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Introduction

Weak Plasma Turbulence
Approximation

A.A. Galeev and R.Z. Sagdeev

Space Research Institute, Academy of Sciences of the USSR
117810 Moscow, USSR

Thus far, only laminar plasma motions that can be described by the behavior of
local hydrodynamic plasma and field parameters or by the particle distribution
- function have been considered. The effectiveness of such descriptions in many cases
is explained by the fact that plasma motions as a rule have a collective character,
~ and therefore a simple relation between plasma motion at different points exists.
However, plasma as a many-body system has a large number of degrees of freedom
and thus has a wide variety of possible collective motions, When the amplitudes of
these collective motions are infinitely small, the superposition principle is valid and
this is the basis for linear plasma theory. According to this principle, an arbitrary
perturbation is represented by the superposition of the collective motions, where
each motion is considered independent. But when the amplitudes become finite as a
result of the appropriate instability development, then nonlinear effects result in the
interaction of these motions with each other, similar to the interaction of different-
scale motions in hydrodynamic turbulence. The plasma could be considered turbu-
lent in this case.

The main difficulty in the mathematical description of hydrodynamic turbulence
is that the interaction between the different turbulence scales is generally so strong
that these different motions cannot be considered even approximately independent.
Plasma turbulence is often much simpler in this respect. The reason for this is that
the wide class of kinetic plasma instabilities results in the excitation of the plasma
eigenmodes with small amplitudes. The nonlinear interaction of such modes is weak,
and this permits them to be considered independent in a first approximation. As a
result, an arbitrary disturbance can be represented in the form of an eigenmode
expansion,

In the next approximation the coefficients of such an expansion slowly change in
time because of the interaction of the eigenmodes, and finally strongly deviate from
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the initial values predicted by linear theory. This approach is widely known as weak
turbulence theory (Sagdeev and Galeev, 1969, 1973; Kadomtsev, 1964, 1966;
Tsytovich, 1967; Davidson, 1971, Ichimaru, 1973). The equations of this theory can

be derived from first principles by the expansion of the basic plasma equations on

the small parameter—the ratio of the collective oscillation energy to the total plasma
energy. Moreover, these equations can be essentially simplified in the approximation
of the random phases of different oscillations when a statistical description is used
instead of a dynamic one. The precise criteria of the transition to a statistical
description of a many-body system are well known and can be easily found for any

specific case.
It is convenient to lay down the theory of weakly turbulent plasma in terms of the

three basic types of interaction: quasilinear wave- particle interaction, nonlinear
wave —wave interaction and, finally, wave - particle —wave interaction (known also as
nonlinear wave-particle interaction).

The first type, quasilinear wave-particle interaction, is particularly strong near the
Cherenkov resonance, w = k * v, since a particle with velocity satisfying this relation
conserves a constant phase relative to the wave and thus is accelerated (or decel-
erated) by the wave field. The analogous resonance in. the magnetic field takes place
under the condition

w=lo,=kp,  I1=0,%1,..,

where «, is the particle Larmor frequency. Since this type of interaction is described
by a group of resonance particles, it is necessary to use a kinetic description. The
time variation of the wave amplitude due to this interaction is Landau damping
(cyclotron damping in the case of resomance in a magnetic field) (which was:
considered in Chapters 2.2 and 3.3 of this volume). The corresponding time variation
of the resonant particles’ velocity distribution has the form of diffusion in the
velocity space (so-called quasilinear diffusion) and will be considered below.

The second type of interaction, nonlinear wave-wave interaction, is often referred
to as wave scattering by waves. The condition for such resonance can be written as
follows:

Yw,=0, Yk,=0,

where ©; and k, are, respectively, the frequencies and the wavevectors of the waves
taking part in the interaction. Since this interaction does not involve the resonant
particles, it can be described by a hydrodynamic approximation, assuming it to be
valid for noninteracting waves.

The third type of interaction, wave—particle~wave interaction, is considered to be
either nonlinear Landau damping or induced wave scattering in a plasma. The
resonance condition for this interaction is w, — w, = (k, — k,)* v, and the basic
mechanism is similar to that for linear wave—particle interaction. In this case, the
particle keeps its phase constant relative to the beating of the two waves. This
interaction also involves resonant particles and should be considered in the frame-
work of the kinetic approach.
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It should be noted that each of the three basic types of interaction has a
corresponding quantum analog. Also, the resonance conditions given above are the
consequences of the energy and momentum conservation laws for elementary
interaction processes. For example, while the particle emits a radiation quantum
with frequency w and wavevector k, it gains a recoil momentum, A p=—hk{(his the
Planck constant), and its energy decreases by the value A& = Ap v, which is equal
to the emitted quantum energy, Aw, assuming the resonance condition is satisfied.
To consider the absorption process instead of the emission process, simply change
the sign of the frequency and the wavevector. It is obvious that these processes
conserve the sum of the particle and wave energies.

As a rule, the quantum approach to the derivation of equations for weakly
turbulent plasma equations are much more complicated than the consistent applica-
tion of perturbation theory to classical field equations and kinetic equations for the
particle distribution function. Nevertheless, the consideration of elementary processes
for a given type of interaction allows one to draw general conclusions concerning the
conservation laws and to check them in specific computations. For example, the
resonance condition for the wave-particle-wave interaction, written in the form
@, — @, = (ky — k;) - v, where the frequencies w, and w, have the same sign, corre-
sponds to the elementary process of wave absorption by a particle followed by the
emission of another wave by the same particle (in other words, the scattering

_ process). Obviously, this type of interaction should conserve both the energy and the
number of the radiation quanta. In the classical limit the number of quanta can be
defined as the ratio of the wave energy, W, to the frequency, i.e. w, /w, is the action
of the (w, k) wave. This kind of argument will be used to discuss all three types of
interaction.

References

Davidson, R.C., 1971, Nonlinear Plasma Theory (Academic Press, New York).

Ishimaru, S., 1973, Basic Principles of Plasma Physics, (Benjamin, New York).

Kadomtsev, B.B., 1964, in: Voprosy Teorii Plasmy, Vol. 4, Ed. M.A. Leontovich (Atomizdat, Moscow) p.
188.

Kadomtsev, B.B., 1966, Plasma Turbulence (Academic Press, London).

Sagdeev, RZ., and A A. Galeev, 1969, Nonlinear Plasma Theory, Eds. TM. O’Neil and D.L. Book
{Benjamin, New York and London).

Sagdeev, R.Z., and A.A. Galeev, 1973, in: Voprosy Teorii Plasmy, Vol. 7, Ed. M.A. Leontovich
(Atomizdat, Moscow) pp. 3142,

Tsytovich, V.N., 1967, Nonlinear Effects in Plasma (Nauka, Moscow) (Engl. Transl, 1970, Plenum, New
York and London).




Chapter 4.1

Wave — Particle Interaction

A.A. Galeev and R.Z. Sagdeev

Space Research Institute, Academy of Sciences of the USSR
117810 Moscow, USSR

Contents

4.1.1. Statisticaldescriptioncriteda...........v......................‘.......‘....683
.4.1.2. Quasilinear diffusion in the one-dimensionalcase . . .. .............. B .7

4.1.3. Relaxation in the case of two- and three-dimensional wave spectra. . ........ B 691

4.1.4. Plasma quasilinear relaxation in a magnetic field (two-dimensional quasiplateau). . ......... 694

4.1.5. Influence of collisions on the wave~particle interaction. . ... ................. . co...697

References . ... ... ... .. ... ... ... ... ... ... .. ... ... e ... 698

4.1.1. Statistical description criteria

To illustrate the transition from a dynamical description of monochromatic
wave-particle resonant interaction to a statistical description of a many-wave
interaction, consider one-dimensional perturbations in a plasma without a magnetic
field. The complete system of equations to solve this problem consists of the electron
kinetic equation with self-consistent electric field and the Poisson equation:

9f , ,Of, e 3% 0f
PP m, dx av*O (1)

3%/ 9x* = 4nen l-—ff do|, 2)
where f(x,v,¢) is the electron distribution function and ¢ is the electric field
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potential. In the case of a monochromatic wave the potential can be represented by

¢(x,1) = pcos(kx — wt).

The nonlinear term in the kinetic equation (1) is responsible for the resonant
wave-particle interaction. In the linear approximation, the distribution function
entering this term is considered unperturbed and the wave amplitude varies slowly
with time relative to its oscillation period. Neglecting the variation of the distribu-
tion function is justified in this approximation if the characteristic time of this
variation is much larger than the time of wave damping with a linear Landau
damping rate y(. It is natural to choose the bounce period of the resonant electrons
trapped by the wave electric field, 7, = (2m, /ek%)'/?, as the characteristic time
scale of the distribution function variation in the resonant velocity region. Interest
here is in the opposite limiting case, YT, <1, corresponding to not very small wave
amplitudes, i.e.,

¢ > m,(yE) sek?. (3)

In this limit, in contrast, the wave amplitude is practically constant, i.e. o(x, )=
$ocos(kx — wt), and the resonant particles’ distribution function is essentially vary-
ing. To study the evolution of the distribution function, consider the electron
trajectories in the phase plane (Fig. 4.1.1). In a coordinate system moving with the
wave, these trajectories can be found from the conservation law of total energy,
& =m0*/2— ¢ycos kx. The electrons with & < e, are trapped by a wave, and the
electrons with & > e¢y are untrapped. It is convenient to consider the distribution
function in terms of the energy and angle (&, 9) variables, where & defines th

trajectory and & defines a point on the latter. In the problem under consideratios

the function f depends initially on both & and #, but later strong mixing over the
phase of particle motion along the trajectory takes place. To prove this, consider the
behavior of trapped particles. Two particles at neighboring trajectories, i.e., two
particles with somewhat different energies &, and &,, have, generally speaking,
somewhat different frequencies of rotation in phase space (see Fig. 4.1.1), w(& -
w(&,) = (dw/dEXE, — &,). If these particles start moving with the same phase 9,
then after a time period Ar ~ 1 /( w; — w,), their phases will deviate from each other
by A#~1. This is how phase mixing takes place, and as a result, the function
becomes constant along the trajectory if one considers the distribution averaged even
over a small & interval. Similar arguments can be applied to untrapped particles if

Y
e ——
<<
B Iy
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the function f is periodic in the space. The energy & dependence of the particle
distribution function can be explicitly obtained in terms of elliptic integrals (see
Chapter 2.2 by Oraevsky).

The case when two monochromatic waves with amplitudes of the same order are
excited in a plasma has no simple analytical solution. However, if the phase
velocities of these waves are so wide apart that the region of the electrons trapped in
the first of these waves does not overlap with the region of the electrons trapped in
the second wave, then their mutual interference can be approximately neglected
and the evolution of the distribution functions in these phase space regions can be
considered independently, as in the case of one wave. Qualitatively new, effects
appear in the opposite limit, i.e. for

2ego/m,)"?>| 24— 22, @)
1 2

Then the electron trajectories nearest the separatrix of the regions of trapped and
untrapped electrons are essentially perturbed and cannot stay forever inside one
- region. Under the action of mutual disturbance they are transferred from the
trapping region of one wave into that of the other wave, i.e. their “collectivization”
takes place. The dynamical description of the electron motion becomes so com-
plicated that the use of computers is necessary. The problem is much simplified in
the case when a large number of modes are excited in a plasma and the trapping

regions of these modes overlap. Then, the statistical description can replace the
dynamical one.

Let a large set of the plasma oscillations with phase velocities in the range
(0/k) pax > (0/k) > (w0/k) iy, bE €xcited in a plasma. Then the electric field can be
represented in the form of an electric field superposition of the different waves:

E(x,1)= §Ekexp[—i(wkt— kx)]. (5)

It is convenient here to perform the summation over both the positive and negative
k. In order for the electric field to be real, it is necessary to fulfill the following
conditions:

E_,=E}, w_y=wk. (6)

Assume also that the resonances of the neighboring modes overlap, i.e. [compare
with (4)]

(eX|E, 18k /m2%2)* > 8(w/k), (7

where 8(w/k) and 8k are the distance between the neighboring harmonics in the
phase velocity and in the k-space, respectively. The plasma noise energy in the range
(k, k + 8k) is represented here by the product of the electric field spectral energy
density, |E,]?/8x, and the width of the range, 8k. The electric field potential of the
separate harmonic is estimated, therefore, as (|E,|26k)'/2/k. When condition (7) is
satisfied the resonant particles can be transferred from the trapping region of one
wave into that of a neighboring wave. If, in addition, the phases of the different
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harmonics are random, then such a transfer is also random. As a result, the resonant
particles perform Brownian motion in velocity space. In phase space, this Brownian
motion is superimposed on the free particle motion. In time, the Brownian trajecto-
ries cover the whole range of particle resonant velocities in the phase plane:

(w/k)max 0> (w/k)min' (8)

As a result, the distribution function asymptotically approaches a constant value in
the strip of phase space between these limiting velocities, although it still remains
very complicated and rough. The roughness can be smoothed either by using
Coulomb collisions (see Chapter 2.2 by Oraevsky) or by averaging. The true (rough)
distribution function obviously conserves entropy and the averaged one does not.
The time evolution of the smoothed (averaged) distribution function is governed by
the so-called quasilinear diffusion equation (Vedenov et al., 1961; Drummond and
Pines, 1962; Romanov and Filippov, 1961).

In conclusion, note that condition (7) imposes only a lower limit to the plasma
noise level. However, it is obvious that at high noise level the quasilinear approxima-
tion fails, and not only because the nonlinear interaction between the different
modes (discussed later) was neglected. Note also that the spacing between the
wavenumbers of the neighboring discrete modes is usually so small in the case of
large sizes, L, of the plasma volume that condition (7) is more than satisfied. This
means that our arguments regarding electron trapping by the wave field are
applicable not only to separate harmonics but also to wave packets of width 8k,
defined by the inequality (7):

2 2\ 1/4 .
ssa o | E1E I (e
L e /5 (%) ©)

Therefore the random step in velocity space because of Brownian motion is equal to

the width of the electron trapping region in such a wave packet:
w=(e2|E 28k o/ m2k?)"*, (10)

and the time between these steps is equal to the bounce time of the trapped electron:
T=1/kw. (11)

The diffusion approximation describing this motion is valid if the width of the wave
packet with nearby velocities in the sense of (7) is smaller than the width of the
whole spectrum of excited waves. It is convenient to write the latter condition in a
form similar to that of (7):

2 1/4
e DB < () (2 =4(2) 12

When this condition is satisfied, the diffusion coefficient can be estimated from the
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well-known relation

AL 09

4.1.2. Quasilinear diffusion in the one - dimensional case

The most rigorous derivation of the quasilinear equation is based on the solution
of the initial-value problem, taking into account the overlapping of the resonant
regions of neighboring monochromatic waves [see, for example, Altshul and
Karpman (1965); Rogister and Oberman (1968)]. However, in practice, as a rule, one
uses a simpler derivation procedure in terms of the Fourier components of the
electric field and distribution function. As in the case of Landau damping, the
solution of this problem, with the help of Fourier transform, gives the same results
as the solution of the initial value problem, if the same rules are used to choose the
integration path around the pole as used in the Landau damping problem. This
simple derivation of the quasilinear equations, resembling the known Van der Pol
equations, is based on the separation of the fast and slow processes in the problem.
A fast process here is the phase variation of the resonant particles in the wave field.
The variation of the separate Fourier harmonics of the electric field and the
quasilinear relaxation of the particle distribution function are slow processes. The
criterion to separate the electron motion into fast and slowly varying components,
A(w — kv)>y,, 75" can be written in a form of limitation on the width of the
excited plasma wave packet and on their growth rate. To do this, express the time of
the quasilinear relaxation of the resonant electron distribution in the velocity range
(12) through the velocity space diffusion coefficient (13):

= [4(0/K)T/D = [a(a/K)P/(SIEF/ m2k?). (14

As a result, the inequality A(w, — kv) > 77 | is reduced to the condition that the
width of the trapping region is much smaller than the phase velocity spread [see
(12)]. The limitation on the instability growth rate is reduced, then, to an inequality
similar to that represented by (3) with the effective potential Dretr = (|E |28k o)/ %/ k.

The fulfilment of the above stated conditions permits one to represent the particle
distribution function in the form of a sum of the slowly and rapidly varying parts:

f=rf(v,t)+8f(x,v,1). (15)

Averaging over a time interval large in comparison with the fast time of the
problem and smaller than the quasilinear relaxation time, and also averaging over a
space interval large in comparison with the wavelength gives, in accordance with our
definition,

(1) =folo,1). (16)
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For the rapidly varying part, one can use the linearized equation (1):

f, 9 e, 0.
3t T P%x meE(x’t)aof°~0’

i (17)

where E(x,t)=— d¢(x,1)/dx is the plasma wave electric field. Here the rapidly
oscillating nonlinear term (eE/m ) 38f/ dv) responsible for the nonlinear interac-
tion of the different modes is neglected and will be discussed later. Since the
function f, changes very little during one period of oscillations, to find 8f onecan
use the WKB approximation in time, and then perform the Fourier expansion of the
perturbation electric field and of the rapidly varying part of the distribution
function:

B 1) = T E(t)exp[ gt~ k)] | (18)

Sf(x,v,t)=§k:fk(v,t)exp[—i(wkt—kx)], (149)

where Imw, = 0. In the case considered here of a slowly changing background the
expansion coefficients also vary slowly in time and obey the relations (6).

The equation for the slowly-varying part of the distribution function is obtained
by simple averaging of the kinetic equation (1), performed as described above:

3fo/0t=(e/m)(E(3/90)8f). (20)

Here the relation (16) is used, and it is assumed that a steady electric field is absent
in- the plasma. The term on the right-hand side describes the distribution variation
under the action of the mean square effect of the fast electric field oscillations. With
the help of the relations (18) and (19), the averaging is performed explicitly:
N S
T }EEk(t) avfk(v,t)- . (21)

me

The terms with k, = k, disappear as a result of averaging. In agreement with the
linear theory of plasma waves, the Fourier coefficient, f, (v, 1), is represented in the
WKB approximation by (see Chapter 2.2):

_(= L) i -
Ji= (mc)E"(t) Jo (Pwk—kv-i-i}'k +78(w, k”)), (22)
where the symbol P denotes that the velocity range given by jw, — kvl <y, is
excluded. Introducing this epxression into (21) gives the quasilinear equation for the
slowly-varying part of the distribution function in the form of the velocity diffusion
equation: ‘

8fy 4 . 3
9 " 30030 ’ (23)
where
e? v, ‘
D(t),t)=——22|Ek|2(P——--——k—.2—-——2+7r8(wk—kv) . (24)
me & (kv — )"+ ¥
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The evolution of the wave amplitude and hence the dependence on time of the
growth (damping) rate v, is defined here by linear theory relations (see Chapter 2.2),
where instead of the unperturbed distribution function there enters the distribution
function, f(x, v, t), averaged along the complicated particle trajectories:

(3/INE () =2v () E, [, (25)
where
n0= (3o ) 21| (26

The equations (23) and (25) form a complete set of equations describing the
plasma behavior in the quasilinear approximation. Two terms in the diffusion
coefficient (specifically, the §-function term and the principal-value part) have
different physical meaning. The 8-function term is positive-definite and responsible
for smoothing the distribution function in the resonant region. This is an irreversible
process. On the other hand, the principal-value term describes a reversible process
since 2y, | E, |> = 8| E,|?/ 3t changes sign when the time is reversed. This apparent (or
“adiabatic”) diffusion reflects the nonresonant particle response on the variation of
the wave amplitude. To prove this, rewrite the part of the quasilinear equation (25)
responsible for the nonresonant diffusion in the form:

27)

I m2 oo dv

dfy  e* 8 Yl Exl? 3fy

=0 Z 2
k w

where, in the case of Langmuir oscillations considered here, the denominator

[(kv — w,)? + ¥2] is approximated by wZ,. Multiplying both sides of this equation by

m.v?/2 and integrating the result over the velocities, with the help of (25) for the

wave growth gives:

dme p¥eo . 2 _d ¢ IES
a2l dov*fy(v,1) dt% Pt (28)

In other words, the electron kinetic energy within the main part of the distribution
function increases together with the wave electrostatic energy. This is, apparently,
the consequence of the well-known result that the total plasma wave energy consists
of two equal parts: the electrostatic energy and the electron kinetic energy. Similarly,
it can be shown that the main part of the distribution also carries the momentum
attributed to waves. However, to do this one should keep the velocity dependence of
the denominator, [(w, — kv)? + v2], in the diffusion coefficient expression (24). This
dependence provides a shift of the distribution function maximum in the direction of
wave propagation which corresponds to taking the momentum into account.

The character of the resonant quasilinear diffusion can be most easily illustrated
in the example of electron beam relaxation in a plasma [Fig. 4.1.2(a) and (b)}]. The
presence of the §-function in the diffusion coefficient (24) assumes the transition
~ from the discrete spectrum to the continuous one. Mathematically this transition can
be performed considering the possible wave spectra in a system of finite size L with
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L —s 0. The distance between the separate Fourier harmonics in the wavevector ;
space tends to zero since 8k =2z/L — 0. Therefore, instead of the harmonics

summation, one can perform the integration over the wavevectors using the simple
relation:

§= ~2%fdk, ’ (29)

taking into account that the number of states in the unit dk of wavevector space is
equal to the length of this element divided by the elementary interval 8k correspond-
ing to a single oscillation.

As a result, the diffusion coefficient takes-the form:

D =(e*/m)E, (k= w,/v) /o~ dw, /dk, (o)
where contributions from both positive and negative k are included in the sum over
the harmonics. Assume that the initial wave spectrum is described by some smooth
function of (w/k) [see Fig. 4.1.2(a)]. The waves with phase velocities such that
(3fy/3v)v=w, /k)>0 should grow and, after some time, be large enough to
cause the velocity diffusion of the resonant electrons. This diffusion results in the
flux of resonant particles in the direction opposite to that of the distribution
function gradient, i.e. towards the lower velocities. Though the distribution function
gradient decreases it continues to be positive, and this leads to wave growth in the
low phase velocity region as well. In the limit as ¢ — co, the distribution function
should relax to the state in which there will be no parts of the distribution function -
with a positive derivative. Obviously, this condition is satisfied by the distribution
with a “plateau” extending from the velocities of the beam particles to the
Maxwellian tail of the thermal particles. The height of such an asymptotic.distribu-
tion in the resonance region is defined uniquely by the condition that the number of
particles is conserved in the process of quasilinear diffusion [see Fig, 4.1.2(b)]:

'[;szf)(v’t=0)dv=fo(t”"’°°)(vz —v,);

fo(”nt“‘o)'—‘fo(%,’:O)=fo(f“"°°)- (31)
fe fe
a) t=0 b t+ce
g 12 0 ;, V'z v
HEN e (22|
W w/_\m
0 v 0 v

Fig. 4.1.2. Initial (a) and time-asymptotic (b} particle distribution and wave spectrum in the case of a
spread beam interaction with a plasma. ‘
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To find the asymptotic shape of the wave spectrum, rewrite the
(23) with the help of the wave

expression (30) in the form

quasilinear equation
equation (25) and the resonant diffusion coefficient

d d e? 2k 2 W, do,
3| oo, 1) %Em@l( ——U-)/D““cﬁg =0. (32)

Assuming that the initial plasma noise energy
small in comparison with the spread of elec
equation the spectral energy

in the resonant phase velocity region is

tron beam energy, by integrating this
density of the plasma waves is obtained:

2
|E? = 20m, % 1o [ [ fo(,1~ )~ fy(,0)] do, (33)

condition (31) [see Fig. 4.1.2(b)].

It should be noted that the applicability of the quasilinear theory of beam
relaxation to a plasma is not great since, due to specific properties of Langmuir

waves, their nonlinear interaction is already important for very small wave energy

_ density (see Chapters by Shapiro and Shevchenko; and by Rostoker and Sudan in
Volume II).

4.1.3. Relaxation in the case of two- and three - dimensional wave
spectra

The quasilinear diffusion equation derived above for the
one-dimensional wave spectrum is easil
or three-dimensional spectra:

simplest case of a
y generalized to the more general case of two-

Ay 3 J .
¥ —a,BZﬂ EDaﬂEﬂ):
2 odk kak Y
Daﬂ=f3f SIE2—=L|p St 718(w, ~ ko) |. (34)
me (2w) k (0 = kv)*+

Although it looks very much like the one-dimensional case, its solutions are
qualitatively different from the solutions for a one-dimensional spectrum. The
reason for this is an essential increase of the resonant velocity region, even for a
wave packet localized in k-space. Since the qualitative differences between two- and
three-dimensional relaxatio

ns are the same, only the two-dimensional case, which is
easier to observe, is considered in detail here,

- The relaxation can be vi
- (equal-value) curves of the

sualized in the form of a time variation of the level
distribution function, f(v,, v,, 1) (Fig. 4.1.3). Let these
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lines be circles at the initial moment (isotropic distribution), and consider first what
happens when a sufficiently narrow wave packet propagates in a plasma in the
x-axis direction. In this case the quasilinear diffusion over the o, velocities results
only in a plateau formation in the narrow resonant velocity strip. The state of the
plateau corresponds to level lines parallel to the v.-axis and smoothly matching the
circles outside the resonant velocity strip. Such reconstruction of the distribution
function requires a finite wave energy in the wave packet. When, in addition to this
packet, the other packets propagate in a plasma at different angles to the x-axis,
then its own level-line system should correspond to each of those packets. It is
obvious that in the intersection region of different resonant strips the distribution

function should have the same constant value. Therefore, in the case when the =

resonant strips of different wave packets mutually overlap and densely cover some
range of angles, the distribution function has to be constant in this whole region up
to infinitely large velocities. It is clear that the relaxation to that state would require
an infinite energy supply from the waves. With finite wave energy, either the waves
damp to zero or only one or several nonoverlapping narrow wave packets are left out
of the whole wave spectrum, before relaxation can be completed.

As an illustration, consider the simplest case of a two-dimensional wave packet
consisting of waves with the same phase velocity (w/k) and possessing cylindrical -
symmetry. The resonant region in the (v, v,) plane is outside the circle with the
radius (w/k) since every part of this region belongs to at least two resonant strips.
Because of the symmetry of the problem, the solution for fo has to be isotropic:
~ fo=/fo(v} + v}). Taking into account this isotropy, one can perform the azimuthal
angle integration in the quasilinear equation (34) and represent it as follows: ‘

3fo_ esz 21 3 2 _ .2 2 ._1/2—];—_6_ . t
W g B 3 () ke e

Here, the integration was performed explicitly, assuming that the spectral energy
density of a sufficiently narrow wave packet can be approximately represented by -
|E|* = 27| Eg|*k ~'8(k — ky). The quasilinear diffusion approximation is still valid

here since the overlap of the different resonant regions is provided by the angular

Yy

\\
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spread inside the wave packet. Particles inside a circle with radius (w/k) are not

resonant with waves and therefore the distribution function stays unchanged in this
region.

- The diffusion equation should be complemented by the wave equation (25), where
the expression for y, in the general case of an arbitrary wave propagation angle is:

yk(z)=(%)wk(%ﬁ)zgfdvkag%(—g)—a(w—k-u). (36)

Again using the velocity distribution isotropy,

w2\ oo afy(v,1) P AR
2| O oA 5 @
Y (1) = 70 e Lk/kdv 5o 0= . (37)

An exact solution of (35) and (37) can be found by introducing an additional
simplification. When the initial wave energy is sufficiently large, then as a result of
diffusion toward higher velocities, the inequality v > (w/k) holds for most of the
velocity space occupied by the particles. An example of a situation for which one can
neglect (w/k) in comparison with v in (35) and (37) is electron interaction with ion
sound waves, since (w/k) = (T, /m;)'/* < (T, /m,)"/? ~ v (see details in the Chapter
by Sagdeev in Volume II). In the case of Langmuir waves, this applies only after a
sufficiently long time for the distribution function to spread to large values of v as a
result of diffusion,

In the limit when v >> (w/k), one can neglect the terms of the order (w/kv)? <1
in (35) and (37) and introduce a new variable:

7= (25¢%/m?) [(¥/K3)|E ) dr = [o(r)ar. (38)
0 0

Then (35) can be rewritten in the form

o 4 91 3
ar ~ 35 352 5 g2l (39)

Independent of the initial distribution function, in the limit 7 - oo, this function
asymptotically approaches the self-similar solution (Sagdeev and Galeev, 1969):

2afy(0,1>00) = ’D(t')dt’)_Z/sexp(-— o/ ['D(r)ar), (40)
- where

A=[5/T(%)]ijﬁ)(y,t=0)odv, v>w/k.

Substitution of this solution into (37) gives the asymptotic behavior of the growth
. rate:

Y = — A(.ozoozl"(5)/2k3(‘/’D(t’)dlf’)B/5 (41)
k : *p 5 o .




694 A.A. Galeev and R.Z. Sagdeev

Thus, the particle distribution function and instability growth rate evolution is
described in an explicit form through the integral of the spectral wave energy
density. The equation (35) for the spectral energy density can be reduced to a
second-order differential equation whose solution is cumbersome, Nevertheless, the
expected qualitative behavior of this solution is sufficiently evident. The wave energy
damps and, finally, in the limit as 7 — oo it damps to zero. The damping rate that is
initially equal to the linear Landau damping rate decreases due to the variation of
the distribution function slope. In the limit as ¢ — oo, the growth rate (y,) ap-
proaches a constant value as the energy needed to reconstruct the distribution
function is exhausted. This is essentially different from the one-dimensional case
when a “plateau” is formed.

It should be noted that in the previous consideration the wave spectrum was
assumed to be isotropic. However, in the presence of a magnetic field the same
equations [(35) and (37)] are still valid, even in the cases when the excitation
mechanism (current-driven instability, drift-cone instability, etc.) results in wave
spectrum anisotropy. In these cases the distribution function isotropy in the (v,, v,)
plane is a result of particle cyclotron rotation in the magnetic field directed along the
z-axis (see the chapters by Galeev and Sagdeev, and Trakhtengerts in Volume II).

4.1.4. Plasma quasilinear relaxation’in a magnetic field
(two - dimensional quasiplateau) :

In the general case of electromagnetic waves in a plasma immersed in a steady and
uniform magnetic field B, the equation for the distribution function J; of each
particle species j is:

3]‘;- €; afj €; 1 af}
797+”'fo+7n72[”>(3°]'ao+'nTj(E‘+?["XB'])'FE'O’ (42)

and the Maxwell equations determine the electric (E 1) and magnetic (B,) fields. The
distribution function is again represented as the sum of the slowly ( fy;) and rapidly
(8;) varying parts. The expression for § f; is found by linearizing (42) and integrating
the resulting equation along the unperturbed particle trajectories (see Chapters 2.2
and 3.3):

e : oyt
8f,=— —%/ dt’(Ek(t’)+%[vX Bk(t’)])--aiv- expli(kr(r)—w,t)],

J
m, ~J_

-

(43)

where the Fourier expansion (5) for the electric and magnetic fields has been used.
An appropriate quasilinear equation is obtained by averaging (42), and retaining the

r
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term quadratic in the wave amplitude:

T =T (0 ox B0
x [ dzf(Ek(t')+%[vxBk(t')])-‘i)’:‘;f
X exp{iw(r — 1) —ik[r—r(2')]). (44)

Performing the integration along the particle trajectories explicitly, the resulting
velocity diffusion equation is:

a / A -
"g?i=ZQ;;IE,‘[2w8(wk~k"v"+lwcj)ijij, (45)
)

where the operator O i« and the conjugate operator ka are linear combinations of
the derivatives on different velocity components, and the resonance conditions are
given by the 8-function (the value of the integer / depends on the type and
polarization of the wave). The explicit expressions for these operators will be
obtained in Volume 11, Part 6, in a discussion of different applications of quasilinear
theory. Here, the discussion is limited to the relaxation character described by such
equations. ‘

- First, it should be noted that the wave-particle resonance condition in a magnetic
field imposes a limitation only on the particle velocity along the magnetic field.
Therefore, in the case of a narrow wave packet, quasilinear relaxation takes place in
the narrow strip of the resonant velocities. Apparently, the quasilinear diffusion
velocity within this strip leads to a state where the diffusion stops. The asymptotic
particle distribution can be found from the equation

ijfoj'(t - Oo)lv“a(w+lwcj)/k” =0. (46)

The level lines of the steady velocity distribution function satisfying (46) are the
characteristics of this partial differential equation.

In the case of a uniform plasma in a magnetic field, when the particle perpendicu-
lar velocity distribution is isotropic the operator can contain only the derivatives
d/dv, and 3/ dvy. In agreement with that, the characteristics of (46) are some lines
in the (v, , v;) plane governed by the equation in a general form:

“w,(02,v,) = constant. (47)

The subscript & here takes into account the fact that the level curves generally
depend on the wavevector. When the packet is narrow, then the characteristics for
different v, are far enough from each other and, as a result of relaxation, a
“plateau” is rapidly formed along these lines although the height of the “plateau” is
“ different for different v, . The plasma state with such a plateau is stable, as in the
case of one-dimensional relaxation in a plasma without a magnetic field. This can be
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proved by explicit calculation of the damping (growth) rate, with the help Vof: line,
theory. L '
For example, in the case of an anisotropic plasma instability resulting in excita-
tion of Whistler waves propagating along the magnetic field, the growth rate is zero
(see Chapter 3.3): g e

ko) dfy. koL 8
fdta o2 [[1= 51 foe + K% 0o 0 (@)
B v”'*(w+w,x)/kn !

w, |dv, wg dy,

The corresponding equation for the steady electron distribution function is obvi-
ously: ;

- ko 3o + koo 3fy.
w, [ do; w, 0o,

-0, | (49)

vy =(w+ wm)/k“

Note that in this particular case the equation for characteristics playing the role of
_Jo; level curves for ¢ — oo has the form of a circle equation with the center at a
distance w/k; from the origin (see Fig. 4.1.4):

*w,‘(vi , v") =02 /2+ vﬁ/2- wo,/ky. (50) '

Anisotropic plasma relaxation will be discussed in detail in. the chapter by
Trakhtengerts, Volume II. Here, the discussion of general properties of (45
continued for broad wave packets. In this case, quasilinear diffusion caused
interaction with one wave out of the wave packet tends to establish a plateau al
the characteristic corresponding to the wavevector of that wave. Since the different .
characteristics are intersecting, a stationary state can be reached only by forcing Jo;
to be constant in the whole resonant velocity region. In this sense, the situation is

_ similar to the case of the two- (or three-) dimensional wave packet in a plasma
without a magnetic field. However, in those cases the angles at which the characteﬁsf
tics intersect are small, a “quasiplateau” occurs. This is due to the fact that the
plateau along the characteristics is formed much faster than the equalization of the -
distribution function across them. :

/1

1)

ol 5
K2 Imax\ Kz fmin Kz

Fig. 4.1.4. Initial (——) and final () level curves of the resonant electron distribution function in the
case of the Whistler packet.
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Finally, note that in the case of nonuniform plasma the operator Q, is a linear
combination of the spatial and velocity derivatives and therefore one can refer to
quasiplateau formation in the mixed space of space and velocity coordinates (see the
chapter by Horton in Volume ).

4.1.5. Influence of collisions on the wave — particle interaction

It has been shown that in the case of one-dimensional or quasi-one-dimensional
(in a magnetic field) quasilinear diffusion in a velocity space, the distribution
function is strongly distorted near the resonant velocity region. For narrow wave
packets this results in such a sharp increase of the distribution function derivatives
that one should take into account long-range Coulomb collisions sensitive to the fine
structure of the distribution function. The latter statement is mathematically ex-
pressed through the fact that the Landau collisional integral contains a term with the
second derivative in velocity.

As an illustration, consider the effect of collisions on one-dimensional plateau
_formation. In this case, quasistationary distribution occurs under the influence of

two effects: quasilinear diffusion leading to a plateau, and collisions tending to
 restore the Maxwellian distribution function. A balance of the corresponding terms
in the kinetic equation has the form:

O=E%D(v)§£+St{f}. (51)

- The following approximate expressions describe a qualitative picture of the relaxa-
tion for the quasilinear diffusion coefficient and the collisional term,

D(v) =(7e’/m2) LIE (0, ~ ko) = X E?) /m2;
k

d2
K1Y =v(w/k)' = (fu=1),
where fy; is the Maxwellian distribution function. Integrating (51) gives

E_Z:Eiu/ 1+ eXEYH (52)

do  dv mov(w, /k)* | ,
Then, the slope of the distribution function found above is introduced into the
~ damping rate expression, y = (7/2)(w’/k?)(df,,/dv)X(v = w/k).

- The result is:

o  y='y,"/[i+eZ{EZ)/mng(wk/k)z]. (53)

The effect of collisions is now clear. When the wave amplitudes in a packet are
sufficiently small then the damping rate approaches the linear Landau damping rate,
y". This is due to the fact that collisions have enough time to restore the slope of the
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distribution function in a resonant region corresponding to the Maxwellian velocity
distribution. In the case of large amplitudes, the slope of the distribution function is
proportional to the frequency of Coulomb collisions and inversely proportional to
the level of plasma waves forcing the distribution to a state approaching a plateau.
In agreement with this, the damping rate drops. The expression (53) can be
generalized to the arbitrary case of relaxation to a “quasiplatean”:

y=yY/(1+ 1 /1), (59

where 7, is the characteristic time to reach a local Maxwellian distribution under the
influence of collisions (or, more generally, an unstable distribution formation under
the influence of external forces), and 7, is the characteristic time of “quasiplateau”
formation under the influence of the wave packet.

These arguments are particularly important for drift instabilities since, in a
rarefied plasma, rare Coulomb collisions are not able to stop quasiplateau formation
in the (x, v,) space or instability saturation. As a result of this, anomalous diffusion
also stops (see the chapter by Horton in Volume ).
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4.2.1. Dynamic equations for plasma wave resonant interaction

Thus far, in the framework of linear and quasilinear descriptions of a plasma
containing collective excited oscillations, the interaction of different oscillation
modes has been neglected by considering them as a simple superposition of the
separate modes. This could be justified by the fact that the mode coupling effects are
caused by the nonlinearity of the medium and therefore they are weak when mode
amplitudes are small. But even a weak interaction can show its effect after a
sufficiently long time. Naturally this time is longer when the oscillation level is
lower. In the lowest expansion order, the time after which the interaction effects
start to be important is inversely proportional to the wave energy, W. In addition, as
shown previously, the quasilinear relaxation of an initially unstable particle distribu-
tion under the influence of developing oscillations can stabilize their growth at best

Handbook of Plasma Physics, Eds. M.N. R, bluth and R.Z. Sagd:
Volume 1: Basic Plasma Physics 1, edited by A.A. Galeev and RN. Sudan
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during a time inversely proportional to the wave energy. This means that neglect of
nonlinear wave interaction cannot be justified, even for small amplitudes; to
estimate its importance one should compare the quasilinear relaxation time with the
time of energy redistribution for different modes.

As mentioned previously, mode coupling effects are caused by plasma nonlinear-
ity. Precisely because of the nonlinearity, forced beat waves at mixed frequencies
appear in a plasma and can augment the resonance with plasma eigenmodes.
Whether or not resonance conditions are satisfied depends, in turn, on the dispersion
of the appropriate waves in a plasma. For example, in the simplest case of quadratic
nonlinearity, the beats at the frequency ( wy, + w ) with wavevector (k, + k,) can
reasonate with some other eigenmode only if the resonance condition in the form
Wy, & @y, = 0y 4 i, I8 satisfied. Possible dependencies of the frequency on the wave-
vector in an isotropic plasma are shown in Fig. 4.2.1. Using simple geometrical
arguments (Vedenov et al., 1961), it is easy to verify that in the case when all three
interacting waves belong to the same oscillation branch, the resonance condition can
be satisfied only for branches 2 and 4. For branches 1 and 3, the interaction between
oscillations of the same type is possible only in the next expansion order (of the
wave energy) when the cubic nonlinearity terms are retained. This does not mean, of
course, that the lowest-order resonant interaction of types 1 and 3 waves can be
neglected, since the interaction of two waves of the same type can take place in this
case with the involvement of a third wave of another type. [Note that the linear
dispersion law for sound waves in a hydrodynamic medium allows the interaction in
all orders of the perturbation theory and corresponds to the strong mode coupling
case, which is outside the scope of weak turbulence theory.] ‘

As an example to illustrate the technique for deriving dynamical equations for:
interacting wave amplitudes, consider a mixed interaction between Langmuir and
ion sound waves in nonisothermal plasma, having dispersion of types 1 and 3,
respectively (Oraevskii and Sagdeev, 1962). Since the resonant interaction of waves
does not involve particles, it is convenient to perform all computations in the
framework of the simpler hydrodynamic description. In the next Chapter (4.3), a

0 IK]

Fig. 4.2.1. Dispersion curves in an isotropic case. A resonance between three waves of the same type is
possible for the dispersion of the types 2 or 4 and impossible for the dispersion of the types 1 or 3.
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more rigorous kinetic approach will be shown to give the same results for this case.
The equation for interacting waves in terms of the polarizability of the medium by
expansion in the wave amplitudes will also be included.

A plasma in which Langmuir and ion sound waves are excited is described by a
system of equations consisting of the momentum and continuity equations for the

electron and ion components separately, and a Poisson equation for the wave electric
field:

njmj[é?vj/at—*-(vj'V)vj]=-—7}an+ejnjE; (1)
on; /9t +div(n;v,) = 0; (2)
divE=—4x) en,, (3)

J

where 7, v, and T} are the density, velocity and temperature, respectively, of the
species; and E is the electric field strength. By restricting attention to the simplest
case of one-dimensional wave propagation along the x-axis, then labeling by the
indices 1 and 3 the hydrodynamical parameters of the Langmuir waves, and by the
index 2 the corresponding parameters of the jon-sound wave, one can represent

the electric field, the density and the velocity of the electron and ion components in
the form:

E= ZEQ(X, t);

ne=ng+n(x,1)+ns(x,t)+ Ny(x,1);

ni=ny+ Ny(x,1);

t=0,(x,1)+0,(x, 1)+ Vy(x,1);

v, =V,(x,1). )

Considering all the wave amplitudes to be small, and using perturbation theory to
solve equations (1)-(3), in a linear approximation they are reduced to the wave
equations for Langmuir and ion sound waves. In the next approximation, quadratic
terms are retained for wave amplitudes in (1-(3). As a result:

%+—£:El+m§0%=”%(v3%)+z%%("31v2); ()
-%—’;'--f-no%:‘%(]vz%"'”ﬁfz); (6)

n + Z;]r;%=0; )
mié;-;-z-—-eEz-zO; | (®)

enyE, + 7;% = %(nomcv:vz)—ﬂg% n,],:3 ; 9)
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The left-hand sides of (5)~(7) describe the Langmuir wave and the right-hand sides
couple it to the ion sound wave and a second Langmuir wave. Similarly, the
left-hand sides of (8)~(10) describe the ion sound wave and the right-hand sides
couple it to two Langmuir waves. The equation for wave 3 is not included here
because it is easily obtained by the interchange of the indices 1 and 3 in 5y
Since the hydrodynamic description of Langmuir waves is valid only for waves with
wavelength exceeding the Debye length, Ap, = v, /@y, then a small contribution of
electron thermal motion to the wave dispersion should be taken into account only in
the linear approximation. This permits one to neglect the last nonlinear terms on the
right-hand sides of (5) and (9). The relative importance of the remaining nonlinear
terms in (5) and (6) for the Langmuir waves is estimated by comparison with the
corresponding linear terms:

_9 dv, kv,
thax(%VZ)/ It e,

_ 0 d Nyv,
Rz“a(szz)/ax("ovx) P

where k, and w, are the wavevector and the frequency of the « component. Use of
the linear relation between the parameters ¥, and N, in the sound wave gives
R, ~ (@, /w,)R, > R,. Therefore it is sufficient to retain in (5)-(7) only the
nonlinearity terms corresponding to R,. By simple transformation, (5)~(10) can be
represented by inhomogeneous equations for E; and N,:

—S R E -t L2, (1)

a? pe m. gx? 9t ny at’
PNy PN —Qz—(i%-%‘) (12)
T ax? Awelm, 9x2\ 9t )

where ¢, = (T, /m;)"/? is the ion sound speed in a nonisothermal plasma.

As in quasilinear theory, the weak nonlinear wave interaction results only in a
slow variation of the amplitude in time. In accordance with this, the oscillations of
E, n, and v values of a wave can be represented in the form of harmonic oscillations
with slowly varying amplitude. For example:

E,(x,1)=E, (t)exp[ —i(w, t ~ k,x)]. (13)

Neglecting small nonlinear terms in (11)~(12) responsible for wave coupling shows
that the wave frequencies wy, are related to the wavevectors k, by known linear
dispersion relations. A slow wave amplitude variation in the next approximation can
take place only when the coordinate dependence of the left- and right-hand sides is
the same, i.e. the wavevector resonance condition, k, = k,+ ks, is satisfied. This
variation is slow in comparison with the oscillation period (ie. /9t < w). The
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equations describing it are obtained by the substitution of (13) into (11) and (12):
i 3Ekl _ (wk3 + wkz)wk3
at 20, 1y

N, )
2E,qf:xp[l(mkl ~wk2—wk3)t]; (14)

ON,,  kjw e, E,E} .
it = m‘wk‘wl; éﬂk exp| —i(wy, — @, — @ )1]. (15)
i KryTpe
Finally, these equations should be rewritten in terms of the probability ampli-
tudes, so that the equations for interacting waves take a symmetrical form character-
istic of a Hamiltonian system (Galeev and Karpman, 1963). The relation between
the probability amplitude and the amplitude of the oscillations of the physical
parameters in a wave is found using the expression for the probability amplitude
squared, i.e. the number of wave quanta, in terms of the wave energy:

lel =n, =W, /0. (16)

The Langmuir wave energy is approximately the sum of two equal parts: the electric
field oscillation energy and the kinetic energy of electrons participating in oscilla-
tions, ie. W, =|E, |*/2w. (Here, it was taken into account that (E2) = 2E, )
- Similarly, the ion sound energy consists of the plasma compression energy and 'the
~ion kinetic energy: W, = 2N, |*T. /n,. In agreement with that, thc probability
amphtudes are defined as

E, (1) Ny
C (l)= 1.3 , Cp.= 2 .
ki3 2l 1/2 2 nglw,.|/2T, 1/2
ki3 ol%We, e

As a result, (14) and (15) take the form of the Schrodinger-type equation in the
representation (w; — w;, — @y, <K @)

(17)

10C,, /81=V, 4. 4 Ci Crexp| —i( @y, — 0, — )], (18)
19Cy, /8t =Vy, 4, 1 CECexD[i(w0y, + @4, — @ 1], (19)
where:
. 1/2 .
thkz.k; =V, -k;.k,ﬂgn(“k.» wkz) =- (“"k‘wkzwkal/s'”n()];) signw, .

Such a relation between the matrix elements of the interaction operator in (18)
and (19) is a consequence of the Hamiltonian form of the two-fluid hydrodynamic
equations. Strictly speaking, this relation has been proved only with accuracy of the
terms of the order ~ (w;, /w, )< 1. When this mequahty is satisfied then the
so-called adiabatic approxm]auon for wave coupling is applicable and this allows
simplification of the derivation of the dynamical equations. The plasma density

* variation in an ion sound wave is actually adiabatic with respect to a high-frequency
Langmuir wave packet. Therefore, the equation for Langmuir waves can be obtained
simply from the linear wave equation, taking into account a slow variation in plasma
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density:

2 4 2 ,
BE Tnye? E= 4qe NE. (20)

ar? mg me
The influence of the Langmuir waves on the ion sound waves is described by
high-frequency pressure added to the usual kinetic pressure:

nom(v*) = (E?)/4m.
As a result, the ion sound equation takes the form:
3? 1 9? EE*
V= (TN2 = ) (21)

It is evident that these equations coincide with (11) and (12) in the limit KAy <1
and (w, /w, ;) < 1.

4.2.2. Criteria of the transition from dynamical to statistical
description

A detailed investigation of resonant interaction of finite amplitude waves is the
subject of a later section devoted to parametric instabilities. Here, the particular case
is considered of the decay of a wave with frequency w &, and wavevector k, into two
waves, (w,k,) and (@, k3), with infinitely small amplitudes (Oraevsky and
Sagdeev, 1962) In this case, the amplitude of the initial wave (pumping wave) can be
considered constant. As a result, the system of equations (18) and (19) becomes
linear and its solution has an exponential form:

Ckl s Ckz -~ ey‘. (22)

Using the symmetry relation for matrix elements in these equations, the growth rate
expression is obtained (Galeev and Karpman, 1963):

172

v = Wiy b ICOPsign( 0 00, — 1 (40)] 72, (23)

where dw =w, —w, —w, is the frequency mismatch of three interacting waves.

¥ Perturbations grow only when the signs of the frequencies w x, and w,are different,

i.e. when the initial wave frequency, fwy,} is larger than the frequen01es lwy,| and
|owy,| of the pumped waves. In other Words the initial quantum energy accordmg to
the energy conservation law is approximately equal to the sum of the resulting
quanta energies, and therefore it is larger than the energy of either of these quanta.

Here, it should be noted that, in agreement with the quantum mechanical
uncertainty principle, for the finite mode growth time interval it is not necessary to
satisfy exactly the frequency resonance condition. As a consequence, even in discrete
systems, two waves with given (@, k3) and (@i, ky) can interact resonantly
through the wave packet (w, , k).
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A more detailed discussion of the conditions for the transition from three-wave
interaction to many-wave interaction follows. For one-dimensional propagation of
the waves considered above, the resonance condition has the form (here, the more
correct Langmuir wave dispersion relation derived from kinetic theory is used);

ky=k,+ ky;
wpc(1+%k,2)\2D)=“— kaes + wp (1+3K20%,). (24)

Obviously, due to the smallness of the ion sound frequency, these conditions can be
satisfied only for ky=—k, and k, = 2k,. In a system of size L, the wavevector -
spectrum is discrete, with the spacing between the neighboring harmonics 8k = 27 /L.
For Langmuir waves this corresponds to a frequency spacing of the order of
dw = (dw/dk)8k = 3k 8k )\"bwpe. Therefore, the transition from the three-wave in-
teraction, when conditions (24) are exactly satisfied, to the many-wave interaction
takes place for an initial (pumping) wave amplitude higher than critical:

Wi k0, 1, PICs12 > 1 (800 / 3K, ) K2, (25)

As the amplitudes of the waves (@, k1) and (w, , k,) grow, they start interacting
between themselves without participation of the initial wave (@, k3), i.e. via growth
_of nearby harmonics. It is precisely this overlapping process of the different possible

esonances with width of order » that results in the stochastization of the interacting
wave phases. ... -

The phase stochastization time is estimated for the stage when all the spectrum
harmonics are of the same order [a more rigorous consideration is given by
Zaslavskii and Sagdeev (1967); and Kaufman (1971)]. At this stage, instead of |C,|?,
the number of coherent waves in a packet of width 8k . enters the expression (23).
The coherence condition obviously has the form -

10w/ 3k) 8k% < IHC?n, 8k, (26)

where J( is the matrix element for the interacting wave packets; i.e. 3 = Wir gk =
constant. This condition is used to obtain the resonance overlapping condition and
the phase stochastization time:

8k, =43C%n, /(dw/ k)’ > a/L; (27
7' =4(3w/ 3k )8k =29Cn, /(8w k). © o (28)

Note that this time exceeds the decay time of a given monochromatic wave.
- Therefore, one can speak about the phase stochastization of waves born as a result
- of the decay instability only in the case of a steady pumping wave. A weak

turbulence approximation is still valid if the uncertainty of the frequency resonance
condition does not exceed the ion sound wave frequency spread:

Ake, > (30, 0k) 8k, = 43C?n, /(900 k). - (29)

- Here, the ion sound spectrum width coincides with that of Langmuir waves by virtue
of fulfilment of the wavevector resonance condition. Using the matrix element
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expression found in the course of the derivation of (18) and (19), this condition is
rewritten in terms of the Langmuir wave energy:

LIEN /0T, < 6k AkM2,.
k

It will be shown in the chapter by Shapiro and Shevchenko in Volume II that when
this inequality is violated, instead of the stochastization of Langmuir wave phases
they are fragmentated into coherent entities collapsing to very small space scale.

4.2.3. Wave kinetic equation in the random-phase approximation

Phase mixing as a result of wave resonant interaction allows the random-phase
approximation, in which evolution of the wave field can be described in terms of the
number of wave quanta (occupation number) varying for a given k. In other words,
the wave amplitudes are followed only while averaging over the wave phases. To
obtain the equation for the number of waves, a classical analog of quantum
mechanical perturbation theory is used (Peierls, 1965), as was first done by Galeev
and Karpman (1963); Camae et al. ( 1962). &

As a starting point, the dynamical equation for the probability amplitudes is used,
which is a simple generalization of (18) and (19) to the many-wave case: >

i‘a‘” =2 VG (1) G (2)expli g — wp — )] (30)
Y

The summation over k' here takes into account the fact that a given wave (w,, k)
can interact with pairs of waves, ( Wy, k') and (w,., k"), with wavevectors satisfying
the space resonance condition (k = k' + k). Wave amplitudes are normalized again

in such a way that the square of the probability amplitudes is equal to the number of
waves with given k:

le[2=”k- (31)

With this choice of normalization, the matrix elements sétisfy the symmetry proper-
%  ties, generalizing earlier results to the case of arbitrary plasma modes:

Vewk-w=Vy —-&, —k’,kSlgn(wkwk &)

Vlt,k’,k-k’= kbk—-k k=" —&k, Kk K~k (32)

These properties apply to any Hamiltonian system. Expanding C, in a series over the
interaction operator V-

(1) =CO+CO+CO+ ...
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and substituting the result into (30),

D _: 0O [* 4 .
CW=-i ¥ Clg)c,g,)fo Viw (1) d2;
k' k"

cP=- ¥ [CI&S))(’;('O)C;(’?)_[’dt,ft AtV ok (1)Wir g 0 (27)
K K" q g o o
i 1’
+HCPCOCD [ar [ 4V, 4 (1Y, ,,q,,q,,(t")], (33)
where

Vi (1) = Vi oo, 108t o arexpli(ey, — 0y — )]

I, k=gq
61c,q={0, k=g’ (34)

The values C{” do not depend upon time and correspond to the solution in the
absence of mode interaction. They can be represented in the form of a product of
the positive amplitude and the phase factor, exp(i¢, ). Although the phases ¢, are
defined by initial conditions in any given experiment, nevertheless, it is reasonable to
assume them random, when the conditions described in the previous paragraph are
Satisfi«:d. In the case of random phases, the following relation holds:

{COCP) =I1COP8,, - (35)

Itis used to avérage the variation of the number of waves (i.e. the value|C, |2 —|C{0}?),
giving, in the lowest order,

IGl? =IO +(CPPy +(CRCP* + CO*CP). (36)
Using the values C{" and C{® given by (33), this is rewritten:
IC (1)1 =1, (0)

]
r gy 1 t
) (0) (O ()
) k,_‘: (c,g)c,g,)cé IO fo AtV o (1) fo AtV g g (1)
kg ‘___________J‘-——-’g

It

D OEOeO gy N "

"‘Rezck Ckl C‘ql C;n L dt I/k,k',k"(t )’/(; dt Vk",q’,q"(t )
I L
,——-.—--'

'__-'—.‘-‘ 4 7 I l’ 17 7
~Re2CECHEOCO (41D, . (1) [ 45 Vi gl )). (37)

As a result of averaging this equation over random phases, the product of four
amplitudes, C{?, is reduced to the product of two occupation numbers. Two possible
options of amplitude pairing are shown in (37) by dashed and solid brackets. In the
first term the amplitudes C{’ are combined into the product

ICOPICP = nOn,
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and in the other two terms they are combined into
ICOPICOP = nn

and

(COPICR = nPnf,

respectively. Symmetry properties allow one to write the product of the two matrix
elements entering (37) in the form of its square modulus,

! ’ r
fdt Ve ()
0
with the sign depending on the signs of the frequencies w,, w, and w,.. For time

intervals much larger than the oscillation period of any wave, the time integration
can be carried out approximately:

2
t
’/0 Ar'Vy e (¥)

2
’

4sin® [(w, ~ v, — w)1/2]

(@ = g — w0

2
”/k,k',k"! 8k,k'+k”

= 2
=278(w, — wp — wk”)sk,k’+k”'n,k’,k"l L
As a result, the time variation of the number of waves can be written in the form:

Ang =478t 3 V; g oo [nOn©@ —sign(ww,. ) nOnQ
Pt

—Sign(wkwk»)ng»niq}] a(wk - wk, - (J)ku)ak,k/_*.kﬂ. (38)

This can be represented in the form of a differential equation if the above averaging
procedure is applied at any moment, ¢, thus defining the variation of the number of
waves at the next moment, # +dz. In other words,

An, /At =dn, /dt; nd=n,(1).

Thus, the wave kinetic equation is obtained from (38):
dn .
"# =47 ) Wi xrl X oo — sign(wewpn ) ngny
Kk
—sign( wkwk’)nknk”}a(wk W wk")ak, K+k (39)

A plasma wave equation in such a form was written first by Camac et al. (1962)
using an analogy with the quantum mechanical equation for phonons in the solid
state and later was derived rigorously (Galeev and Karpman, 1963; Kadomtsev and
Petviashvily, 1962). A quantum mechanical analog of this equation is usually written
for positive frequencies since the frequency of the quantum is always associated with
its energy expression, Aw,. It can be easily obtained from the same dynamic
equations (3) using quantum mechanical perturbation theory and the “Golden
Rule.”

Consider for example the interaction of a wave with frequency w, with two other
waves with lower frequencies, w,. and w,. (wg > @y, Wi >0). The interaction

e
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processes in this case consists of the w,-wave decay processes and the reversed
merging processes with the participation of two waves with frequencies w,;. and w,...
The variation of the occupation number in the course of these processes can be
written (in units where & = 1) (Peierls, 1965):

'a“;k‘="‘4'” > W;c,k',k"’z[”k(”k"*‘1)("k"+1)‘(”k+1)"k'"k"]
KR

X 80, = @y~ @ )8y gy g (40)

~In the classical limit (n, > 1) this reduces to (39). Similarly, the “collisional term”
for the four-wave interaction is derived. The latter is proportional to the third power
~of the occupation number. However, it is very seldom used in plasma turbulence
_ studies since, for nondecay spectrum types, there is a possibility of nonlinear wave
_interaction via resonance with particles (this is the wave — particle—wave interaction
- discussed below). The latter is, as a rule, more important than the four-wave
interaction since it is of lower order in the wave energy. Usually in hydrodynamics,
here wave-particle resonances are absent, the four-wave interaction can be deci.
/e, as for gravitational surface waves.

The kinetic equation (40) has been used for a long time in solid state theory to
describe the inferaction of phonons with lattice irregularities (Peierls, 1965). How-
ever, there is a principal difference between the application of this equation to
phonons and to plasma turbulence. Regarding the solid state, one usually deals with
a state close to thermodynamic equilibrium. In this case, the problem is reduced to
the calculation of small corrections to the equilibrium occupation numbers, i.e. to
the Rayleigh-Jeans distribution of phonons. In a plasma, in contrast, a strongly
nonequilibrium situation is usually encountered when a strong wave source is
present in one region of wavevector space, and wave dissipation is taking place in a
completely different region. This situation is more likely than the usual hydrody-
namic turbulence and, therefore, the turbulence spectra corresponding to the con-
stant wave energy flux in wavevector space (Kolmogorov—Obuchov hypothesis) are
- more characteristic for a plasma (for details, see the chapter by Zacharov in Volume
D

424 Interaction of waves with different energy signs

\'I:h‘ekquakh ative picture of wave resonant interaction changes when negative energy
w eStakepart in this interaction. Attention to the existence of such waves in a
lasma was drawn by Kadomtsev et al. (1964). The negative energy term means that
the total (kinetic and potential) plasma energy decreases while the wave amplitude
increases. Negative energy waves can arise only in a nonequilibrium medium. This
can be directly verified by considering the known expression for electromagnetic
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field energy in a dispersive medium:

v g (g (0B + 2 () e

where ¢ and p are the dielectric and magnetic permeability of the medium, respec-
tively. If consideration is limited to electrostatic waves, then the sign of the energy
depends only on the sign of (d¢/dw), which can be negative in a thermodynamically
nonequilibrium medium and is excluded in the equilibrium medium by the
Kramers-Kronig relationships. Some specific examples of negative energy waves
have been discussed in Chapter 3.3 (kinetic plasma instabilities). .
To find out what qualitative differences arise in a wave interaction in which
negative energy waves participate the dynamic and kinetic equations are generalized
to this case. For simplicity, consideration is limited to electrostatic modes. The

probability amplitude satisfying the definition (31) can be expressed through the
wave electric field potential:

Cult) = [(K¥/87)|9e( 0oy, k) /300, ]] . (42)

The symmetry properties of the matrix element can be obtained from (32) with the
help of the substitution:

. . -1 9 . de
sign e, — sxgn(wk ‘m[wks(wk,k)]) =sign .

The result is that

de  J¢ ) (43 |

Vi, v k= %,k'.k—k'Sign(jf‘;; P
A rigorous proof of this relation will be obtained in the next section, where the -~
equation for interacting waves in terms of the dielectric permeability expansion
(more correctly, medium polarizability) on the wave amplitudes will be derived. The
change of symmetry properties results in a corresponding change in the kinetic
equation for positive occupation numbers:

. aE 8"]‘ — 2
Slgn(b’w—k) a k,};‘“ln,k',k"’ [”k'”k"
3/ -~ 51 —a—e———'as R, —sign —(ZE————aE n.n
Slgn 3(.0,‘ awk: nk k" g awk 300,‘" L
X 8(wg = wpr = @) By o sp (44)

Note that a specific nonlinear instability is possible in a system of waves with
different energy signs. The reason is that when the negative energy wave gives energy
to the positive energy wave, then the amplitudes of both waves grow. The simplest |
example of such an instability is negative energy wave decay into two waves of each
type, which occurs explosively (Dikasov et al., 1965; Coppi et al., 1969).
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4.3.1. Kinetic derivation of the wave equation

In the discussion of resonant wave interaction in the previous chapter, the
hydrodynamic description of plasma was used intentionally in order to separate it
from the wave interaction with participation of resonant particles. The fact is that
the beats with frequencies (w; + @) and wavevectors (k+ k') resulting from
plasma nonlinearity can come into resonance both with the third wave and the
particles moving with a velocity satisfying the Cerenkov resonance condition,
@ wy = (k £ k') v (or cyclotron resonance in a magnetic field). At first glance, it
might seem sufficient to take into account the wave-particle resonance only in the
quasilinear approximation, that is in the lowest-order approximation in the wave
energy. However, the existence of weakly damped waves also requires the quasilinear

Handbook of Plasma Physics, Eds. M.N. Rosenbluth and R.Z. Sagdeev
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interaction to be weak. The latter, as a rule, takes place for waves with phase
velocities much higher than the particle thermal velocities. Therefore, for example,
the ion sound oscillations exist only in a nonisothermal plasma when w/k=
(T./m;)'”? > vr, = (T, /m;)'/?, and Langmuir turbulence consists of long-wave-
length plasmons, the phase velocity of which is w /k > vp,. For such oscillations the
number of particles involved in linear resonance is small. On the other hand, the
number of particles resonantly interacting with beats can be large, and this necessi-
tates the consideration of such processes.

From the above discussion it is clear that the equation for weakly interacting
waves obtained in the framework of the kinetic description of plasma should already
contain both effects: the resonant three-wave interaction and the two-wave interac-
tion with participation of resonant particles.

As in the two preceding chapters, classical perturbation theory is used, considering
terms up to third order in the expansion in wave amplitude. The simplest case of
plasma electrostatic waves is considered first. The wave electric field potential is
expanded both in time* and space in Fourier series. The time expansion assumes
good behavior of the potential for ¢ — oo. Although this condition is definitely
violated in the linear approximation when wave growth or damping takes place, the
nonlinear effects limiting perturbation growth can Justify such an assumption. In
agreement with classical perturbation theory, a distribution function is sought in the
form of an expansion in wave amplitudes. The nonlinear term of the kinetic
equation is transferred to the right-hand side: ‘ ’ ‘

of; e i, e _ af,
E'+0'VL~+;;[0XB‘)] ™ —%£¢(k,w)exp[1(k'r—wt)]k-%.

)]

The left-hand side here is a complete time derivative of the particle distributikon
function along the particle trajectory defined by the equations of motion:

dr/dt =v; do/dt=(e/c)(vX B,). (2)

This allows (1) to be rewritten in the form of an integral along the particle
trajectory:

ie; ¢ af;
ﬁ,:%ﬁ >/ _dr's(k, w)exp(ilk - r(1)~ ot ]} k- ff, ©)

J kT do

where ¢(k, w) is the Fourier transform of the potential. Solving this equation by

*1It is, actually, more convenient to use the integral transformation in time instead of the Fourier series in
time. Therefore, to simplify notation, the summation sign over frequencies means the integration over
frequencies. :

H
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iteration, the Fourier transform of the distribution function is obtained:

_g(k,w,v)=§fj(")(k,w,v); (4)

[ (k, @, v)expli(k+r— wr)]

ie;
= ¥ [ dre(k,e)expli(k' r(r')— wr’)]
m; kK'+k"=f" —
W' W =w
3 (n—1 k”, wu’v
<l (60 )exp[i(k"'r(t’)—w”t’)]- (%)

Substitution of this expression into the Poisson equation gives the wave dynamical

equation in the form of a plasma polarizability expansion in the Fourier harmonic
amplitudes of the potential:

e w)o(k,w)+ ¥ e (W', 0o (K, w)op(k”, w)
KR =k
@+ W' =

+ Z 5};3'31:",;("' (wl’ b.)”, @ ”')gb(k’, w’)d)(k", (&)")(I)(k " , @ n/)
) K"+ k" =k

+oe =0, (6)

Here, &{"(w) is the linear dielectric permeability of a plasma, and the expressions for
¢? and € can be found from (5), where the corresponding term (4) of the
distribution function expansion in wave amplitudes should be substituted. Next,
these coefficients are calculated for the simplest case of Langmuir waves in a plasma
without a magnetic field.

To solve the dynamical equation, consider the Fourier expansion coefficients,
¢(k,w), as a small parameter. Obviously, ¢(k,w) has a narrow peak near the
eigenfrequency; i.e. it can be approximated as:

¢k, 0) = ¢{0 8(0 - w(k)), ™

where w(k) is the solution of the equation Re ef?(w) = 0. The width of this peak at
the quasilinear stage is of the order of Yi- Thus it is small for y, < w,. One can
expect some broadening of the peak at the nonlinear stage that is proportional to the
level of oscillations. However, in a weakly unstable plasma (Y < w,), the level of
oscillations is also small (j¢{"|? ~ v, /e, )n,T), and one can still use the approxima-
tion (7).

In the next approximation, (6) gives

e? (0, Wy
2k, 0)=— Y ..!‘.’_*.._((l_)_!‘__k_)_¢(l,)¢(l)3(wk, + g — ). (8)
K+k"=k & (w)

To derive the wave kinetic equation, multiply (6) by ¢*(k, w)exp[i(é — w)¢] and
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integrate the result over dwdd. The first term of the equation thus obtained is:

[ do [do () ¢*(k, ) ¢ (k, )expli( — w)r]. (9)

Since ¢(k, w) has a peak near w,, the dielectric permeability here can be represented
as:

dei” (wy)

() = A

(w— “’k)‘*‘isg)"(wk)a

where & and e{"" are the real and imaginary parts of the dielectric permeability,
respectively. Symmetrizing the integrand (9) over w and & and performing the
integration, the first term may be rewritten in the form:

i delly 9 o
% kaf,:)k) E‘¢k(’)l2+w§:) (w e (D12, (10)

where the time dependence of the eigenoscillation amplitude is defined as:

80(1) = [ dog(k, 0)exp[ ~i(w— 0,)1]. (11)

Substituting the expressions (7) and (8) into the remaining terms of (6) and
averaging the result over the phases (i.e. (¢{"¢{") = |[¢{"|?8, _,.) the wave equation
is obtained:

1960 9,

5 E] W, El‘pk‘

' 262 (., 0 )2 0,12 b, .12
- ""Imeg)(wk)l¢ki2 +Im Z 'ek,k ((l;‘fk > Wi )l lqbkt M’k ]
K4k =k & i (0 + 0
4£§c2'3k——k’(wk” Wy — wk’)sgrz,)—k’(wk9 = W)

efellk'(‘*’k - ‘*’k')

+Im}
o

~3£§:3'?—k’.k(wk" ~ Wy, @) {41l (12)

S

Here, wave energy terms are limited to the second order and the superscript (1) of
the wave amplitude, ¢{", is dropped. This equation was derived first by Drummond
and Pines (1962) for the particular case of the one-dimensional Langmuir wave
packet and later was generalized by a number of authors (Kadomtsev and Petviashvili,
1962; Galeev et al.,, 1964; Silin, 1964) to more general cases. The first term on the
right-hand side describes linear wave damping (growth). The contribution to the
second term comes from the poles arising when the beating frequency coincides with
one of the eigenfrequencies. Note that, as in the case of a Landau pole, here one
should use the specific path of integration to calculate the contribution from the




4.3. Wave- particle~wave interaction 717

pole. This rule can be formulated as follows: independently of the sign of the
imaginary part of the dielectric permeability, the pole contribution is calculated
assuming that this sign is the same as in the equilibrium medium. According to the
Kramers—Kronig relation the sign of the imaginary part of the dielectric permeabil-
ity in an equilibrium medium coincides with the frequency sign. Therefore,

| _ wsignw, 8w —w,)
Im—_—eﬂ)(w) = w51gnwk8[s§‘1)(w)] = RO (13)

Thus, in the case of positive energy waves, the second term describes the merging
of the waves ¢,. and ¢~ with the production of the wave ¢,. In the case of a
negative energy wave, ¢,, the sign of its amplitude variation due to the merging of
the positive energy waves ¢, and ¢, is correctly taken into account by rule (13) and
the relation (10). The third term gives the contributions both to the decay processes
(w; — @y = w,.) and to induced wave scattering (w; — w,. = (k — k’)*v). The fourth
term is obviously responsible for induced wave scattering by free particles. (The role
of the last two terms in the induced scattering of Langmuir and electromagnetic
waves is discussed in detail in Sections 4.3.2 and 4.3.3)

Finally it has been shown by Rosenbluth et al. (1969) that the nonlinear
wave-particle-wave interaction can also lead to an instability when both positive
and negative energy waves are excited in an active medium. For electrostatic waves

~ in the absence of a static magnetic field B, the required condition is '

S, (k+ k')-fd3o(af/av) >0
where
Si= (07 30,) /10V/ Do, .
In a magnetic field for waves with k + B, = 0, the resonant condition is Wy + 0y = low,,

/o, being a multiple of the cyclotron frequency. A nonlinear instability occurs if
S, =S, and

(wc+ ) S, [ dE, o] 3f/0E, >0

where E, =1mo? is the perpendicular particle kinetic energy.

-4.3.2. The weak Langmuir wave turbulence equations

As a first example, consider the interaction of Langmuir waves with random
phases in a plasma without a magnetic field. The calculation of coefficients for
plasma polarizability expansion on wave amplitudes is particularly simple in this
case since the integration in (4) is performed along the straight particle trajectories
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r(t) = vt. As a result, the first two expansion coefficients are:

2
eg)(w)—H%:*kZ fdsvm—w—k'v+i0’ (14)

wz. e.
e rovw 7
J
X'fd3v !
W'+ @’ = (k' + k") v+i0

7 o a 1 r*” a " 8 1 ’ a .
X(k va”—k”'v-i-iOk a::“‘ avw'—k'-v+i0k av)fW’
15
ngejz mjz ( )

ey g (0, 0", 0" ) =
k' k", k * ; 6(k'+k”+k,”)2

1
x | d3
f Yot e ~(K'+ k' + k") v+i0

d 1
X k’/’ PO
dv o'+ o’ —(k'+ k)0 +i0
14 a 1 124 8 ff‘ a 1 ,'__a_ .
X(k ww -k p+ri0" Jo dv co’-k’-v+i0k au)f"f

+two other terms with the interchange of X’ and k&’ or k" and k",

(16)

The infinitely small positive value (+0) defines here an integration path around the
pole to integrate over velocities. It does not arise naturally here, as was the case in
linear theory when the Laplace transform was used to solve an initial problem. It has
been introduced simply to maintain the causality principle (to provide an adiabatic
“turn-off” for both the eigenoscillation and the forced beats as ¢ — 0).

It was shown first by Drummond and Pines (1962) that the contribution of ¢®
term to induced wave scattering by electrons is compensated by the second-term
contribution in the large brackets of (12). The physical mechanism for the weakening
of scattering is the electron charge screening by the ion cloud (so-called polarization
effect). Then the dominant process is induced plasmon scattering by ions described
by the third term of (12) (and, of course, decay processes with participation of
phonons in the case of a non-isothermal plasma). It is easy to see that the dielectric
permeability nonlinearity, ~ &_,., is caused by the nonlinearity of the electron
motion equations, and the ions contribute to the imaginary part of &2 1 (W, — wp).

To evaluate &?_,. the integral in (14) is expanded in terms of the small parameter
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(0= &)/lk - klop, <1:

2

W
e (g, ~ w,) = 2(k pek/)2 }f‘fd%[wk = o= (k= k) v+i0] !
- e
% k‘k k.afoe‘_ k.k' k,.afoe

(0, —k-v)> 00 (0 —k'-p)? 90

W —wp—(k—k')v ( ._@_)( ,_(_9_)
(0p—k-v)(wp —k'-v) kgo )\ 35 ) Joe

~_€ (k’kl) wpz)e /d3v (k_k')'aﬁ)c/av
2m, wgw, (k- k') Wi — @y —(k—k)ov+i0

= 5o ) e (- ). (a7
In a similar way
Eeuslonm—on) =5 EE i 0,0 ()
and .
kze(%?k,~k’(wk" Wpy — W) = 3e2§ '(“%l(k - k')zeﬁllek'(“’k — ). (19)

It is evident that in the limit when (@ — @) /lk — k'|vy, < 1, the contribution of the
last two terms in (12) to the induced wave scattering by electrons cancel each other.
Moreover, in the case of a sufficiently long (or narrow) wave packet, the induced
wave scattering by electrons is neglibile compared with that by ions. In this case one
can obtain a particular solutions of the induced wave scattering equation. Because of
that the electron contribution to scattering is neglected and the expressions (17) and
(18) for & are used to reduce (12) to the form (Galeev et al., 1964):

38(1) €2 2 , 2 k k'
_1_[3 J ‘““f;kzl‘i’klz =y Il * [ > ( )

2 7Y,
2{ar k|l g Pr miwie?,

2

(De y
Ep il Wy, — Wy,

Xk — kY A2 Tk TS (w0~ wp)

m Im &% (0 — @),
ekl (@ — w0

(20)

where v, = — &{)"/(9¢{"’/ 9w, ) is the linear growth (damping) rate. The nonlinear

. termin this equation differs from zero when resonant ions with velocities close to the
beating phase velocity (@ + w,.)/(k £ k') are present in the plasma. Since most of
the thermal ions are moving with velocities much lower than the wave phase velocity,
résonance can take place only with beats at the difference frequency. The resonance
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condition w, — w,. = (k—k’)*v, rewritten in the form of the conservation law
[A(w, — )= 36/3p - Ap (& = mv?/2 is the particle energy, Ap = h(k — k') is the
momentum transferred to it from waves], shows clearly that absorption of the
quantum (w,, k) by particles is occurring, followed by radiation of the quantum
(wy, k'), ice. with induced wave scattering. Naturally, the number of waves is -
conserved in this process. To check this, rewrite (20) in terms of the number of
waves. Using the relation (17) gives: e

on, 4me? [ A%k (k-k')? a2
o e '[(277)3 Pyl PErE (k~ k)
“pe
lek25 (O)?

1+ o2 (0)+ o (=) =
Here, integration over the phase space has been used instead of the summation over
wave vectors [see equation (29) of Chapter 4.1).

It is clear that such a nonlinear non-one-dimensional integral equation is very
difficult to solve in a general case. Therefore, this equation is simplified for some
specific cases. Two limiting cases are considered below: an isotropic Langmuir wave
packet and a streamer-type wave spectrum in k-space when some specifics of
induced scattering can be clarified due to great simplification of (20). '

4.3.3. Approximation of the differential transfer over
the spectrum

Consider the evolution of an isotropic Langmuir wave packet in k-space in the
limit when the phase velocity spread is much larger than the ion thermal velocity:

Ak k> (m,/m). (22)

When this condition is fulfilled the number of waves depends on the wave vector
modulus only, and the wave packet width in frequencies Aw is much larger than the
width of the narrow kernel of the integral operator on the right-hand side of 21) at
Wy — w,. In other words, within an entire wave spectrum, only the waves with
similar frequencies interact intensely, so that the integrand in (21) can be expanded
over the frequency difference of the interacting waves. Because of this oddity of the
kernel as a function of (w, — @) the zero-order expansion term disappears after
integration. The contribution of the first-order expansion term [linear in (w, — w,)]
is calculated with the help of the following formula from dispersion relation theory
(Galeev and Sunyaev, 1972):

(23)

Imf+°°l3§:‘lek'(0)'2(‘°k‘ ‘*’k')d(wk"wk') - ”“’sz(me/mi)

1+ ee.(0)+ e (@, — wyr) [1 + 1/6§’li,(p)]2 .
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As a result, (21) is reduced to a differential equation in k-space (Galeev et al., 1964):
9N, /37~ N3N, /9 =0, (24)
where

=szk Mppe
" 6m2 4an,T,’

_4n%alom i 1

T

; k=k/Ak.
M (Ak)R,

This equation is well known from hydrodynamics. It describes the flow of plasmons
toward the lower frequencies (i.e. smaller k) with the transfer velocity proportional
to the number of plasmons. For the wave packet under consideration, the N, profile
has the form of a broad spectral line that steepens in time on the front side (i.e. in a
region of smaller k) until overlapping takes place (Fig. 4.3.1). Such behavior is
caused by the probability of induced scattering proportional to the wave intensity at
- that point of k-space to which the waves are scattered. Therefore, scattering to the
foot of the N, profile takes place more slowly than to its top, resulting in
overlapping. However, the conclusion about the final overlapping made on the basis
of the simplified equation (24) is not correct because a smooth spectrum assumption
was used to derive it. To correct the equation, one should take into account the
_ next-order terms in the expansion of the integrand over the frequency difference on
the right-hand side of (21). Then, (24) is replaced by:

dN, anN, 3N,
o N3 “ﬁNK—éF-O, (25)
where the coefficient 8 can be estimated to an order of magnitude as 8=
(m. T, /9mT,) (AkAp)~2 and is small when the condition (22) is satisfied. This
equation as well as the representation of the integral operator in the form of a

= b) ¢ > clt>
a) ¢=0 ” ) t >0 Ny ) t>0

Ny
¢ ¢

-

0 K £ £

Fig. 4.3:1. Langmuir wave spectrum evolution in the course of an induced scattering by ions: (a) initial
- Spectrum;’ (b) formation of a three-valued region for the solution of the simplified equation (23); (c)
single-valued spectrum for the same moment of time as in the case (b), but with the dispersion taken into
. ‘ account (Zeldovich, 1975).
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differential operator series is valid in general unless the gradients in k-space become
large (i.e. for B3N, /9k? < N,). This last condition is definitely satisfied when a
low and sufficiently broad spectral line is moving on the background of a nearly
uniform spectral distribution of waves. In this case, the problem of the line-profile
evolution is similar to the problem of the evolution of the- initial disturbance in 2
nonlinear dispersive medium. The velocity dispersion (see the chapter by Oraevsky in
Volume II) of the motion of the line in k-space stops the steepening of the profile’s
leading edge. Simultaneously, solitons are detached from the front and carried back
since shorter harmonics generated in the course of steepening have lower phase
velocities in k-space, according to (25). When a line height is low enough, the width
of solitons satisfies the condition (22), which is necessary for (25) to be valid.

When relaxation of an isolated spectral line in k-space takes place, then the
resulting gradients in k-space are not small and the parameter 8 is no longer small.
Solution of an exact integral equation is necessary to describe the line evolution in
this case. However, the qualitative picture of relaxation remains the same: the
leading front of the line steepens and solitons are detached from it (see Fig. 4.3.1)
(Zeldovich, 1975; Zeldovich and Sunyaev, 1972).

4.3.4. Streamer-type Langmuir wave turbulence spectrum

The idealized case of isotropic Langmuir wave turbulence, when the time evolu-
tion of a Langmuir wave packet is described by a partial differential equation, was
considered above. However, in real conditions Langmuir waves are excited as a
result of the development of plasma instabilities and this excitation is usually
anisotropic in k-space. Following the work of Breizman et al. (1973) it will be shown
here that even a small angular asymmetry of an instability growth rate is hyper-
trophied in the course of induced wave scattering by particles, and ultimately the
stationary Langmuir wave turbulence spectra become even more anisotropic, and the
Langmuir waves are concentrated on lines or surfaces in k-space. For the sake of
simplicity attention is restricted to the axially symmetric case that can be realized
when a preferred direction in k-space exists along which preferred excitation takes
place (for example by particle beams or by the electric field of an external polarized
radiation). The Langmuir wave spectrum evolution is then described by (21), where

i one can use the differential form of the interaction operator (assuming the wave
' spectrum to be broad in &k but not in angles):

@’—%ﬂ=N(k,x)(Y(k,x)+—a§E _“:‘T(x,y)N(k,y)dy), (26)

where N(k, x) = k*n(k, x)/(27)*;

—3xy+3xy +3x3y —5x3y

2
_z__._______. oy by

!




x =cosf; y =cosf; and (k, 8, p) are spherical coordinates in k-space with the polar
axis along the preferred direction. In contrast to (24), the number of waves, n(k, x),
depends on the angle 4.

Consider now what stationary solutions of (26) exist. On the face of it, it seems
fairly arbitrary: N(k, x) can be set equal to zero at any predetermined region, (k, x).
However, such predetermined solutions tend to be unstable as a rule (Galeev et al.,
1965). Stability conditions coupled with stationarity conditions for the solution of
(26) lead to the relations:

y(k,x)=v"(k,x) for N(k,x)=0;
y(k,x) <y™(k,x) for N(k,x) =0, (27)
where

a r+1
'}’N(k,X)=“57€‘ -1 T(x,y)N(k9y)dy'

In other words, the Langmuir waves are concentrated on the conical surfaces,
x = x(k), where the first of the relations (27) is satisfied. In a more general case
when there is no axial symmetry, the contact of the functions y(k) and y" (k) could
take place at lines only. Such lines (or surfaces) at which the spectral distribution is
concentrated were named (Breizman et al., 1973) streamers (one-dimensional or
two-dimensional, respectively). When the number and the form of the streamers
x=x;(k) (i=1,...,r) are known the solution can be represented in the form:

N(k, x) = LN (k) 8[x - x,(K)], (28)
where N;(k) is found from the equation

¥ Lk, x,(%)] +>;T[x,-(k)’xj<k>]d€%

d dx; B
-g—a_gT[x‘(k)’xj(k)]N’.(—i_E—o, (29)
and the streamer form is defined by the contact condition (27):

2 v ) =¥k )l = 0. (30)

The energy pumped into Langmuir waves due to an instability is transferred to the
long-wavelength region along the streamer.

As an example of streamer form determination consider the parametric instability
of the pumping wave E = E,cos 2t resulting in an excitation of Langmuir waves due
to pumping wave scattering by ions (Valeo et al., 1972; DuBois and Goldman, 1972).
The preferred direction is defined in this case by the E, vector and streamer
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formation at x = + 1 can be expected since the parametric instability growth rate is
maximum in this direction {see (20)]:
w_ | E,l? k2N leDe (2 ~
‘Y(k,X) - Pel 0' x2 m ( “’k)l
8mnyT, (1)(9 @, )|

e (w0 — 2)—w, (1)

where »,, is the frequency of rare electron—ion collisions, allowing for the collisional
dissipation of Langmuir waves. Because of the growth rate symmetry [y(k, x)=
v(k, — x)], the streamers are also symmetric: ‘

N(k,x)=2N(k)8(x*-1);

dN(k)/dk =v(k,1)/T(1,-1). (32)
Then the stability condition (27) takes a simple form:
v(k, x) < x?y(k,1) for x| <1. ‘ (33)

This condition is satisfied due to the small collisional dissipation in (36). In a similar
way the streamer forms can be determined in the cases where the growth rate
maximum is achieved at angles corresponding to the two-dimensional streamers
(Breizman et al), 1973).

4.3.5. The lack of renormalization in a quasilinear theory of
Langmuir waves

The simple derivation of the Langmuir wave quasilinear equations in Section 4.1.2
was based on the assumption that the wave packet is sufficiently broad that rapid
phase mixing takes place. The condition for such mixing is formulated in the
following way: if Ao is the wave packet width on phase velocities then the phase
mixing time in a wave packet is ¢, ~ 1 /kAv. This time must be considerably smaller
than the quasilinear diffusion time:

1, < 1q = (40)’/D,, (34)
where

2 ZlEklza(wk = kv)
me

is the quasilinear diffusion coefficient. This inequality can be rewritten in terms of
the wandering time of the resonant electrons [the bounce period of trapped elec-
trons, see (11) and (13) of Section 4.1.1]:

kdv > o' = (kD). (35)
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It is necessary, of course, in addition to this inequality, to satisfy the condition for
the overlapping of neighboring mode resonances [see (7) of Section 41.1.%:

w=(k2D,)"” k> 8o, (36)

where w is the width of an individual wave—particle resonance, and 8v is the phase
velocity difference for two neighboring harmonics in a spectrum.

Statements have been published in the literature claiming that it is insufficient to
satisfy the conditions (35) and (36), and the applicability of the quasilinear equation
is restricted by the limit of very small field amplitudes: (k2D,)"/? < y, (Bakai and
Sigov, 1977; Sigov, 1977; Adam et al., 1978, 1979). These authors refer to computer
simulations showing supposedly that the phase correlation of individual harmonics
takes place during a time of the order of (2D, )~ /. Therefore, they believe that in
the opposite limit,

(k2D,)"" >, (37)

it is impossible to use the rapid phase-mixing assumption. In addition, Adam et al.
(1979) have carried out a partial summation of higher-order expansion terms that
have not been taken into account in quasilinear theory. They conclude that renor-
malization is necessary when the condition (37) holds. The analysis of the computer
simulation mentioned above will not be dealt with here. However, note that the strict
conditions (34) and (35) of quasilinear theory applicability were not satisfied in these
studies. The contribution of higher-order terms to the resonant wave-particle
interaction (i.e. to the growth rate) will be analyzed here in the framework of the
exact perturbation theory developed in this Section.

Following the work of Galeev et al. (1980), the nonlinear equation for interacting
waves is used. Here, the contribution to the wave—particle interaction is related to
the terms that diverge formally at the resonance point k*v=w,. Although the
. divergences are removed by the nonlinear resonance broadening effect, nevertheless,

in the one-dimensional case, their contribution to the growth rate is comparable with
the linear growth rate when a very rough estimate is used. (In the two- and
three-dimensional cases, the contribution of these terms could be neglected on the
grounds of such a rough estimate alone.) This requires a more exact consideration of
these terms in the one-dimensional case.

Consider first the second-order terms in the expression for wave energy that are
contained in (12). It is evident that the main nonlinear contribution to the
wave—particle resonant interaction comes from the last two terms. In contrast to the
above case of induced wave scattering, there is no mutual cancellation of these
terms’ contributions at the resonance point kv = w,. This is due to the fact that the

first of these two terms takes into account the electric field of the resonance
particles’ beats, which contains an additional small parameter proportional to the
number of these particles. Thus only the last term should be analyzed. Using
integration by parts in the expression (16) for ¢® its contribution to (12) in the
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one-dimensional case is represented by:

L( 360\ ( Ol v dk
2 ) ( 3: ) t-_-,.Imf —j'.,,"e@c,,k,k,l%,lzl‘i)klz
scal

awk -~ o0
_dmet o pte ¥y prodky ,
=Sl av gl [ S e
k

(@~ ko +i8)*(w, — ko +i8)

(k+k,)
2(wy ~ ko +i8)*(ay, — kyv +i8)[w, + g, —(k+k,)o+i]

(38)
Here, the addend i8 ~ i(k2D,)"/? in the denominators formally takes into account
the resonance broadening effect caused by resonant electrons wandering in a wave
field with characteristic time 7,. To make a rough estimate of the resonant velocity
(v=w/k = w, /k,) region contribution to this integral in the resonant denomina-
tors only the 18 term is retained
eZI Eklz k2

m2v 83

+

L

, (9)

where

2m2e?
Y= ;;;;wpe(f?fo/av)

is the linear growth rate. Using the expression for 8, in terms of the diffusion

coefficient, the nonlinear contribution to the growth rate is found to be of the order
of the linear contribution. If this were true, then the use of such terms could lead to
the renormalization of the wave-particle resonant interaction strength without
changing the form of the quasilinear equation. However, an exact calculation shows
that the integral on the right-hand side of (38) becomes zero to the highest (third)
order in the parameter (k4v/8,), and therefore such normalization is not necessary.
The proof of this is based on the fact that all singularities of the integrand (38) are
represented in explicit form in the resonant denominators, whereas the numerators
are smooth functions of variables v and k,. This allows one to compute all integrals
with the help of the residue theorem and to represent the result in the form of the
nth-order derivatives of those smooth functions. When the condition (35) is satisfied
the value of the integral is (kAv/8,)" times smaller than that obtained by the rough
estimate.
Consider the first addend on the right-hand side of (38). It has the form:

'

" aom (o), ko i)™, 0
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where

3o [+eo 1) im @\ 8f,
(0~ 5, ), o —erm = o Bl (k=) 50
is a smooth function of v. This can be transformed to:

+ 3
_._1- wdv 1 _ I,
k3 W, — ko +id 343

It is (kAv/8,)? times smaller than its rough estimate.
The second addend is proportional to the integral

—o (0= ko+i8,)’ - (@, — ko +i8)[wy + 0, —(k+ k) v +i8]
(42)

Since both poles in the integral over k, are in one half plane (above the real k,-axis
for v > (), then at the resonance point kv = w, it is reduced to the form:

: o (w, —kp+is)? o K

(k+kl)lEk,l2( 1= “%)

~ The remaining integral over v can also be taken easily:

[ 7 2 (,(0) @)
—o (w— ko +i8)’ K2 302\ 90 P10)

In a similar way one can easily show that the terms for induced scattering do not
contribute to the resonant wave-particle interaction in any order of perturbation
theory.

In a slightly different way, one can calculate the contribution to the resonant
wave-particle interaction from the perturbation theory terms describing the decay-
type interaction. Such terms appear first in the third order of the wave energy.
Because of the symmetry properties of the interaction operator matrix elements it is
sufficient to consider only one of these terms [compare with the term describing the
three-wave interaction in (12)]:

de(d ( awng) I f f dk,dk, 1k -ty k-
o\ oy 2r)* e}cl)(“’k+k,—~k2+wk2_wk,)

’2

X Pk s kg tey| 100, P lbi ) (44)

When the dispersion of the interacting waves in the resonance region (k;» — w x, ~ Ok
< o, ) can be neglected, i.e. for

R R ) <« (45)

e e —————

§
§
|
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(44) takes the form:

2

INE 4re? - , 1 T *
o\ kmlde, w0, ) ¥ Im [ dodo wp — k0 +18 | 0, — ko' 118

fdk, |E,|
au av' ) 2n W+, —(k+k)o+id

1 S
wp oy —(k+k)o +id

3 9 dk lEkzl TP
XG0 v Wy — k0 18

1 *
N\ —kp+id) - (46)
To find out whether renormalization is necessary it is sufficient to calculate the
highest (sixth) order contribution in kAv/8, which could be comparable with the
linear contribution. Consequently, the dependence of the numerator on k,, k, and
0,0’ is neglected and its value at the resonance point v = v' = w, /k; k, = =k, =kis.
taken out of the integral sign. The integrals over k, and k, do not become zero here
i spite the high order of the poles. This is because the poles of the expression under
the integral lie on different sides of the real axes k, and k,. Performing these
integrals gives:

2

3|Ek[2) | 4n%eY|E?
- k
d

-
= at miw, 3e/dw,

, o
Xf/dvdo (wg = kv +i8)(w, — kv’ —i8)

20\ a0 1 hop
. dv v k(v—0)—2i8 dv 3V’ k(v—v')-2i6 v v’
¥ (47)

Here the poles in the integrals over v and v’ lie on one side of the real axes v and o’
(above the v axis and below the v’ axis for w, /k > 0). Because of the high order of
the poles this double integral becomes zero, which proves the lack of higher-order
contribution, as expected. In a similar way one can show that the higher-order
decays do not give contributions comparable with the linear contribution.

Thus, it has been shown that when the conditions (35) and (36) of quasilinear
theory applicability are satisfied, the nonlinear corrections to the quasilinear equa-
tions are indeed small.
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4.3.6. Light-induced scattering in a nonrelativistic plasma

It is more convenient to derive the equation for interacting electromagnetic waves
in terms of the plasma current expansion in powers of the wave amplitude rather
than in terms of the plasma polarization expansion. To do this, start with the same
iteration equation for the particle distribution function:

&k dr

— D+
@r)® @n) 5"

51wk [ a0+

9 i(n+1
(e o 9 )22 0=

1 ¢ 1 d
Ea e 2 ;{(Eﬁ” +—(ox B:f”))‘“g; PN (48)
N J

Here, in contrast to (4), the wavevectors of all the waves contributing to the
nth-order term of the distribution function expansion in powers of the wave
~ amplitude are shown explicitly by indices of /(). The sum on the right-hand side of

(48) is taken over all possible transpositions of indices. Induced scattering of light

aves with random phases is a second-order effect in the wave energy. Therefore, to
describe it one ought to calculate the scattering current with an accuracy to the third
order in the wave amplitudes. The latter assumes that the third-order correction f®
of the distribution function should be found.

Since a wave magnetic field in a non-relativistic plasma has a weak influence on
the particle motion it can be neglected while computing /™. Then the expression for
f in this case coincides with that found for electrostatic Langmuir waves.
Moreover, the thermal corrections of the order of kv /w <1 can still be neglected.
As a result, for f® [compare with (15)]:

. 2
o =1 Ak-0fO/9v (E,-Ef) ()
B2\ m; | Ao— k010 ww,

where Aw = Wy — @y, Ak = k — k’. Substituting this expression into (48) and keeping
only the term that contributes to the scattering current of frequency w,, gives in the
next approximation

e

L e 1 afi% |
e e Bt g (ox B ek (50)
: J

‘The intensity of the scattered wave radiation is equal to the work done by particles
in a scattered wave field per unit time, ie. — j§, _,.- Ef. However, the scattering
rrent calculated with the help of (50) takes into account only the scattering by free
particles. Particles in a plasma, however, are surrounded by a screening cloud of ions
‘and electrons. It is clear that the screening cloud oscillations which are opposite in
phase compensate for the scattering by free particles.
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The electric field of the screening cloud can be considered to be potential, Thet
potential, &3 ,,, is determined by the Poisson equation o

AR?e(Aw, Ak) DR o, = —4me [ £, dPo.

From this equation the same result is obtained as for Langmuir waves {seé 8 and

a16)]: R

e (E-E,) (4o, Ak)
2m, o, e(Aw,Ak)’

@A(Zk),Aw = (51) E
where eé(dw, Ak) is the linear dielectric permeability designated earlier as £,(w), for

brevity of notation. The electric field of these beats perturbs in its turn the particle
distribution function:

. ¢ Ak+9f0/ 50
(H =L@ SR G /0Y
T2 (de) = O s T~ Ak o0 (52)

In this connection a new iteration of (48) is necessary:

/) =-‘£.____..L__._( 1 ,).afdlk » '
S an m, w, — Ak -v+i0 E + c(vXBk) dv - (53) -

The indices (1) and (2) here indicate that these corrections to the distribution
function were calculated by one or two iterations of (48). The order of these
corrections is, in fact, higher since the field B 5, used for a second iteration.
already of second order in the wave amplitude. Therefore, to compute the scatterin:
current, one ought to take into account both expressions (50) and (53). As a result,
the scattered radiation intensity is calculated as the work of this nonlinear current of

particles: :
5 (BB P HBE) = [ Eolo BN (o) 1], (58)

Integrating over d’v gives the equation for wave amplitudes (cf. Litvak and Trach-
tenhertz, 1971; Galeev and Sunyaev, 1972):

e

/ 31 a(ew?) rEkPF e [ L L0 2 Y
dt|lw Jw 87 (2,”)3 @0 Amle(Aw, Ak)P
xIm[|l + €4, Ak)2e*(Aw, Ak) +[e*(Aw, AK) e (Ao, AK)].  (55)

Note that this equation has a rather restricted region of applicability. First, the fields
in this case were assumed to be so weak that the potential energy of the particles in a
beating field is smaller than the thermal energy ( e®f? 4, < T). On the other hand,
the Doppler corrections to the wave frequency which can prove to be important for

2
e

i
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v%./c* 2 m./m; because of the almost complete cancellation of free electron
scattering (Compton scattering) and screening ion cloud scattering have been
neglected.

As in the case of Langmuir oscillations, a transition to a differential equation is
possible here in the limit of a sufficiently broad spectrum. In this connection it is
interesting to note that such an equation for the case of induced scattering by free
plasma electrons was written long ago by Kompaneets assuming radiation isotropy
and the absence of its polarization. It can be derived from (55) with the help of the
same procedure as used in Section 4.3.3.

an("', t) - UTn()ek __l__a__
at me 2 dr

T,
v“(nz +n _5__8_)1)’

h ov (56)
where o(87/3)(e’/mc?)? is the Thomson scattering cross section, and » = w /27 is
the light oscillation frequency. The last two terms on the right-hand side of (56) were
absent in (55). They are responsible for the light scattering by electron density
fluctuations (see Chapter 2.3).

~Nonlinear effects in the interaction of radiation with a plasma, including energy
and momentum transfer to a plasma in the course of scattering, have been studied,

especially in connection with astrophysical applications (Zeldovich, 1975). Because
of the tremendous radiation intensities and large volumes these effects play an
important role.
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