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The collective behavior of a fully ionized plasma in which the number of particles in a sphere 
of radius a, the Debye length, is very large compared to one is governed by the collisionless Boltz-
mann or Vlasôv equation. In an infinite homogeneous plasma of this type, it is well known that 
in the "linearized" theory a velocity distribution/0 (v) consisting of a main part that is a mono-
tonically decreasing function of energy plus a small gentle bump on the tail of the main part 
(e.g. a Maxwellian plus runaway electrons) leads to unstable (growing) plasma oscillations, and 
that the unstable oscillations are those for which v 3 / 0 (v)jd v > 0 for v = eo/fc ( w is the frequency 
and   the wave number). 

After a sufficient time these waves grow to such an amplitude that the non-linear terms in 
the Vlasov equation are important and the linearization is no longer valid. The question then 
arises as to the behavior of these waves in the non-linear region and it is this question which we. 
consider. 

The method is to divide the non-linear terms into two groups, one of which combined with 
the linear terms yields a non-linear dispersion relation, while the other provides a weak coupling 
between the different modes. The non-linear dispersion relation leads to the establishment of 
an equilibrium spectrum, which then decays slowly to zero due to the mode-coupling terms. The 
limiting of the wave amplitudes to the equilibrium spectrum is due to flattening of the bump in 
the velocity distribution by non-linear effects. The slow decay of the equilibrium spectrum leads 
to further changes in the velocity distribution so that asymptotically the distribution function 
is a monotonically decreasing function of energy and hence stable. Analytic expressions for the 
equilibrium spectrum and the equilibrium velocity distribution are obtained. An approximate 
value for the maximum energy in the equilibrium electric field is given by the geometric mean 
of the thermal energy and the drift energy of the particles in the bump. 

1. Introduction to an equilibrium spectrum is a result of a diffusion 
_, T, . -, i . r n n , i n the velocity distribution due to non-linear effects 
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equation. In an inimité homogeneous plasma oi this  1 , , . • , . . - , , 
type it is weU known tha t certain velocity distributions T h e m e t h o d l s t o . d ' v l d e t h e ^ " j 1 1 1 6 ^ t ^ m ? . m t o 

lead to unstable (growmg) oscillations. The frequen- t w 0 S r o uPf • 0 n e o f *  8  > c ° m b m e d ™ t h t h e l m e a J 
cies and growth rates of these osciUations are obtained * e T S ' y f l d s a non-linear dispers^n relation, and 
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linearizing of the Vlasov equation is no longer valid. process. 
The question then arises as to the ult imate fate of T h e instabilities to which the theory applies are 
such unstable osciUations. I t is this question tha t those for which the growth rate depends on the 
we wish to consider. velocity gradient of the distribution function, and 

I t will be shown tha t the development in the the dispersion relation is such tha t the interaction 
non-linear regime for certain types of unstable modes between modes is non-resonant, 
can be followed in considerable detail for long times. In Section 2 the linearized solutions are discussed, 
This is illustrated for the case of unstable electron- and the non-linear dispersion relations are developed 
plasma oscillations. The result is t ha t these waves, in Section 3. In Section 4 the non-linear dispersion 
which are initially unstable, grow in a short time relations are applied to a one-dimensional example, 
to an equilibrium spectrum (in   space) and then The damping due to mode coupling is discussed in 
decay slowly to zero. The limiting of these waves Section 5, and the results are discussed in Section 6. 
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2. Linearized theory 

In treating the dynamics of the electrons we shall 
t reat the ions as a uniform background of positive 
charge. In so doing we neglect the influence of the 
ionic polarizability, an approximation which is valid 
for phenomena occurring a t frequencies large com-
pared to characteristic ionic frequencies. We study 
the Vlasov equation which governs the time rate of 
change of the single-particle distribution function, 
F ( , v, t), according to 

we obtain 

8F 
dt + \-VF- eE 

m 
VvF = 0 

Here E is the electric field produced by the particles, 
and is determined by Poisson's equation 

V E = + éne(n — Q)= +ine\n— fd 3 v .F(v) l 

(2.2) 

where Q (r, t) is the local electron density, and n is 
the average electron and ion density, and e and m 
are the electronic charge and mass respectively. 

The use of Eq. (2.1) represents an approximation 
of the following kind [1, 2]. First, it is valid only 
when 

 03^> 1 

where a is the Debye length, 

a2 =  ^/    2 

and T is the electron temperature. This approximation 
is well satisfied in all classical plasmas of physical 
interest. Next we remark tha t in general the right-
hand side of (2.1) should not be zero but should 
contain Pokker-Planck-type collision terms, which 
are themselves non-linear functions of F. These 
collision terms give rise to relaxation phenomena in 
the electron gas which are characterized by a time 

  = n a3/cop (2.5) 

when  )  =(4    2 /  )1 /2 is the plasma frequency. Our 
use of Eq. (2.1) is therefore only valid as long as 
the phenomena we consider take place in a time 
short compared to r . 

The solution of Eqs. (2.1) and (2.2) is obtained by 
splitting F into two parts 

F(T,v,t) = F0(y) + f(T,y,t) (2.6) 

Here F0 (v) is the unperturbed homogeneous time-
independent distribution function, while / (r, v, t) 
represents the correction to F0 (v) brought about by 
the Coulomb interaction between the electrons. If 
we expand / in a-Fourier series in a box of size L3, 

k. 

/ k ( v , ! ) = ^ r / ( r , v , « ) e - " " ' (2.7) 

dt 

and 

(2.8) 

E Q ( 0 = ^ i i q J d » v / q ( « ) (2.9) 

where we have made use of the fact tha t we consider 
only longitudinal electric fields. 

(2.1) In this section we consider the perturbation series 
solution of Eqs. (2.8) and (2.9), in which / (v, t) is 
regarded as representing a small correction to the 
initial velocity distribution, F0 (v). Our motivation 
in doing so is, first, to bring out the nature of the 
difficulties tha t arise when F0 (v) is such as to yield 
growing plasma waves; and second, to provide a 
framework within which to view the non-perturbation 
solution discussed in the following section. 

The perturbation-theoretical solution consists in 
expanding /k and E k as follows 

/k = /k'1' + /k<2> + /k<3> + • • • 

E k = Ek<!> + EkW + Ek<3) + . . . (2.10) 

(2.3) while regarding F0 (v) as a zero-order quanti ty. The 
first three equations are 

a/k<2> 
dt + i k-v/k«> = (-A.)[Ekm.Vvl'0 

+ 2Ek-q( 1 ) -VV/q«] (2.12) 

e/k<3) 
dt + i ik-v/k(3) = ( ^ - ) { E k ( 3 ) . V v ^ 0 

and 

+ 2 [Ek - Q(2) • Vv / ,« + Ek _ qm • Vv/q<2>]} (2.13) 

Eq(i) = ^ i q j d 3 v / < , « (v) (2.14) 

with corresponding equations connecting Eq<2> and 
/q<2>, E„<3> and /q<3>. One then finds, from (2.11) and 
(2.14) t ha t a non-zero solution of EqW with a time 
dependence of the form exp — \Qt exists only for 
frequencies Q which satisfy the dispersion relation 

e f t f o f l ^ l + i l ^ f d ' T g - y ^ f r i = 0 (2.15) v u ' mqz J Q — q-v v 

Here et1) (q, Q) is the first-order dielectric constant 
of the plasma, and Im D>0. eW (q, Q) is thus defined 
only for Q in the upper half of the complex Q plane 
and is to be continued analytically into the lower 
half plane where necessary to obtain solutions for 
which I m i 3 < 0 . 
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In the present paper we confine our attention to 
distribution functions F0 (v) which are such tha t one 
will find for certain values of q growing plasma 
oscillations with 

Q(q) = mqa) -fiyqf1) (2.16) 

such tha t the growth rate yqW is small compared to 
the oscillation frequency, oq'1', the latter being given 
by its long wavelength expansion 

U)q2 *=» c o p 2 + 3 jd3YFo{\)(q-v)z + • • • (2.17) 

In addition we require yq/qAv<^l where Av is the 
characteristic velocity increment in which F0 {cop/q) 
changes. The growth rate yq

(1), is then given by 

2 i 
0)q 

(4_ 

w 
2 7 i a e 2 

| d 3 vq-V v J , o(v)<5(w q ( 1 ) - q v ) 4 1 
(2.18) 

In the second order one finds, on substituting the 
appropriate first-order solutions for /kW and EkW into 
(2.12), t ha t Ek<2> (and /k<2)) oscillate at the sum and 
difference frequencies a)q±cOk-q a s o n e might expect. 
These solutions, when substituted into the equation 
for /q(3> (2.13) will yield corrections to the dispersion 
relation (2.15). There is also in second order a correc-
tion to F0 (v) arising from /0(2> (v). The equation for 
the time rate of change of /0(2) (v) reads 

g/o<2> ( ) 
8t Zw î2 \ m I <fq(«)q-V„   « 

(wW-q-Y^-bfrq*1))2 

X q • V v Fo ( ) (2.19) 

where we have introduced S\ (t), the electrostatic 
energy in the q t h plasma mode 

Pq   = 1-gqWI 
8TT 

According to (2.16), one further has 

^ = 2 y q d ) ^ Q 

(2.20) 

(2.21). 

Plasma waves t ha t are damped (and which possess 
an initial energy level S^ not much greater than the 
thermal level, kT) do not make a sizeable contribution 
to /0<2) (v). Their contribution is such tha t /0(2> (v) 
will be of order 1/na3 compared to F0 (v) and therefore 
represent a small correction consistent with the 
assumptions underlying the use of perturbation theory. 
In fact, under these circumstances, the terms on the 
right-hand side of (2.19) are of the same order as 
certain of the Fokker-Planck terms we have neglected. 
Again, for damped plasma waves, it is necessary to 
consider corrections to (2.21) t ha t are contained in 
the more complete Fokker-Planck equation, which 
correspond to spontaneous emission of plasma waves, 
and which we have neglected. 

In third order one finds corrections to the dispersion 
relation (2.15) the most important of which comes 
from /0<2) (v) and is of the form 

- ~ = ^ ^ J d 3 v q - V v / 0 < 2 > ( v , < ) ô ( c o q - q : v ) (2.22) 

This correction term dyq is of order (l/ma3)yq for 
damped waves or waves with energies <ok (t) near 
the thermal level k T . Similar behavior is found for 
the other third-order terms ; so for these circumstances 
the use of perturbation-theory is well justified. 

For growing plasma waves the situation is quite 
different. If one begins with a thermal level of energy 
k T in such a wave, after a few e-folding times 
(<>l /y q ) , the corrections to (2.19) and (2.21) arising 
from the Fokker-Planck collision terms will be small. 
Moreover, as the energy in these growing plasma 
modes increases, the correction to y q arising from 
/0(2> (V) will eventually become comparable to yq. 
Further inspection shows tha t a t this point the cor-
rections to yq from /„(*>, /0<6>, etc., are also comparable 
to yq and thus the perturbation-theory solution 
breaks down. One is forced, then, to search for a 
more accurate set of equations to describe this time-
dependent interrelationship between the spatially 
homogeneous par t of the distribution function 

g(v,t) = F0(v) + f0(v,t) (2.33) 

and the growth rate, now also time dependent y (q, t). 

3. Non-linear theory ~ 

The breakdown in the perturbation-theoretical 
solution of (2.8) and (2.9) for plasmas in which growing 
waves exist leads us to consider an alternative set 
of solutions in which the spatially homogeneous par t 
of the distribution function g (v, t) plays a special 
role. From among the terms in the sum over q on 
the right hand side of Eq. (2.8) we single out the term 
with q = 0 so t ha t the non-linear Vlasov equation 
becomes 

8/K 
8t iK-v/K= + - ^ E K - VV9- + - ^  '   _  - Vv/q 

(3.1) 
q 

where g (v, t) = F0 (v) + / 0 (v, t) and the prime in the 
summation indicates t ha t the term with q=0 is to 
be deleted. For K = 0, dj0jdt=dgjdt, we likewise have 

Bt 
e T, _ , e Eo-Vvg-H m " in •r«- • V v / q (3.2) 

In the term E 0 • Vvg in Eq. (3.2), E0 is determined 
by the boundary conditions. If the different boundaries 
are held at different fixed potentials E 0 is non-zero. 
However, if we apply periodic boundary conditions 
(to the potential), E 0 = 0 . We shall take E 0 = 0 for 
the sake of simplicity. 

The non-linear terms in the second term on the right-
hand side of (3.1) représent an interaction between 
different modes whereas the non-linear par t of E K • Vy? 
combined with (3.2) leads to a slow variation of 
the frequency and growth rate with time. 

Our procedure is first to solve Eqs. (3.1) and (3.2) 
neglecting the mode-coupling terms and then to 
t reat these terms as a perturbation. The justification 
for this is tha t when we neglect mode coupling we 
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find tha t the energy $q in the unstable modes does 
not grow indefinitely as in the linearized theory but 
instead comes rapidly to an equilibrium spectrum 
the amplitude of which is of order yq

(1)/ft>q and hence 
small. Since the equilibrium amplitude is small, the 
non-linear mode coupling can be treated by per-
turbation-theoretical methods and leads to a rather 
slow decay of the equilibrium spectrum. 

The basic equations which we consider with (2.9), 
are therefore 

^ + iK.v / K = ^ E K . V v , 

8g_ 
et =+^2' E q - v ^ 

(3.3) 

(3.4) 

Our solution is based on the fact tha t the frequency 
and growth rate determined from these equations are 
slowly varying functions of time. Thus we wish to 
assume tha t the change in y (or   ) during a time 
of interest ( ~  or   -1) is small compared to   (or   ) 
and then demonstrate tha t this assumption is con-
sistent. The derivation is based on a type of W K B 
approximation, and is given in the appendix. The 
resulting equations are 

8g(v) 
dt 

8    2 <?<,(«) 
q-vv 

  (q, t) 
(o>,-q-v)» + y» qVv9-(v,Z) 

  ) =-^ra>qjd3\(i-Vvg(\,t)ô(cotl- q v ) 

dt £ = 2 y ( q , t ) * Q 

(3.5) 

) 
(3.6) 

(3.7) 

I t is instructive to compare these equations with 
their perturbation-theoretical counterparts. We 
remark tha t (3.5) differs from (2.19) in tha t g (v, t) 
now relaxes toward itself rather than toward F0 (v, t). 
Equation (3.6) (there is an analogous equation for 
coq (t) of which we shall not have need) states that 
the growth rate is determined by the total spatially 
homogeneous distribution function existing a t the 
time t rather than the initial value F0 (v). This result 
seems eminently reasonable since one would expect 
the plasma dispersion relation to follow g (v, t) 
adiabatically provided the latter changed slowly over 
characteristic plasma times. Indeed one is so naturally 
led on intuitive grounds to write down (3.5) and (3.6) 
tha t it is hardly surprising tha t their derivation is 
possible. 

We may further remark tha t from the point of 
view of a perturbation-theoretical approach, we have 
essentially summed a whole class of higher-order 
terms (those corresponding to /0(4>, /0<6), /0(8), etc.) 
in writing down these basic equations. We also note 
that these equations may be obtained by means of a 
quantum treatment based on the explicit introduction 
of collective coordinates, a plasmon distribution func-
tion and the random phase approximation [3]. 

We consider some general properties of (3.5) and 
(3.6). First we note tha t (3.5) resembles the diffusion 
term in a Eokker-Planck equation. Thus we may 
write 

dt =   4-Tij~g(y,t) (3.8) 

where the diffusion coefficient    is given by 

2' ( )=2 'Sr.e'ffqjt) y(q,f) 
m2q2 (coq — q-v)2 + yq

! -qiqj (3.9) 

   (v) possesses a rather different character depend-
ing on whether or not v is such tha t q- \   coq. Where 
q-Y«scoq, since y<^a>q, the denominator displays a 
characteristic resonance behavior, and we have 

v (q. t) 
(o q — q - v ) 2 + yq

2 7T(5(û>q — q- v) 

We thus find an explicit plasma-oscillation diffusion 
coefficient 

T, if (v) = 2 ' m^q' 
-g,gy<5(ft)q — q-v)«fq (3.10) 

These equations have a physical significance which 
is most easily understood in a one-dimensional case. 
In this case particles traveling slightly slower than 
the phase velocity of a particular wave are accelerated 
by the wav.e and thus take energy from the wave, 
whereas particles traveling slightly faster than the wave 
are slowed down and give up energy to the wave. Thus 
if there are more particles going slightly faster than 
the wave than there are particles going slightly slower 
than the wave, i.e., if df/dv>0 for v=coqlq, then 
there is a net energy transfer to the wave. In three 
dimensions it is the projection of the particle velocity 
in the direction of wave propagation tha t determines 

the growth or damping, and thus if d 3 vqV v <7(v , t)ô 
(coq — q - v ) > 0 , the wave grows. This is the physical 
significance of Eq. (3.6). The accompanying diffusion 
of the particle distribution function is given by 
Eq. (3.8) and is such as to reduce the growth rate . 

This process continues until the particle distribution 

functionisreadjusted such tha t d3 v q • V v g (v, t) ô (coq 

—q.y) = 0 for those particles which interact with 
the waves. The waves then have reached an equili-
brium spectrum and their amplitude no longer 
changes. This process is discussed in detail for a one-
dimensional example in the next section. 

Next on a time scale longer compared to tha t of the 
above process the mode-coupling terms act to distort 
and damp the equilibrium spectrum. This process is 
considered in detail in Section 5. Before going to 
that , we wish to discuss the question of energy conser-
vation as determined by Eqs. (3.5)-(3.7). 

Particle energy U is given by 

V d 3 v- -9( ) (3.11) 

1052 



NON-LINEAR STABILITY OF PLASMA OSCILLATIONS 

We have, using (3.5) 

y (q. 0 x [q-Vv (0)q — q- v)2 + rq2 q-Vvâr(v,«) (3.12) 

From the integral over velocities, there will be two 
distinct contributions to àTJjàt, according to whether 
or not one has resonant transfer of energy to plasma 
waves at q-v^eop. 

We consider the resonant contribution first. We 
then have 

\ dt /res 
'4   2  2 

^ q («)Jd 3 vmw 2 (q-Vv) 

X[<5(coq — q -v )q -V v 0 (v ,* ) ] (3.13), 

If we integrate by parts, we find 

(dV\ V ' S ^ e 2 j . 

and the other half goes into the kinetic energy of 
oscillation of the bulk of the particles. The over-all 
energy transfer is therefore given by 

4. Application to one-dimensional case 

We now specialize to the one-dimensional case and 
examine in detail the development of the equilibrium 
spectrum. We take g (v, 0) = F0 (v) to consist of a 
main par t which is a monatonically decreasing func-
tion of energy plus a small gentle bump on the tail 
of the main par t (see Fig. 1). 

F0l»l 

X Jd 3 vq -v<5(w q — q-v)q-VvSr(v,*) (3.14) 

The integrated par t vanishes since q • V v   (v, t) 
vanishes for the limits a t which growing waves no 
longer occur. We then see, on comparing (3.14) and 
(3.6) (and making use of the replacement of q-v 
in the integrand by roq according to the properties 
of the ô function), t ha t 

q q 

Thus where the resonances occur, the particle energy 
is transferred directly t o the plasma waves, as we 
might expect. 

There is also the non-resonant contribution to 
(3.12). The major contribution to this comes from 
small v. After integrating by parts twice we obtain 

\ Q t / non-res Z—i m ' ' 

X Jd«v 1 
( w q - q - v ) 2 + yq

! -g(y,t) (3.16) 

The bar over the integral denotes tha t principal 
parts are to be taken, and we neglect a term of order 
(qa)2. If we now make use of the dispersion relation 

1 = 4   2 

[d3i 1 
(o> — q- v)2 + yj 

•g{y,t) (3.17) 

we see tha t 

\ dt f non-res 2'2r(q,<)<rq(<) = 2 ^ - <3-18) 
This result possesses a simple physical interpreta-

tion. Those particles with velocities near the phase 
velocity of the waves give up an energy 227q #4 to 
the waves. Half of this, 27q <?q, goes to potential energy 

Fig. 1 Initial velocity-distribution function for one-
dimensional case has bump on tail of monotonically 
decreasing main part. 

The mean drift velocity of the bump is denoted by 
   and the width of the bump by Av. The number 
of particles in the bump is denoted by   , and it 

is assumed tha t   /  <t Sv2 ( «)2/ ; 4, —  - ^ 1 a n ( i 
' ' cop Av 

nbVb2<^nv2 where v is the root-mean-square velo-
city of the main part , so t ha t the approximations 
made in Section 3 are satisfied. 

Denoting Sq (t) by é> (v, t) where v=wq\g, Eqs. 
(3.5) to (3.7) become, for v near. Vb, 

'(«.<) 
dt 

<(v,t) 

0L{v)£(v,t) 8g(v,t) 
dv (4-1) 

dt = iM/»<«>'<'.'>^] (4'2) 

where a (v) = 4:n2e2v2lma>p, /3 = 8   2/ 2 v, and we 
have neglected (fca)2***(î;/î>b)2^l. 

The temporal behavior of this pair is described as 
follows : If dgjdv is positive a t v, then S (v) increases 
in time. However /5 S (v) plays the role of a diffusion 
coefficient in Eq. (4.2) and hence as S (v) increases, 
g (v) diffuses in such a way as to reduce dgfdv at v. 
Thus the behavior of the pair of equations is such as 
to limit the amplitude of ê (v). 

To determine the resulting equilibrium spectrum 
we combine Eqs. (4.1) and (4.2) to obtain 

8g_ 
dt 

and therefore 

8 
dv dv 

d P dS 
dv a dt 

('-£4'H (4'3) 
We assume tha t 

  
P dS ^r— is negligible a t t = 0 and thus 

dv 
P dg 
a dv 

g(v)-F0(v) (4.4) 
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We seek a solution as t->oo for which dê\dt = dgjdt = 0. 
This is given by 

~ *„ (v) = J[!7oo — ^o («)] d«, vo<v<V! 
(4.5) 

= 0 V < Vo\ V > V]. 

where g^, is a constant which together with v0 and Vj 
is determined by 

Civ) 
( ARBITRARY 

UNITS) 
2.0 

«.« <.57 <70 «.8< <97 5.10 

Fig. 5 Spectrum of ^(v) at different times. 

j g^dv = ^ ( v i — wo) = \Fo(v)dv (4.6) 

This result is illustrated in Fig. 2. I t is worth noting 
that the equilibrium spectrum is independent of the 
initial data, provided only tha t the initial data are 
smooth enough so tha t the sum in Eq. (3.9) can be 
evaluated by replacing yl{ooq—qv)2-\-y2 by izô{a>a—qv). 
From Fig. 2 we also note tha t the energy given up to 
the plasma waves is of the order of \gcxl—F0(v)\m3X for 
v0<y<v1 times mv\,Av and is thus much less than the 
drift energy of the particles in the bump. 

The development of this equilibrium spectrum in 
time has been calculated numerically for a typical 

Q.tv) 

  

Fig. 2 Equilibrium velocity distribution and electric field 
spectrum from one-dimensional calculation. 

eci) 
1.0 
oa 
0.6 

04 
0.  
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0.08 

\ 
yS/ 

1 

lj^—— 

1 1 1 1 ' 

Fig. 3 Development in time of <o(v) for several values 
of v. 

case and is illustrated in Figs. 3, 4, and 5. F0(v) was 
taken to be 

(2 *)1/:     :- ( )" 
+ 4xl0-exp[-i-(-| ~ — 5 

and the initial data were taken to be constant in the 
region of interest and of such a magnitude tha t equi-
librium was reached after a few e-folding times. Fig. 3 
shows the development in time of S{v) for several 
values of v, and we note tha t the linear theory is 
valid for small times even for the relatively large initial 
data used. Figure 5 shows the spectrum of S{v) a t 
different times while Fig. 4 shows the accompanying 
diffusion of g (v). 

From Eq. (4.5) we can estimate the amplitude of the 
equilibrium spectrum. We have 

•(ÇOO-FJAV. 
8F, 

/S ôv ï-(Av)2 \âvf A1) 

and the total electrostatic energy in the equilibrium 
spectrum is approximated by 

2'«~£.f* i f& <oq Aq 

1 IAv\ IAv\z yW_ 
2 7t \ Vb J \ V J (Dp 

nmv2 <̂  

Thus the amplitude of the equilibrium spectrum is 
in fact of order yW/cup, which is extremely small. As 
discussed in the next section, the mode-coupling terms 
tha t affect the equilibrium spectrum are.of order Sq, 
to2, etc., compared to the terms of the non-linear dis-
persion relation. Thus we may view the non-linear 
dispersion relation as the lowest order result of an 
expansion in powers oîy^jcop, and the mode-coupling 
terms can be safely treated by perturbation-theoretical 
methods. 

i.eo 

-
- \ 

^<J»a1»0 """"N., 
/ ^ ^ C * y = 2 0 0 0 ^ ^ k 

•# \ a y =10000 \ 

Fig. 4 Diffusion of g(v). 
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5. Mode coupling 

We now wish to consider for the one-dimensional 
case the effect of the non-linear mode-coupling terms 
in Eq. (3.1) on the equilibrium spectrum. We first 
note tha t the equilibrium spectrum is relatively narrow 
and /e and Ek-q are large only if \q\, [ —g|«*|fc0|, 
where kg denotes the center of the spectrum. I t follows 
tha t   must lie near 0 or ±2&0. Thus to second order 
(in E) the mode coupling terms lead to waves near 
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jfc=0 or ±2fc0, and to no change in the amplitude 
near k0. Moreover, since the natural frequency of these 
waves cofesa (Op is very different from <ak-q+ co^O or 
2o)p, there are no "time proportional" transitions to 
these waves. In third order (in E) we find that the 
mode-coupling terms introduce an additional time 
dependence of the waves near k0 which is given by 

s~w = - n r 2 H (k>   *)  -<{t) E*-<w E< w 
4.« 

q <k0 (5.1) 

The prime on the sum denotes that the terms with 
# = 0 are to be deleted. In what follows only Im 
[H(k, q, k)-\-H{k, q, q— )] for q<^k0 is needed and 
this is given, after some tedious algebra, by 

Im [H ( , q,k) + H (k, q,q- k)] 

_ \9l aip* \m-) \   J e (q, mq—q' + cotf) 

q<K 

 ? 
' ) 1 Sq 9nk* 

6>p2   |e|a dv „=,,„ (5.2) 

where  >0 = 3|&|[1—(2qjk)]av4iv. 
We consider first the terms in Eq. (4.1) that are in 

phase with Ek. These have q' = k or q—q' = k, and it is 
only the imaginary parts of these that give a change in 
amplitude. Thus 

dt 
= -f- Im]T [  (*, q, k)+H(k, q, q-k)]   \ ^ \* 

q<k0 (5.3) 

and the in-phase coupling terms yield 

d\Ek\* 
et 

hi)' lei H 
dv \Ek- (5.4) 

q<k0 

This term arises from the fact that in second order 
in E the waves interact with the distribution function 
at v=v0. For &!> k0 this interaction is such as to damp 
the waves while for k<,k0 this interaction leads to 
growth. However, it is easy to show that Ek8\Ek\^jdt=0 
and thus there is no net transfer of energy between 
the particles and the waves, and the interaction 
simply distorts the equilibrium spectrum towards 
the' lower   values. I t should be noted that formally 
this "in-phase" mode coupling is of the same order in 
 I (oP as terms in the non-linear dispersion relation and 
might have been considered as part of the non-linear 
dispersion relation. However, for the problem considered 

it is numerically small and can thus be treated as a 
perturbation. 

To estimate the size of this interaction we note 
that 

1 , ,„' J Bf\ o c     
>ho vî 

Thus 

et 

{Ek-t? 

v2 \ml   
  2   J * \q\ \  } 

* , * 2 y ( 4 * e [ - Ç . (ha)' [^-)% \ (M<\) 

(5.5) 

Thus the in-phase mode-coupling terms have a 
time scale long compared to that of the initial growth. 
For the example considered in Section 4, it is longer by 
a factor of about 103. 

The out-of-phase terms in Eq. (4.1) lead to time-
proportional transitions and can be treated by the 
familiar methods of quantum mechanics. For these 
terms we obtain for the transitions to the kth mode 

\E(k,t + T)\*-\E(k,t)\* 

{^ff^H(k,q,q')H*(k,p,p') 
«, e' 
p,p' 

I exp[i(c»fe— (Ok-q — Wq-q' —(Of) T ] • 
\ i (<»fe — 0>k-tl —  -q' —  ')   

X 

i((ok — (ok_q — (oq^ 

I exp [i {    — tofc-p—a>p_p' — cop') T] — 1 \ .g 
\ i((ok — cofe_p— a)p_p'—   ') ] 

X <&-,, ©a-a' ©,,' @*-p ©p-p' @p' 

where the * denotes complex conjugate and Ek-q= 
=©fe_e exp — icok-qt, Eq-4=%-4 exp — icoq-q't, etc. 

We assume that the phases of the initial data are 
random and since no phase correlation is introduced 
by the non-linear dispersion relation the only terms 
which survive the q, q', p, p' summation are those 
for which the phases cancel. The result is 

\E ( , f +  )|» - \E { , <)|  = (^-)22 l ^ « H W r W | 

X 

i,4 

exp [i (  —(ok-g— (oq-q'— ')  ] — 1 
i (   — (ak_q—coq-tf—(Oq') 

X H* (k, q, q') {H* (k, q, q') + H* (k, q, q - q') 

+ H* ( ,   + q' - q,q) + H* (k,k + q' - q,k - q) 

+ H* (k,k- q'.q- q') + H*(k,k- q>,   - q)} 

(5.7) 
The term 

X 
e x p [i ((Ok — (Ok_g — (Og-q' — (Oq')  ] — 1 

i (    — (ok_q — (Oq-q' —  ') 

has resonances at q' = k,q~k, for q<^k0, qpa2k and at 
g = 0 for q'pa ±fe0. Evaluating the q, q' sum at these 
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resonances thus yields for the transition rate to the 
fcth mode 

(5.8) 
where 

  ,  =  { , - , )+ ( , ~ ,- )+ ( ,  +  , ) 

+ H{k,k + X,X) + H(k,0,- X) + H( , ,  ) (5.9) 

Similarly the transitions from the kth mode to all 
other modes are given by 

(5.10) 

and the net change of the &th mode is given by 
B\Ek\* _ <opL , ] ^\  \1\   \*-\  \*\ ;.\*\   \* 

Bt ~~ 1 2 a 2 ' ^ Z, | A — 
  

    (5.11) 
This term arises from the scattering of waves from 
each other and we note that for those k's for which 
|^fe|2 is less than the average 8\Ek\2j8t>0 while for 
k's near the peak of the spectrum d\Ek\2/dt<0. Thus 
the scattering of waves tends to flatten the spectrum. 

 kx is relatively complicated but since this term 
turns out to be extremely small the exact form of 
  kx is unimportant. However, it is worth noting that 
the leading term of     is proportional to (A;2/cop

4) 
(e/m)2 {kaf. 

Estimating dé'/dt we obtain 

  2 ^{  )*[   (5.12) 

Thus, the out-of-phase mode-coupling terms have 
a;time scale longer than that of the initial growth. 
For the example of Section 4, it is longer by a factor 
of about 108, and we can neglect the out-of-phase-
mode-coupling terms compared to in-phase terms. 

The damping due to the in-phase mode-coupling 
terms arises from the distortion of the spectrum 
towards the lower values of k. This feeds energy into 
those modes that have phase velocities greater than 
vx and hence for which dg\dv<d. However since 
these modes are naturally damped, their amplitude 
will be small and the rate of energy transfer will be 
correspondingly small. On the other hand the Fokker-
Planck terms, which we have neglected, may have a 
time scale comparable to that of the in-phase mode-
coupling terms and these will tend to drive dfjdv 
negative over the entire range of interest, and the 
ultimate decay may actually be dominated by 
collisions. 

6. Conclusions 
The basic requirements for validity of the theory 

described above are two fold. First, the solution of 
the linearized problem must yield a growth rate y, 

which depends on the velocity gradient of the distri-
bution function and  / ><^1. This is necessary in 
order that the non-linear dispersion relation lead 
to a diffusion of the distribution function. Second, 
the dispersion relation is such that neither the sum 
nor difference of the frequencies of two of the unstable 
modes is equal to the natural frequency of another 
mode. I t is this requirement that keeps the energy of 
the unstable modes from being fed into harmonics. 

These restrictions apply to à large class of waves 
in a plasma with a magnetic field and the method can 
be generalized in a straightforward way to these 
waves. The result as in the case illustrated above will 
be a non-linear dispersion relation that leads to the 
establishment of an equilibrium spectrum of waves. 
This result represents a special type of turbulence in 
which the wave spectrum is confined to a relatively 
narrow band of wave-lengths. 

Although there are no "time-proportional" tran-
sitions to waves outside of the equilibrium spectrum, 
the second order interaction between waves in the 
equilibrium spectrum do produce a stationary spectrum 
of very-small-amplitude [<oq of order (y/a>)2] waves 
near g = 0. These waves will interact with the bulk 
of the particles and produce a diffusion of the bulk 
of the particles, an effect which is important for the 
case of a plasma with a magnetic field. 
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Appendix 

We wish to show that for y'/co-^l, Eqs. (3.3), 
(3.4) and (2.9) reduce to Eqs. (3.5), (3.6) and (3.7). 

Integrating Eq. (3.3) along the unperturbet orbits 
yields 

t 

/  = ~jdt' GK (t -1') EK («') • Vvg\f) (Al) 
— oo 

where we have set the lower limit to —oo and ne-
glected /  (v, 0)—a good approximation for growing 
waves. Integrating over velocities then yields 

EK(t) = - ^^jd4Jdt'GK(t - t')KK(t') -Vvg(t) 
— oo 

(A2) 
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We expect the solution of Eq. (A2) to have the 
same general form as the solution of the linearized 
problem except that the frequency and growth rate 
will he slowly varying functions of time. We then 
take    (f) to be of the form 

since e(K, $ 0) = 0. The correction term on the left-
hand side of Eq. (A6) is, since e ^ 1 + COP

2/*SK2> of 
the order of 

8SK Q (Op2 

dt SK1 Wp' 

BSK . SK, •SK 
dt SK, 

  (   = -  (0)     (  )<1  

= B K (0expj-J /8f K (T)d 1 

= EK(t)exp{-SK (t)(t-t')} 

and can thus be neglected. 
/0 (v, t) is non zero only in the small neighborhood 

Av. Defining (for simplicity we consider only the one-
dimensional case) 

  dv(8f0/dv) r(df0l8v)dv  _ df0 
JSK{t)+iK-v J (co-Kv) ^     dv 

X {'+4 8Sk \ ;, 
2 dt (t-tr+...) (A3) 

and g(v, 0 = J 0 ( » ) + / o ( « . V + WJdt) (*'-*) + . . • 
We shall assume and verify later tha t SK (T) changes 

slowly in a period of oscillation and tha t the change 
in frequency and of growth rate are of the same 
order of magnitude. In particular we make use of the 
result, Eq. (A8), tha t SK—SKJSK depends linearly 
on f0(v, t) and tha t 3/0/ £ *2 /0 so tha t 

(A7) 

d2I/dS2 is thus of the order of II(KAv)2 and the first 
correction term on the right-hand side of Eq. (A6) 
is of order 

8S 
dt (KA iv)2 \Av] dt (Kvb)2 ^ 

S   — S Ko 
SK 

1 8SK 
SK2 8t 

_ 2 y _ _ S K — S K 0 . <SK—<SK„ 

where Kvb^v cop. Similarly since 8f0ldtœ2yf0, the 
second correction term on the right-hand side of 
Eq. (A6) can be neglected. 

The result, neglecting (Ka)2 <g. 1, is 

SK SK, SK 
. (A4) 

where $ 0 is the solution of the linearized problem. 
Using Eqs. (A3) and (A4), Eq. (A2) yields 

8K (t) „ 2  2 (    8f0 I 
»K/K 

•dvSfJdv] 

E, K W = ^ K W { I -
I 8SK e2 

2 8t 8SK2 

»! %} <A8> 

47ie2 

mK2 8SK 

(ine2   iK Vv 

Using SK(t) 

  

(m-Kv)\ 

-1   (0+  (*) w e obtain 

2   2 

SK(t) + iK-\ 

iK-Vv 8 
(Sjç + iK-v) dt 

 +/J ^^^^[l-^PJ^^] (A9) 
/oW} (A6)    

 >  

mK 
2n2e2 8g(v,t) 
K2m 8v v = tt>iç-/<o 

The term involving F0 (v) has the same form as in the 
linearized theory and thus we have 

E-K W J I - i SSK e2 

2 dt 8SK2 

1 8SK d2 

+ ...}e[K,SK(t)] 

- { ' -
4  2 

   dSK 

2 dt dSK 

d  „ iK-Vv d3v 

) 4   2      iK-Vv/o 
/    2 J "  5  ( « ) + 1  .   

. . (A6) j9/o 
SK(«) + i K - v dt 

and the three-dimensional result is given by Eq. (3.6). 
The change in  >  (t) is of the same order as the change 

in    a n d since   /  ^ 1 we can neglect the correction 
to  > - The change in    is however significant. 

The energy in the ifth mode thus grows according 
to 

^ f = 2\EK\2yK(t) (A10) 

Now (SK ( < ) — S K 0 ) I S K 0 ^ 1 and thus we can expand 
e [K, $ K  ] about SK0 to obtain 

In the same way Eq. (Al) can be integrated to 
obtain 

1K = 
EK 8g 

 [  ,   (0] =  ( ,   .)-
8SK, 

(SK-SKJ + . . . and thus 
m SK + IKV 8V 

de 
   (SK - SKJ « - 2 - g V [5K (0 - SKJ 

,  « ) -   . ] 
e« 

— LM2 JL 
\    / St). 

2 5 -<Ç w 8g 
Z-t (Sq + iqv) dv 

q=—ç,o 

(All) 

(A12) 

and the three-dimensional result is given by Eq. (3.5). 
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