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1. Motivation

Plasmas are seldom completely quiet and stable. Thus it is necessary
in applications to be able to calculate such properties as heat and mass

nsport in the turbulent state. This is a difficult nonlinear problem,
ery complex and largely unsolved. It would be useful, therefore, to
evelop an intuition in the subject and an ability to make simple esti-
ates. This article treats a thermodynamic approach having primarily
se aims.

Our main objective is to calculate the energy in electromagnetic
‘and kinetic fluctuations after instability, or turbulence, is fully de-
Veloped. Generally, this is not the total energy in the plasma. We shall
all that part which can transfer to fluctuations free energy. This free
energy plays the role of a potential energy from which other quantities,
- Such as the transport coefficients, can be estimated.
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The advantage of dealing with free energy is that, while an exact
calculation would still require the complete nenlinear dynamics, an
upper bound on free energy is easily calculated even if only a few con-
straint laws are known. The conceptually simplest procedure, applicable
to collisionless plasmas, was given by Gardner (1). He notes that the
appropriate equation for each particle species, the nonlinear Viasov
equation neglecting collisions, is of the Liouville form and, hence, pre-
serves the phase volume for each particle species separately. Thus, no
actual motion can transfer more energy from the particles to electro-
magnetic fluctuations than would a transition to the state of lowest
kinetic energy consistent with phase-volume conservation.

That this lowest allowed state is one in which the phase-space dis-
tribution for each species is a monotone decreasing function of energy
& = Yomv® can be seen as follows. Certainly, the final energy is least
when the maximum allowed number of particles is near the points in
phase space where & = 0. As Gardner observes, the allowed state for
each species is analogous to the final configuration assumed by tiers of
incompressible liquids of different densities all acted on by gravity.
Regarding & as “height” and greater density in phase space as greater
“weight,” the final state of the liquids, being that of least gravitational
potential, is analogous to the allowed plasma state of least kinetic
energy. Evidently, the heaviest layer sinks to the bottom (£ = 0), the
next heaviest lies next, and so on [a monotonic decrease of weight (phase
density) with increasing height (£)]. Of course, energy is not invariant
with respect to the reference frame and this argument would hold in
whatever frame & is defined. The proper frame is that in which the
energy change is least equivalent to momentum conservation.

Thus, Gardner’s theory is characterized by two qualitative con-
clusions. The monotone states, which can give up no energy, are non-
linearly stable. For other equilibria, if they are unstable, the fluctuation
energy cannot exceed that which would be given up in a transition toa
neighboring monotone state. For high-pressure plasmas in a magnetic
field, the latter must be understood to include not only the kinetic
energy change discussed above but also, in some circumstances, a por-
tion of the plasma diamagnetic energy.

In Section IT we present a thermodynamic theory which retains the
above characteristics but makes calculations easier and takes account of
collisions when necessary. In this, we apply the work of Newcomb (2)
and of Kruskal and Oberman (3). In comparison with Gardner, these
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authors replace the preservation of phase volume by a related con-
straint which is the monotonic increase of entropy when collisions are
important and by something similar otherwise. Again, the main physical
content is that no real transition can liberate more free energy than
would a transition to monotone distributions. The best estimate cor-
responds to the “nearest” such state, which is found by varying state
parameters such as density and temperature and net momentum to
obtain the least free energy. In the final section we shall comment
briefly on how this approach relates to the search for better variational
theories. For the most part, however, consistent with our practical aims,
we shall emphasize monotone trial functions of Maxwellian form as the
most interesting case.

The thermodynamic approach cannot be expected to give all the
answers in detail, because the thermodynamic constraints are insensitive
to certain dynamical variables. Evidently, then, thermodynamics at
best represents the extreme case within the range of these hidden
parameters. Nonetheless, it tells us much of what we want to know
about turbulence. The thermodynamic upper bounds on free energy are

. frequently useful in a negative way by predicting when turbulence can

likely be neglected.

Actually, there is evidence that a very simple thermodynamic
bound gives many of the dominant features correctly. This is our bound
restricted to Maxwellian trial distributions. Physically, one is supposing
that in an wnstable plasma the collective processes drive the system
toward thermal equilibrium. This is motivated first by the fact that

- there is already known at least one instability mechanism corresponding

essentially to each way in which a plasma differs from equilibrium.
There is scattered experimental evidence that these instabilities do

. drive the system toward equilibrium, and this is also borne out by

several calculations in the regime of weak turbulence where the quasi-
linear perturbation theory applies. Secondly, we may guess that non-
thermodynamic constraints have limited influence once instability
sets in strongly, for the following reason. Since the thermodynamic laws
do constrain the free energy (an arbitrary set of constraints may not),
other dynamical features, at most, constrain the energy still further by
exacting work as the price for a transition to thermal equilibrium. An
example treated in Section V is motion perpendicular to an increasing
magnetic field if the motion preserves the magnetic moment. Such
motions increase the perpendicular kinetic energy. As in the principle of
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virtual work, if this increase would exceed the free energy that would
otherwise be liberated, nothing actually happens and the system is
stable. Thus, a constraint such as magnetic-moment conservation may
set a threshold for instability, for example, a threshold in field gradient.
On the other hand, once the threshold is exceeded so that the thermo-
dynamically available energy greatly exceeds the work done against
nonthermodynamic constraints, these constraints have little effect on
the final fluctuation energy attained. Any exceptions would be rather
weak instabilities.

Even so, the thermodynamic laws generally must be supplemented
in applications. The reason is that these laws are most meaningful for
isolated systems, while real systems are never fully isolated. Thus in
classical thermodynamics, typically one must decide independently as
to how the system contacts its environment; i.e., whether it is adiabatic,
or isothermal, and so on. This is partly a matter of the time scale of
interest. For plasmas, the question of time scale is all the more pressing
for the interesting case in which the plasma is confined in one or more
dimensions by a magnetic field. Magnetic confinement is not permanent,
since even collisions destroy it, and thus we shall find that the magnetic
forces do not enter the most general thermodynamic constraints valid
for all time. Consequently, these most general constraints alone would
allow the plasma to give up all its thermal energy to fluctuations by
expanding to a large spatial volume, like expansion cooling of a gas. To
find when plasma expansion can actually occur on other than collisional
time scales, we must add supplemental, approximate constraints such as
E - B = 0 in magnetohydrodynamics, or conservation of the magnetic
moment as discussed above. In Section IV, we discuss a less restrictive
assumption; namely, different portions of plasma are supposed to be
effectively isolated from each other if transport between them would
take a time longer than, say, an instability growth time. The simplicity
of thermodynamics lies in the fact that the consequences of such as-
sumptions consistent with the thermodynamic laws can then be readily
calculated.

II. Fluctunation Energy

We wish to calculate the free energy and also its rate of change. The
final results, as they appear in later sections, are simple and transparent.
In this and the next section, we give a derivation.
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Let each particle species j of mass n1; and charge q; be described by
phase-space distribution function f;(x,v,r) which satisfies a Vlasoy
uation (not linearized),

af; d q; 1 of; af,

e o 2L(E + - N =

ot axlit o Et oYX B). o2 (ar )CO,I D
-where the right side represents collisions, and so on. Fields E and B
satisfy

JE
== --417}2'8 q; fdv vf; + ¢V x B (I1.2)
oB
= =~V x E (IL.3)

' Sums are taken over particle species.

The fields are required to satisfy Maxwell’s divergence equations
tially with charge density 3 g; [ dv f;; then they do so thereafter by
s. (IL.1) and (IL3) since the collision term conserves charge. There
ay exist an external magnetic field B,, included in B. Let B. be inde-

pendent of 7, and, since we are only interested in the region outside the
coils which generate it, we assume

VxB, =0 (IL.4)
"A. Bound on Free Energy

~ The main task is finding a useful free-energy function. The one
- most used is a generalization of the Helmholtz function,

.: A=U-TS (11.5)
- Where U is the kinetic and electromagnetic plasma energy, T is tempera-
€, and S is entropy. To the extent that the plasma is isolated, U is of
ourse conserved. The object is to choose (— ) to be likewise conserved,
or dlecreasing, from which 4 is also. Then, as we shall see, states which
Minimize the kinetic part of 4 play the role of the stable monotone
‘States in Gardner’s method discussed above.

 Asindicated earlier, following reference 4, we shall limit ourselves
t _"th‘e familiar entropy S ~ — J‘ J1n fwhich is maximized by the Maxwell
distribution, denoted by g. Then, written out in full, the appropriate
Helmholtz function with kinetic part normalized to zero at f;, = g, is

A= _f:zf_g fy dx dv[G(f;) — Gig) + (fi —g)6] + @ (I1.6)
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where &; = Yemp? and

— (8r) 1 jv dx(E? + AB?) (IL7)
G/(x) = T)lx In (C;x) — ] (IL8)
g = Ciexp (—6,/T)) (IL9)

The somewhat peculiar definition of entropy, through G, is chosen so
that the kinetic part of A is minimal at f = g for all choices of the varia-
tional parameters C; and T,. The parameters C; and T}, to be chosen
later by variation, can be different for each species. The subscript V
denotes integration over a finite spatial volume V. Again, sums are
taken over species. Note that AB = B — B, omits the external field
energy in @, so that @ is essentially the field-fluctuation energy. As
Gerjuoy has pointed out (5), the fact that this field energy is positive is
a consequence of neglecting negative-pair correlation energy (e.g.,
binding) in the Vlasov fluid approximation, generally valid at densities
and temperatures such that turbulence due to plasma instability is of
interest.

Since g minimizes the integrand in the kinetic part of 4, and the
minimum is zero, the kinetic part is positive,

Ag=A—020 (I1.10)

The other important property of 4 is its time dependence obtained by
differentiating the kinetic and electromagnetic parts of Eq. (IL.6) by ¢
and evaluating the resulting partial derivatives from Egs. (IL1)-(IL.3),
together with Eq. (IL.4),

Z = P, = J. dx——- { fdv v[£:f; + GAf)] % c(dm) 'E x AB}
) (IL.11)

The inequality permits the collisional increase of entropy. As would be
expected, on integrating by parts, the right side yields a surface integral
which is just the net rate of energy flow across the surface S bounding
the integration volume V. Integrating in time gives

A(r) < A©0) + j; dt' P, (IL.12)

where A(0) is the initial value.
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Since A(t) > @(r) by Eq. (I1.10), the right side of Eq. (II.12) is an
upper bound on ®(7). However, the bound is generally an overestimate.
As Chen has pointed out (6), Maxwell’s equations require that charge
and current fluctuate in space like V- E and V x B, whereas our trial
functions are smooth. Similarly, these trial states must omit E x B
drift energy that fluctuates reversibly with E. Because the trial functions
are states of minimum kinetic energy under the thermodynamic con-
straints, the correct state consistent with Maxwell’s equations and
dynamics has greater kinetic energy. The difference is a part of Ay
which is, on the average, not available to ® but appears as a kinetic
fluctuation proportional to and varying reversibly with @, like polariza-

. tion energy in a dielectric. In other words, for some dielectric constant e

‘and permeability p,
()7 [ dxle — DE? + (u — DAB < 4x()  (LI3)

Always, e, » = 1, and generally for plasmas, ¢ ~ 1. While a rigorous

- nonlinear derivation of e is lacking, its general order of magnitude is
* casily deduced for two important limiting cases for states not too far
i from equilibrivm. For electrostatic oscillations, (¢ — 1) ~ (kAp;) ™2
. where k is the wave number and Ap; is the Debye length for species j.
- This corresponds to the adiabatic relation between charge and potential
- fluctuations, 3p ~ en 8¢/T, so that %, 8p 8¢ ~ (k*A3,)*(E*/8m) with
. E ~ k dp. In a magnetic field, if fluctuation frequencies fall below the
~ cyclotron frequency for a given species and k=% > ry;, the gyroradius,
- we take (e — 1) ~ (r;/Ap)7 which corresponds to E x B drift for that
- species since [Vonm(cE[B)?] ~ (rp;/Ap;)*(E?[87). An approximate ex-
. pression correct in these two limits is

Z (ri?A3; + K*Ag)~* (I1.14)

7=1,e

\ This will be recognized as the typical contribution of “nonresonant”
- particles for Maxwellian distributions.

Combining Eqs. (I1.12) and (I1.13) gives the bound, with u = 1,

8m)" [ dx(<E? + ABY) < AQ) + [dr'P,  (L13)

where « was estimated above, and in any case, ¢ = 1 would yield a

rigorous bound by Eqgs. (IL.10) and (IL.12).
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This bound is most useful when that portion of the plasma within ¥
is effectively isolated, which is to say the P, term is negligible compared
to A(0). Indeed, most of the physics in our approach, beyond the
thermodynamic laws, lies either in choosing ¥ such that this condition
holds or in choosing some other assumption equivalent to isolation.
We shall return to this important question in Section IV. One example
is the idealized plasma uniform over infinite ¥ so that one may take
Py — 0. Then © < A4(0), from which it follows that Maxwellian states g
are stable since for them 4(0) is zero aside from the negligible energy in
initial perturbations. This proof was first given by Newcomb (2) and,
in magnetohydrodynamics, by Berkowitz, Grad, and Rubin (7). Kruskal
and Oberman (3) introduced a generalized entropy by which the proof
extends to all monotone functions of the energy in the absence of col-
lisions, the same class of stable states found by Gardner. They show
that for any monotone state f, there exists a corresponding entropy
which is maximum for that state. It has the form above but for G we
take the solution of G’ = dG/df = — & since this gives an extremum of
A which is a minimum inasmuch as G” = —(df}d&)~* > 0if dfjdé < 0.
With their entropy function, bound (II.15) could similarly be generalized
in principle, but care must be taken to restrict the perturbation ampli-
tude for all time if G” or higher derivatives are negative, which is not a
problem with Maxwellian distributions and G given by Eq. (IL8).

In evaluating the bound, 4(0) should be calculated with f equal to
the initial state f; since energy in initial perturbations about fais assumed
negligible in that instability has not yet developed. Note that it is not
necessary that f; be an exact equilibrium state; for example, it could
oscillate.

B. Variational Procedure

Parameters C; and 7} in the trial functions for each species are as
yet arbitrary. Since the bound holds for all values, the best bound is
obtained by varying C, and T; for each species so as to minimize A(0).
Because energy depends on the reference frame, it is also important to
be able to change frames. This is accomplished, while preserving the
essential features of 4, by adding to 4 any known momenta conserved
for the most part. For example, if B, is azimuthally symmetric, the total
angular momentum is conserved,

Py= fv dx v fipe; + (4mc) 1 jy dxz-r x (E x AB) (IL16)

i=i,e
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\ where py; = mav, + (q,/c)rd, and A, is the azimuthal component of
- the vector potential generating B,. To effect a transformation to a
- reference frame rotating at angular frequency 1, we add pP; to 4 above,
- The new result retains the original form,

< > [, dxavGAf) - Gig) + (f, — g)e) + © (IL.17)
g; = C;exp (—&;/T)) (IL.18)

E; = &; + upe; = Yomv + br)® + U, (11.19)

Uy = mlg,|Chrdo(r,z) — Yomru? (I1.20)

- However, &, has been replaced by &, which is the particle energy in the
new frame, and @’ is the sum of ® and the field term from pPy. It can
- be shown that @’ is positive definite and is the field energy transformed
. to the new frame, though it is not quite relativistically correct because
. of our nonrelativistic treatment of the particles. In any case, if rup « ¢
. within V,

D'~ 0 (I1.21)

. Other known canonical momenta Ps; may be added similarly to
~ again yield Egs. (I1.17), (IL.18), and (I1.21) but with

;=& + ZPJPG:

- Again, bound (II.15) follows with an expression for Py different in form
- but having the same content. Now the constants . determining the
reference frame are to be varied along with C; and T,. Note, however,
- that while C; and 7} can be different for each species, the y,’s cannot,
- They must be the same for all species able to exchange momentum.

. Generally, the optimum values for the variational parameters de-
-._-f_pend on the situation. However, the optimum C, obtained by equating
* to zero the first variation of 4 with respect to C, is always that which

. Separately conserves particles of each Species,

J‘V dx dv C;exp (—&}/T) = L dx dv f;

(I1.22)

(11.23)

C. An Example

. As an example of how to apply the bound on field fluctuations, con-
Sider counterstreaming ions and electrons with Maxwellian distributions
of the form f, = N, exp (—&./Ty) and f; = N, exp [—(&; + up.)| Tyl
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where p,; = muv,;. There may be a uniform magnetic field B along z. We
may consider this uniform plasma to be so large that Py is negligible;
we also neglect collisions; and initially @ is likewise negligible. Then,
evaluating the bound (I1.15) calls only for calculating the kinetic part of
A(0) by introducing the above initial distributions into Eq. (I.17) and
taking the form &; = &; + p_p.; for each species to permit variation of
reference frames translating along B,, the direction of relative motion of
the ions and electrons. From Eq. (I1.23), for ions, the optimum function
is

C, = N(To/T)% exp [(mw®[2To) — (my2[2T)] (11.24)

and similarly for C,, but with # = 0. With this normalization, we
find

3 7
AQ) = wr{Yoms = + Yoma2 + 3 [T~ 74 7]}
i=i,e
(11.25)

where n = [dvf, = [dvf,. This is minimized by T; = T, for each
species and p. ~ u, from which

A(0) = nV(Yama®) (I1.26)

This simple result could have been estimated easily by asking how
the system could come to thermal equilibrium. The Maxwellian ions
and electrons can do so merely by dissipating their relative motion
into fluctuations. To conserve momentum, it is mainly the lighter
electrons which decelerate, and from this the bound on free energy is
just their kinetic energy of translation relative to the ions, Y4m,u® per
electron. This is readily generalized to several species of different den-
sities, which just yield other terms like those of Eq. (11.25) with #
different for each. With the optimum choice T = T,, A(0) is just the
sum of translation energies of each species in the reference frame moving
at speed p. and is minimized by choosing u, to eliminate terms with the
largest product nm. For example, for an electron beam of density #,
penetrating a denser plasma, we find 4(0) = »,V(¥%4m.u>), which agrees
in order of magnitude with the efficiency of utilizing beam energy in
several beam-plasma experiments. Also an approximate quasi-linear
calculation by Shapiro (8) of two-stream instability for a very weak
beam gave a result only a factor of six less than this thermodynamic
bound, with € ~ 1 since XAy ~ 1 for plasma oscillations.
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The above example illustrates some of the virtues and weaknesses
of the thermodynamic method. The bound is insensitive to dynamically
important parameters such as mu?/T, T,/T,, nT/B2 (in fact, B, could be
zero) and whether V x E # 0 (transverse mode). As was indicated in
the introduction, we expect these hidden parameters mainly to affect
thresholds for various modes and not their nonlinear development
except perhaps for very weak modes. We have already seen that the
thermodynamic bound is about the right nonlinear limit for the extreme
case of the two-stream instability which requires u > v, = (T, /m,)*%.

At a lower streaming speed u < v,, there persists in a beam-plasma

system an ion acoustic mode if 7, > T, and a transverse magneto-

~ acoustic mode if B = (87nT/B2) is large (9). These strong instabilities
. are then probably those which fulfill the thermodynamic bound. At

low g and T, S T; when the strong modes go away, there exists an
electrostatic ion cyclotron mode, but it saturates at an energy a factor
(uv.)® below the thermodynamic limit according to a quasi-linear calcu-
lation by Drummond and Rosenbluth (10). Thus, as anticipated, what

.. ‘evidence there is indicates that the thermodynamic bound on free
| energy represents the strong instabilities fairly well but overestimates
- the very weak ones.

III. Growth Constant

We can also give an energetic bound on the growth rate of perturba-
tions about any state fy;, E;, B, which is a solution of the Vlasoy-

- Maxwell Eqs. (IT.1)~(IL.3). In principle, the state may be time dependent;
. for example, it might incorporate a spectrum of fluctuations already
- developed. To obtain a thermodynamic bound on the growth constant
- ¥ We imagine that we add enough artificial damping to the system to
- make f, stable. To show this thermodynamically, we would seek a free
| energy function H = H, + ® such that Hy has a zero minimum at

f = f, whence H > ® as in the previous section. Then fj, is stable if H
Is constant or damping in time, and the artificial damping which must
be added to accomplish this, just equal to the actual fastest rate of
change of H, is a bound on the growth constant of the real system;

11dH
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where “max” means that the maximum value for any allowed perturba-
tion is taken. More precisely, the maximum growth constant y.,. is
defined as the greatest lower bound on » such that

J:D dt ®exp (—=2wt) < o0

for all perturbations. Then, if (d/dtln H) < 2y, = (d/dt In H)pay,
® < H < Cexp 2yt and Eq. (I1L.1) follows.

To illustrate the method, we shall treat just the following simple
function useful for states not too far from thermal equilibrium,

Hes > f .a’:u,z'vff,-E 4 (sw)—lf dx(E% + B} + ga-El X By)
ST dy Jos v ¢
(I11.2)

Details and other forms of H are given in reference 11. Here f;, =
fi — foi» Et = E — E; and B, = B — B, are the perturbations, and 7
is a variational parameter. Also, we have added the field-momentum
term to permit easy variation of the reference frame by varying a, which
can depend on x. Since we want the instantaneous rate of change away
from whatever solution f; exists at that moment, it is sufficient to con-
sider only small perturbations and linearize Eq. (IL.1) in computing
dH/dt,

aflj i q5 1 ?fﬂ

o Vgl t g, (Bt oy X Bo) oy
4 1 Yo _
+m_(E1+Cv><B1) P =0

it

(IIL.3)

Similarly, in Eqs. (11.2)—(11.3), which are already linear, replace f; by f1;
and so on. Note that we have dropped the collision term here.

When fp; = g; (Maxwellian) and E; = 0 and B, = B,, H in Eq.
(IT1.2) becomes A to second order in (f — g); and dH/[dt = 0 indicating
stability., Otherwise, dH/dt computed from Eq. (II1.3) is

dH
G- 2 [t . (1L4
with
J, = q;—[(v + a)fo; + %%} (L11.5)
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- We have used the fact that f;;, E,, By is a solution of Eq. (I1.1). Also,
- we have taken the integration volume ¥ to be large and have therefore
opped surface integrals analogous to Py in Eq. (IL.11); we have also
opped the magnetic force v X B;, whose contribution to the bound
is smaller by v/c as shown in reference 11.

To complete the calculation, we apply Schwarz’ inequality twice to
Eq. (IIL4) and also the relation [dx EZ, < 87®, with the notation
E, * J; = 3, E\J;; and @, denotes the (positive definite) field term in H.
- The resulting chain of inequalities is

fdx av(fislfo)d; By
< fdv 2 [ de Sﬂf?j-]?iygj]%[ jdx E%{”{Sﬁ]}é

Jal(an ) (E7) o]
2V 2vew, (Hy ®)4(A,,[nVT,)% (I11.6)

In the second line of Eq. (ITL.6), we have removed (J2/fy;) from the x
egration by taking its maximum value at any x in ¥, denoted by
ax.” The quantity » < 3 is the number of nonzero components of
‘the vector J,, and

27 [(J?
andv = (—j)
wg}‘ ﬁ)}' max
iy - o 2
Vfdv[fo, % (v +a+ mj}o%) ] (IIL7)
i 7405 max

-_Aga.in, Hy and @ are the kinetic and electromagnetic parts of H.

_ The combination of Eqs. (IIL.1), (IIL4), and (IIL6) gives the
‘bound,

A

A

Aw‘

Il

v = 3 Vi, (L )/ (IIL8)

J=tie EanTj
‘Where the sum is taken over species and for each wy; = 4mng?{m; with
' = [dvf,,. The quantity e, is
€ = (HK + QI)B/HK(I)]_ = 4 all Hqu]l
— (Hy/®) if Hy» ®, (1LY

| Thus «,, interpreted as the ratio of kinetic and field-fluctuation energies,

- dCts as a dielectric constant quite analogous to our discussion of
Eq. (11.13).
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The quantity A4,; for each species is closely related to the contrib}l-
tion of that species to the free energy. Indeed >, 4,; is the fre_e energy in
our earlier example of counterstreaming Maxwell distributions of the
form fy; oc exp [—(€ + up,)/T;); with u, = 0 for electrons and u; = u
for ions. Then, choosing a = 42 to minimize the bound, Eq. (III.S?,
we find from Eq. (I1.7) that 4,; = 0 and 4,, is the free energy for this
case found previously, given by Eq. (I1.26). Then, the bound on y can be
seen to have the form y < e(E)/m.v, where v, 1s the electron thernjlal
speed and <E is the maximum field allowed thermodynamically with
the relation €, (E>?/87 = A/V. An example illustrating the accuracy of
the bound on y for a state near thermal equilibrium is given in the next
section.

IV. Free Energy of Confined Plasma

In our examples so far we treated plasmas with uniform d.cnsity
and pressure, the only source of free energy being the deceleration of
current streams through the plasma. We now consider the case of a
plasma confined in one or more dimensions.

In a confined plasma, some of the random energy, or therm?l
energy, can contribute to free energy if the plasma can expand in
volume. On expanding, the plasma might cool and the heat los_t may do
work in driving fluctuations. Expansion may not be possible. FQI
example, a plasma confined by a gravitational potential could be in
thermal equilibrium and hence be stable with no free energy. .The
distributions for each species could be monotonic decreasing functions
of the particle energy &; = Yomu? + V,;, which now includes the
gravitational potential V;; for example, f;; cc exp (—&,/T;). Here the
gravitational force prevents expansion. .

By contrast, a plasma confined by a magnetic field can never be in
thermal equilibrium because diamagnetic current must flow if the field
exerts a force against the plasma pressure. Now the plasma can ex'pan'd
if the diamagnetic current is somehow dissipated. Also, the lflnetlc
energy of streaming would be given up, as well as the energy in the
diamagnetic field itself.

Thus, in a magnetically confined plasma there are E}lways thr.ee
possible sources of free energy associated with d_jssipatmg the dia-
magnetic current: kinetic streaming, the diamagnetic field, and expan-
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sion. These “fundamental” sources of free energy are those associated
with a plasma as near to thermal equilibrium as is possible while still

| remaining consistent with magnetic confinement. For example, they
" are generally the principal sources if field lines close within the plasma
~ or if the plasma is magnetically confined only in directions perpen-
. dicular to the lines. Then ions and electrons may be Maxwellian but

they are in different frames of reference so that their relative motion
produces the diamagnetic current. Departures from Maxwellians, such

- as a loss cone in velocity space or pressure anisotropy, are additional
~ sources sometimes present.

The largest of the fundamental free-energy sources is generally

~ expansion, unless the plasma pressure approaches the external field
| energy density B7[8. Indeed, the most general thermodynamic con-
. straints employed in Section II would permit unlimited expansion and
. hence the total thermal energy would be free. As proposed in the intro-

duction, here we shall also consider the role of expansion in more

* localized processes. That is, we subdivide the plasma and consider the
~ different subregions to be isolated from each other in the sense that the
~ free energy in a given region comes from plasma in that region only,

The regions are isolated in this sense if the power flow between them,

. Py, is negligible for times of interest.

As an example calculation, we consider a long plasma column con-
fined radially by a magnetic field B, which is azimuthally symmetric,

~ We take the distributions to be Maxwellian, of the form (for each
. Species)

Jos = n(m;[2xT4,)% exp [ = (v + Ora)® + 7)) To,] (Iv.1)
Vi = afgle)r(do)y — Yomp2ed + g0 (Iv.2)

~ The exponent in Eq. (IV.1) is the sum of particle energy Yomap? + g0,

and o, times the canonical angular momentum in the equilibrium field

~ B, [not B, as in the argument of &, Eq. (IL.19)]. Here E, = — Vg, and
BB, — V x Ay(r,z) are also assumed symmetric and must be made con-
- sistent with Maxwell’s equations. One charge species (but not both) can

be confined by ®o, therefore, for that species e; = 0; or both can be
confined magnetically, from which for charge quasi-neutrality (o Tyy) ~
—(@e/Ts.). In either case, the ions and electrons are in relative rota-

tion as rigid bodies and -an azimuthal current flows of the order
Jo = enr(e, — o).
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A bound on the growth constant for this case, of use presently, can
be found by evaluating Eq. (1I1.8). The quantity v = 1, since J; has one
component, and 7; = Ty, and a = 0 are found to be about optimal
choices if «;/T; = —o,/T, (for neutrality). Taking the field uniform for
simplicity (which is not necessary), we find

o = (vryu/R?) = —a (TT,) (Iv.3)

where Yomp? = T, ry; is the gyroradius, and R is the plasma radius de-
fined by W,/T; = r?(R% Here we have assumed r;, < ry <« R and
dropped myr?e5 in V;. The maximum of the integrand occurs around
r = R, where r®exp (—V,/T;) = 0.37R?. Introducing these quantities
into Eq. (ITIL.7) with a = O gives for each species

Ay = nVTA0.37r,/R?) (IV.4)
and hence, by Eq. (IIL8),
7 < 0.6V2wu/Ve)[(VT: + VT)VT)ruR (Iv.5)

For long-wavelength oscillations (kry; < 1), we estimate ¢, ~ (rf/A%)
by Eq. (II.14). Then y < v;/R, which is about the correct upper limit on
the growth constant for the various kinds of universal instabilities which
can occur in the plasma column, the maximum occurring at 7, ~ T..
For shorter wavelengths, with ¢, =4 by Eq. (IIL.9), the bound
(Eq. IV.5) gives about the correct upper limit on the growth constant
for the drift-cyclotron instability (12) aside from a factor (kr,)~*% < 1
which is the fraction of the ions which are resonant. Thus, the bound on
y compares well with known results for this example in which the plasma
is near equilibrium.

To continue the calculation of free energy, let us now divide the
plasma into cylindrical shells concentric to the axis of symmetry. We
sample instability in different regions of the plasma by calculating the
free energy in each of these shell regions separately according to the
bound Eq. (IL.15) with the integration volume V covering the shell in
question. Thus we take V to be the volume within r, < r < r; + A,
—L < z < L with L — o0, and we vary r; to change shells.

We first neglect P, and later determine the error. For generality,
we evaluate A(0) by Eq. (I1.17) written in a reference frame rotating at
angular velocity n. The optimum variational parameters other than s
are T; = Ty; and C; given by Eq. (IL.23). Then, introducing into Eg.
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(IL.17) the initial state f£;;, E,, B, with Jo; given by Eq. (IV.1), we find

AO) = > nVlamR¥e, — u + YTyl + Ay (IV.6)

i=ie

This is the maximum value of 4(0) for any of the shell regions, occurring
around r; = R.

As expected, the three terms in 4(0) are the three fundamental
sources of free energy in a magnetically confined plasma. The first term
is kinetic energy in diamagnetic streaming as seen in the reference frame
rotating at angular velocity x. The second term is I dx(By — B,)?/8,
the magnetic term of ®’(0) taken to be ~ ®(0) by Eq. (I1.21). This is the
diamagnetic field energy with |B, — By ~25;8,B.| and 8 =
(87nTo,/Bf) assumed «1 (if 8, — 1, merely drop the factor 14). We have
neglected energy in [ dx Eg/8r, of the order A3/R?. The third term is the
expansion energy,

Siei — > nly, .L dx exp [—j—,rfi]

i=t.e 04

{n (e [- ] avem [ L)+ 22 v

The expansion energy can be greatly simplified for not too large A
and field curvature sufficiently gentle so that (VTy); ~ r?(R? ~
(o/p)(U[Ty); for each species. With the restriction that A/R <« 1 and

.:\{)R < Yzloy/u|, we may then expand Eq. (IV.7) in powers of A/R to
obtain

2 2
Aoy = 3 nVT, $ 35 (;% & 1) (IV.8)
Again we took , ~ R to sample the worst region.

The quantity 4(0) is the desired bound on the fluctuation energy,
by Eq. (IL15), if P, is negligible. To obtain the best bound, the param-
eter u should be chosen to minimize A(0). The optimum value depends
on A/R and T, /T, For example, if A is large enough so that expansion
energy dominates, the optimum choice is generally p = 0; butif A — 0
so that the kinetic drift is greater, the optimum is p ~ «, analogous to
our previous discussion of streaming in connection with Eq. (I1.26).
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There remains the question of when P, can be neglected. It is useful
to rewrite this quantity, given in the laboratory frame in Eq. (IL.11), in
the following form, appropriate also in other reference frames,

B f dxdv v - valy (IV.9)
¥

where &7, is the integrand of 4y = 4 — @' in the chosen frame having
the form given by Eq. (IL.17). The terms in (v&/;) which contain g;
[not present in Eq. (II.11)] integrate to zero so long as the current
| dvvg, has no component perpendicular to the surface bounding ¥,
true in our above example with azimuthal symmetry. In Eq. (IV.9) we
have neglected the electromagnetic radiation term that is usually small.

While we cannot give a rigorous calculation of Py for all cases, we
can see that the essence of the matter is that Py is a transient, a conse-
quence of the fluctuations themselves, and it can certainly be neglected
in calculating free energy if instability growth saturates within about
one growth time ™1, where y is the growth constant. Three facts point
toward these conclusions. The first is that initially P, = 0 if only we
choose ¥ such that the initial currents [ dv vf, do not represent a net
flow of energy into or out of V, true in our example above. Second, P,
is also zero after ““saturation,” that is, after a transition to thermal
equilibrium, f; — g;. Thus, it is consistent with our extreme estimate of
free energy as that given up in a transition to thermal equilibrium if we
assume Py to be a transient caused by the fluctuations. Third, we can
show, at least for our example and in certain other cases, that an
estimate of the peak value of the transient Py is

P, < yA(0) (1V.10)

Then, if = is the duration of the transient Py, it follows that P, can be
neglected in calculating the bound on free energy if = < ™1, since the
integrated power then satisfies | dt' Py ~ 7Py < A(0).

Equation (IV.10) does hold for our above example of a plasma
column confined radially. Since we found currents across the boundary
of V to be caused by the fluctuations, we make what should be the
pessimistic replacement v — [4(0)/nmV ]*, which supposes that A4 =
A(0), whereupon we estimate Py < k(kA)~1[A(0)/nmV 1% A(0), k! being
the scale length of radial variation of [ dv ve/,. The most interesting
case is that when expansion energy dominates, A(0) — nVT()?/R?),
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. with T, = T} = T for simplicity. What mass to take in the above cal-

culations is somewhat ambiguous, but probably it is my, by analogy

" with ambipolar flow. If so, the above estimate of P, yvields Eq. (IV.10)
- with y ~ /R, which we previously found to be the maximum growth
~ constant in the expansion regime.

V. Applications

In this section, we present in brief some sample applications of the

- foregoing results, which have been discussed more fi ully in the literature.
. As outlined in the introduction, these are not intended as rigorous
. calculations but rather as simple estimates relating intuitional assump-

tions to experimental data with the help of our estimate of free energy.

- A. Diffusion

As a first example, we estimate diffusion in velocity and in space as

_ a consequence of microinstability, following reference 4. Velocity dif-
| fu910n involves slowing down of particles by the fluctuation fields and
~ reacceleration in a different direction. Then, if D,; is the velocity dif-

fusion coefficient for species j, the quantity > nm;D,; 18 essentially the
rate of energy exchange with the fluctuations and hence must equal the

- rate of change of the fluctuation energy*

bl B d .
:za: At i (V.1)

On the average (¢£2/87) < [A4(0)/V], by Eq. (IL.15) and neglecting Py,

~ and for fluctuations not too large we assume Yod(In E2)/dt < ypa, the

maximum growth constant bounded by Eq. (II1.8). Then, for each

‘Species,

D,; < viy, (V.2)
] = [A(O)/?! VTJ]}’ms.x (V3)

- Where again v} = (27/m,).

Various turbulent transport coefficients can now be calculated by

analogy with collisional transport if we regard v; as an effective collision

frequency. Thus the coefficient of spatial diffusion perpendicular to B,
would be Dy; = rip atlow B, < 1; resistivity would be 5 = (4mv,/w?,)

) *In rcfercnce 4, the factor e is omitted, but probably the present estimate,
taking the time derivative of the total fluctuation energy, is better.
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with w3, = (4mne?/m,); and so on. The turbulent transport is important
only if v; > v, the classical binary collision frequency. The latter can be
written in a form parallel to Eq. (V.3), v, ~ (#A%) ~'w,, where the first
factor is the ratio of thermal fluctuation energy to the total thermal
energy. On comparing this with Eq. (V.3), we find that the energy and
frequency factors compete oppositely. Though thermal fluctuations are
generally much smaller than turbulent fluctuations, typically .. < w,,
also. In most cases, it turns out that v, does not much exceed v, unless
the plasma is far from thermal equilibrium. From this result one draws
the important conclusion, made quantitative in reference 4, that micro-
turbulence poses only a limited threat to long confinement of plasmas
if free-energy sources, in addition to the fundamental sources discussed
in Section IV, are minimized.

B. Magnetic Well Stabilization

As a second application, following reference 14 we consider
stabilization of instabilities driven by the expansion free-energy by
means of a sufficiently large positive magnetic gradient, or magnetic
well. In expanding in a magnetic well, the plasma moves on the average
to regions of higher field and thereby gains energy if fluctuations in-
volved have frequencies below the ion-cyclotron frequency so that the
magnetic moment is approximately conserved. The energy gain tends
to compensate the expansion free energy. This compensating effect has
not been included in our earlier estimate of expansion energy, which is
applicable no matter how rapidly energy is transferred (any frequency).
Thus no expansion actually occurs and the plasma is stable if the
energy gain exceeds our estimate of the expansion energy. The net gain
on expanding a distance A would be

Wase = 3 (3 5) (e F) (V4)
where p; = T;/B is the magnetic moment and the factor (%) arises from
averaging (dr)® over displacements in the range O < dr < A. Then
stability follows if W., > 4., given by Eq. (IV.7). This criterion is
applied to universal instabilities in reference 14. Since these modes are
known to be driven primarily by electrons (the dispersion relation is
relatively insensitive to T}), we take Ao, = nVT,(A/6R?), corresponding
to p = 0 and 7; = 0 in Eq. (IV.8). But since ions must move across
the field if electrons do to preserve quasi-neutrality, both species con-
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tribute to stabilization, see Eq. (V.4). Thus for universal modes, the
stability criterion becomes

AB|B > [T./T, + T))] (V.5)

with R = n(dn/dr)=* and AB = R(dB/dr). This result has also been
derived directly from dispersion relations ( 14).

Stability of certain special distributions against fluctuations pre-
serving u; can be shown more directly. There are two essential points as
emphasized by Taylor (15) and recently criticized and extended by
Grad (16). First, 4, conservation can be used to reduce the number of
phase-space dimensions. Then y; acts merely as a species label. Apply-
ing thermodynamic arguments to the reduced space, either in Gardner’s
form discussed in the introduction or by defining a free energy anal-
ogous to Eq. (I1.6) as Taylor does, one concludes stability if fo, depends
on ¢, and , only and £, is a monotonic decreasing function of &; for
each value of p;, (8f,,/06);1, < 0. The second point is that functions of
s and &; satisfying this stability criterion can actually represent real
plasmas confined in a magnetic well.

The above theoretical results have had a considerable influence in
furthering the interest in magnetic wells in fusion research.

C. Fluctuation Spectra

R. Chen (6) has obtained a thermodynamic bound on the power
spectrum of plasma oscillations. He considers a one-species, one-
dimensional plasma unstable to electrostatic oscillations with total free
energy < A4(0) computed by methods above. As we discussed earlier in
Section II-A, Chen observes that, because A(0) is obtained from the
transition to a state of thermal equilibrium and uniform density, it is an
overestimate in that it neglects the fact that electrostatic field fluctua-
tions imply density fluctuations An. He estimates the correction,
essentially (¢ — 1)(E?/8x) in Eq. (IL.13), as

&, = 0.6{(Anfn)>>nVT (V.6)
Chen’s objective is to bound a partial sum of the field power spectrum

EZ, which he relates to &, through the inequality

W =3 2 2
14 f dk'(E2(87) = 2=V f dk’ q——-_(i,’;’“’) < (1.2k203)-'¢, (V.7
ke k
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Here E, is the Fourier component of E(x) with.wave numbe:‘r k and in
the second step we use kE, = 4nq An, from Poisson’s equation and Ap
is the Debye length. Now

e+ V J' " dk ERj87 < &, + ® < A(0) (V.8)
k

which is essentially Eq. (II.15). Combining Eqs. (V.7) and (V.8) gives
the bound
1

HETE ) V.9
1+ 1.2k9).%A( ) (9

VJ. dk' EZ[8x <
ke

When the bound is achieved, differentiating by k& gives the spectral shape
EZ oc k72 for kA > 1.

i As a final example, we calculate a bound on the power spectrum of
fluctuations driven by expansion energy, following reference 17. To do
s0, we neglect mode coupling from short- to lgng-wavelength ﬂuct_ua-
tions. This is perhaps reasonable for expansion rTLodes. A possab_lti
picture of mode coupling in this case is that expansion on a scale k
creates a local, steeper pressure gradient which in turn drives expansion
on a smaller scale (bigger k). In any case, negle}:Ung mode coupling to
long wavelengths leads immediately to a relation between the power
spectrum &(k) and A,,,. We then assume that energy released by ex-
pansion on a scale k' exists in fluctuations with wavelengths less than
this scale size, from which

v f: A EE) < Aol) (V.10)

where A,,, given by Eq. (IV.8) with the replacement k = )(‘.12. Azga.in
assuming low frequencies and long wavelengths, we take € = r7;/Ag; by
Eq. (I1.14) and

E(k) = e(EZ>(8n (V.11)

L di CED = J'V dx EX(x,t) (V.12)

When the bound (V.10) is achieved, we may differentiate this expression
to obtain (EZ> oc k8, since A, oc k=2, a result also 0bta¥ned dby
F. Chen (18). A prescription for inverting the a}aovle procedv:lre in or z;
to obtain A4,,, from experimental spectral data is discussed in referen

17.
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VI. Further Developments

Continued progress along thermodynamic lines hinges on finding
better free-energy functions. The search has gone on for some time,
mostly within linearized theory with the hope that the results would

~ later lead to a nonlinear theory.

We can prove the existence of free-energy functions within linear
theory in the following sense. Through an extension of the stability
theory of Liapunov (19), we can show that if the state fo, is stable there
exists a quantity H which has a zero minimum at f; = f,, and d/dt In H

~ is as small as we please (H is nearly constant). One such H can be con-

structed as follows. Let ¢ denote a column vector whose components
are the perturbations f;; and the components of E; and B,, and define a

scalar product by
(o) = C1 3 [dxav(fipyfe
i=i,e
FiEs fdx[(Eif")* *EP + (B®)* - BY) (VL1)

where C; and C, are positive constants and (*) denotes the complex

. conjugate. Write i(t) = T(t)4(0), T(r) being the solution operator of
- the system of linearized Vlasoy and Maxwell’s equations with the

property T(f + A) = T(1)T(A). Now suppose f;; is stable so that
[(2)4(2)] exp (—pt) is integrable on ¢ for all 4 and any g > 0. Then a

'- Qquantity having the required properties of H above is

H = [ B )] exp [— (' — 1)]
= (W [f)” as TGT(s)e]u()) (V1.2)

- since H> 0 and H =0 if fi; =E, =B, =0, and dH|dt = —(y.4)
.+ pH < pH so that (didf)In H < #, any n > 0. Here (1) denotes the
* Hermitian conjugate, and s — ¢/ — f. An example is H given by Eq.

(IT1.2) if £, oc exp ( —&,{T;). Similarly, one can show that there exists
a positive quadratic form H for which a bound on the growth constant
analogous to Eq. (IIL.1) becomes arbitrarily accurate. A more detailed
proof is given in reference 19.

While constants of motion having the properties of A must exist, as
yet there is no really practical method for finding them. Several ap-
Proaches have been explored. One utilizes the fact that finding the
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free-energy function relative to a stable state is equivalent to finding a
nonunitary similarity transformation bringing the Vlasov equation
linearized about this state into Hermitian form (19,20). Sturrock (21),
Low (22), and Buneman (23) have pursued a Lagrangean formulation.
However, with the possible exception of new constants found by
Kruskal and Oberman (24), none of these efforts has yet disclosed a
free energy materially different from the Helmholtz function. Along
related lines, several authors have identified variational energies with
marginal mode analysis (25-28), and Minardi (29) has advocated
abandoning the search for constants and looking instead for an entropy
displaying Landau damping. What will come of these diverse ap-
proaches remains to be seen.
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