show that the integral of F, also vanishes. Thus the total additional
force acting on a separate tube in a plasma bounded by a surface disappears.
It follows, therefore, that such a tube can only maintain itself in equilibrium
for certain special flows when the pressure p, is distributed over its surface
so that it exactly balances the frictional force.

From these considerations it would seem that for sufficiently strong per-
turbations, when plasma tubes become separated from the bulk plasma, and
the surface n = const becomes multiply connected, stabilisation due to
finite. Larmor radius may be absent. .

4. TURBULENT DIFFUSION OF A PLASMA

Since the only reason for the drift instability is the inhomogeneity of the
plasma, oscillations developing in consequence of the instability cannot die
away until the inhomogeneity is completely destroyed. In other words, such
an instability must lead to turbulent diffusion.

The magnitude of the “* diffusion * flux brought about by the oscillations
so developed can be determined from the following considerations (103, 102,
212). As we established earlier, in the case of a drift instability (rgx < 1) the
ions move across the magnetic field mainly due to the electric drift

_ c[bVe]
H

In 2 homogeneous magnetic field the drift motionisincompressible, divy = 0,
and in the presence of drift oscillations the plasma moves across the magnetic
field without additional compression or dilation, i.e. turbulent convection
takes place. In this case the displacement of the plasma by a distance
leads to a perturbation of the density »” = {xn. In other words the density
fluctuations are determined by oscillations of the displacement &. If these
oscillations vary harmonically, they do not lead to any net flow of the plasma
when averaged over time. On the other hand, if the amplitude of the oscil-
lations increases with time, then each succeeding half-period of the oscilla-
tions leads to a slightly greater displacement of the plasma than the previous
one, and as a result 2 mean plasma flux g = <&n’'> = yren<&?> ocours.
To order of magnitude this relationship between the flux g and the dis-
placement of the plasma & or the density perturbation »’ can be retained
when the interaction between waves comes into play, since even in the pre-
sence of an interaction the characteristic rate of growth of individual wave
packets and of their transformation into other packets is of the order of the
linear growth rate y.

Consequently, to determine g, we need to know <&> or <n'?>.
For y ~ w, when strong turbulence develops, the oscillation ampli-
tude increases to such an extent that the -perturbation of the density

Y
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gradient &, becomes of the order of the mean gradient, i.e. k _,_rf' ~ Kn.
In this case, therefore, the steady state intensity of the density oscillations

«n
with wave number % is of the order of magnitude |n;|* ~ —-. Consequently
‘ 1

Yy ol X Nen = — 7 \dn
’ 9= < >"<ki>"” <_k2 dx

For weak turbulence when y/o < 1, the kinetic wave equation can be
1sed to evaluate the oscillation intensity. If the dispersion relation is of the
decay type, that is if the condition wy = @y — W,y can be satisfied, not
identically but at some surface in wave number space, we have to order_of
magnitude 7 < 12> = V2<n’?>2 In this relation the left hand side
describes the development of the waves due to the instability, and the right

hand side represents the effect of the interaction between the ;vaves. The

k
. . 1 .
square of the matrix element can be estimated as V? ~ @ 7% since for

, Xn
B~ i
mean gradient, the interaction between the oscillations ought to lead to a
damping rate of the order of the frequency. Thus for weak turbulence
the intensity of the oscillations must decreasc as the increment decreases, and

when the gradient of the density perturbation is of the order of the

2
K .
to order of magnitude the quantity (n’z)rv%Pnz, Approximately,
L

‘ 2\ g .
therefore, ¢ = — <_a}},7cdf>d7: The factor multiplying the density gradient

in this relation represents the turbulent diffusion coefficient. To estim?.te the
value of the diffusion coefficient, we can use for &, the value for which the
diffusion coefficient is a maximum, and write to order of magnitude

Vi 21)
D~ .1
(wk sz.)max . (

A similar relationship holds good for the ion sound instability (rgx » 1),
since analogous considerations can be applied to the electron drift motion
across the magnetic field. Indeed the case rgic » 1 seems simpler since both
in the absence and in the presence of collisions y ~ & ~ ke, and consequently

D~cfe
.In the presence of a strong magnetic field, when xrg < 1, the turbulent

diffusion is more sensitive to collisions, and more detailed consideration is
therefore necessary and is given below.

(a) Rarefied Plasma in the Absence of a Longitudinal Current

Let us consider a plasma of such a low density that collisions can be
neglected. More precisely, we assume that collisions on the one hand are so
rare that they have no effect on the frequency and growth rate of the
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oscillations, whilst on the other hand they occur sufficiently frequently to

maintain the Maxwellian velocity distribution of the particles. The coefficient
of diffusion corresponding to these assumptions will be designated by D;.

To evaluate D, we use results obtained in Section 2(c). Let us first

gnp _ m

consider a plasma column of unlimited length. For f= H—f > ;"

only perturbations with kp; 2 1 are @stable. Ags a function of &, the growth
rate reaches a maximum at &, ~ K B. In ihis case @ ~ kicp; and

(we assume T; = T,). It can be shown (see below (f)) that the main contribu-
tion to the diffusion comes from oscillations with k,p; ~ 1, and in this case
‘ me me '
Dy~ m—iﬁpfv;x ~ mxp,-DB (IV. 122)
where Dy ~ p;v; is Bohm’s coefficient of diffusion.
Thus in this range of § the diffusion coefficient decreases as B increases,
and for B = 10~* the plasma becomes stable and D, vanishes (leaving only
the classical diffusion due to collisions). '

Forf < j we may have, in addition 1o the short wave instability with

kp,~1, a"“ hydrodynamic ” instability for perturbations with large
wavelengths for w} = w? (see (IV.57)), and these perturbations make the
greatest contribution to the diffusion coefficient. Since @ ~ @y < € 1k, the
minjmum permissible value of &, is ~ @ofc and we obtain, using (Iv.121),
the corresponding diffusion coefficient

CK ?
D~—D~,\/—° ; TV. 123
3 g B miﬁKpLDB ( )

| = ﬁ

m -1
e 2,2 0
™y P o !

Fig. 24. Coefficient of turbulent diffusion in a tube of infinite length
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In this region of magnetic field the coefficient of diffusion is inversely
proportional to H, but in absolute value it is smaller than Bohm's coefficient.
As the plasma density decreases, when mg becomes of the order ¢k, i.e. for

m . . . . . .
B~ ﬁxzpf, the diffusion coefficient reaches its maximum possible value of

i

the order Dy, and does not change when the density further decreases. In
this case 7 ~ @ ~ 0, and the maximum scale of the turbulent pulsations
is determined by the tube radius, i.e. k, ~ x.

The relationship between D, and f§ for an infinitely long column is shown
schematically in Fig. 24 by the full line (on a double logarithmic scale).

Now let us examine the effect of shortening the plasma column on the
diffusion. The value of the wave number k., at which the growth rate
reaches its maximum, increases with 8, and is given by

m m
Ky ~ xJ—'f k2p? for B<—x’p}
. n; m,

i

m; m m
is:,,,,,,r--ficﬁ,\/—l for —xipl<f<—

m, my m;

and koo ~ x\/;é for B> %

Therefore the effect of finite length of the plasma column is more important

for low density plasma. This effect starts at L<a %(;cpi)‘l where L

is the length of the column and  its radius. For smaller values of L the dif-
fusion coefficient decreases from its value for infinite length, and is given by

mN\Y % a kO /\/;ﬂ—
D~ |—} | ; N V. 124
A (m) (ko) xp Dy for 1™ % . (IV. 124)

m (x)? 2, o
D, me(ku) kp; Dy for L> - (Iv. 125)

where ko = 2n/L is the minimum longitudinal wave number.

Thus, in a tube of infinite length, as f decreases the diffusion coefficient
is at first equal to the value for the infinitely long column, but when the value
of k,, reaches kj, the diffusion coefficient remains constant and does not
increase as § decreases further. This is shown in Fig. 24 by the “ dashed ”
line.

and

According to (IV.124), for % < \/ :1_8 the coefficient depends relatively

weakly on the length of the device: for % ~ \/ ::—“ and small § values the
i
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coefficient of diffusion is equal in order of magnitude to D, ~ kpfv,; for

a m ) var .
= > . [ = the coefficient D, decreases fairly rapidly as L decreases, and’

L m;

for E = 10~* complete stabilisation occurs in general (we do not consider
perturbations with %, = 0 which are sensitive to the boundary conditions
at the ends of the tube).

(b) Low Density Plasma carrying a -Longitudinal Current

Consider a plasma column of limited length, say %,.., ,\/ % We
t

have shown earlier that in the absence of a longitudinal current only short
“wave oscillations with k&, p; ~ 1 are excited in the plasma. The corresponding
diffusion coefficient is comparatively small, namely D, ~ xp;Dp.  In the
presence of a longitudinal current, as has been shown in Section 2(b), an
additional instability appears at long wave perturbations with k,p; <€ 1.
Since the diffusion coefficient (IV.121) is proportional to the square of the
transverse wavelength, this instability increases its magnitude considerably.

Let us once more consider 2 plane inhomogeneous plasma layer with
density gradient along the x axis and assume that 7, = T, = const. In
equilibrivm or, more precisely, in a state averaged over tune the electric
field in laboratory co-ordinates, in which the ions are at rest, is determined
by the density gradient

T
Vo= — EVH (IV. 126)

The longitudinal electron current excites oscillations of the potential ¢’
and density n'. According to Section 3(b), waves with longitudinal phase
velocity considerably smaller than the electron thermal velocity are excited
in the plasma and for these waves all electrons except the resonance electrons
can attain equilibrium parallel to the magnetic field. Therefore the perturba-
tion of the potential can be represented in the form

T E
¢ =—In (1 + ’%) + oy av. 127)

where the first term represents the Boltzmann distribution, and the small term
@, is related to the resonance electrons.

If the Larmor radius of the ions is appreciably smaller than the charac-
teristic wavelength of the perturbations considered, the hydrodynamic
approximation can be used for the ions. In this approximation it is sufficient
to consider only the electric drift in the continuity equation, since the Larmor
current does not lead to a change of density

a‘; +2 £hV(<p+rp’)] Vin+n)= (1V. 128)

—m-m‘-ﬂﬂ.#‘-‘--nﬂu
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Using refation (IV.127), this equation can be written in the form

aa—’:-a%-g[hv nVn' + = [WVp 1 Vin4n) =0 (V. 129)

For ¢, = 0 this equation is linear in »’. This circumstance, which indicates

that there is no interaction between the modes for a Boltzmann distribution
of the electrons along the lines of force, is very important for all that follows.
In egn. (IV,129) the second term describes the transfer of the perturbation

1dn
along the y axis. For e const the velocity of this transfer

2¢T dn

Vg = — == 5=

eHn dx

is-also constant, and by transforming to a moving co-ordinate system, the
second term in (IV.129) could be eliminated. However, for a general distribu-
tion of the mean density n(x) this velocity is also a function of x, and because
of the resulting differential motion the density perturbation is deformed
with time, To demonstrate the character of this deformation, we shall go

over to a spectral representation. We put n’——"fnme“”’*”"dkdm,

where m,(r,7) is the slowly varying amplitude of the wave packet k, .
For k » x, so that the wavelength of the perturbation is considerably smaller

) . 1dn
than the transverse dimension g, the quantity s can be expanded in

series near the point x = x, under consideration, and we shall retain the
first two terms of this series. Since in transforming to the Fourier representa-

7
tion x—xp = i =, we obtain

ok,
— (o — 2w, + q{%’ + Ci;); %r;::’ ~/ E:—em,.nm -
- %Ui Oy M, o A d0' =0 (V. 130)
cTk, dn

~ CHn % and u is the longitudinal mean electron

where w.=k,v, =
velocity.

In eqn. (IV.130) the last two terms, the first of which describes the build-
up of the oscillations by the resonance electrons, and the second the non-
linear interaction between the waves, come from the Fourier transform of the

last term in (IV.129). For ¢, we insert its approximate value
—T u 1y,
Pire = F LI v— —:‘:' av. 131

which can be obtained from the expression for the density perturbation
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(IV.50) for w/k, < v,. Strictly speaking, the expression (IV.131) should con-
tain an additional factor k,/|k,|, which we have omitted, assuming &, > 0.
In eqn. (IV.130) the first term is considerably larger than the rest, and
therefore as a first approximation we obtain w = 2w,. In other words, the
function ny,, is close to md(w —2w,). The remaining small terms in (IV.130)
describe the evolution of the wave packet in time, In particular, the term with
a;%‘"—’ shows that the deformation of the wave packet due to the differential
drift velocity v, leads to an increase of the wave number &, with time, i.e.
to a flow in wave number space. To order of magnitude this term is equal to

k_ L

I8

and for small £, in particular it will be the decisive term: all perturbations
will ““ drift ” into the region of large k, faster than their amplitude grows

. . k . o
due to the instability., For i >% the instability begins to be dominant,

and the distortion of the waves can be neglected, Neglecting the second
term in (IV.130) and introducing the new variable v = w—2wm,, we obtain
for the region xfk, < ufv,:

Vru

.\/_ U
vnk‘,‘“‘l 'thv—nkv—l_""l

e £
where k" = k—k’ and v" = v—', (We neglect here the non-linear Landau
damping at the jons, assuming u > ,.)

In the linear approximation, it is clear from eqn, (IV.132) that the charac-
teristic frequency v is purely imaginary, so that we are concerned with an
aperiodic instability which must lead to strong turbulence, This can also be
seen directly from eqn. (IV.132) according to which the non-linear interaction
can balance the linear growth of the oscillations only when the perturbation
of the density becomes of the order of the mean density. This result is a direct
consequence of the absence of interaction between modes, noted above, for a
Boltzmann distribution of the electrons.

ﬂ);nkavr Hgreger dk’ dv’' (IV. 132)

Let us estimate the value of the diffusion flux g = <%E’ n > We

. d .
must substitute —é‘iyl for E,, since only the resonant electrons undergo

diffusion (it is easily seen that the term containing ;-I In (1 +E’)
y e n

vanishes when averaged against #’). Using (IV.131) we obtain

_g —u kykz]_“&_w
q"eH\/anIk,I 0 4k do

(IV. 133)
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where Ny, is the spectral function of the density:
(Mg Mierar) = Nip (@0 — 07 6(k—K).
In the case of strong turbulence the density perturbation is of the order of

. . eT u

the mean density and consequently to order of magnitude g~ THo kyn,
e

where k, is a typical value of the wave number in the region of strong

turbulence. As we have shown above, this region begins at k;, ~ w2

Substituting this value of k&, into the expression for g (since the effective
value of k| is in any case not smaller than this value), we obtain to order of
eT dn
eH dx’

" Thus, in the presence of a longitudinal current the diffusion coefficient
of the plasma in a very strong magnetic field is of the order of the Bohm

magnitude g ~ —

value.} This result is valid only when the value of % isnot excessively small.

Ve

In fact, for % ~ n&’ as well as the build-up of the long wave perturba-
m;

tions considered here, there is an instability at perturbations with &k, p; ~ 1
which also Ieads to diffusion. Since the diffusion coefficient determined by
the short wave perturbations is of the order of xp?v,, the long wave perturba-
tions must be damped at a rate of the order of ~k2kp?v,. Clearly the results

gi;ven above are only valid if for perturbations with k) ~ 2% the growth rate
u

Y o~ d @, is larger than this damping rate, i.e.
Y

;:i > /xp, (IV. 134)

€

and for smaller values of #/v, the coefficient of diffusion must drop quite
sharply to a value ~ xp;Djy, since the differential rotation of the plasma

(? # 0) shifts the long wave perturbations into the region of large &,
X

where they are damped by diffusion arising from the short wave perturbations.
In the presence of even a small shear of the magnetic field, of the order
8 ~ wp,, the short wave oscillations are stabilised, and then the turbulent
diffusion coefficient may rise to ~ Dy even for small values of u/fv,.

1 In ref. (103) we assumed for the velocity fluctuation »” ~ % ~T

o
~'— too low a value,
xn

namely ¢’ ~ yn'/k1n, so that the result obtained there, D ~ 5 Dy, is also too low.
.
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(c) Diffusion of @ Very Low Density Plasma
The results given above are also Invalid unless collisions can in fact

maintain a Maxwellian distribution of the longitudinal velocity of the
electrons. In a very tenuous plasma this may not be possible, and then
conclusions based on the specific form of the distribution function may need
considerable revision. A decrease in the collision frequency must have a
considerable effect on the diffusion either in the presence of a longitudinal
flux, or for § > m,/m,, where the oscillations are built up by a small number
of resonant electrons. For the case f < m,/m, on the other hand, where the
instability in a long tube is of a hydrodynamic type, and all electrons partici-
pate in the growth of the oscillations, the results are not sensitive to reduction
of the collision frequency.

Consider first the case of diffusion due to longitudinal current. For
the preceding results to remain valid, the distribution function must be
similar to a displaced Maxwellian distribution with an accuracy up to u/v,.
On the other hand, the diffusion loss leads to an appreciable distortion of the
distribution function in a time of the order of the characteristic diffusion time
k2D ~ k*Dy, and this distortion can be destroyed by collisions only if

v,2 > x*Dy. Introducing the parameter S = Az, this condition can be
v

wrietten in the form:
(IV. 135)

In a very tenuous plasma this condition is infringed, and a plateau
develops on the distribution function. The escape time is then determined
by the rate at which collisions can restore the Maxwellian distribution, and in

S <ufv,

order of magnitude this cannot exceed iV‘,.
v

2
Turning to the case of a currentless plasma, for § » m,/m; we also find
that only a small number of resonant electrons, with longitudinal velocity

me
UI<CA=UE mﬁ
i

lision frequency then again leads to a decrease in the diffusion coefficient.

participate in the diffusion. A decrease in the col-

(d) Diffusion of a Dense Plasma

The expressions given in Section 4(a) above for the turbulent diffusion
coefficient D, refer to a fairly tenuous plasma where the collision frequency
v, is smaller than @ ~ w, for all waves including &, ~ k. This condition
can be written in the form

m
S> /=
me

(IV. 136)

For smaller values of the parameter § = l,px? the friction between the
electrons and ions due to collisions becomes important, leading to the

i, 352 2 HORER g g
; ; i

B
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drift-dissipative instability. The collisions lead to an increase in the optimum
wave number k., at which the growth rate reaches its maximum, and from
the condition &, = w, we obtain for k; = «

2

m\* P
P 25, 0
(mi) ©h j’e '\/QeTe

The longitudinal phase velocity corresponding to this value of %, is of the

* ¥
order of w/k, = v, (;:f) (if) , and if this velocity is smaller than the Alfvén
i !

velocity ¢4, and k, given by (IV.137) is larger than the minimum possible
value ko = 2x/L, then y ~ w ~ w, for k, ~ x, and the corresponding
coefficient of turbulent diffusion attains the value Dy ~ pp,. According to
(IV.137) the condition w/k, < ¢, can be written in the form § < (Q.1,)7%,
and if this condition is violated we can have y ~ ¢ only for larger values of
k). The diffusion coefficient then decreases to

(IV. 137)

Ci D,

Dz
Qiﬂere ﬁ

(IV. 138)

where D, = p?/z, is the classical coefficient of diffusion. At the same time
the optimum wave number increases: k, & «*p,fiQ,1,.

In a device of limited length, when the minimum wave number k&, = 2z/L
is larger than the optimum values given above, the coefficient of diffusion
is determined by shorter wave perturbations, for which again y ~ @ (the
contribution from the long wave perturbations ~ y/wk? varies as k5 as k&,
decreases). The corresponding coefficient of diffusion can be estimated as

Dy (S}
~ B(ko\/!fu)
me

- - " - ) - .i‘
This expression in its turn is valid only for ky/x < ( —) A x, since
my
otherwise the optimum wave number %, becomes so large that viscous

damping of the oscillations ~kZ2p}/r, becomes important. Moreover,
expression (IV.139) is valid only for k¢4, <1, where the diffusion approxi-
mation can be used, while if this expression gives a greater value than (IV.138)
the latter must be used.

We shall now consider the effect of a longitudinal current. We have
shown above that in a tenuous plasma the diffusion coefficient in the presence
of a longitudinal current may reach the value Dy This conclusion requires
k.4, > 1, so that collisions can be neglected. Since the maximum possible

(IV. 139)

value of k. is determined by w/k, ~ %‘ ~ v,, the condition for the validity

of the collisionless approximation is -

S>1 (IV. 140)
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For smaller values of S = A,x%p, the diffusion approximation can be used.
According to Section 3(g), in a strong magnetic ﬁelgg_czp,?« 1) and with a
sufficiently large longitudinal current (u/c, > x2p3/Q,t,) the growth rate of
small perturbations (IV.97) is larger than the oscillaiion frequency ~@y.

The corresponding coefficient of diffusion can be estimated as
2 % 3
[4 u u
K \C, VAo K 7

Uy = cs}czr?.,\/Qete

(IV. 141)

where
(IV.142)

Relation (IV.141) refers to a plasma of fairly low pressure (§ < (Qete)_' o)

. . uc icpi\¥ . <
in a long device [ko<ki=u| —373 . As k, increases and becomes
v

e’rc

greater than k,, the diffusion coefficient varies inversely as ko and is given by

ko fug\? u
DDy 2] =Dy——n
ko (u) Bo.kode

This relation can be used as long as the condition kole < 1 1is satisfied, or
provided that the value given by (IV.143) is less than that given by (IV.139).
According to eqns. (IV.141) and (IV.143), the diffusion coefficient in a long
tube carrying a current such that u > u, is independent of the magnetic field,
while for a shorter tube it decreases as H ™'

According to the results of Section 3(g), the longitudinal current may also
increase the diffusion coefficient in the case of a weak magnetic field rgic > 1,
where an ion-sound instability occurs.

All these estimates for the turbulent diffusion coefficient are very rough,
and for systems of limited length they may not be applicable because we have
not considered the possibility of perturbations uniform along the length of
the system (k, = 0), which require special consideration for each specific
case, since they must be sensitive to the boundary conditions at the end of
the tube.

Since turbulence developing from the drift instability is usually strong,
to obtain a more accurate determination of the turbulent diffusion coefficient
it would be necessary either to use the weak coupling approximation, or to
introduce the free mixing length. We shall consider below two special cases
for which a more detailed calculation has been carried out, one a case of
strong and the other of weak turbulence.

(IV. 143)

(¢) Turbulent Positive Column (17

Consider an infinitely long positive column in an insulating tube in a
longitudinal magnetic field, much higher than the critical field. We established
in Section 3 that such a column is unstable to perturbations which are greaily
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extended along the magnetic field, with a growth rate maximised over k,
given by
dlnn
dx

y=U (IV. 144)

for Q;r; > 1, where U =31bE \/ gf This instability gives rise to a convective
[

flow in the plasma during which the plasma escapes to the wall in the form of
separate helical tubes, while outside the plasma isolated ““ bubbles ™ appear.

Since at the boundary of these *“ bubbles ” the relative gradient V—: is very

large, the instability causes them to move about fairly rapidly with the plasma
and the motion assumes a chaotic and turbulent character.

The magnitude of the diffusion flux in such a turbulent plasma can be
determined by using the mixing length concept. Suppose ! is the effective
length or mixing length by which the plasma tubes are displaced by the
comvective motion, before the coherence of this motion is destroyed due to
the interaction with other perturbations. Since the perturbation of the density
arises primarily from the convective motion, the density fluctuation level is

given by n’ = Ij—-z. The velocity fluctuation v, related to the density fluctua-
tion by yn’ ~ ¢’ j—};, can be evaluated as v = U%, and consequently the

diffusion flux g = <n'v'> is given by

Vn
= —ypPrl=
q I "

Vn (IV.145)

In a discharge in an insulating tube the walls have no stabilising effect
on the pulsations, and by analogy with turbulent jets in an ordinary fluid the
value of I may be assumed constant over the cross-section and proportional
to the radius of the tube . Using expression (IV.145) it is then straight-
forward to set up a particle balance equation to determine the diffusion losses
and the radical density distribution. The mixing length I can then be deter-
mined by comparing the results with experiment. Such a comparison was
carried out by the author (17), who obtained the following results for values
of the magnetic field at which the turbulent loss rate is equal to the loss rate
without a magnetic field: for discharges in helium Ila = 0°15, in hydrogen
lla = 0-10, and in nitrogen [/ = 0-12. Thus just as for the turbulent jet, we
have lfa ~ 0-1.

Figure 25 shows a comparison of the experimentally measured and
theoretically calculated dependence on the magnetic field of 8§ = EJE,,
where E, is the electric field in the turbulent discharge, and Ej the electric
field for H = 0. The good agreement between the experimental and theo-
retical curves shows that the description of the turbulent plasma on the
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basis of the mixing length concept is fully justified. Moreover, experi-
mental measurement of the radial density distribution (104) confirms the
validity of the assumption / = const. The theoretical and experimental
density distributions are compared in Fig. 26. The boundary condition

ap

FiG. 25. Dependence of ratio of the longitudinal electric field E; in a turbulent discharge
to the field E; for H = O on the neutral gas pressure, for discharges in helium

nfing

0 o5 [
ria

Fi1c.26. Comparison of theoretical and experimental radial distribution of plasma density
(1) Discharge without magnetic field. (2) Turbulent discharge

g = nU was assumed in calculating the theoretical distribution where #, is
the density at the wall. This boundary conditon is analogous to the introduc-
tion of the extrapolated length in ordinary diffusion. Figure 26 shows that the
actual density distribution is closely similar to the theoretical form and very
different from the distribution in the absence of the magnetic field, shown on
the same figure.
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(f) Turbulent Diffusion of a Tenuous Plasma with > :{—e
:

The second example to be considered is of interest in that it shows how

peculiar may be the interaction between the oscillations in a turbulent

lasma.

P Consider an inhomogeneous low density collisionless plasma in a strong
magnetic field and suppose px <€ 1, § » m,fm,. It was shown in Section 3
that such a plasma is unstable to short-wave perturbations with kp; ~ 1.
For p » m,/m, the growth rate of perturbations with kp, ~ 1is considerably
smaller than the frequency, so that the motion of the plasma is weakly
turbulent and can be described by the kinetic waveequation. Suchan equation
has been set up and analysed in (105) (see also (106)). Only the results of these
investigations will be given here.

The dispersion relation of the excited drift waves is of the decay type, and
the decay of the waves leads to diffusion of energy in momentum space. In
addition to the decay interaction, the non-linear damping of the waves due
to beat oscillations with phase velocity w"/k; < v; is important for these
waves. The matrix element of the wave interaction is small for modes with
wave vectors of similar absolute value, but is appreciable for modes with very
different wave numbers. Because of this, perturbations with £k p; ~ 1,
though not strongly interacting among themselves, can nevertheless com-
pletely suppress oscillations with &, p; > 1, and the spectral function has a

"distinct maximum at k,p, ~ 1. The amplitude of the oscillations of the

potential and density near the maximum are determined by the balance
between the linear build-up of the oscillations due to resonant electrons
and the non-linear damping at the beats, and the shape of the spectrum is
determined by the decay interaction. As a result of the suppression of the
short-wave perturbations the value of the turbulent diffusion coefficient is
determined by (IV.121) not at the maximum of this expression, which is
attained for k3p? ~ my/m.B, but at k. p, ~ 1, where the value is

m, , ‘
~—= IV. 146)

D map PO (

. . ‘ . Tk { m,\*¥

The potential fluctuations are of the order of ¢’ ~ — ; and

e \m

t

those of the density of the order of n'jn ~kp; (:—;) . This is to be

expected since the perturbation of the density arises from the displacement
of the plasma by about a Larmor radius.

() Electrical Conductivity of a Turbulent Plasma

The classical diffusion of a completely ionised plasma is determined by
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the frictional force between the electrons and ions. Including this frictional
force the hydrodynamic equations take the form:

) .
Vo, = - enE — Z[vH] + - [ + T (V. 147)
dv en en, '
mn - + Vp; = enE + - [vH] - pt (IV. 148)
ent,

where p, = nl,, oy = nT, j = en(y—v,), ¢ = is the conductivity, and

€

v the ion velocity. .
From (IV.147), (IV.148) we find that in equilibrium j, = I%[hVP]’

where p = p;+p, is the total plasma pressure. If the plasma is inhomo-
geneous along the x axis and E, = 0, we can determine the diffusion velocity
due to collisicns from the y component of either of the above equations.

1 dp

¢,
Vs — = ————=
Y m,t,Q%dx

<=~ (IV. 149)

‘When oscillations are present in the plasma, we must include in equations
(IV.147) and (IV.148) additional terms of the form 4 <en'E'>, where »’
is the density fluctuation, and E’ that of the electric field. These terms
describe turbulent diffusion, and the y component in this expression leads
to diffusion along the x axis. Formally they might be treated as an additional
* frictional force ** representing a decrease in the effective conductivity of the
plasma. However, in practice enhanced diffusion cannot generally be
attributed to an enhanced transverse resistivity. This would be possible if the
reason for the instability were only the difference between the drift velocities,
but as we have seen, the instability really arises from the inhomogeneity of the
plasma, and the addition of a further velocity difference between the electrons
and ions by the imposition of an external field is not generally equivalent to an
increase of the density gradient,

Nevertheless, the oscillations may have a considerable influence on the
conductivity of the plasma across the magnetic field. It is well known that
the effective conductivity of the plasma across a magnetic field depends
strongly on the boundary conditions on the Hall current. This effect can be
observed directly from eqn. (IV.147) for ¥p, = 0, v = 0. If there are no
constraints on the component of the current perpendicular to the external

field E, (the so-called Hall current), them j, =EQ—"J)ZE ., but if the
ere

Hall current is prevented from flowing, a Hall electric field, perpendicular
to the external field, is set up in the plasma and the normal conductivity
j. = oE, is restored. Any non-uniformity of the plasma conductivity
makes the passage of the Hall current difficult, so that ever a small non-
uniformity of a strongly magnetised plasma may have a considerable influence
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on the flow of current along E. This effect has been demonstrated by Yoshi-

kawa and Rose (107). ' .
Consider first the simplest case, of high frequency oscillations where

the ions may be considered at rest. For simplicity we put ofn = const, 50
that the oscillations of the conductivity are determined by those of the deqs1ty
(corresponding in practice to a weakly ionised plasma.). Then thq equations
for the fluctuations 7', E', j’ and the mean values #, E, j, can be written in the

form: { en.
T,Vn' = —en'E—enkE’ + ;[i'ﬂ’_l + o j (IV. 150)

1., en,
T,Vn= —enE—e{n'E’) + -c[]H] + =] (Iv. 151)

-

From (IV. 150) we obtain ,
ar c ! ¥ ¥ C en I ! —_ !
ii=gp [H,T,Vn' +en'E—enVo'] + g (T,Vn' +en'E—enVo’) (IV. 152)

where yo’' = —E'. ) )
Transforming to a Fourier representation (assuming k < k), and
using div j’ = 0, we obtain a relationship between the perturbations of the

potential ¢y and the density 7.
ey (k* +Q212k? — ixk,Q,7,)

Rn
= (T.k* + T, k2Q21% — ik, E Q%1 — ikyEerere);k (1V. 153)

(we assume that E, = 0). Substituting this value for ¢y into the averaged

* eqn. (IV.151), we obtain an expression for the additional current

o ok
Jx Jx sz?
which for Q,7, » 1 becomes
ec
8jy = — I—1<n’E;>
: k, T, dn)|  ky(k*+QtIkD)N n"?
- "f {E o+ QeTe Be b o B (2 + Q2+
and similarly
&, = 2 (WE;)
ke Todn) k@ + QKN n 2
— _Z __e_ 'z e e dk
B 6f{E,,+Qete kyEz ten dx] (kK2+Q222)? +x*kIQ%T]
(LV. 155)

When the inhomogeneity of the mean distribution is small, so that
xQ,7, < k2, we can neglect the last terms in the denominators of the ex-

pressions below the integral sign, and the expressions for the additional
5

dk  (IV. 154)

T,
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current are then somewhat simpler. Assuming in addition that the spectral
function of the density Ny is isotropic, we can perform the angular integration
in the above expressions, obtaining the simpler expressions

,_m ¢ T.1dn L
ajx - 4 Qere (Ex + e n dx)’ 5]2 — ?G'Ez

where y = kan'z dk 5 1.
Thus in the presence of these oscillations the transverse current increases
by a factor of almost Q,z,. In the case of non-isotropic oscillations the effect

may be considerably larger. For instance, in the presence of perturbations
which are greatly extended along the magnetic field, so that k, ~ Q; 1¢]2,

(IV. 156)

the transverse conductivity may reach values of the order o. This effect has

been demonstrated experimentally (107).

The effect of the inhomogeneity on the longitudinal conductivity is
considerably smaller; the conductivity is only slightly less than the collisional
value. Moreover, when the spectral function Ny depends on the direction of
the wave vector, the transverse electric field may excite a longitudinal current.
This effect is described by the second term in braces in egn. (IV.155). It
occurs only when the perturbations are inclined to the magnetic field on the
average, so that <k,/k,> # 0. According to (IV.154), the longitudinal
field E, then excites a transverse current. This effect is analogous to the
appearance of an averaged particle flux in a turbulent positive column where
the mean drift originates from the longitudinal electric field.

The above results refer to high frequency oscillations (o » Q,) where
the ions are at rest. For low frequency oscillations the effect may be consider-
ably smaller. In this case we must take into account the perturbation of the
ton velocity ¢ in the equations of motion, which become:

1
T.Vn = —enE—e(n'E> — j <o [vHD + - [H] +%’ j av. 157

1
T.Vn' = —en'E—enk' — zn[v’I-I] +[{H] + ‘%" i (V. 158)
ta ndd € ’ ! en 4
0=enE+e<nE)+é(n [vH]> - . (Iv. 159).
V’ ’ : € r En =
mn—_ = enE +enE+cn[vH] -1 (Iv. 160)

We can determine j, from the sum of eqns. (IV.158), (IV.160) and then
use the condition div j = 0 together with the longitudinal component of eqn.
(IV.158) to obtain . :

Ly . C W@ N
divj] = _IE ﬁi (enkzgak—-:enkkxEx)

= ;%(kﬁTenk——nekffpk—ik,eE, ) @v. 161)
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Expressing @y in terms of ; and using the lim_aarised ion eqn. (IV.160) it is
straightforward to obtain the additional * frictional force

eH
Fy={(en'E}> + » {n'vLy

.
and from this the additional transverse current §j, = EF,,

: 2
w
J(kﬁkﬁﬁx—kxk, PE) G
i = =~ —dk 1V. 162
=0 | O TR V- 169

(we assume that the frequency w is real).

\ 3
. . @\ Lo
For isotropic oscillations this gives &j, ~ yoE, ( m) , which is
considerably smaller than the value obtained above for high frequency
oscillations. Even perturbations greatly extended along the m‘agnetlclﬁelcil do
not lead to a marked change in conductivity. At the same time oscillations
of this type may lead to a considerable flux of charged particles

= (o) = (B
that is to turbulent diffusion. The smallness of §j, and F, immediately
shows that the diffusion. flux is determined by the electric drift, i.e.
cE;
H

From relation (IV.161), we can also determine the change in longituding.l
current due to the inhomogeneous conductivity of the plasma; the result is

!
VLR

2
Q2c2CE, + %’5 Kheoke, By
5j.= —a : —X dk (V. 163)
z . o, "2
Qi"‘rsz + Q_f k

which shows that the effect is again small.

!
5. TURBULENT PLASMA IN EXPERIMENTAL CONDITIONS

During plasma experiments one encounters turbulence effects at every
step, and there is now available very extensive experimental data referring to
situations in which turbulent motions oceur to various degrees. Unfortu-
nately, the turbulent motions themselves have not yet been investiga.ted in any
detail, the presence of a turbulence being deduced as a rule from its macro-
scopic manifestations. It is clear that the study of only macroscopic or
averaged characteristics of the turbulent motion and not the spectrum efnd
amplitude of the oscillations will not permit an unequivocal determination
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of the type of turbulent motion which is responsible for any glven macro-
scopic effect. At the present stage of research into the collective processes
taking place in plasmas, it is not therefore possible to carry out a complete
comparison between theory and experiment, and we must limit the discussion
here to brief survey of the main experimental data.

(a) Anomalous Diffusion

The very first experiments with electric arcs in magnetic fields (5) showed
that in a strong magnetic field fluctuations of fairly large amplitude are
regularly excited in a plasma, and these considerably increase the effective
diffusion coefficient. Bohm, in analysing the results of these experiments,
concluded that the diffusion coefficient decreases only as H~ 1 while according
to classical theory it ought to decrease as H =2, Simon (108, 109) showed,
however, that these experiments admit of a very much simpler interpretation

in terms of the so-called * short circuiting ** of the electron and ion currents -

through the electrodes; the results do not then disagree with classical theory.
However, this explanation did not eliminate the problem, since subsequent
experiments have revealed enhanced diffusion in a great variety of conditions.

So far the greatest progress in the understanding of the origin and charac-
ter of the anomalous diffusion of a plasma across a magnetic field has been
made in the case of the positive column of a glow discharge. The first
measurements of the characteristics of the positive column in a magnetic
field, made by Rokhlin (112), Cummings and Tonks (1 13), Reikhrudel and
Spivak (114), and Bickerton and von Engel (115), showed that for small
magnetic fields the diffusion is classical. Nedospasov (116) arrived at the
same conclusion by measuring the length of the cathode region of an arc
discharge, and so also did Vasileva and Granovskii (117), who measured the
diffusion flux to the wall of the discharge tube directly. However, extending
the experiments to high magnetic fields, Lehnert (31) observed unexpectedly
that at a critical value of the magnetic field H, the diffusion flux began to
increase with the magnetic field, finally reaching a saturation level. This effect
has been studied in some detail by Lehnert and Hoh (32) and later by other
authors (34, 35, 118-123). It has been explained theoretically by Kadomtsev
and Nedospasov (33) on the basis of the current-convective instability. As we
showed above (Section 1.2), this instability drives the discharge into a helical

form for H > H.. When the magnetic field is further increased the helical -

discharge in turn becomes unstable, and the motion of the plasma becomes
turbulent, as we described in Section IV.4. The results of a calculation based
on mixing-length theory are in good agreement with experimental data
obtained from glow discharges at pressures of the order of 107*—1 mm. Hg.

At smaller values of the neutral gas pressure, when the mean free path
of the charged particles is of the order of the tube radius, the diffusion
approximation is not convenient. According to present theoretical ideas,
instabilities of the drift type must arise in this case. This conclusion is con-
firmed experimentally. Figure 27 shows, for instance, the dependence of the
ion current I, to a wall probe on the magnetic field in a mercury vapour

e
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discharge at low pressure (p = 3.6.10"* mm. Hg), measu.rgd by ArtSl]:!lO\’ch_'.l,
Nedospgasov and gobolev.(?l‘he critical magnetic field at which the relat{onshlp
I(H) deviates from the H ~2 Jaw is in satisfactory agreement with the
theoretical condition for the formation of the iqn—sound 1nstab1hty.(IV.88).
The fact that the jon current in the turbulent discharge (# > H,) is of the

" order of magnitude of the current in the absence of a magnetic field also

agrees with the jon-sound mechanism of the build-up of osgi]lat:tons_.

The enhancement of the diffusion flux as the magnetic field increases
above some critical value has been observed also in Penning-type discharges
(discharges with oscillating electrons), where the longitudinal current 1
absent (126-128). In this case, together with low frequency oscillations,

1 T T
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Tia. 27. Dependence of ion current to & wall probe on magnetic field in a mercury
discharge at 3-6 . 10-* mm. Hg pressure

noise at frequencies of the order of 10° cycles/seq is a_lso ob§erved, but this
obviously is not directly related to the enhanced diffusion qf ions. Chen and
Cooper (128), using probes arranged along one magnetic line of force, have
shown that the longitudinal phase velocity of the oscillations developing in
such a turbulent plasma is of the order of 107 cm/sec, which considerably
exceeds the velocity of sound ¢, ~ 10° cm/sec. The frequency of the corre-
sponding oscillations is of the order of 107 cycles/sec, and the relative
amplitude of the density fluctuations is up to 50%. To judge by all these
data, these oscillations can be considered as drift oscillations, anc! the corre-
sponding instability as of the drift—dissipat@ve type. 'Mor.eover, it has ‘peen
observed by Simon (129) and Hoh (130) that in a Penmng discharge there is an
additiona} reason for an instability of the drift type related_ to the small
difference between the drift velocities of the electrons and.i?ns in a transverse
electric field (an analogous effect in the case of a positive column has a
stabilising influence (90) ). .

The egxperimentag wo)rk of Geller (131), who studiqd the diffusion qf a
plasma in a high frequency discharge also belongs to this group of investiga-
tions. Geller also observed an increase of diffusion for H > H.. In this case
oscillations were excited in the radio frequency region. According to Geller,
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the value of the critical field is inversel i

‘ r ¥ preportional to the tube radi
_I-'ougts corresponding to t}'1e observed values of the critical field are shl;swi
in Fig. 23, where they fall in the region of the ion-sound instability.

As we mentioned above, one of the earliest experiments on the diffusion

of a plasma in a2 magnetic field was

_ : performed by Bohm, B
(5) in 'ch::i study of ion sources. In these experini, fap 2nd others
in a conducting anode chamber A (Fig. 28) by a beam of pri

: c g, imary elect

}m?h energy apprgi;mafily 200 eV, which ionised the neutra?gas a?a prZszsllrlz
:::r e t;lange 10 "~10"* mm, Hg. The plasma so formed diffused slowly

0ss ihe magnetic field, at the same time spreading along the lines of force

and recombining at the chamber ends. The transverse diffusion coefficient

ents the plasma was set up *
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Fre. 28, Diffusion of fons in an are discharge

may be determined from the characteristic length of the radi
plasma density. Simon (103) showed that becagfsle of ther‘?(iﬁl;rf;agirigi?iithﬁ
gftthe plectron an.d iox} currents by the conducting chamber, this lengthgis
¢ cf:ee%ﬁ;nid lijay the ion diffusion coeﬂiqient which exceeds the electron diffusion
o ot by two orders of magnitude. When this effect is included
¢ experimental results can be explained on the basis of classical (la.minarj
concepts. The electron diffusion coefficient cannot be estimated fr
measurements of the radial density distribution a] on

: 2ed p however, support
the existence of enhanced diffusion of the electrons, most £arobab1y reIailzjeI()i to

oscillations with frequencies of 20-60 ke/s which are observed in these

experiments, Subsequent experiments with a i
] .arcs sh i
of the plasma in these conditions may bl craesd e nusion

: ng in fact considerably exceed the classical
valltle_. _For instance, Neidigh and Weaver (132) have found that under certain
con itions thi arc may change over into a regime referred to by these anthors
as “mode 2* in which a Totating

flate is ejected. They assumed that ¢
: . the
appearance of the flare is related to variations of the neutral gas pressure
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over the length of the discharge. However, experiments by Zharinov (133~
135) have shown that the formation of one or several flares is also possible
when the pressure is uniform. On the other hand, Boeschoten and Schwirzke
(136) found that in similar conditions the diffusion was classical. .

Experiments with arcs are difficult to discuss theoretically because of the
processes occurring at the ends. Simon and Guest (137) showed that the
longitudinal jon current to the ends in such a discharge may give rise to a
helical current—-convective instability. The critical magnetic field correspond-
ing to-the onset of this instability agrees satisfactorily with the experimental
data. However, this is probably only one of many possible reasons for the
instability of the plasma and perhaps far from the most important, although
there is scarcely any reason to doubt that effects of this general type are in fact
responsible for the instability; these effects were discussed particularly in
Section. IV.3.

We shall now turn to a group of experiments on the decay of a weakly
ionised plasma. Excluding from the discussion the work of Bostick and
Levine (29) referred to earlier, in which the toroidality of the magnetic field
is imporiant, we find that the papers (138-144) belong to this group. In these
studies the plasma has a charged particle concentration in the range of
107-10'% ¢cm™3. If the magnetic field is not very large the measurements of
the diffusion loss of particles agree with, or at least do not contradict, the
classical diffusion theory. However, for high values of the magnetic field
Golant and Zhilinskil have observed an enhanced diffusion. According to their
results (111), at magnetic fields exceeding 300 Qersted the diffusion coefficient
of the charged particles in helium can be approximated with an accuracy of
30409 by the empirical formula

0.4+
DJ_=6+( HZP)

One of the terms represents approximately the classical value D, = 108p/H2.
The first term, independent of H, may be related to volume elimination
processes {e.g. volume recombination, electron capture by impurities with
subsequent recombination, etc.). The second term represents some additional
diffusion mechanism not directly related to electron-atom collisions and
depending on the magnetic field. Since these experiments were carried out
at magnetic fields and pressure close to the theoretically predicted region
of drift-dissipative instability (Fig. 23), we might suppose that this anomaly is
related to an instability of this type.

The next group of experimental papers are concerned with the diffusion
of a fully ionised plasma. The most comprehensive data on diffusion have
been obtained on the B-1 and B-3 Stellarators. Ellis et al, (145) found that
the loss of a fully jonised plasma from the Stellarator exceeds the classical
losses by three to four orders, so that it cannot be attributed to electron—ion
collisions. The energising of additional windings, which should stabilise the
hydromagnetic instability of an ideal (infinitely conducting) plasma, showed
no effect whatever on the containment time of the plasma, suggesting the

108 (IV. 164)
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_existenoe of a previously unknown instability mechanism, M i
mvest1gat10ns_by Stodiek ez al. (146) showed that both during th%rfosgt:gsﬁ
stage anq during the d_ecay stage of the plasma, the charged particle loss rate
agrees Wlth‘BOh.In’S diffusion coefficient, that is, the measured values of the
diffusion coefficient could be described empitically by the expression

T, .
Dy % 210428 (IV. 165)

where the electron tei i i i i

Mo e ron temperature is expressed in eV and the magnetic field in
To verify whether the plasma losses could be ascribed i

] A : to the ion-sound

instability (76, 147), Motley (148) studied the decay of a cold plasmo; I}n

Stellarator B-1. In the absence of a longitudinal current the decay of the

plasma was determined by the volume recombination if the electrons and

ions, and the decay time was approximately 2 i

: ¢ 1 y 2 msec. However, when an addi-
tional elqctnc ﬁe}d (wﬂI_1 frequency 20 ke/sec and amplitude 0-01-0-03 \;cn:t)
was apphed: setting up in the plasma an appreciable longitudinal current, the
decay rate increased sharply. A critical current level was found, and, the

corresponding longitudinal drift velocity of the electrons turned out to be of

the order of the sound velocity, i.e. the velocity of the ions at the electron
temperature. For small values of the jon temperature this result, it would
seem, corresponds to the ion-sound instability (75, 76). Howcver’ the same
values of the critical velocity were measured even when the teml;erature of
the electrons was of the order of the ion temperature, so that the ion sound
waves could not propagate because of strong damping at the ions. These
resuli_:s agree qualitatively with the theoretical concept of the drift iI{stabilit
(Section IV.4). However, it would be premature to describe this as com letg
agreement between theory and experiment, since on the one hand the tuﬁ-bu
lent diffusion theory is still in its early stages, and on the other there is as e£
no complete understanding of the effects of small departures from equilib il
of t%eh plasmla column (see Section 5(c) below). brm
e results obtained on the Stellarator, accordin i iffusi

of a currentless plasma is comparable to the diﬁ'usi%rioo?:ﬁ;:ﬁf lgufcla:?
are confirmed by other experiments with a totally ionised plasma Thus,
D’Angelo and.Rynn (149, 152) showed that the diffusion coefficient c;f potas:
sium and caesium plasmas in a magnetic field agrees with the classical value
up to almost 1_0,000 gauss. Noting that the theoretical diffusion coefficient
(IV.139) for this case exceeds the classical value by only one order of magni-
tude, ’and tat_kmg nto account the approximations in the theoretical estimite
we ’ml.ght th11_11c that there is no contradiction between theory and ex eriment’
It is interesting to note that in a caesium and potassium plasmlzl devic .
sploxsta?lcously expited drift waves have been observed (151, 152}, The autho:s,
;n; ?hz td :vfcx;]tatxon of the waves to the existence of ion sheaths at the ends
~ Golant and Zhilinskii (171, 153) also found that the diffusion of a decavin
plasma at charged particle concentrations of the order of 101°-]10!2 crg“3g

2
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where electron-ion collisions are dominant, agrees well with the classical
coefficient of diffusion at magnetic fields up to 1500 gauss.

Although we have not been able to discuss individually every diffusion
experiment performed so far, it is clear that the consensus of the results
is that even in 2 homogeneous magnetic field and in the absence of external
beams, the diffusion coefficient both in a weakly ionised and in a fully ionised
plasma may considerably exceed the classical value obtained from binary
collisions. In the presence of a longitudinal current the diffusion coefficient
is considerably higher than in a currentless plasma. In the weakly ionised
plasma of a glow discharge, it is of the order of magnitude of the diffusion
coefficient without a magnetic field, and in a fully ionised plasma it approxi-
mates to Bohm’s coefficient. In the absence of a longitudinal current, the
coefficient of diffusion is considerably smaller: in a fully ionised plasma at
moderate magnetic fields, it is of the order of the classical coefficient, but ina

. weakly ionised plasma it may still be considerably higher than the classical

value.
All these results either agree satisfactorily with approximate theory

given in Section IV.4 or at least do not strongly contradict it. In order to
achieve complete agreement between theory and experiment, however, a
wide range of investigations is still necessary, both theoretical, to calculate
rather than only estimate the effective diffusion coefficient, and experimental,
to reveal the particle loss mechanism in its pure form.

(b) Turbulent Heating of a Plasma

By turbulent heating of a plasma—a term having a distinctly applied
shade—we shall understand the transfer of ordered energy, either the energy
of charged particle beams or the energy of discrete oscillations, into energy
of random motion and ultimately into heat, due to turbulence, i.e. the non-
linear interaction between oscillations. The possibility of turbulent heating
of a plasma in this sense was predicted qualitatively by Buneman (154) who
discussed the excitation of oscillations in the plasma due to a beam instability
under conditions in which all the electrons move relative to the ions. Sucha
state can be achieved, for instance, by means of a strong external electric
field leading to electron “ runaway ”. Buneman showed by numerical
calculations that the development of oscillations is accompanied by the
scattering of the electrons at the inhomogeneities of the electric potential
and the transformation of the directed motion of the electrons into random
motion,

The Maxwellisation of the electron distribution function due to a collective
interaction has been studied numerically by Dawson (155) in a one-dimen-
sional model in which a charged plane or surface corresponds to each charged
particle. Figure 29 shows a picture of the Maxwellisation of two oppositely
directed electron beams obtained by that author.

Shapiro (156, 157) studied the initial stages of the randomisation of the
directed velocity of the electrons by means of moment equations obtained by

integration of the kinetic equation multiplied by I, v and v*, over the velocity.
5‘



130 PLASMA TUR]SULENCE

He showed that when the electron density in the beam is considerably
smaller than th‘e plasma density, an initial relatively short stage in which the
beam spreads in ye]ocitv is followed immediately by a longer stage of re-
:cardatlo_n, to which the quasi-linear approximation is applicable. The
interaction between the beam and the oscillations leads to the formation of a
pla}'eau_. in the dist.n'bution function. One-third of the energy of the beam
which is equally.dmtxibuted between the kinetic and electrostatic energies ot,'
the oscﬂlg’uons, 1s spent in the formation of the plateau. » ‘
Experimental data on the interaction of beams with plasmas have accumu-
lated over many years. Effects of the collective interaction of an eIectroﬁ
beam w1t1} a plasma were observed by Langmuir (I). The related anoma-
lously rapid Maxwellisation of the electrons has been given a special name of
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Fre, 29. Maxwellisation of two interpenetrating beams (a one-dimensional model)

** Langmuir’s paradox . The interaction of the beam with the plasma has '

been investigated in greater detail by Merrill and Webb (3 i
measurements they showed that during the passage of 3(. %eﬁﬁﬁcﬂzgg
regions of strong scattering are set up in the plasma. This effect was inter-
preted by Bohm and Gross (158) as a result of the modulation of the electron
beam by the oscﬂlatl-ng potential of -a- double layer formed at the plasma
boundary. _Tl}en, as in the operation of a klystron, the initial perturbation
of the density Increases because the faster electrons overtake the slower ones
anc} at some point the electrostatic interaction between the electrons leads tc;
their scattering. The scattered electrons which pass through the double layer
at the bou.ndary. may slightly change its potential and give rise to feed-back
between the oscillations at the entry point and in the region of strong scat-
tering. Moreover, the oscillations of the double layer may lead to a transfer
of energy to the plasma electrons, contributing to their Maxwellisation
Large amplitude oscillations of the double layer, with a frequency of the order.
of the plasma frequency, were observed experimentally by Gabor (159)
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which would seem to support this mechanism for the excitation of the oscil-
lations. However, von Gierke ef al. (160}, who repeated Gabor’s experiment,
observed no oscillations at all except some weak low frequency oscillations.
This result perhaps indicates the possibility of a second mechanism for the
interaction between the particles and the oscillations, namely a quasi-linear
growth of the waves in space due to the instability, with the simultaneous
formation of a plateau in the electron distribution function. The formation
of such a plateau was demonstrated, for instance, in ref. (161). However,
in the same paper arguments are also put forward in favour of the klystron-
mechanism of the development of oscillations. All this suggests that in fact
both instability mechanisms may operate and the interaction between the
electrons and the waves for small electron density in the beam is described .
satisfactorily by the quasi-linear approximation.
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Fig. 30, Formation of platean on distribution functien

The quasi-linear effect of the formation of the plateau at the distribution
function of the electrons is demonstrated in Fig. 30, which shows the electron
distribution function before and after interaction with the plasma, measured
experimentally in (162) (see also (163)). The heating of the plasma electrons
during the interaction with the beam has been demonstrated in (165).

In practice, in the case of a bounded inhomogeneous plasma, the nature
of the oscillations may be very much more complex than is usnally assumed
in theoretical discussions. In particular, when there are widely spaced
resonance frequencies of the plasma system, strong excitation of separate
harmonics may take place. Effects of this kind have been observed experi-
mentally by Looney and Brown (4) in the investigation of high frequency
plasma oscillations and by Alexeff and Neidigh (164) studying the excitation
of ion-sound oscillations. Thus the real picture of the excitation of waves
by powerful beams and the interaction of the waves with the particles
and with ome another may turn out to be much more complex, and to
require a considerable further development of the theory for its complete
description. .

The excitation of ion sound by a current in the plasma also belongs to
the group of phenomena considered in this section. Such oscillations have



132 PLASMA TURBULENCE

been observed by Nedospasov (166) in a helium discharge at a fairly low
neutral gas pressure. Both the order of magnitude of the steady state oscilla-
tions (~ 1072 V) and the spectrum of the oscillations, in which the maximum
occurred in the region of very low frequencies (w < €;), are in very good
agreement with theoretical ideas (Section 1V.2). The excitation of ion-sound
oscillations has also been observed by Crawford (167) who studied the noise
in a mercury discharge. Crawford observed that as the discharge current was
increased, separate oscillations at discrete frequencies appear first, which
then merge into a continuous spectrum in the range 10*-10° cycles/see. The

phase velocity of these oscillations along the tube was 107-10° cm/sec. These:

are interpreted by the author as ion-sound waves propagating almost across
the discharge. The excitation of such waves agrees with the theoretical
picture given in Section IV.2. By using additional grids, Crawford showed
that the source of the noise is the cathode (a similar effect is described in ref.
(166)). However, the picture of the developed oscillations is probably not
very sensitive to the form of the source, and therefore a comparison of these
oscillations with a theoretical spectrum is justified.
The excitation of ion cyclotron oscillations by a longitudinal electric

current, a physically similar effect, has been described in ref. (150). The
excitation of ion oscillations obviously also explains the anomalous heating
of the ions in Zeta (see following section). As we showed in Section IV.2, the
ion heating may be related to an increased (“amomalous*’) resistance of
the plasma, arising from an additional frictional force between the electrons
and ions due to the oscillations. An “ anomalous  resistance has been
observed on Zeta, and has also been demonstrated experimentally by Thomas-
sen (169) in an experiment specially set up for this purpose. A similar effect
has been observed by Adlam and Holmes (170) in the investigation of the
dynamics of a super-fast pinch. These authors established that for a very
fast rise of the current (r ~ 10™° sec) the thickness of the current skin is
independent of time and about one-and-a-half orders of magnitude greater
than the expected value c/w,. This result can be interpreted ejther as the
result of a comsiderable decrease in the effective density of the electrons

participating in the current (such a situation might arise from the * capture ”

of most of the electrons by the potential wells ¢ associated with the ions),

or because of the suggested impossibility of increasing the directed velocity

above some small fraction of the thermal velocity. The second possibility

might arise from the excitation of the ion-sound instability. Adlam and

Holmes support this point of view. However, the whole effect takes place

during an extremely small interval of time which is obviously insufficient
for the development of the ion-sound instability, which would indicate
rather purely electronic oscillations which may be connected with ion
perturbations existing in the plasma before the application of the longitudinal
electric field pulse. In this case only the small proportion of the electrons

“ beyond the barrier ” can carry the current. For a complete discussion of
this extremely interesting and complex problem additional work will be
required both in theoretical and experimental directions.
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clearer form, the ¢ anomalous ” resistance effect appears 1n
the I?o?;.lggn“ break * in the current during the last stage _af a i]:9ro1c§:.1
discharge (see the following section). The capture and aqoelerail:flon o 11)011;{ eﬁ
powerful electron beams are agsociated with 2 similar effect, o s; ved
experimentally by Plutto (171). A complete thepry of phenomena 1? It
kind, most probably related to strong turbulence in the electron gas, has no

et been put forward. _ .
¢ We ncl;)w go on to consider experiments in which turbulent processes were

_ used for heating the plasma. One of these (165) has already been mentioned.

heating of the ions in Zeta (138) was a pleasant surprise.
](;1?1?3 a;?;llﬁlﬁnk thatg the cyclotron heating gf ‘Ehe electrons descnl?Ded
in reference (173) would also involve t1_1e excitation of a large number
of degrees of freedom. Turbulent heating of the ions in a tramsverse
electric field also occurred in loffe’s expe_r}mcnts (174), vg'here in addition to
the heating due to the centrifugal instability of the rotating plasma, hcaéilngg
could have occurred due to instability of the plasma ﬁlament pc_agetrated thy
the electron beam emitted from the catho'de. The latter_ instability ;1;1 hc
correponding ion heating has been invesu_gatt_ad by Nezlin (175), (1 di) wt 3
observed that for a fairly high current density in the beam, when _the. rec eﬁ
flux amounts to approximately 1/6 of the random flux env,, pf:rxodm '(;Et-ﬁi
of the beam occurs. The fluctuations of thf: electric ﬁ_f:ld assog:lated with this
cutting-off of the beam lead to intense heating of the ions. .Thm effect h_a; noc';
yet been interpreted theoretically. On the one hand, it might be consi bqf'et
as the result of the development of the two-stream ion-electron insta 11hy
in some region where the instantaneous density was fa.l_rly sn_1a.11'due tc; the
jon oscillations (which may be éxcited by the Langmuir osclﬂqthns 0 the
electron beam (177)). Yet on the other band, the effect is very similar to the
¢lectrostatic cutting-off of a compensated electron beam (17.8), (179).
Turbulent heating due to oscillations of the magnetosonic type hg.s been
investigated by Zavoiskil ez al. (180-1 83). In tl_lese experiments, heaUnglxggé
achieved by superimposing onthe mam longitudinal m{agnetlc field H, Nlit o
gauss a high frequency field with frequency f ~ _10 cycles and amplitude
£ ~ 500 gauss. As a result of the turbulent ];antmg, tl%e electron tempera-
ture increased to 500 eV and under certain conditions the ions were heatedtoa
temperature of ~ 100 eV. The authors interpret the heatmg. of t'he pla:sma
as the result of the development of a t\yo-stream electron-ion instability.
The decay of the magnetosonic oscillations may also be important (see
SeCt'll."%ne IeI;{;grbizzlemal results summarized above ir}dicate that t!:Lc use of
collective processes for heating a plasma holds considerable promise.

(c) Toroidal Discharges © .

A whole series of turbulent processes has been observed during experi-
ments with high temperature plasmas in toroidal devices. .We have already
noted above that anomalously fast plasma loss is obscw§d in ﬁguI.e—S §haped
Stellarators, the so-called * pump out™ effect. The detailed investigations of
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this effect (146, 148) have shown th ‘
t (146, at the anomalous diffusion is
g];zeiogﬁ%;dgzjl hn;:ti.glent, %ﬁd the 1tlalft'ective diffusion coefficient E:la;; dtflz
I o ue. lhese results agree quantitatively with th, i
predictions based on the drift instability m i . Se iy
: . echanism (see Sectio
E;:félvee;l ::Igie?uent exp?n%ents made on Stellarator (C 1 84—1863l sﬁ’w:ci
0ss may also be related to small depart fi ilibri
of the plasma column due to inaccurac etic fiold. For ory rome
y of the magnetic field, F
departures from the strict equilibrium iti 28, column
ditions, the pla 1
be able to preserve an equilibrium b he s ’  confining cutrersy
: y the closure of the confinj
through the diaphragm limitin co 1 pomibls
g the plasma column. The maxi i
value of the current that can be closed i is way is determined by o
) in this way is determined b
magnitude of the plasma loss. Under ideal ilibri itions thry T
] ¢ . equilibrium conditions this 1
I symmetrical around the small circumferenc it
around e. When the equilibrium j
upset, a predominantly ion current flows to on aph "and o
e haif of the diaphr.
:}icﬁgﬁsiggzné 1:1?1- th: cher half, and the difference between tﬂes: %g;?:sgxixsl
: ent 7, necessary to maintain the equilibr
ficiently strong perturbation of the equilibri ftion (Which mmcla o
quilibrium condition (which
represented, for example, by imposin oy 2 ot
) g a transverse field of only 3 f
of a per cent of the longitudinal field), th ilibri eront oo oo
longer retan the s dinal feld), ¢ equilibrium loss current can no
_ ! which starts to move ab
radius, which leads to additiona)  the Toss of ety
. h ] ) plasma losses. Thus, the loss of i
?1111% ]:Eeegflt;ﬁ:l:;) gcianr:eﬂ;e t(e;];ghlﬁg;n position turn ont to he inter?riﬁzgceis
nts 3 the equilibrium conditi ,
controlled and some of these results may b sed condumry 1t
to be revised id
The effect of the transverse dis oot Slament 1
] placement of the plasma fil
the perturbation of the equilibri iti Soserved shightly oo
] quilibrium conditions was observed i i
gg deiut_Tok;)mak dgwge (_186), where it was showa that to restoieilggﬁiﬁlﬁ
add I;})lna current windings can be used setting up a trausverse magnet field
similar application was also described in (184). FeHoRe
o cAi;&noth.f:r turbulent effect is the * cut-off 7 of the current of runa
(168 7)rc]):lns mhan avi‘terglovs'r plasma, also observed on the Stellarator Dre‘lf::ay
/) as shown t1.1at this effect may be ‘related to a build-up of i,an e
gfsct:ln %ﬁfigs gccu.:'png_ dtlif to the appearance of a minimum in the elégclzlrglxi
0 lunction in the region between thermal and ‘
This minimum appears because of the f: Tation of ocd dlectrons.
1 _ ter retardation of sl
However, this mechanism does not e o 20t ofone proms,
X
two;; more stope s o does o falls?lam the appearance not of one, but of
unusnal variety of different ty i
1sual : pes of turbulent motion of |
g:]f:;iaet(i izlve?éch;rges i1_.15)(3::1};, moderate longitudinal currents aprﬁs;n ?n?)gi
gation of these processes has been mad .
Amongst these belongs above all the ating of ths e 19D
§ anomalous heatin, i
shown in ref, (189) that the mean energy of the impu;ritgyoif(‘nt‘.llgec{au,c;1 SI:;f: ﬁ;ﬁs

sented in the form E, = LG i
= Ey + o E, where m; is the mass of the ion, my,

- the mass of the deuteron, and E. ’
he Ton, o and E; are constants, E, ~ | '
2-3 eV. We can definitely conclude that the ions are in pﬁ;cipleo&gr‘;fﬁs;
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and have a temperature of the order of 100 eV, which is several times higher
than the electron temperature, and that they perform collective oscillations
with a frequency considerably smaller than the cyclotron frequency, so that
their total velocity ©, = ¢E/H is independent of the mass, and the energy
increases linearly with the mass. The heating of the ions may be due either
to the current instability (for instance the excitation of magnetic sound oscilla-
tions considered in Sectiom IV.2) or to a secondary effect ocounrring during
turbulent convection, arising from the flute or dissipative instabilities. No
detailed theoretical discussions of this problem is as yet available.

An effect closely related to the anomalous heating observed on Zeta is the
excess resistance, which according to the experimental data increases linearly
with the energy input to the plasma per particle (190). This additional
resistance is of the same order as the ohmic resistance. Although we have
noted effects of this type during our theoretical investigation (see Section
IV. 2), a complete theory of the additional resistance has not yet been de-
“veloped. S

On Zeta and other devices using moderate magnetic fields, an anomalous
particle loss is observed related to strong oscillations of the electric field (191).
This loss may be related both to the convective (flute) instability and to the
drift-dissipative instability. An estimate based on formula (IV.141) shows that
in conditions in which perturbations greatly extended along the magnetic
lines of force are admissible, the diffusion coefficient in ihe conditions ob-
taining in Zeta may exceed Bohm’s value by two orders of magnitude, This
value is quite sufficient to account for the observed losses. However, as the
longitudinal wavelength is reduced the coefficient of diffusion according to
(IV.143) decreases fairly rapidly. Therefore, in the outer regions of the dis-
charge, where the effective length of a perturbation along the lines of force,
being of the order of the pitch of the lines of force, is comparatively small,

one would expect the primary instability to be the convective instability
investigated in linear approximation by Suydam (192) It is possible that
these 'loss mechanisms come into play and account for the * magnetic
number 7’ effect observed first on Zeta (190} and then on a smaller device
(193). This effect consists in a prolonged conservation of a constant value
of the pitch of the lines of force at the periphery of the discharge, the value
being such that a line of force joins up to itself after one circuit of the torus,
and abrupt transitions of the pitch from one such value to another as the
discharge current is increased. One natural explanation of this effect put
forward by Furth is to assume that on a magnetic surface with closed lines of
force, where the longitudinal wavelength of the perturbation cannot be very
large, the principal part in the transport of plasma is played by convective
perturbations. During the rearrangement of the lines of force in such a
perturbation the pitch is equalised over the radius, so that a region of constant
pitch is generated, ultimately encompassing the entire periphery of the dis-
charge. The enhanced diffusion of the aximuthal magnetic field into the dis-
charge during its initial stages (194) also supports the existence of such a

convective motion.
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The‘anomalousiy rapid diffusion of a plasma in a discharge with moderate
magnetic field leads to the establishment of a force-free configuration (195
196).. This configuration, which is not quite stationary but includes a small’
amphtude.random motion due to the helical instability, can be described
satisfactorily by an approximation in which it is assumed that because of the
transverse convective motion of the plasma the apparent transverse conduc-
tivity ‘vamshes (197). This approximation does not, however, account for the
very Interesting effect of the generation of reverse longitudinal magnetic
flux at the outside of the plasma filament (193, 196, 198). This effect is hardly
related to the toroidality, since in somewhat different conditions it is also
observed on a straight discharge (201). The generation of this reverse field is
probably related to the finite mixing length during the turbulent convection
of the plasma (197). However, a quantitative theory of this effect has not yet
been developed. ‘

A1_10ther turbulent effect also observed first on Zeta (190), and later on
a _clewce of more modest size (193) is of exceptional interest. We have in
mind the step-wise decline of the current during the last stage of the discharge.
As on the Stellarator, there may be several steps in the current, but in con-
trast to the Stellarator, in this case the decline takes place in the presence of a
longitudinal electric ficld which might sustain the discharge current, It
might seem that in this case also this decline might be connected with the

excitation of high frequency oscillations due to runaway electrons, the rela-

tive number of which increases considerably towards the end of the discharge.
(Such oscillations have been observed experimentally on a straight discharge
(200).) .Howevcr, the fact that during the stepped decline of the current the
magnetic energy is completely transformed into kinetic energy of the electrons
approximately 1keV of energy being trapsferred to each electron, would
rather seem to indicate an electron-ion collective process of the tyl;e of an
anomalous resistance. A theory of this effect is also still absent.

We must also include in this section the work on the Levitron (199), a -

toroidal device with moderate longitudinal magnetic field and an additional
current ring-which should stabilise the hydrodynamic instabilities of the
plasma. Qsm]lations and anomalous plasma loss are, however, still observed.
These oscillations are obviously of a dissipative nature, related to the finite
conductivity of the plasma, '

(d) Magneric Traps

The turbulent diffusion of a plasma in a trap with magnetic mirrors has
been obseryed and studied in detail by Ioffe and others (174, 202-205). In
these_: experiments a hot plasma with an ion energy of the order of 1 keV and
particle density of the order of 10°/cm™2 was set up by accelerating ions in a
pulsed electric field which was applied radially between the chamber walls and
a cold plasma filament situated along the axis of the chamber. After the appli-
cation o_f a h:igh voltage pulse, the trap fills with plasma during 10-20 usec.
No detailed investigation of the motion of the plasma during this heating
stage has yet been carried out, but we may suppose that the filling of the

el
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chamber with plasma and the heating of the ions take place essentially due
to the centrifugal instability of the rotating plasma. After the high voltage
is switched off the rotation of the plasma stops and a more quiescent stage of
turbulent convection due to the flute instability sets in. The presence of such
a convection is evident chiefly from the anomalously rapid loss of plasma
from the trap during a period of the order of 10~ % secs. Probe measurements
have shown that the plasma decays essentially at the side walls of the trap,
whole tubes of plasma lying along the magnetic field being ejected simul-
taneously towards the side walls. This result indicates that the fundamental
mechanism of the convection is the flute instability. In a paper by this author
(16) a semi-quantitative theory of such a convection has been developed,
based on the mixing length concept. Further investigations of the relation-
ship between the characteristic scale and amplitude of the turbulent pulsa-
tions and the distance to the wall, and the dependence of plasma lifetime on its
density (203), supply additional confirmation of the theoretical model. Final
proof of the flute instability mechanism was obtained when by the use of
additional current conductors arranged at the periphery of the trap it was
possible 1o stabilise the plasma and achieve prolonged containment (205).

It is interesting to note that the results on the turbulent convection were
adequately described on the basis of hydrodynamic concepts without any
consideration of the effect of the finite Larmor radius of the ions, i.e. of a
collisionless viscosity, even though in the conditions of the experiments
described in refs. (202, 203) this effect should be important. It is possible
that it is smeared out by the strong inhomogeneity of the plasma brought
about by the ‘turbulent heating mechanism (see Section IV.4(3)), but the
possibility cannot be excluded that the special features of the method used
for producing the plasma in fact determine the entire subsequent motion.
In fact, in the experiments of Ioffe et al., considerable oscillations of the elec-
tric field take place during the phase in which the plasma is set up, which
lead to the loss through the end of ions which are mirrored very near the
surface of maximum magnetic field H,. As a result, the plasma boundary
moves towards the centre of the trap to a point where the magnetic field
H = H, < H,. During small oscillations of the potential ¢ of the plasma

tubes such that ¢ < 5(‘%" — 1) all the ions continue to be contained
e

5

by the mirrors, so that nothing prevents the development of the flute insta-
bility. With other more guiescent methods of heating the plasma, we might
reach a situation in which the plasma fills the entire trap up to the centre of
the mirrors where the magnetic field attains its maximum value H = H,,.
In this case even small oscillations of the potential would lead to considerable
currents to the ends due to the ejection of particles normally mirrored in the
region of maximum magnetic field. These currents tend to stabilise the
plasma, and this stabilisation effect is enhanced when there is a cold plasma
surrounding the hot contained plasma. Most probably it is this effect which
accounts for the stable containment of the plasma in adjabatic compression
experiments in traps with magnetic fields (206, 207).
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Amongst other collective effects observed in magnetic mirror traps, we
may include the excitation of oscillations at very low density, where the
transition to a quasi-neutral plasma begins (208, 209), and the excitation
of ion cyclotron oscillations due to the anisotropy of their distribution
function (210, 211). No detailed theory of these effects including the non-
linear terms has been developed so far.

CONCLUSION

Summing up, we can state that during the past few years considerable
progress has been made in developing a theory of plasma turbulence in the
broad sense of this term, and in the understanding of the nature of the
collective processes taking place in a plasma in laboratory conditions. A
considerable number of problems concerning the development and inter-
action of oscillations in a plasma has been considered theoretically. Together
with the study of weak turbulence, which is described satisfactorily by the
kinetic wave equation, methods are being developed for the description: of a
strong turbulence including particularly the weak coupling method, A num-
ber of specific problems can be considered on a semi-empirical basis by the
phenomenological introduction of the mixing length concept. At the present
time, however, important fundamental difficulties are in sight which might

~ delay the further development of the theory of plasma turbulence.

The situation is less satisfactory as far as the explanation of the experi-
mentally-observed turbulent effects is concerned. Cnly for a small number of
experiments is it possible to develop the corresponding theory and to obtain
a satisfactory description. Yet in the majority of cases, not only has no
quantitative theory of the observed effects been produced, but often even a
qualitative interpretation of the nature of the observed effects is missing.
This state of the matter is due partly to the rather indeterminate nature of the
experimental data, but also to a considerable degree to the inadequate level
of development of theoretical concepts and quantitative methods of describ-
ing collective processes. One must hope that it will be possible in the course
of the next few years of hectic development of the theory, in conjunction with
detailed and accurate experiments, to set up a complete picture of the
turbulence of plasmas.

139 .
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A
Acoustic waves, see Waves
Adiabatic compression, 137
Alfvén waves, see Waves 7
Anomalous diffusion, see Diffusion

Arcs in magnetic fields, 124, 126-127
“ mode 2.* 126

B

Beam—plasma interaction, 130
instability, see Instability
Binary collisions, 47, 58

C

Caesium plasma, 128
Cherenkov effect, 47
Collisions, binary, 47, 58
Compression, adiabatic, 138
Conductivity, electrical, of turbulent
plasma, 119-123
thermal, 79

* Convection, 7-15

in positive column, 11-15
Cyclotron radiation, 48

D

Damping, non-linear, 65-69, 76
Debye length or radius, 47, 63, 80
number, 45
Decay instability, 38
Decaying plasma, 10, 11 )
Diffusion, anomalous, 1, 28-30, 48, 78,
124-129
turbulent, 3, 106-119, 123
in velocity space, 48, 58
in wave number space, 57, 66
Diffusion coefficient, 29, 78, 96
Bohlm value, 3, 29, 108, 109, 113, 115,
116, 128, 129, 134, 135
classical, 115, 127
turbulent, 107-119
in weak turbulence, 107
for ion acoustic instability, 107

Diffusion coefficient,
in rarefied currentless plasma, 108-
110, 119
in rarefied current carrying plasma,
110-113
in very low density plasma, 114
in dense plasma, 114-116
effect of finite length, 109-110, 116
measurements of, 126-129
in stellarator, 127-128
in Cagsium plasma, 128
Dielectric permeability, 19, 21, 28, 42,
47, 63, 69
Discharge, glow, see Positive column
H.F., 125-126
P1G., 125
super-fast pinch, 132
toroidal, 133-136

" Dispersion relations, 74, 76, 80, 83,792,

94, 95, 97
decay type, 34, 35, 119
non-decay type, 34, 35, 62, 76
Double layer 130
Drift instability, see Instability,
Larmor, 79
waves, 79-84 .

E

Electron Larmor radius, 98, 99
Energy exchange time, 41
Enhanced diffusion, see Diffusion
Excitation, hard, 5, 6

soft, 5, 6

F

Flow, non-linear, 103-106
Flute instability, see Instability
Four-wave processes, 35, 68

G

Glow discharge, see Positive colurnn
Green's function, 50, 57
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H
Hall current, 120
Hard excitation, 5, 6
B.F. discharge, 125-126

]

Instability, absolute, 24

beam plasma, 15, 16, 130

centrifugal, of rotating plasma, 133,
137

convective, 24

current-convective, 12, 86, 99, 102-
103, 104, 124, 127

drift, 4, 78-50, 102, 125, 128, 134

drift-dissipative, 4, 79, 96102, 115,
125, 127, 135

flute, 90-93, 105-106, 135, 137

ion acoustic, 68, 94-95, 97-100, 107,
125, 128, 131-132

ion cyclotron, 74, 95-96

of inhomogeneous plasma, 78-103

of weakly ionised plasma, 96-102

two-stream (clectron-ion), 133

Ton acoustic waves, see Waves

cyclotron waves, see Waves

Landau damping, 81, 85, 88, 8%

Larmor radius, 78, 81-92, 103-106,
119, 137

sound waves, see Waves

J
Jet, turbulent, 59-61, 118

K
Kinetic wave equation, 2, 31-55, 4244,
139 :
Kolmogorov-Obukhov spectrum, 3, 51,
61-62
L

Landau collision term, 47
damping, inverse, 16
ion, 81, 85, 88, 89
linear, 41, 44, 84, 36
non-linear, 41, 68, 76
Langmuir paradex, 1, 130
waves, see Waves
Larmor drift, 79
radius, electron, 98, 99
ion, 78, 81-92, 105-106, 119, 137
Levitron, 136

M

Magnetic mirror trap, 3, 136-138

“ Magnetic number » effect, 135

Magneto-sonic waves, see Waves

Maxwell stress tensor, 28, 29

Mixing length, 3, 59-61, 116-118, 124,
137, 139

N

Navier-Stokes equation, 51
Non-linear damping, 65-69, 76
flow, 103-106
Landau damping, 41, 68, 76

P

Penning (P.I.G.) discharge, 125

Permeability, dielectric, 19, 21, 28, 42,
47, 65, 69

Perturbation theory, 51

Plateau in distribution function, 17, 72,
75-117, 131

Positive column, 3, 11-15, 116-118,
124-125

Potassium plasma, 128

Pump-out, 134

Q

Quasi-linear approximation, 2, 5-30, 72,
75, 131

R

Random phase approximation, 33, 46
Resistance, anomalous, 132, 135, 136
Resistivity, anomalous, 48, 77

see alsoe Conductivity, electrical
Reynolds® stress, 59
Runaway, of electrons, 129, 134, 136

S

Shear, of magnetic field, 89-90

Shock, collisionless, 2

Soft excitation, 3, 6

Sound waves, see Waves

Spectrum of turbulence, for ion acoustic

waves, 68-72

for wind waves, 62-63
Kolmogorov-Obukhov, 3, 51, 61-62

Stellarator, 127-128, 133-136

Strong turbulence, 2, 3, 49-63, 116

B

T e G

INDEX 149

T

Thermal conductivity, 79
fluctuations, 4446
noise level, 48
Three-wave processes, 34
Tokomak, 134
Turbulence, fluid, 51
strong, 2, 3, 49-63, 116
weak, 2, 7, 18, 3148, 49, 139
Turbulent, jet, 5961

v

Van de Pol method, 6
Viscosity, 51, 61, 79
collisionless, 105, 137

w

W.K.B, approximation, 23, 27
Waves, Alfvén, 2, 39-41, 76, 83
accelerated, 83
decelerated, 83
drift, 79-84, 125
ion acoustic, 35-39, 47, 68-73, 78, 81,
100, 131, 132
accelerated, 81
decelerated. 81

Waves, Alfvén
ion cyclotron, 73-75, 132, 138
ion sound, see Waves, ion acoustic
Waves, Langmuir, 2, 3, 15-18, 26, 28,
35-39, 42-44, 47, 51, 65-68, 134
magneto-sonic, 2, 3341, 75-78, 133
sound, see Waves, ion acoustic
Wave equation, kinetic, see Kinetic
wave equation
“ Wave number,” 67-71
Wave packets, 54-57
Wave propagation, 2, 7, 18, 3149
in inhomogeneous plasma, 18-23
Wave-particle interaction, 4648
adiabatic, 25-30, 48
Tesonance, 17, 25-30, 48
Wave-wave interaction, adiabatic, 54, 55
resonance, 34, 53, 57
Weak coupling approximation, 3, 49-58,
116
Weak turbulence, 2, 7, 18, 3148, 49,
139
Whistlers, 76
Wind waves, 62-63

Z
Zeta, 132-136



