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3.3.1. General dispersion relation

Introduction

This chapter presents a theoretical survey of the basic kinetic waves and instabili-
ties characteristic of a spatially uniform plasma immersed in a uniform, applied.
magnetic field Bo Byé.. Isotropic equilibria F, (vz) that are monotonic decreasing
functions of v? are stable to electromagnetic perturbanons with arbitrary polariza-
tion. In this chapter are examined a wide variety of kinetic instabilities in which the
free energy source for the instability is associated with nonthermal features of the
equilibrium distribution function F(v), ranging from the relative directed motion of
plasma components to anisotropy in plasma kinetic energy. The present stability
analysis, based on the linearization approximation, is instrinsically classical in that it
does not include the influgnce of turbulence effects on wave-particle resonances, nor
does it include the influence of stochastic particle motion on stability behavior.
Finally, it should be emphasized that the kinetic waves and instabilities selected for
analysis here have a broad range of applications to laboratory plasmas, space
plasmas, beam-plasma interactions, and magnetic and inertial confinement fusion.

The physical model utilized in the present analysis is based on the collisionless
Vlasov—Maxwell equations in which the one-particle distribution function fi(x,0,1)
evolves according to the Vlasov equation,

i+v°—a;+7:-/; E(x,t)+LBc(it—)) ]f(xvt) 0, (M)

where E(x, t) and B(x, 1) are the electric and magnetic fields, and e; and m, are the
charge and mass, respectively, of a particle of species j. Here, f;(x, v, t) is the density
of particles of species j in the six-dimensional phase space (x, v). Moreover, the
electric and magnetic fields are determined self-consistently from Maxwell’s equa-

tions in terms of the plasma current density,
J(x,t)= Zejfd3vvfj(x, v, 1),
J
and charge density,
p(x.t)= Ze,fd’vf/(x,v, t),
i

as well as external charge and current sources. Throughout the present analysis, it is
assumed that the plasma is immersed in a uniform, externally applied magnetic field
B, = B,é., and that the plasma equilibrium state (d/dr =0) is characterized by
charge neutrality, L /i e =0, and zero electric field E,. It is also assumed that the
equilibrium plasma current (if any) is sufficiently weak that the corresponding
equilibrium self-magnetic field has a negligibly small effect on stability behavior in
comparison with the applied magnetic field Bé..



The organization of this chapter is the following. In the remainder of Section
3.3.1, use is made of the linearized Vlasov-Maxwell equations to determine the
general dispersion relation for electromagnetic wave propagation in a spatially
uniform, magnetized plasma. The analysis is carried out for arbitrary propagation
direction with respect to Byé,, and arbitrary gyrotropic equilibrium Fj(vi ,v.). The
general dispersion relation is also simplified in Section 3.3.1 for several limiting
cases. including wave propagation parallel to B ., perpendicular to Byé,, and in the
absence of applied magnetic field (B, = 0). In Section 3.3.2, a proof of Newcomb’s
theorem is presented, which shows that monotonic decreasing equilibria with
dF(v?)/ dv? < 0 (where v? = v? + v?) are stable to small-amplitude electromagnetic
perturbations with arbitrary polarization. Specific examples of kinetic waves and
instabilities are examined in Sections 3.3.3-3.3.7, where the nonthermal equilibrium
features that drive the instabilities range from anisotropy in plasma kinetic energy to
the relative directed motion of the plasma components. The waves and instabilities
discussed in Sections 3.3.3-3.3.7 include: electrostatic waves and instabilities in an
unmagnetized plasma in Section 3.3.3 (e.g. bump-in-tail instability, ion acoustic
instability, strong two-stream instability, etc.); transverse electromagnetic Weibel
instabilities driven by kinetic energy anisotropy in an unmagnetized plasma in
Section 3.3.4 (e.g. electromagnetic instabilities driven by thermal anisotropy or
directed counterstreaming motion); transverse electromagnetic instabilities for wave
propagation parallel to Byé in Section 3.3.5 (e.g. firehose instability, electromagnetic
ion cyclotron instability, and electron whistler instability); and electromagnetic and
electrostatic waves and instabilities for wave propagation perpendicular (or nearly
perpendicular) to Byé, in Sections 3.3.6 and 3.3.7 (e.g. ordinary-mode electromag-
netic instability, cyclotron harmonic loss-cone instability, convective loss-cone insta-
bility, ion-ion two-stream instability, and modified two-stream instability).

Finally, a brief list of references follows Section 3.3.7. This reference list, while
forming an incomplete bibliography, identifies several classical papers and early
treatises on the kinetic waves and instabilities discussed in Sections 3.3.1-3.3.7.

Kinetic dispersion relation for a magnetized plasma

Perturbations are considered about an equilibrium (3/3t = 0) characterized by
zero electric field and a uniform, externally applied magnetic field B, = Byé.. where
B, = constant. It is also assumed that the equilibrium distribution function fjo(x. v)
for species j is spatially uniform with

£2(x.0) = A, E (02 0.). | 2)

where v, = (v? + v?)"/? is the perpendicular speed, and v, is the axial velocity. In

(2), A, = constant is the ambient density of species j. and Fj(vi,v_.) is normalized
according to

Z'rrj:cdvl ulfx do F =1.
-

In the present analysis, the electromagnetic wave perturbations. 8E(x.1) and



8B(x, 1), are represented as Fourier-Laplace transforms
S8E(x.,1)= fd3kexp(xk x f exp(—xwt)SE(k w).

o~

8B(x,t) fd kexp(ik- x)f 2—-exp(—1wt )8B(k,w), (3)

where Imw > 0 is chosen sufficiently large and positive that the Laplace transform
integrals 8E(k w)= f§° dtexp(mt)&E(k t) etc. converge. In (3), the contour C is
parallel to the Re-w axis with [cdw= /22 7{dw and Imw > 0. Neglecting initial

(¢t = 0) perturbations, Maxwell’s equations zgr;obe expressed as
k X 8E = (w/c)8B. (4)
ik x 5B = (4m/c)8T —i(w/c)BE. (5)
together with
k-8B =0, (6)
ik +8E = 4nbp. (7)

In (5) and (7), the perturbed current and charge densities, 8J(x, 1) and 8p(x.1t), are
related self-consistently to the perturbed distribution function § j;(x. v.1) by

8J(x.1) fd’vv&f x,0.1), (8)

=Ze}fd308fj(x.v,t). (9)
J

Moreover. for small-amplitude perturbations. 8f(x.v.r) evolves according to the
linearized Vlasov equation

d
'%8]'1(.\'. U.l)

— +ve—+
or ix m, c

(8 3 & vXBy
j

A.e
= ——r-/n—](SE(x,t)+

LALLIL RUTIE R o
J

¢ dv 7

where ¢, and m | are the charge and mass, respectively. of a particle of species j. and ¢
is the speed of hght in vacuo. Substituting (4) and (8) into (5), the ¥ X 8B Maxwell
equation becomes

driw

k'x(kxﬁ)+‘—"—;-§f+ Zejfd3vv¢§?/(k.v.w)=0. ) (1)
c
J

Making use of the method of characteristics, the linearized Vlasov equation for

8f/(x.v.t)=fd3kexp(ik-x)fc%% exp(—iwt)gf(k.v.w)



can be solved for 5}7 (k,v,w) to give

— ne r .
8/‘/(k.v,w)=———r’n—/f dt’explik-(x' = x)—iw(t'—1)]
J

=  UX(kx8E) '
X it S A
(85 : ) L E (o2 00), (12)
where Imw > 0 is assumed, and initial perturbations have been neglected. In (12).
the particle trajectories x'(¢") and v'(¢’) satisfy the orbit equations dx’/d¢"= v’ and
dv'/dr = (e, /c)v' X Byé. with initial conditions x’(¢'=t})=xand ¢'(¢'=t)=v.
Making use of the fact that v, and v are constant (independent of ¢) along a
particle trajectory in the equxhbnum field configuration, it is straightforward to
show that the integrand in (12) can be expressed as
= Ux(kx8E)\ 3 P
(8E+ " )‘av'Ff("f"’:)

v, *8E[ 4 k.o, v, 4
L R (VI RAET SCr E S|

«=| d kv v. 0 ,

+3E, Eﬁ(vivv.-)——w*-( -F(v}.0)- ;jaulF,(vaz))]’ (13)

where the only explicit ¢* dependence in (13) occurs in the v| factors in v/ * 8E and
k - v, . Introducing the cyclotron frequency

w,=eBy/mc, (14)
) T € J

and defining the perpendicular velocity phase ¢ at t'=t by (v,,v,)={(v coso,
v, sing), the solutions to the orbit equations can be expressed as

v,=v, cos(¢p—w,r), o =uvsin(¢-w,T), v=r. (15)
and |

x=x-(v, /wcj)[sin(cp—- wC/T)—sinqb],

y’=y+(vl/wcj)[cos(¢—wcj-r)—cosda], =r+or (16)

where T = 1’ — t. Without loss of generality, it is assumed that the wavevector k lies in
the x -z plane with (Fig. 3.3.1)

k=k é +k.é.. (17)

The exponential factor occurring in the orbit integral in (12) can then be expressed
as

P .
explik (x'-x)—iwT] exp(ik:o_:r—iwf pim s [simp—sin(cp—'wc/r)]

W,

= x ko | (ko
> ZJM(U )J( )

w
me= - n=—x <

xexp[i(m—n)qb]exp[(kt, +na,, )1-]. (18)




x
Fig. 3.3.1. Coordinate system and propagation direction.

where J,(b) is the Bessel function of the first kind of order n, and use has been made
of the identity

exp(ibsina) = OZO', J,.(b)exp(ima).

m= — oo

Substituting (13), (15), (17) and (18) into (12), and carrying out the integration over 7
with Imw > 0, it is straightforward to show that the perturbed distribution function
8f (k,v,w) can be expressed as

— ine = © J (b)expli(m—n)¢

Ty 02§ § Lalblenlin—ne]

M o n=—-2 (w—n"’CI_k:v:)

J (b, y, 0F V]| ~
x{"n(})[ aF_k:v:( aF L.L /\,]SE

b |30 e \F0 T au. |
) d ko [ 2 v, 9F \ |~
+1J"(bf)[3u 7w (avLFf——uiﬁ'v— oL,
d nwc] v, 31’7 P W e
+Jﬂ(bj)[:9'?zl:j+ 5 (IE—%F) SE_.}. (19)

where b=k, v, /w, J,(b) denotes (d/db;)J,())), and use has been made of the
identities J,_ (b,)— J,,,(b) = 2J;(b;) and J, _ (b))t (b)) =(2n/b)) ] b).

The form of the perturbed distribution function 8f (k. v, w) given in (19) can be
substituted into the Maxwell equation (11) to determine the self-consistent develop-
ment of the field perturbations. In this regard, when evaluating the perturbed
current density in (11), the expression

fd30=/02"d¢[0°°dm o, j_°° do,



and the identity

Z J(b)/ g-?-exp[i(m—n)¢](v¢cos¢,vLsin¢,vz)

= [(no, /8,)J,(8,),=iv, J;(8,), 0., (5,)]. (20)
are used. Substituting (19) into (11) then gives
D(k,w)-8E =0 (21)

where the nine matrix elements D, (k, w) are evaluated directly from (11), (19) and
(20). The condition for a non-trivial solution to (21) is that the determinant of the
3 3 matrix { D, ;(k, w)) be equal to zero, which gives the desired dispersion relation

det(D,,(k,w)) =0, (22)

relating the wavenumber & and the complex oscillation frequency w. Substituting
(19) and (20) into (11) readily gives the elements of the dispersion tensor

c k2 2/17‘2)-/2(17’)
D, (k,w)=1- ) d’vo
< (K, @) Z "_ijf T P E—
a~ ko, [ 9 v, 9
3o, O T(?a:;‘?‘?—u_,f)]» (23)
b,)J,(b,) (b,
D, (k, w>_1z £ [y, AL ED)
n= - —nwcj—k:vz)
] ko d . v 3
X avlf;- w (31.)l Iy, au,F/)l
=-Dyx(k,w), (24)
ck k (n/b)J2(b,)
D, (k w)=—:2 ¢
(k. ) 2 "= o / o0 (@ - nw, —kv)
d nw v, aFj d
x| 70,5 T(zm‘wﬁ)] (25)
(k2 +k?) Wl = [4:(8)]
D, (kw)=1-—A—224y ¥ dvv, —
.V_v( w) wz ? w nsz—xf vy, (w_nw —kv)
] ko [ 8 v, 9
X\ 5o b T(auﬁ':;azﬁ)]* (26)
2w J(b)J(b)
D k = — P/ d3 LA n J
(ko) ‘; n.;xf R PRI
] nw, (v, 9F, 3
X av,€+ w (ul 8vl_8v:€ ’ (27)




D k. = P/ dJ ] ]
«(keo) ; ".Z_,c/ (w—anI—kv)
d kv [ 0 v, g
R TR ()
J.(b)4:(b)
D k "l PJ d3 n\"Jj niA"-y
(ko) Z ,,.Z_xf (w=nw, —k.v,)
d k.v, d v, af;
e (auﬁ‘:;a—v_. ' )
(b))
D..(k,w)= d& L
"( w) n-z-cof oe (w_an_k:v)
d nw, (v, 4 d
50,00 (zaoﬁ"a'?..f)]' (30
where

fd3v=2'n'fmdvl vlfw do,,

b=k, v, /@ w =4mie; /m is the plasma frequency squared and Imw>0is
assumed

In summary, the dispersion relation (22) together with the definitions of D (k. w)
in (23)-(30) can be used to investigate detailed stability properties of a spatially
uniform plasma immersed in a uniform magnetic ficld Byé. for a broad range of
equilibrium distribution functions F, (v?,v,). In this regard, it is clear from (23)-(30)
" that considerable simplification of the matrix elements D, (k. w) occurs in several
limiting cases, €.g. (a) wave propagation parallel to Boe_(k =0. k=ké.). (b) wave
propagation perpendicular to Byé.(k.=0; k=k_ é.). and (c) an isotropic plasma
with F, = F,(v} +v}) and dF,/dv, —(v, /v, )8F/<9v =0. For detailed applica-
tions m subsequem sections, (22)-(30) are now simplified for several cases of
practical interest.

Propagation parallel to Bé,

In this section, use is made of (21)-(30) to simplify the dispersion relation for
wave propagation parallel to Byé. with

k, =0, k=kg,. ' (31)

Making use of J,(0) =1, J,(0) =0 for |n| > 1 and J,(b,) = b, /2. for |b,| < 1. it follows
directly from (25), (27), (28) and (29) that

DXZ = D:X = Dyz = DZ}‘ = 0' (32)

for k, = 0. Moreover, the remaining matrix elements for k, =0 can be expressed as



Zkz PJ 3 k:vz a v, (91';
Dxx=Dy)' +Z '/d .Lf}_ (avLFl‘—_'a_v-')

w v,
x(w—wl—k.v.+w+wcj—k,vz)’ (33)
x(w—wl-k.u _w+wc/l—kzvz)’ (34)

=1L fee T
_1+2 pj/d’ kwt?Fk/iv’ (35)

where Imw >0 is assumed. Substituting (32)-(35) into (22) gives the dispersion
relation

(p,.D,,-D,,D,,)D,, =0. (36)

xy“yx

There are two classes of solutlons to (21) and (36). The first class, with D.. =0,
corresponds to longitudinal_electrostatic perturbations with 8E =0= 8E and per-
turbed electric field §E = 8E é, parallel to the propagation dxrecuon k=k.©é.. The
second class, with Dxnyy Dx yD, =0, corresponds to transverse electromagneuc
perturbations with 8E =0 and perturbed electric field 3E = 8Exe‘_r + ﬁye‘v per-
pendicular to the propagation direction k = k é.. o

Electrostatic dispersion relation. To summarize, the wave polarization for electro-
static perturbations propagating parallel to Bé. is given by

k=(0,0.k,). 5E = (0,0,3E.), (37)
and the dispersion relation D,, = 0 can be expressed as

: k,3F /v,
D"‘(k”w)=l+z%fd3v_:_//__'=
J z

w=—k.v, (38)

where Imw > 0. As discussed in Section 3.3.3, depending on the functional form of
Fj(vi ,0.), and the regions of w- and k_-space under investigation, (38) constitutes
the electrostatic dispersion relation for longitudinal ion waves, electron plasma
oscillations, two-stream instabilities, etc., for wave propagation parallel to Byé..

Electromagnetic dispersion relation. The wave polarization for transverse electromag-
netic perturbations propagating parallel to Byé, is given by

=(0.0,k.), 8E = (E,.5E, 0), (39)



and the dispersion relation D, D,, = D, D, = D2 + D2, = (D +iD XDy~
iD,,) =0 reduces to ” '

ck2 w?. 'U 9 kv.| O0F o, 9F
E =1 z P 3y £ -2 ;g _ Lkt
D (kz,w) i " +; " fdv 2 av‘LF} W (au_l_ v, av:)

1

x e —————————

(“Ji wC] - klv:)

where Imw >0, and D*=D,,+iD,, =0 and D™= D.,-iD,, =0 correspond to

circularly polarized electromagnetic waves with right-hand (ﬁx = - iﬁv) and left-

hand (8E, = +10E)) polarizations, respectively. As discussed in Section 3.3.5, de-

pending on the regions of w- and k,-space under investigation and on the functional

form of Fj(vi ,v,), (40) is the dispersion relation for electromagnetic waves propa-

gating parallel to Byé.. including Alfvén waves, the firehose instability, ion cyclo-

tron waves, the Alfvén ion cyclotron instability, electron whistler waves, electron

cyclotron waves, and (Weibel-like) transverse electromagnetic instabilities driven by

an anisotropy in plasma kinetic energy with LA [do(m, v} /2)F, exceeding
er‘zjfd3v(mjv}/2)l-; by a sufficient amount.

=0, (40)

Propagation perpendicular to B,é.
As a second limiting case, in this section (21)-(30) are examined for wave
propagation perpendicular to Bé, with
k,=0, k=k.é.. (a1)
In addition, to simplify the analysis, it is assumed that there is zero average flow of
species j along the field lines with

fw dvzv:f;(vf_,u,)=0. (42)
-
Substituting (41) and (42) into (25), (27), (28) and (29) readily gives
Dx:=D:x=Dy:=Dzy=0 (43)
for k. = 0. Moreover, the remaining matrix elements for k. =0 can be expressed as
2 o 2,12 2
_ W . (n2/8})Ji(B) 9
D.x I+Z ZE fdva W= nw dv £ (44)
J n=—x J] 1
ny= - Dvx
! = ,
= fﬂ 3 (n/bj)‘ln(bj)jn(b/) 6
ij 2 n_f:x[d vO T T 7o b (45)
SR A
D, ,=1- - +z_¢u— Y fd UOL—:T‘Z'%:FJ. (46)
J n= -x /
ctk? w? W = nw, J:(b) v 9F
D =l-—t_y 2.y -2 Qo —E— = (47)
" w? ? w? zj: w? n_rjxf w-ne, v, 0v,



where use has been made of [dv.v.dF /dv. = — [dv. F, to simplify the expression
for D... For k =k é,, note from (44)- (47) that the perpendlcular particle dynamics
plays a very important role in determining detailed wave propagation properties as
manifest by the cyclotron resonances in (44)-(47) for w = ne,,n=x+x1,+2,....
Substituting (43)-(47) into (22) gives the dispersion relation

(D..D,, - D,,D,])D..=0. (48)

XX=VvVy

As for the case of parallel propagation, there are two classes of solutions to (21) and
(48). The first class, with D,. = 0, corresponds to transverse rse electromagnetic perturba-
tions with 8E, =0 = SE and perturbed electric field 3E = BE é.. This is usually
called ordinary-mode wave propagation. The second class, with D, D -D.,D, =0,
corresponds to the extraordinary mode of wave propagation, wmch generally has
mixed polarization. That is, with 8E =0 and 8E= 3% é + 8E £,. the electric field
perturbation generally has components both parallel and perpendlcular tok=k é

Ordinary -mode dispersion relation. To summarize, the wave polarization for
ordinary-mode transverse electromagnetic wave perturbations propagating per-
pendicular to Byé, is given by

k=(k,.0,0), 3E =(0,0.3E.), (49)
1 z
and the dispersion relation D.. = 0 can be expressed as
ck? w? w? nw, JI(b) v OF,
D,.(k  w)=l-—2-Y B4 ¥y ¥ A = L =9
(kL w) o2 ; w? - w2 n_z_: ,’ w—nw, v, do,
(50)

As discussed in Section 3.3.6, for a cold plasma. or for a moderately warm. isotro-
pic plasma with |b | <1, (50) gives the familiar ordinary-mode dispersion relation
(for w==nw/)w —hzk2 +Z/ww plus small thermal corrections. On the other
hand for parallel plasma kinetic energy density ¥ 4 f d’u(m u-/2)F exceeding

jd’v(m v? /2)F; by a sufficient amount, (50) c.an lead to the (Welbel like)

electromagnetlc fllamentauon instability.

Extraordinary -mode dispersion relation. In general. the wave polarization for ex-
traordinary-mode propagation perpendicular to B,é. is mixed. That is,

= (k,.0.0). 8E = (3E..3E,.0). (51)

and the wave perturbation has both longitudinal (8E,) and transverse (8E,)
components relative to the wavevector k = k, é .. Moreover. the dispersion relation is
given by

Dl’XD_V}' - val)y,r=0’ (52)
where the matrix elements D, , are defined in (44)-(46). In the general case, (52) does

not simplify further. However, there are two limiting regimes of considerable
practical interest which are now considered. The first corresponds to longitudinal



(electrostatic) Bernstein waves, and the second to extraordinary-mode transverse
electromagnetic waves.

Bernstein waves. For w and k, corresponding to large perpendicular index of
refraction with
|2k} /¥ > 1, (53)

it is straightforward to show from (44)-(46) and (53) that |D,,| > | D,,| and that D,
and D, are of comparable magnitude. It therefore follows from (44) and D__D

D,,D,, =0 that T
2,p2) y2
n’/6}) ) 3
- wp; 3
Derly ) I+Z ,..Z_x-/‘d W= nw, avlFf
Ji(b)) nw, IF
p/ n\% s 95 _
_1+Z Z f Y e=na, v, dv =0, (54)
.L n= -0 < L L

is a good approxlmatlon to the dispersion relation (52), where use has been made of
Z‘,‘f__wnj (5)=0. In this case, 8E =0 and the wave is primarily longitudinal
(electrostauc) with electnc field perturbatlon 3E = 8E £, along the direction of
propagation k = k, é . The Bernstein wave dispersion relauon (54) clearly includes a
wide range of wave propagation behavior ranging from hybrid oscillations for a cold
plasma, where 1= w2, /(w? - wZ)+w /(w? = w}), to cyclotron harmonic waves
(w=nw,) when plasma thermal effects are important. Detailed applications and
examples are discussed in Section 3.3.6.

Extraordinary - mode electromagnetic waves. For the case of a tenuous plasma with

wlo/ck} =1, (55)
and high frequency perturbations with
|w?/c2k}| of order unity, (56)

it is straightforward to show from (44)-(46) that the term D, D, represents a small
contribution 1o (52), and the dispersion relation D, D, - D, D, =0 can be ap-
proximated by

D, D, =0. (57)

xx“yy

For D,, =0, the wave polarization corresponds to k = (k, ,0.0) and 8E = ( gE 0.0).

and the dispersion relation reduces to the Bernstein mode dispersion relation

« =0 discussed in the previous paragraph [Eq. (54)]. On_the other hand. for

= 0, the wave polarization is given by k = (k, ,0,0) and 8E = (0. 8E .0) which

corresponds to transverse electromagnetic wave polarization with w and k related
by

c2k? Wl ® J,:(b)z
o hmi-En D £ foee 0

j n= - <

3
350 (®)



Equation (58) supports solutions ranging from w? = c2k? + £ w,w?/(w? — ) for a
cold plasma to significant harmonic structure (for w = nw ;) when plasma thermal

effects are important.

Electrostatic dispersion relation for a magnetized plasma

In the last two subsections, it has been noted that under special circumstances
(e.g. large index of refraction |c2k?/w?| 1 or low density/short wavelength per-
turbations with w2, /c*k? <« 1), the properties of the dispersion relation (22) are such
that electrostatic (longitudinal) mode can decouple from the mode with transverse
electromagnetic polarization. In this section, use is made of (7) and (19) to determine
directly the dispersion relauon for electrostatic wave perturbations with k X SE=0
and §E= —ik8¢= —i(k .0 )8¢, where 8¢ is the perturbed potential, and k has
an arbitrary direction with respect to Byé,. The Poisson equation (7) becomes

— 476p 8f
do= =4 do ——L—
= (k2 +k2) "Ze[ (k2 +k2)°

where 8fj is given by (19). Substituting SE= - i(k, ,0, k,)@ into (19) then gives
Dy (k,w)6¢=0, (59)

where the dispersion relation for electrostatic perturbations is given by

J(5)
D, (k, =l+ d’ R
L( ©) n-z—oof —nwcj_kzvz)

0F nw, OF
X( ! -—’———’-)=0, (60)

<+
dv, v, dv,

where k2 = k2 + k2, and Imw > 0 is assumed. Equation (60) reduces directly to the
electrostatic dlspersmn relation (38) for parallel propagation (k, =0) and to the
Bernstein mode dispersion relation (54) for perpendicular propagation (k, = 0). As
discussed in Section 3.3.7, depending on the form of F/(ui ,0,) and the region of w-
and k-space under investigation, (60) can also support unstable solutions (Imw > 0)
corresponding to the modified two-stream instability and the mirror convective
loss-cone instability.

Dispersion relation for an unmagnetized plasma

In circumstances where the perturbation frequency is sufficiently high and the
perturbation wavelength sufficiently short that

|w] > jw,l, lky v, /ijl>l’ (61)

the particle dynamics is unaffected by the applied magnetic field B, on the time and
length scales of interest. In this case, the particle dynamics and wave propagation



properties correspond to an unmagnetized plasma with

B,=0 (62)
and free-streaming particle orbits

x’'=x+or, v'=uv, (63)

where r = ¢’ — t. Assuming B, = 0 in the present analysis, without loss of generality a
Cartesian coordinate system is chosen with é, aligned along the wavevector k, Le.

k=k.eé.. (64)
In addition, for B, = 0, perturbations are considered about the class of equilibria
£0(x,0) =4, E (0), (65)

where v=(v,,v,,0,), and F(v) is normalized according to f d’vFj(v) =1. Parallel-
ing the analysis leading to (19) and making use of (62)—(65), it is straightforward to
show that the perturbed distribution function can be expressed as

e oF kv \ dF v OF § ~
Er(k,v,w)=—i—j-—j—-l——{—-j851+[(1_;wu~_) ;+k_v‘r ___/]BEx
J 4 7

m, w—kpu,|d dv, w do,
kzv: aF} k:vy aF} <
+ (I_T)Ev—y-'- " :9—0': sE}, . (66)
Moreover, the ¥ X 5B Maxwell equation (11) reduces to
kI = . ==\ gma. 4w S =
1-—* (8B4, + 5E6,)+8Eé, + - Le, [ doodf(k.0.0)=0. (67)
J

where 87, (k. v. w) is given by (66).

One of the most important instabilities in an unmagnetized plasma is the
electromagnetic Weibel instability driven by energy anisotropy in which the plasma
kinetic energy perpendicular to k = k,é, exceeds the parallel kinetic energy by a
sufficiently large amount. The free energy source for this instability can be provided
by an anisotropy in directed kinetic energy (associated with the average motion of
species j) as well as an anisotropy in thermal kinetic energy. To simplify the present
analysis, average motion of species j in the z-direction is allowed for, but it is
assumed that

fw dvxv,cf;(v)=0=fgc dv_‘.vvF}(v). (68)

That is. the ner average motion of species j perpendicular to €. is assumed to be zero.
However, the analysis does allow for directed motion perpendicular to é. provided
the motion is symmetric, e.g. equidensity counter-streaming electron beams. Sub-
stituting (66) into (67) and making use of (68), it is straightforward to show that

DX_V = DX.' = DVX = DVZ = D.'X = DZ'V = 0' (69)



and the remaining elements of the dielectric tensor { D, ,(k,,w)} can be expressed as

'kz P/ 3 vx - kzvz aFJ k_,t)x 31';
Dxx(k;‘w)— fd (l_ w )aUx+ w"a_v:‘

(70)
PRTMEC. S Y PN LR
(71)
D, (k) =1+ T3 [0t 351
_HZ wf d kwaFk/ iv’ (72)

where W, = 41rrije}2/mj, and Imw > 0 is assumed.
Making use of (69)-(72), the dispersion relation det{ D, ;(k;, w)}=0 for an unmag-
netized plasma can be expressed as
D, D, D, =0. (73)

xXxTyy Tz

There are two classes of solutions to (73). The first class, with dispersion relation

ZkZ P.I 3 Uy k:u.' aF kv aF
D""(k"w)—l_ +Z fd (I_T)av w 80

- or

=0, (74)

k2 p, , kv \dF kv, JF

D, (k.. “”“"— Z = [ =y (]"T)E{* w 90,
=0, (75)

corresponds to purely transverse electromagnetic branches with plane wave polariza-
tions 8E = (8E 0.0) and 8E = (0, 8Ey,0) respectively. The second branch, with
dispersion relation

k.dF /dv,

w=k,v, (76)

2
ARG
D.(k,w)=1+Y ﬁfd’v
J z
corresponds to an electrostatic branch with longitudinal polarization k = (0,0. k.)
and 0E = (0,0, 3’5: ). Depending on the choice of F(v), (74)-(76) support a broad
range of electromagnetic and electrostatic plasma waves and instabilities characteris-
tic of a spatially uniform, unmagnetized plasma (Sections 3.3.3 and 3.3.4).



To conclude this section, the spec1a1 case is considered where F(v) is isotropic in
the plane perpendicular to é.,

F(v)=F(vl,v,). (77)
where v = v? + vyz. In this case, D, and D,, can be expressed as
D.(.t(k."w)=D (kz?w)

2k2 5, Y
=1- /d w - kv

kv \ d ' kv, 49
x[(l—T)avlf;(vx’ :)+ @ av F(DJ. v) (78)

The definitions of D,, and D in (78) are a special case of (74) and (75), valid for
distribution funcnons E (vl,v) isotropic in the plane perpendicular to é,. The
difference in wave propagauon is evident. For general F;(v) subject to (68), it is clear
from (74) and (75) that the two transverse electromagnetic dispersion relations,
D, =0and D,, =0, correspond to two independent plane-wave polarizations (with

ﬁx =0 and S’E}, = (), respectively) with different wave propagation properties. For

F(v)=F(v 2, v,), however, it follows that D, v [EQ. (78)], and the dispersion
relatlons Du =0 and D, =0 are identical. The wave polarization in this case lS
elliptical with k = (0,0, k ,) and 5E —(8 E,,0), where the ratio 85 /8E
arbitrary.

Electrostatic dispersion relation for an unmagnetized plasma

In circumstances where B, =0 and the wave polarization is assumed to be
longitudinal with k X 8E = 0, the derivation of the electrostatic dispersion relation
simplifies at the outset. Expressing 8E = —ik8¢ where 5¢ is the perturbed potential,
(12) reduces to

§f7(k,v.w)=—2—k aF/avﬁ‘( k,w). (79)
j ( ) .
Poisson’s equation k*5¢ = 47% e, [ d’v 5/, then becomes
D(k,w)8¢=0, (80)
and the Landau dispersion relation for longitudinal perturbations is given by
GF/av
kw—1+z "’/d3 —— (81)

where Imw > 0 is assumed. Of course, (76) is a special case of (81) with wavevector k
prescribed by k = k,é,. Depending on the choice of distribution function F(v) and
on the regions of w- and k-space under investigation, (81) supports a wide variety of
electrostatic plasma waves and instabilities, including ion waves. the ion acoustic
instability, electron plasma oscillations, electrostatic two-stream instabilities, etc.



Specific examples of waves and instabilities associated with (81) are discussed in
Section 3.3.3.

3.3.2. Sufficient condition for stability of spatially
uniform equilibria

In this section, the general class of isotropic equilibria
E(ol,0) = E (o +2}) (82

in a magnetized plasma are considered and use is made of the Vlasov—Maxwell
equations to derive a sufficient condition for stability of the equilibrium to small-
amplitude electromagnetic perturbations with arbitrary polarization. The starting
point in this analysis is the nonlinear Vlasov equation

{;,+°";"+— 8E(x, )vX[OetSB(x’)]) ]f(xvt=0

(83)
where E(x, ) and 8B(x,1) are determined self-consistently in terms of f(x 0, 1)

from Maxwell’s equations. Here, the distribution function is expressed as its equi-
librium value plus a perturbation, i.e.

f(x.,0,1) =4, F(v? +v)+8f(xvt) (84)

where A, = constant is the ambient density of species j. An exact consequence of the
fully nonlinear Vlasov-Maxwell equations is the conservation of total (field plus
particle kinetic) energy integrated over the region of phase space (x. v) occupied by
the plasma. In addition, it is readily shown that (d/d¢)fd’x [d’vG(f)=0 is an
exact consequence of (83), where G( /) 1s a smooth, differentiable funcuon of £,
Making use of energy conservation and Jd3x [dP0G( /,) = constant. it is straxghtfor-
ward to construct the conserved quantity C defined by

e fd’ ( 8E)’ +(as

+Z/d3v[%m1(vf_ N v_?)(f/—rijf;)+G(f/)—G(r‘1,1';)]), (85)

where dC/dr=0. In (85) f =#; +8f and the arguments of 8E(x.t). 6B8(x.1).
f{(x.v,1)and F (v + v; %) have been suppressed Note that the constancy of C is an
exact consequence of the fully nonlinear Vlasov-Maxwell equations.

Now consider small-amplitude perturbations. Taylor-expanding G( f[)=G(n,
5f,) for small 5f, gives
(85)°
2

G(f/)=G(ﬁjl';)+G’(ﬁ/1';)8fj+G"(ﬁjf;) + .- (86)



Correct to second order in the perturbation amplitude, (85) can be expressed as

8E) +(8B)’ mooL
C‘2’=fd3x (—lg—ﬂ_—-)—-%—z.[d’v(—z—/(vl+v_:)+G(nJI~;))8fj
J

(87"

+ T [doG (4, F)——|. (87)
J

The function G(A F), which has been arbitrary up to this point, is now chosen to
satisfy '

G'(4, ) = = dm,(v3 + 1), (&)

Equation (88) implies that the term linear in 8f, vanishes in (87), and C® reduces to

>+ (8B)’ A
@~ 33 (8E) +(9B) 3 erf ( f
C fdx = +?/dvG (7,£)——|- (89)
Differentiating (88) with respect to AF, gives
m, /28,
G”(ﬁ/}-‘;)=___//_.l.‘ (90)
31"//802

where v?=0v? + v Substituting (90) into (89), C @ can be expressed in the

equivalent form

C‘2’=fd3x

M MR .2( -1 )
5 +Zj:4ﬁjfdv(8f,) ——aF//auZ . (91)

If
JF,/3v* <0, (92)

it follows from (91) that C*? is a sum of non-negative terms. Since C is a constant.
the perturbations 8E(x,t), 8B(x.r) and 8f (x.v.7) cannot grow without bound
when (92) is satisfied. Therefore. a sufficient condition for linear stability can be
stated as follows: If F(v? + v?) is a monotonic decreasing function of ( vl +v7) for
all plasma components j, the equilibrium is stable to small-amplitude electromag-
netic perturbations with arbitrary polarization. This is a statement of Newcomb's
theorem for perturbations about a spatially uniform plasma immersed in a uniform
magnetic field Byé..

important generalizations of the preceding analysis can be made. For example. the
stability theorem can be extended to show that- aF/ dv? <0, for each j, is a
sufficient condition for nonlinear stability of F, to arbitrary-amplitute perturbations.
[n addition. for a radially confined. fully nonneutral electron plasma column it can
be shown that £°(H — w Py)/d(H — w Py) <0 is a sufficient condition for stabil-
ity. where H is the energy, Py is the canonical angular momentum. and w, = constant
is the angular rotation frequency.



3.3.3. Electrostatic waves and instabilities in an
unmagnetized plasma

It is evident from the discussion in Section 3.3.2 that instability (Imw > 0) is
necessarily associated with nonthermal equilibrium features in which the distribution
function F (v) departs from being a monotonically decreasing function of v?. That
is, the free energy source for wave amplification is provided by the relative directed
motion between plasma components and/or an anisotropy in plasma kinetic energy.
In this section, a variety of longitudinal plasma waves and instabilities in an
unmagnetized plasma are investigated. making use of the electrostatic dispersion
relation (81).

It is important to note that the stability analysis presented in Section 3.3.3 is also
valid for the case of electrostatic waves propagating parallel to a uniform magnetic
field By = Byé, with B, = 0. This follows since the longitudinal dispersion relation
D..(k.w)=0 in (38) is identical to (81) for k = k., and F(v) = F;(v?,0v,).

Weak electrostatic instability

Defining w = w, + iy, where w, = Re w is the real oscillation frequency and y = Imw
is the growth rate. with y > 0 corresponding to instability, the electrostatic dispersion
relation (81) for an unmagnetized plasma can be expressed as

D(k,w, +iy) =0, (93)
where the Landau dielectric function is defined by

k+dF /dv

w, — k- v+iy (54)

D(k.w, +iy) 1+); szdv

for Imw=1y>0. Defining D, =ReD(k,w, +iy) and D, =Im D(k.w, +1y). and
Taylor-expanding D= D, +iD; =0 for weak instability (small y and D,). it is
straightforward to show that the dispersion relation (93) can be expressed as

0=D,(k.w,)+i

d .
ya—er,(k,w,)ﬁ- D (k,w )|+ : (95)

Making use of

. 1 .
,lino’_ wr—-k'u+iy—Pwr—k'v—ma(w'—k 0). (56)
where P denotes Cauchy principal value, and setting the real and imaginary .parts of
(95) equal to zero gives

k- JF /dv
...___/_/_=0

7
w —k*v 57)

wl
D(k.w)=1+Y -Ep[
Ak, w,) ;kl /LD



and
____Dik.w)
YT T 9D, (kow,)/ b0,

-1
fd3v k'al';/av

Wt dF w?
=|ry & d’v&(w,—k-v)k-—’) -y -Ep -
J kz[ dv (w,—k-v)

T k?
(98)

For specified equilibrium distribution F,(v), (97) determines the real oscillation
frequency w,, and (98) determines the growth rate y for the case of weak instability
or damping (e.g. |Y| < |w | or [kV)|, where V) is the characteristic speed of species j).
Two important symmetries follow directly from (97) and (98). In particular,

w(—k)=—w. k), y(—k)=v(k). (99)

are self-consistent consequences of (97) and (98) and are directly related to the fact
that the perturbed electric field E(x, ¢) is a real-valued function in (3).

Equations (97) and (98) will be used later in Section 3.3.3 to determine the (weak)
growth and damping increments for a variety of electrostatic plasma waves and
instabilities including electron plasma oscillations, the bump-in-tail instability, ion
waves, and the ion acoustic instability. For present purposes. we summarize the
implications of (97) and (98) in circumstances where F (v) is isotropic with

F(v)=F(v?), (100)
where v? = v} + v + v2. Making use of k+ dF,(v*)/dv=2k*v(dF,/dv*), (97) and

(98) can be expressed as

i 2 . 2
D,(k.w,)=l+§:i:—pzj-Pfd3vzk :(fi/fv ) o, (101)
and
2melT, (@) /k?) [ d08(w, — k+0) IF /30’
re w 3D, /dw, : (102)

For positive energy waves with w, 9D, /dw, > 0, it is clear from (102) that 9F, /dv"
< 0 is a sufficient condition for stability (y < 0), which constitutes a direct proof of
Newcomb'’s theorem (Section 3.3.2) in the special case where B, =0 and the wave
polarization is electrostatic. :

The plasma dispersion function

In many applications of interest. the distribution function £, (v) can be approxi-
mated by a drifting Maxwellian

5

F(v)= |~ 7 = vy 103
7 (v) = FT}) CXP(“'ﬁ;(U‘ ) (103)



where ¥V, = [dJDvF is the mean velocity, and T, —Hd’v[m (v— V)’/2]Fv is the
temperalure of species j. In this case, the velocrty mtegral in the electrostatrc
dielectric function D(k, w, +iv) defined in (94) can be expressed as

2 . 2
S o Bt
where
)= l/2f dx exP(“f) (105)
and
)= %-—ZU:’IH (106)

with y = Imw > 0. 1n (104)-(106) k = ké, has been chosen without loss of generality.
Moreover. vy, = (27,/m,)'/? is the thermal speed of species j. The function Z(¢)
defined in (105) is referred to as the plasma dispersion function. Important for
subsequent applications are the asymptotic expansions of Z(§;) for large and small
values of |§ |. i.e.

Z(¢)=-g =S5 , for|¢,| > 1, (107)

and

= 4. 2
z(gj)_—zgj+3§j—---ﬂ«‘mexp( £2), for |¢,| < 1. (108)
Note that (107) is a valid approximation in the cold-plasma limit with v, =
(2T /m)'/* = 0. or in the limit of large relative phase velocity with |w. —k* V +
1y|/|kr,T/| > 1. Equations (104)-(108) will be used to investigate detailed stabrhty
properties for drifting Maxwellian distributions in a variety of regimes of practical
interest.

Electron plasma oscillations and the bump - in -tail instability

As a first example. consider the case of a weak electron beam drifting through a
background plasma of Maxwellian electrons and ions with distribution functions

(Fig. 3.3.2):
m, \¥3 m_v?
Fe(v)=(l-¢)(2ﬂ.) exp(—ﬁ-

32 m
€ St (p=V. )
+e(2ﬂ.b) exp( ZTb(b V) )

(109)

‘ 1372 52
(0= (5| el - 55 | (110)
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Fig. 3.3.2. Plot of reduced electron distribution functions [ , dv, [2, dv, F.(v) versus v, for bump-in-tail
instability (Eq. (109)].

where ¢ =#, /i, <1 and [V,| > vy, = (2T,/m,)"/* are assumed. Without loss of
generality, the wavevector & is taken to be in the z-direction with

k=ké,, (111
and the component of ¥, along é, is denoted by ¥y, =V, é.. In this section,
high-frequency perturbations are considered and the positive ions are treated as a
stationary background with

mg—x, €] > 0. (112)
It is also assumed that the waves are weakly damped or growing,

Iyl < lel, (113)
and that the wave phase velocity is large in comparison with the bulk electron
thermal speed, i.e. |§,| > 1 and

1/2

|w, /k| > vp = (2T, /m,.) " (114)
Weakly damped electron plasma oscillations. In the absence of electron beam,
€=h,/A,=0, (115)

it is straightforward to show from (97), (104), (107) and (109)-(114) that the real
oscillation frequency w, is determined from

w? w?
D,(k.a,)=1——;p25—3k2)\2D——pf~- =0, (116)

T r
where A, = T, /4mh e* = v}, /2wl is the electron Debye length squared. and 2N}
« 1 is assumed. Solving iteratively for w?, (116) gives

Wl =Wl (143N, + ), (117)

which is the familiar Bohm~Gross dispersion relation for electron plasma oscilla-
tions with (weak) thermal corrections. Moreover, for ¢ = 0. m; — % and kAN, <1, it
follows directly from (98), (109) and (116) that the Landau damping increment



(vL <0) is given by

m\2(m 3 Wl ( m, w?
YL__(S) (Te) PET R I ey & (118)
For w? = w2 (1+3k*X, + - --) and k2N, < 1, (118) can be approximated by
Y (17 2 ( 1 3)
—=-{z exp| — -=1. 119
Wpe 8) k2 1kNp P 262N, 2 (119)

Note that the damping is weak with |y /w,.| < 1. Moreover, w?/k v}, =1/(2k*A})
> 1, and the wave phase velocity is large in comparison with the bulk electron
thermal speed, as assumed in (114).

Bump -in-tail instability. Electrostatic stability properties in the presence of a weak
beam are now examined with e=0, where e=4#A,/A, <1 and |V |> v, =
(2T,/m_)"/* are assumed. Paralleling the analysis in the previous paragraph, it is
straightforward to show for ¢ < 1 that the real oscillation frequency is determined to
good accuracy from (116) and (117). Moreover, for |y/w,| < 1, substituting (109)
and (116) into (98) with 9D, /9w, = 2wl, /w}, it is readily shown that the growth
rate y can be approximated by
Y=YLt7
4

_(m\Ym A\ m, w?
-—(8) (Tc) k2[k| ~(I=Jexp\ =37

T\ kV,, - w, m, (w,—kVy,\?
(——w——)exp —2Tb(——-—k——) } (120)

[
T

+e| ==
T,

where w? = W% (1+3k*N, + --+) and k¥, = kV,,. The first term y, on the right-
hand side of (120) corresponds to Landau damping (y, < 0) of the electron plasma
oscillations by the bulk electrons [Eq. (118)]. The second term y, on the right-hand
side of (120) is associated with the beam electrons and corresponds to wave growth
(Yp, > 0) whenever the phase velocity w, /k is smaller than the z-component of the
beam velocity V,,, (Fig. 3.3.2). Indeed, it follows directly from (120) that

Y20 for iV, /w 21. (121)

Note also from (120) and (121) that the beam contribution corresponds to damping
(Yp < 0) when the direction of beam propagation is perpendicular to the wavevector
k=ké, ie when V,,=0.

Because w?/k?03, = wl. /k*%, =1/(2k*)%,) > 1. it follows that the bulk electron
contribution in (120) is exponentially small. Therefore. for wave phase velocity
comparable with V.. for example |w, /k ~ V.| S 205y = 22T, /m,)"/%. it is clear
that the beam contribution in (120) dominates for modest values of €, and the
growth rate y can be approximated by

A 4 V2
Ry W kVy, w, —kVy.
v=im Ae k2|k|vdy ( w, l)exp[ ( kvry )

, (122)



where vry, = (2T, /m,)"/? and w} = wl (1 +3k*A}; + - - -). It is clear from (122) that
the maximum growth rate occurs for
Voe =@ /k=+07,/V2, (123)
and the characteristic maximum growth rate is given by
/24

o 3] "2 o1/ (5) e

n. .

-1,2),

(124)

where w? = w and w? = k2VZ, have been appronmated in (124). Strictly speaking,
the maximum growth estimate in (124) is valid for V% > v%,. Moreover,
(/A NVE /v%,) <1 is required to assure validity of the assumption that the
instability is weak with |y/w, | <« 1.

Ion waves and the ion acoustic instability

In this section, electrostatic stability properties are examined in circumstances
where there is a (small) relative drift between the plasma electrons and ions. It is
assumed that the equilibrium distribution functions can be represented as Maxwel-
lian electrons drifting through a stationary Maxwellian ion background (Fig. 3.3.3),

32 :
R0 =(3os) el - T (o- 1)) (125)
. (32 )
E(v)=(£—‘—) exp(—%vz), (126)
where
WV < vp=(2T./m,)"? (127)

is assumed in the low-drift-velocity regime. As in the subsection on the plasma
dispersion function, it is assumed that the growth rate is small with |y/w | <« 1, and

fdv,(fdval (v)
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Fig. 3.3.3. Plot of reduced electron and ion distribution functions /= . dv, /% dv, F,(¢) versus v, for ion
acoustic instability [(125) and (126)].



the wavevector k is taken to be in the z-direction with k = ké_. Moreover, consistent
with the assumption of weak growth (or damping), it is assumed that the electrons
are hot in comparison with the ions in the present analysis, i.e.

T.>T,. (128)
Substituting (125) and (126) into (94) and making use of (104), it is straightforward

to show that the electrostatic dispersion relation (93) can be expressed as
2

2(«:pe B
kzvzn[1+siz(£i)]+ kzvzn[1+g,2(5e)] =0. (129)

2
2wy

D(k,w, +iy)=1+

where Z(§,) is the plasma dispersion function defined in (105), and £, and §, are
defined by

w —kV,_ +1y
$e=_"____°_".__’ gi

kvr.

_ @ iy
- ko
where v; = (T, /m )/ and k¥, = kV,,. Within the context of (127) and (128), the
dispersion relation (129) supports weakly growing or damped solutions with |y/w | <
1 for phase velocities in the range

jw./k| > vp, jw. /k = V.| < op, (131)

Making use of the asymptotic expansions of Z(§)) given in (107) and (108) for
|§,/>1and |§| < 1,itis straightforward to show that the real oscillation frequency
w, is determined from the approximation dispersion relation

(130)

W
Dr(k'wr)=1_—+ =0, (132)
D

where D,(k, w,) is defined in (97), and A, =T, /4mh e’ is the electron Debye length
squared. Solving (132) gives

wp K%l
1+ 1/k30N, 1+

where ¢, = (T./m;)"/? is the ion sound speed. It is clear from (133) that the (low)
oscillation frequency ranges from w? = k*c? for k>N, < L. t0 &} = wy; for kA, > L.

To evaluate the growth rate y for the choice of distribution functions in (125) and
(126) use is made of (98) and (132). This readily gives

2
W, =

(133)

@5 9o FEY) ko Yk F
Y—‘ﬂ-z-;gi' ’ 'k—z-f v (wr— v:)ka’_.- j(v)

4
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where AL, =T, /4mA.e® e;=Ze is the ion charge, and use has been made of
equilibrium charge neutrality, #;Ze + A (—e)=0. Making use of (131) to ap-
proximate the electron exponential factor in (134) by unity, the expression for y in
(134) reduces to

T.\¥? T,
(T) p( 2Ti(1+k2)\20))

+(ﬁ)‘“(k_‘ég - 1)
m; w,
where use has been made of w? = k2c2/(1+ k*\}).

Note from (135) that the ion contribution to the growth rate y (denoted by v;)
always corresponds to damping with y; < 0. Moreover, for k*Np<land T, > T,
the ion Landau damping in (135) is exponentially small. On the other hand, as T; /T,
is increased to values of order unity, the ion waves are heavily damped with
Y, /w,| =1, and the assumptions leading to (135) are no longer valid.

The electron contribution to the growth rate y in (135) (denoted by v,.) corre-
sponds to growth or damping depending on the sign of kV,, /w,. — 1. In particular,

v.20forkV,. /w21 (136)
€ [ T

follows directly from (135).

To conclude this section, we briefly summarize the growth rate properties for
stable ion wave oscillations and the ion acoustic instability in circumstances where
T, > T, and the ion Landau damping contribution in (135) is negligibly small.

=(.’£)'/2___£°r*___
T (len)

: (135)

Weakly damped ion waves. For T,> T;, and zero relative drift between electrons
and ions,

V. =0, (137)
the growth rate v in (135) can be approximated by
ram \\/? w mm,\'"? lk|c,
Y=‘(sme) ol =_(8m ) e ()
i (1 kAN,)TT i1+ k)

where w? = k22/(1+ k*)\%). Equation (138) corresponds to a weak damping ({y/w|
< 1) of the ion waves by the background plasma electrons.

Ion acoustic instability. For T,> T, and V,. =0, (135) predicts instability (y > 0)

1

whenever the relative drift between electrons and ions is sufficiently large that
kV,./w, > 1. Moreover the growth rate y can be approximated by (Fig. 3.3.3)

Y=__("T’"e)l/2 o] (ch:_l) (139)
8mi | (14 k2N) 0 @

where w? = k%2/(1+ k2A%). Introducing the angle 6 between k = ké. and V.. the




quantity V,, can be represented as V,, =¥, cosf where V, ={V,|. For k2N < 1. it
then follows from (139) that instability exists within the cone 0 < 8 < §,, where

cos?8 > cos?6, = c1/V.2, ' (140)

which requires Vc > ¢, for existence of the instability.

Electron—ion two-stream instability

In this section, the electrostatic stability properties are considered for electrons
drifting through background plasma ions in circumstances where the relative stream-
ing velocity is large (Fig. 3.3.4)

Vel = v, o, (141)

and the corresponding instability is strong. As in the previous subsection, it is
assumed that the electron and ion distributions are Maxwellian [(125) and (126)}.
and the electrostatic dispersion relation is given by (129). It is further assumed that
w, —kV,, +iy
kv,

+iy

Ti

&) =|= >1, |§el = >1, (142)

and resonant wave-particle effects are neglected in the region of w- and k-space
under investigation. Making use of (142), and (107) with Z(¢§,) = = 1/¢, - 1/2¢}, it

is straightforward to show that (129) can be apprommated by the cold -plasma
dispersion relation

@i Wpe
D(k,w +iy)=1- - - > =0, (143)
(0 +iv)" (@ — k¥, +iv)

where k = ké. and k- ¥V, =kV,..
For V,, = 0, (143) has four solutions for the complex oscillation frequency w, +1ivy.

Two branches correspond to stable oscillations with y = 0. The other two solutions
for w, +iy form conjugate pairs. After some straightforward algebra. it is found that

o fan 0

Electrons
Tons
Ronge of w, /k,

fory>0

[

1773 L

0 Vez v,

Fig. 3.3.4. Plot of reduced electron and ion distribution functions [%,dv, [Z_dv, F(v) for strong
electron—ion two-stream instability.



the unstable branch exhibits growth (y > 0) for & in the range

0 <1kV) < w1+ (2 /02) ] (144)

Moreover, maximum growth occurs for k2 =k} = wpe / V.2, with corresponding real
oscillation frequency and growth rate at maximum growth given by the approxlmate
expressions

1/3
(/e = 103 /20%) Wil = $(Zim, /2m ) V), (145)
1/3
[Y]max=wpe%ﬁ(w;i/2wée) =“)pe%‘/§(zime/2mi)l/37 (146)

where e, = Zie is the ion charge, and use has been made of equilibrium charge
neutrality, A,(Ze)+A.(—e)=0. Note from (146) that the growth rate for the
electron-ion two-stream instability can be substantial, with [y],,, = pe /18 for
hydrogen ions with Z; =1 and m_/m, =1/1836.

Finally, in (143), resonant Landau damping by the plasma ions has been neglected -
within the context of the assumption |£;| = [(w, +1v)/kvr;| > 1. From (145) and
(146), this is a valid approximation provided the ions are sufficiently cold that

(Zim./2m )" » ok /V2=2T, /mV2. (147)

Necessary and sufficient condition for instability

In this section are investigated the properties of the dielectric function D(k, w)
defined in (94) for general F(v) to determine the necessary and sufficient condition
for electrostatic instability. The resulting condition, known as the Penrose criterion,
can be used to determine stability behavior, range of unstable k-values, etc., for
various choices of F, “(v). It is useful to introduce the one-dimensional distribution
function F(u) pro;ected along the wavevector k&,

F(u)-—/d%&(u—m)(

where k| = k|, Zm,/m, = &’ oi /w and use has been made of equilibrium charge
neutrality, A,(Z,e)+ ne(—e)—O From (148), note that F(u) is a weighted com-
posite of £ (v) and Fi(v), with the ion distribution function being weighted by
wg, /wl.. Making use of (148), it is straightforward to show that the dielectric
function D(k.w) defined in (94) can be expressed in the equivalent form

pe /au
D(k,w)= f du w/lkl—u' (149)

where w is complex. and Imw > 0 is assumed in (149). For future reference. the real
and imaginary parts of D(k, w). evaluated for real w, can be expressed as

aF(u)/au

Fi(v)]. (148)

l

D,(k.w, "‘P[ du i (150)
Di(k.u,)=—wf’iji9—;£‘— (151)
k= u u=w. /kl|




where w, = Rew, and use has been made of

lim l -P— —ims(u—‘—"i)
y=0. (@ +iv)/lkl—u  w/lk|-u LaPA
where P denotes the Cauchy principal value.

An outline of the derivation of the Penrose criterion proceeds as follows. Assum-
ing D(k, w) is an analytic function of w in the upper half w-plane, the number N of
solutions to the dispersion relation D(k,w)=0 with Imw >0 (i.e. the number of
unstable modes) is given by

1 dw ad
-m./;m%l)(k,w), (152)
where D(k,w) is defined in (149). In (152), the contour C proceeds along the Re-w
axis from w, = — 0 t0 w, = + 00, and closes on a large semicircle (with |w| > ) in
the upper half w-plane. From (149), D(k,|w| — o0) =1, and the only contribution to
(152) occurs along that portion of the contour C along the real-w axis where

D(k,w.)=D,(k,w. )+iD;(k, ). (153)
Equation (152) therefore reduces to

—'—m( D(k.w,=+oo))'

N=>-—
271\ D(k,w, = —o0)

(154)

Choosing the phase of D(k,w,) such that D(k,w, = —o0)=+1, it is found that
D(k,w, =+ ) =exp(27iN). That is to say:

The number N of unstable solutions (with Imw > 0) to D(k.w)=0 is
equal to the number of times that the contour ' = D (k,w)+1D;(k.w)
encircles the origin in the complex D, +iD; plane as w, ranges from —
to + 0.

The preceding statement constitutes a very powerful means to determine the
necessary and sufficient condition for instability of F(u). For present purposes. the
case is considered where r(u) is a double-peaked distribution function (Fig. 3.3.5)
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Fig. 3.3.5. Double-peaked distnbution function F(u) assumed in derivation of Penrose criterion.



with a single minimum (excluding u = + o0) at u = u,, a primary (largest) maximum
at u=u,, and a secondary (smallest) maximum at u = u,. Tracing out the curve
= D,(k, w,)+iD,(k, w,) in the complex ( D,, D;) plane for w, ranging from w, = — o0
to w, = + oo gives the general behavior illustrated in Fig 3.3.6. Note from (150) that
D,(k, w,) can be expressed in the equivalent form

Dk w)=1- pef g F0 = Fla /1K) (155)

e (u— e /KD
It is straightforward to show from (155) and Fig. 3.3.6 that
D,(k, &, = lklu,) > 1,
D.(k,w, =1kluy) > D (k,w, =|kluy). (156)

From Fig. 3.3.6, the condition for instability (that I'= D, +iD; encircles the origin)
therefore becomes D,(k, w, = |k|ug) <0 < D (k, w, = |k|u,), which can be expressed
as

Tumw) C(u-u)
It is clear from (157) that a necessary and sufficient condition for instability is given by
s £ F F
P(F)=ul[ du M (158)
= (u- “o)

Equation (158) is known as the Penrose criterion for instability. Note from (158) that
the depression in E(u) as measured by F(uo) must be sufficiently large for P( Fy>0
to be satisfied. In addition, it is clear from (157) and Fig. 3.3.6 that if the secondary

Fig. 3.3.6. Plot of Penrose curve I'= D, +iD;[(151) and (153)] in complex ( D,, D;) plane for w, ranging
from — o to + 2. Here, D, (k. w; = |kjug) < 0 < D(k, w = |k|uz) is required for existence of instability
(y>0).



maximum F(u,) is sufficiently large, the inequality D(k,w, = |k|uy)>1 pertains,
and hence

E(u)-F
wrzx f ® du _(_u_)__L:_z—)- < 0’
- (u—uy)
may be satisfied. We therefore conclude, whenever the Penrose criterion (158) is
satisfied, that the range of unstable k-values (where y > 0) is given by
k2, <k?<ki, (159)
where k2 and k2, are defined by

F(“)"i'-(“o)

k2 2[” d (160)
=w u
P (um )’
and k2 is the maximum of 0 or k2, where
l@zswgefw du———-——F(u)-F(ZZ). (161)
= (u=uy)

To summarize, (158)—(161) can be used to investigate stability behavior for a
variety of choices of distribution function F(u). Although (158) does not provide
detailed infogmation on the size of the growth rate v, it does determine whether or
not a given F(u) is unstable, and the corresponding range of unstable k-values [Eq.
(159)] when instability exists. We reiterate that (158) has been derived for a
double-peaked distribution function with maxima at u = u, and u = u,. Of course,
the techniques outlined here can be extended to the case where F(u) has multiple
maxima.

Penrose criterion for counterstreaming electrons and ions

As an interesting practical application of the Penrose criterion (158) derived in the
previous subsection, the case is considered where F(u) corresponds to Maxwellian
electrons drifting with velocity ¥, through a Maxwellian ion background,

{exp(_f"_'.zﬁ)i)+zi%£%&exp(—“—;)], (162)

V% i U1 vF

F(u)=
TOr

where vy, = (2T, /m,)"/? and vp; = (2T, /m,)"/%. From (162), the distribution func-
tion F(u) has a minimum with dF(u)/du =0 at u = u,, where

g

Ure U'zre

2

-—“—f’-). (163)

-

Uri

T, uy
=Z T, vy exp

Equation (163) can be used to determine uy = uo(Vy/vr.. I./T;. m./my) numert-
cally for a wide range of system parameters. Introducing the dimensionless quanti-
ties V, =V, /vy, and iy = u, /v, and the dimensionless velocity variabie 4 = u /v,



the Penrose function P( F) defined in (158) can be expressed as
p(F)=n2[" ——d"——{exp[-(ﬁ— V)] =exp| ~ (6 = 7)’]

% (’3"‘20)2

+2Z, ﬂs)‘/z 2 - ex —E-T—iﬁz —ex ——Eﬂﬁz
\m ) \T) [P\ Tm, T m )l

(164)

for the choice of distribution function in (162). In (164), &, = u,/vr, is determined
from (163). For specified Z, and m./m;, (164) can be solved numerically to
determine the region of V,/vy and T,/T; parameter space corresponding to
instability with P(i-' )> 0, and hence y > 0. The results are summarized in Fig. 3.3.7
for hydrogen plasma with Z, =1 and m./m; =1/1836. The solid curve in Fig. 3.3.7
corresponds to marginal stability with P(F)=0 and y=0. The region of
(Vy/v7e T/ T;) space above the curve corresponds to instability with y > 0, whereas
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Fig. 3.3.7. Plot of ¥ /vy, versus T, /T, marginal stability curve (y=0) obtained from P(F)=0 for
counterstreaming electrons and ions [Eq. (164)] where Z, =1 and m./m; = 1/1836 are assumed. Region
above the curve is unstable (y > 0). (Numerical results due to Dr. Robert D. Estes.)



the region below the curve corresponds to damped oscillations. Note that the ion
acoustic instability and the strong electron-ion two-stream instability occur in rather
restricted regions of parameter space in Fig. 3.3.7. Equation (164) and Fig. 3.3.7 of
course delineate the entire region where instability exists for a continuum range of
Va/vreand I, /T,

Penrose criterion for counterstreaming plasmas

As a second application of the Penrose criterion (158), the case is considered
where the distribution function F(u) corresponds to equidensity, Maxwellian plas-
mas counterstreaming with drift velocities + ¥,

2 2
u=V, u+V,
o ( =% _(ut¥)

2
UTe

2 2
+z,ﬁegexp(-(_'f;‘i:>_ +zﬂ2&exp(_(u+lfd)

3 +ex

V7

i ,
m; vr; v%, v

; m; Ur;

(165)
where vy, = (2T, /m,)"/? for j=e,i. It is clear from (165) that F(u) has a single
minimum at u = u, = 0. Moreover, substituting (165) into (158), the Penrose func-
tion P(F) can be expressed as

-ZI"D—J-EP(I"')=W"/2[ 3u{exp[ (a —f/d)z}+exp[—(a+f/d)z]—Zexp(—f{f)

pe -
/2 12
me) (L LEmi, vy
2(5) (3] el -2 2t0-r)
Tom, o L
+exp —I}me(u+Vd))_2exP(_T,me i (166)

where V, =V, / vy and & = u/v,. For specified Z;, and m_/m_. (166) can be solved
numerically to determine the region of 2V, /Vr, and T. /T parameter space corre-
sponding to instability with P(£)> 0 and y > 0. The results are summarized in Fig.
3.3.8 for counterstrearmng hydrogen plasmas with Z;, =1 and m_,/m,; =1/1836. The
solid curve in Fig. 3.3.8 correspond to marginal slablhtv with P(F)=0and y = 0.

3.3.4. Electromagnetic waves and instabilities in an
unmagnetized plasma
Introduction and dispersion relation

In Section 3.3.1, it was indicated that a sufficiently large anisotropy in plasma
kinetic energy can provide the free energy source to drive plasma instabilities with
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Fig. 3.3.8. Plot of 2V, /vy, versus T, /T, marginal stability curve (y = 0) obtained from P(F)=0 for
equidensity counterstreaming plasmas [Eq. (166)] where Z, =1 and m_/m;=1/1836 are assumed.
Region above the curve is unstable (y > 0). (Numerical results due to Dr. Robert D. Estes.)

transverse electromagnetic polarization, i.e. with electric field perturbation 8E per-
pendicular to the wavevector k. In the present analysis, an unmagnetized plasma
with B, = 0 is considered, and use is made of the electromagnetic dispersion relation
(74), which corresponds to the plane wave polarization

k=(0,0,k), 8E = (3E.,0.0), | (167)

with wave propagation in the z-direction k = ké.. Denoting w = w_ +iv, the disper-
sion relation D, (k,w, +iy) =0 in (74) can be expressed as

252 w?
D(k,w +iy)=1- <k &

. 2 . 2
(@ +iy)"  , (w, +iy)

+
Zj: (<.>,+i'y)2

=0, | (168)

2
wg, , 5, K9F /dv,
/dvv"w,—kvzﬂy



where ¥y = Imw > 0 is assumed, and use has been made of Jd’ov 9F,/dv, = —1.
Moreover, the short-hand notation D,, = D has been introduced in (168).

It is important to note that the electromagnetic stability analysis presented in
Section 3.3.4 is also approximately valid for a magnetized plasma with B, =0
provided the perturbations have sufficiently short wavelength and sufficiently high
frequency that the plasma species are effectively unmagnetized, i.e. provided jw/w, g
> 1 and |k, vy;/w,| > 1.

As indicated in Section 3.3.1, one of the most fundamental instabilities associated
with (168) is the electromagnetic Weibel instability driven by energy anisotropy in
which the plasma kinetic energy perpendicular to k = ké, exceeds the parallel kinetic
energy by a sufficiently large amount. To illustrate basic stability properties, for the
sake of definiteness the case is considered where the jth species distribution function
corresponds to equidensity, anisotropic Maxwellians counterstreaming perpendicular
to the propagation direction with

F(v)=l 7 l/zex ___m/uf 7
N =3\ 2et, | P\ T 2T, )\ 20T,

J

X [exp(— 2';/] [(Ox - V,-)Z"'(".v ’U/)z])

+exp(—2'%’l [(vx+Vj)2+(vy+Uj)2])]. (169)

After some straightforward algebra that makes use of (104), the dispersion relation
(168) can be expressed as

212 wz
D(k,w, +iy)=1- ”‘_ - — M
(wr+lY) J (wr+lY)
2 T, +mV?
N Wy, - /L = i [1+§}Z(§j)]
j (w, +iy) s

=0, (170)
where Z(§;) is the plasma dispersion function defined in (105), and §, is defined by
{= (w,+iy)/kvrj, (171)

where vy, = (2T, /m)'/? is the parallel thermal speed of species j. For the sake of
completeness, note that the dispersion relation D, (k. w, + iy) =0 in (75) is identical
to (170) with the replacement V> —»U?, where +U, are the directed streaming
velocities in the y-direction.

" Equation (170) supports two classes of solutions. The first class corresponds to
fast (w2/k?>c?), stable (y=0) electromagnetic waves propagating with phase
velocity exceeding the speed of light. The second class corresponds to purely growing
(or purely damped) solutions with w =0 and y=0, whenever the anisotropy
condition (7,, +m V?)/T, > 1 is satisfied.

These two classes of solutions are now considered in more detail.



Fast - wave propagation
For fast electromagnetic wave propagation with
lw2/k?| > c?, (172)
it follows for a nonrelativistic plasma that |{{>1 for j=e,i. Approximating

Z( 5 y=-1/ é -1 /2£3 - [Eq. (107)}, the dlsperswn relation (170) supports
purely osc1llatory soluuons with vy =0 and w, determined from

2
_ _czkz_ Yo p/ 7;x+’"V kzl;"
0=1-—- - = > (173)
W, J W J W, i mjwr

Solving (173) iteratively for w? gives

2 2.2
2 2 (22 2 2(7;1/'"/" +V1/C)
W =c¢ +Z“’w+ T L
J j toLwp/c

(174)

For the nonrelativistic plasma regime assumed here, note from (174) that the
correction term propomonal to (T, L /m, ct+ V2/c ) is small, and the cold-plasma
dispersion relation w? =c2k?+L; ij is an excellent approximation to (174). This
conclusion is mdependent of the degree of anisotropy.

Necessary and sufficient condition for instability

It is relatively straightforward to generalize the electrostatic Penrose criterion
derived in Section 3.3.3 to the case where the wave polarization is electromagnetic
and the dispersion relation is given by (168). To avoid a double pole at w = 0, define

D(k,w)=w*D(k,w)

kdF, 30
=w?-c% prj+zwwfd30v / (175)

where Imw >0, in (175). Introducing D, +iD, = D(k,w), where D,=ReD and
=Im D, it follows from (175) and

1 1 .
yl_l}rg o ko, ¥iy Pw,—kv: —178(w, — kv, ), (176)
that
. , kdF,/ dv,
D,(k,w,)=w?-c% wa+2w Pfd’vv -T (177)
3 2 [ 43 o2 oF, :
Di(k.w,)=—v;wp//d vv;6(w,—ku:)k5-t>—:, (178)

where P denotes Cauchy principal value. For the class of symmetric equilibria with a
single maximum at v, = 0 [as in (169)}, it can be shown that

D(k,w.=0)>0 (179)



is required for existence of unstable solutions to D(k.w, +iy)=0 with y >0 and
w, = 0. Equation (179) determines the necessary and sufficient condition for instabil-
ity,

= 2 3 v 9F
P(F)-—gww l+Pfdv;:--5-tZ >0, (180)
as well as the range of unstable k-values corresponding to y > 0, i.e.
0<k?<ki, (181)
where
w? 2 OF
2o Y P dp X L
k? Zj:cz(l+Pfdvvz au,)' (182)

Use is now made of (170) and (178)-(182) to investigate detailed electromagnetic
stability properties for the anisotropic counterstreaming Maxwellian plasmas de-
scribed by (169). Making use of (169) and (180), the necessary and sufficient
condition for instability can be expressed as

T, +mV?
2 JLi )
;“’w( T

M

~-1]>0, (183)

and the range of unstable k-values is given by
w2 (T, +mV?
O<ki<kl=sy 2| L 2L1 (184)
J c? T;N
whenever (183) is satisfied. Note from (183) and (184) that both thermal anisotropy
(T, /T, > 1) and anisotropy associated with directed kinetic energy (m jij/ T,>1)
can provide the free energy source to drive the instability. In the special case of an
isotropic plasma with ¥, =0and T,, =T, , it follows from (182) that k§ = 0 and the
system is stable. The necessary and sufficient condition for instability given in (183)
can also be expressed as ‘
Lutmdl g me T+ m]

m
>+ 2Z—=, 185
» R m, (185)

where e, = Ze is the ion charge, and use has been made of equilibrium charge
neutrality #,(Z;e)+A,(—e)=0 10 express w},/wi, =Zm./m, Making use of
(185), the region of (T,, + m V.2 )/ T,, versus (T, +mV?)/T, space corresponding
to instability is plotted in Fig. 3.3.9. For specified (T,, + mV.?)/T,,. we note from
Eq. (185) and Fig. 3.3.9 that a relatively large value of ion anisotropy (T,
+m¥V})/T, is required to drive instability.

Weibel instability for weakly anisotropic plasma

As an example, in this section the case is considered where there is no streaming
motion of the plasma (¥, =V, = 0), the positive ions are isotropic (T;, =T;). and
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Fig. 3.3.9. Necessary and sufficient condition for Weibel instability in equidensity. counterstreaming
plasmas {Eq. (185)]. Region above the curve corresponds to instability (y > 0).

the electron thermal anistropy is assumed to be weak with
|(Te.|. -Teu)/Te|||«l~ (186)
From (184), the range of unstable k-values is given by

2\ T,

ell

WL (T
o<k2<k§s—"i(~°—*—-1) (187)

where k3c?/wl, < 1. In addition, the ions are treated as infinitely massive with
m, — oo and |§;|> 1. Assuming «, =0, and neglecting the displacement current
(v? < c*k?) in (170), the dispersion relation can be approximated by

T, T,
0=c2k2+w§c(l—-Te—*)——;.—*wgeﬁeZ(fc), (188)
el el

where ¢, = iy/kvr, and vr, = (2T,,/m.)'/*. For the case of weak anisotropy, (188)
supports weakly unstable solutions with |£,| < 1. Approximating, Z(§,) = — 2§, [Eq.
(108)], it is found from (188) that

2 T. /T 2,2 2
72=lhw§c_°"(_&_1) L PR (189)
22T\ T, ki

for 0 < k2 < k2 (Fig. 3.3.10). In (189), maximum growth occurs for k* = k§ /2, and
the corresponding maximum growth rate {y] ., is given by

/2
Y Jmax c Ve STcJ. Te"

1 T 1/2

Il v
<
= ko”re('g' 7:)

¢

Equation (188) can be solved numerically for the case of arbitrary anisotropy. When
T.. /T, — 1 is of order unity or larger, the maximum growth rate of course exceeds

LI
T,

ell

-1 (190)
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Fig. 3.3.10. Plot of growth rate y versus |k / k| for weak electron Weibel instability {(189) and (190)].

the value in (190). The range of unstable k-values, however, is still given by the
expression (187).

Strong filamentation instability for counterstreaming ion beams

As a second example that illustrates several important features of electromagnetic
Weibel instabilities, the case is considered where the energy anisotropy is provided
by cold. counter-streaming ion beams with directed x-velocities + V;, and

T, — 0, T, —0. (191)

It is further assumed that the ion beams propagate through a hot, isotropic electron
background with ¥, =0 and T, =T, =T,. Assuming w, =0 and that the electrons
are sufficiently hot that |§,| = |iy/kvr| < 1, it is straightforward to show that the
dispersion relation (170) can be approximated by

2 2
— 212 2 2 Y Y.
0=ck +wa+wpc(2kzv§- )_‘"ini ;—2 (192)
j e

where use has been made of Z(£,)=—2£, and Z(§)=—1/§ ~1/2¢} and the
displacement current has been neglected in (192) (y? < c?k?). Neglecting
wley?/k*v}, in comparison with w;,, (192) gives the approximate result (Fig. 3.3.11)

y2 w?,
vi=— 2 : (193)
(1 +‘ij5//c2k2)

Since T;, — 0 has been assumed, the range of unstable k-values in (193) corresponds
to 0 < k? < k3 = o0, which is consistent with (184). Moreover. maximum growth

occurs for c*k? > wl,, with

[¥]max = (Vi /). : (194)

Of course, a modest value of T;, will cause the y versus k curve in Fig. 3.3.11 to turn



over, and the growth rate y approaches zero for k =k, where ¢’} /w2 = (T,
+ miij)/Ti“ — 1 {Eq. (184)].

To conclude Section 3.3.4, it is evident that two rather extreme examples of
electromagnetic Weibel instabilities have been examined in the last two subsections.
[t should be emphasized. however, that the dispersion relations (168) and (170) can

be used to investigate anisotropy-driven electromagnetic instabilities for a wide
range of circumstances.

/[V]MAx=wpivi/°

1 ! ] { 1
0 ! 2 3 4 5

clk|/wpe —

Fig. 3.3.11. Plot of growth rate y versus c|k|/w,, for strong counterstreaming ion Weibel instability [(193)
and (194)].

3.3.5. Waves and instabilities for propagation parallel to B,

Introduction and dispersion relation

In Section 3.3.1 were derived the electrostatic dispersion relation D..(k..w)=0
[Eq. (38)] and the transverse electromagnetic dispersion relation D =(k..w) =0 [Eq.
(40)] for wave propagation parallel to a uniform magnetic field B, = B,é.. The
analysis in Section 3.3.1 was carried out for general equilibrium distribution function
E(v},v.), and wavevector

k=keé.. (195)

From (38). it is clear that the electrostatic dispersion relation for waves propagating
parallel to the magnetic field is identical to the familiar electrostatic dispersion
relation for an unmagnetized plasma given in (81) and studied extensively in Section
3.3.3. That 1s, as expected, for wavevector k parallel to Byé.. the electrostatic stability
properties are unaffected by the presence of the magnetic field. Therefore, throughout
the remainder of Section 3.3.5, stability properties associated with the transverse
electromagnetic dispersion relation D *(k,,w) =0 in (40) are investigated.



Integrating by parts with respect to v, in (40), the dispersion relation can be
expressed as

c2k?
(@, +iy)’
/d3 [(w = k.o, +iv) E =k} /2)9E,/3v.] _
(w, tw, — ko +iy)

DE(k, w +iy)=1-

J (w ‘HY)

(196)
where

[ o= wa.zdv,[)mdq o,

w=w +iy is the complex oscillation frequency, w, ,=¢,By/m;c is the cyclotron
frequency and Imw =y > 0 is assumed in (196). The wave polanzanon associated
with (196) is given by

=(0,0,k,), §E = (*i5E,, 8E, ,0), (197)

where D* =0 and D~ = 0 correspond to circular polanzed electromagnetic waves
with right-hand ( gf —155 ) and left-hand (5% = +i8L V) polanzauons, respec-
tively. It is evident from (196) that the detailed dependence of F (v 2, v,) on v? does
not have to be specified in analyzmg the dispersion relation. Therefore for present
purposes, it is assumed that F, (v ¢, v,) 1s of the form

m, \'/? m ;v
2 = ]
F/'(UJ. ’D:) (2177' ) Cxp( ZT

Al gl

2

)o(ui). (198)
where
277/(; dvllej(vi)=1.

Because the v2 moment of F, occurs in (196), the effective perpendicular temperature
is defined by

T, _zwf dvlvl( > oi)G,(vi). (199)

Substituting (198) and (199) into (196) then gives the dispersion relation

j.L

5

c2k? wy
=t F—
(wr+lY) J (wr+lY)
(wr+i7) -+ T;J-
X ko7, z(g*)-|1- T

Al

D*(k, w +iy)=1-

(reeez(er)]| o

(200)



where v, = (27, /m,)"/? is the parallel thermal speed. Z(§*) is the plasma disper-

sion function defined in (105), and £ * is defined by
£ =(w T, +iy)/kor;. (201)

Depending on the region of w- and k_-space under investigation, and the degree
and nature (7, 2 T, ) of the temperature anisotropy, the electromagnetic dispersion
relation (200) supports a wide variety of waves and instabilities including the
firehose instability, the electromagnetic ion cyclotron instability, and the electron
Whistler instability. These instabilities are examined in detail in the last three
subsections of Section 3.3.5. To orient the reader and establish the basic normal
modes of the system, in the next subsection (200) is considered in the limit of a cold,

isotropic plasma.

Waves in a cold plasma

For a cold, isotropic plasma with T, =T, =T, — 0, consider (200) with |{*|=
Nw, + w; +iY)/k 07| > 1. Approximating Z(§*)=—1/¢; [Eq. (107)], the disper-
sion relation supports only solutions with real oscillation frequency (y =0), and

(200) reduces to
2,2 2 2
c’k Whe Wpi

w? B wr(wri(dce) B wr(wr:twci) N

Dtk w)=1- 0 (202)

for a two-species plasma. For each sign (+ or —), (202) supports six real solutions
for w,. For present purposes, it is useful to briefly consider (202) in several limiting
frequency regimes.

Alfvén waves. Assuming low-frequency perturbations with
|wr| < 'wci!’lwcel' (203)

and making use of equilibrium charge neutrality, w2 /(£ w.)+wp /(£ wg) =0,

- rce

(202) can be expanded to O(1 /wczj) for strong magnetic field to give the approximate
dispersion relation

kic? kv
1+ 1wl /w3 1+ Ve

(204)

2 =
W, =

where the Alfvén velocity ¥, is defined by ¢2/V} =T w? /wl =L 4nh m c/B;.
Note that c¢*/¥ = w} /w} > 1 for typical plasmas, so that «f = k?VJ is a good
approximation to (204).

Later in Section 3.3.5, assuming a warm, anisotropic plasma with T, exceeding
T,, by a sufficiently large amount, it will be seen that the low-frequency Alfvén
branch exhibits strong instability (called the firehose instability).

Ion cyclotron waves. Assuming strongly magnetized electrons with
| & |wels (205)



but allowing for w, to extend to the ion cyclotron range of frequencies, (202) can be
expanded to O(1/wZ) to give :

22 w? w? w2
D(k,.w)=1- 5+ 5 = =B — =0, (206)
wr Wee wr( t wcc) wr(“’r + wci)

Making use of equilibrium charge neutrality, wf,c /(£ w)+ wgi /(twy)=0, Eq.
(206) can be expressed in the equivalent form
0-1- Ky S Gp ‘
wz wfe (iwci)(“)riwd)
For |w,| < |wgl, (207) reduces directly in the Alfvén wave dispersion relation given in
(204). For |w,| < |wg), use is made of the fact that the final term in (207) is large in
comparison with 1+ wl /w (assuming «f; /w3 >>1), and (207) can be approxi-
mated by
w, = Fuy(l-wi/k2Vi), (208)
where V2/c? = w} /wh. For |w,| < |wgl, (208) gives ] = k;V;, as expected. For
increasing values of |w,|, the ion cyclotron branch in (208) asymptotes with w, — T,
when k2Vil/wl > 1.
Later in Section 3.3.5, for a warm anisotropic plasma with T;, exceeding T} by a
sufficiently large amount, it will be seen that the ion cyclotron branch exhibits a

strong (Weibel-like) electromagnetic instability with characteristic growth rate of
order w, when the anisotropy is large.

(207)

Electron cyclotron (Whistler) waves. For high-frequency perturbations with
lwr‘ > |wci|' (209)

and c2k? > «, the ion term is negligibly small in (202), and the dispersion relation
can be approximated by

0=1-c2%kZ2/wl -l /[0 (w £ w)]. (210)
Equation (210) is the dispersion relation for electron cyclotron (or so-called electron
Whistler ) waves. For a moderately dense plasma with wZ, /wZ, >> | and perturbation
frequency |w,| comparable in size with |w|, the contribution by the displacement
current in (210) is negligibly small, and the dispersion relation can be approximated
by

0, = F weck2/ (w3, + c2k2). (211)

It is clear from (211) that the real frequency w, can span a large range, with w,
asymptoting at F w,, for c2k? > wl,.

As for the ion cyclotron branch, it will be seen later-in Section 3.3.5 that the
electron cyclotron branch exhibits a Weibel-like instability for T, , > T,

ell*

Fast electromagnetic waves. For completeness, at very high frequencies with

Iwr|>>‘wce]v|wci|v (212)



the dispersion relation (202) can be approximated by
wi=ckl+ Ll (213)
J

As expected, (213) is identical to the cold-plasma dispersion relation for electromag-
netic wave propagation in an unmagnetized plasma (Section 3.3.4).

Firehose instability

The full dispersion relation (200) is now considered, allowing for energy anisot-
ropy with T =T, . Expanding (200) for long axial wavelengths with

1§21 = (@ £ @, +iv)/kop] > 1, (214)

and retaining terms to O[kZv}, /(w, + w,, +iy)?}, the dispersion relation (200) can
be approximated by
c2k? w?
D* (k. w +iy)=1~- . 2—2 - 2 -
(o, +iv) (w +iy)( @ £ @, +iv)

ny wéf_(,_ﬂi) (k2T /m,) _
7 (w, +iy) T ) (o, + @, +iv)*

where use has been made of Z(§7)=-1/{ -1 /2£j3 [Eq. (107)]. Paralleling the

analysis in the previous subsection that led to the Alfvén wave dispersion relation

(204), it is assumed that the perturbation frequency is low with |w, + iy} < jwl,|w.]-
Expandmg (215) correct to O(1 /w? j) and making use of equilibrium charge neutral-

ity. wp./(+wc])+wp¢/(iwce) 0, SlVeS
“kz p/ PJ
0=1-———+ Z + Z

(@, ‘H'Y) J / wey (w +iv)

(215)

Jll

k(T - L)Z/m (216)

where
Y wl /el =cY/ V= Z4frﬁ}m1c2/B§,
J J
Z‘*’é;(T/n - T;J. )/mjwczj = 247"’1/(7;“ - 7;; )Cz/Bé = (477C2/B()2)( P - P, )

J

Here, P,=L A T, is the parallel pressure. and P, =% AT, is the perpendicular
pressure Solvmg (216) gives
R kv: [ P,— P, — B}/4n
(o +iy) = - — A | L=l (217)
1+ V2/c? Bl/4m

For an isotropic plasma wuh P, =P, , (217) reduces to the Alfvén wave dispersion
relation with y = 0 and w; = k? VZ/(I +V/c?). On the other hand, for

B,> B, +2. (218)



where B, = 8P, /B} and B, =8P, /Bj are the parallel and perpendicular plasma
betas. respectively, the dispersion relation predicts purely growing (and purely
damped) solutions with w, = 0 and

Y =%——a—;—[ﬁu_ﬁ¢‘2]- (21_9)

Note from (219) that the lowest-order growth rate diverges for large k.. If
higher-order contributions in k.vy; /( + w,) are retained in expanding the dispersion
relation (200), finite-Larmor-radius corrections to (216) are obtained that are quartic
in k.. These corrections are of such a nature that the growth rate y passes through a
maximum (as a function of k,) and goes to zero at some sufficiently large
wavenumber k,. In addition, the oscillation frequency w, is nonzero to this accuracy.
After some straightforward algebra, it can be shown that y and w, are given by the
approximate expressions

v =y (1-ki/k3), W =Ygk} /K3, (220

for 0 <k?< ké. In (220), v, is the lowest-order growth rate calculated in (219), and
the cutoff wavenumber k is defined by

W\’
k§=4(Y0/kz)2(l+ Z'%)

J Y
W2, -
x| &2 [(vo/k)'+ (T, -3T,)/m,]+0(1/0) | . (220
J ey

In obtaining (220) and (221), it has been assumed that the plasma beta, 8=
87l AT, +T, )/B¢ is large (B8 > 1). Of course, B,> B, +2 is already required
from (218) for instability to exist. From (220), the growth rate satisfies y =y, for

|k.| < |kol. passes through a maximum at |k.|=|k,|/v2. and goes to zero at
|k .| = |ko| (Fig. 3.3.12).
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Fig. 3.3.12. Plot of growth rate y versus |k./k| for firchose instability (Eq. (220)]. Here [v]ma. =
Yok . = kg /V2), where v, is defined in (219).



Electromagnetic ion cyclotron instability

The dispersion relation (200) is now considered in the ion cyclotron range of
frequencies. For present purposes, it is assumed that the electrons are isotropic with
Te+ =T, = T., and stroggly magnetized wit.h |, +1Y] < |w| and |k 07| < |w, + w,,
+1v|. An 10n energy anisotropy, however, is allowed with

T, >T,. (222)

The electromagnetic (Weibel-like) instability, which is driven by excess perpendicu-
lar ion kinetic energy. can play a very important role in magnetic mirror configura-
tions with perpendicular neutral beam injection. Mirror systems also have a natural
tendency to lose ions with sizeable kinetic energy along the field lines, so that T,
can often exceed the effective parallel temperature. Making use of the approxima-
tions enumerated above, the dispersion relation (200) can be expressed as

CZk:Z wge wszw

DE(k. w +iy)=1- - -
r (“’r"‘iY)z we (@ +iy)(£ o)

2 .
i wPi (wr+17) Ti.L
ZUEE )-j1—==|]1 TZ{Ex =0,
+(w,+iy)2 k.o (& ) il [ & (ﬁ, )]]

(223)

where vy = (2T;,/m;)"/? and §* = (w, + wy +iy)/k.vp. In (223), Wl /(+w,)=
- wgi /(% w;) follows from equilibrium charge neutrality. For isotropic ions with
T;, =T, (223) permits only stable solutions with Imw =y <0. For T,, > T, and
Bi, =8mA.T,, /B} of order unity, however, (223) has an unstable branch with
characteristic frequency |w, +iy| = |w,| and characteristic wavenumber |k _| = wp; /€.

Before discussing detailed solutions to (223), it is instructive to simplify (223) in
the limiting case T;, — 0. Expanding with |£| > 1, the dispersion relation (223) for
T, — 0 becomes

2
pe

L S
(wr+iy)2 wcze (wr+i7)(iwcc)

0=1-

“i (o +iy) (KT, /m?)

(w, +iy)? | (@ £y +iy) (wriwci+iy)2_'

(224)

Because |ck}/(w, +iy)?| > 1+ wl /wk in the region of w- and k.-space under
investigation, the dispersion relation (224) can be approximated by

2 2

e Wl (w, +iy) _lB_ T B N (225)
; (i"‘)ci) (wriwci+i7) 27 .(wriwci+i7)l

where B, =87A,T,, /Bj = (w} /wiX2T,, /mc?). and use has been made of
Whe /(£ wee) = = w?; /(+ wy). The cubic equation (225) can be solved exactly for the
complex eigenfrequency w, +1y. Moreover, it is straightforward to show that maxi-



mum growth occurs for ¢*k? > w’; where w, = ¥ w; and

(Y max = (81, /2) Py (226)

This gives a good estimate of the characteristic frequency and instability growth rate
in the limit of extreme energy anisotropy. .

Although maximum growth when T,,=0 occurs for very short wavelengths
(c*k? > wl). it should be emphasized that when the full dispersion relation (223) is
solved for the case 7, =0 the instability bandwidth is finite with characteristic
wavelength k' = ¢ /w,; (Fig. 3.3.13). Assuming |c2k2/(w, +iv)| > | + w2, /wl, the
dispersion relation (223) with T}, = 0 can be expressed as

- 5 s , (w, +1
D=(k.. 0. +iyNw, +iy) = —c‘k_:+w;i((L+;:-Y)—)

2 /(wr+. ) . TiJ. . .
Woi *_k:v:' Z(ﬁ.")“( "T)[l+§,-2(§;)])=0, (227)

1]

where use has been made of w}, /(+ w,)=— wl /(£ ;). Numerical solutions to
(227) are presented in Figs. 3.3.13 and 3.3.14. where normalized growth rate y/w,
and normalized real frequency |w,|/w, are plotted versus clk.|/w, for hydrogen
plasma with Z, =1 and m,/m; =1/1836, and perpendicular ion beta 8,, =1. For
increasing values of T, /T;,. it is evident from Fig. 3.3.13 that both the growth rate
and bandwidth of the instability increase substantially. Moreover. for sufficiently
large anisotropy 7;, /T,, it is found that the characteristic maximum growth rate
[¥]max Obtained from (227) scales as ( 8;, /2)"/*w, [see also (226)]. Finally, although
cold, isotropic electrons with T, | =T, =T, — 0 have been assumed in (227), it can
be shown that the instability results are insensitive to the choice of T, as long as the
electron beta satisfies 8, « (m;/m,)'/2.

| { R
0 (e} 2.0 30 40

Fig. 3.3.13. Plot of normalized growth rate y/w, versus ik .|/ wp, for electromagnetic ion cyclotron
instability assuming 8, . =87 T, /BZ =1 and hydrogen plasma with Z, =1 and m, /m_ = | /1836 [Eq.

(227)]. (Fig. 2 from Davidson. R.C.. and J. Ogden. 1975. Phys. Fluids 18. 1047.)
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Fig. 3.3.14. Plot of normalized real frequency |w,|/w; versus c|k|/w,,; for electromagnetic ion cyclotron
instability assuming hydrogen plasma and 8;, =1 [Eq. (227)). (Fig. 3 from Davidson, R.C. and J. Ogden,
1975, Phys. Fluids 18, 1047.)

Within the context of the approximations in (227), it is straightforward to deduce
- the values of w and k, at marginal stability. The conditions

ling ReD*(k, w +iy)=0= linox ImD*(k,,w +iy) (228)
Y —V. y—=v.
readily yield (w,. k,) = (0,0) and (w,, k,) = (wg, ko), Where
2 2
wi=wi(1-T,/T.), (229)
and
Wi (T, - T,)
P S A Sl TR VA 230
° & T,T, (230)

The values of k, and w, obtained from (229) and (230) are in excellent agreement
with those obtained from Figs. 3.3.13 and 3.3.14, where k, refers to the right-most
v =0 intercepts in Fig. 3.3.13. In this regard, it is important to note that the growth
rate for 0 < c|k,|/w,; < 0.5, although exceptionally small in units of w (Fig. 3.3.13).
is nonzero except in the limiting case T;, = 0.

1

Electron cyclotron (Whistler) instability

In this section, the dispersion relation (200) is considered in the electron cyclotron
range of frequencies. For T,, > T, (200) supports a Weibel-like instability driven
by the electron energy anisotropy. The mechanism for this instability is similar to the
mechanism for the ion cyclotron instability discussed in the last subsection. Treating
the ions as infinitely massive with m; = o0 and |§*|> |, the dispersion relation
(200) becomes '

c2k?
D: k., r+. =1_____.'__.
(ke +iv) (a..v,+iy)2
Wl [(w +iv) ( T) ]
+ P r Z et —[1==21|[1+ ciZ £ =0, (231
(w, +iy) k.o (£2) T, [ el )] 0




where vr, = QQT,,/m,)'?, £7 = (w, + w, +1Y)/k.v7,. and Z(£Z) is the plasma
dispersion function defined in (105). For present purposes, the case of weak energy
anisotropy with

(T, - cﬂ)/ T, <1 (232)
is considered, assuming that the instability growth rate is small with
Y| < k. V7| < |, £ wel. (233)

Defining D= (k.. w.) = lim,_, Re D(k,, w, +iy), and DZ(k,, w,) =
lim _, ImD(k,, w +1iy), it is straightforward to show that

D:(k.w)zl_czk:z_ G, 1—7;*)35_2____”'/'"
e (Ko, W w(w+w) - T, (w _wce)
CZ/CZ wze
=] - - P s 234
wrz wr(wriwcc) ( )
and
5 2
D (k,.w,) =y —x Ze 1—(1—_=_ ‘*’+wce) (o) )
e T o a2 Kok,
(235)

The final term in the first line of (234) has been neglected by virtue of the
inequalities (232) and (233).
Paralleling the analysis in the first subsection of Section 3.3.3, the real oscillation
frequency w, is determined from
242 w?
D (k) =1- —% - -9, (236)

W, “"r(“’r t “"ce)

and the growth rate v is given by

Di(k:’wr)
dD.(k.,w,)/dw,

2

Pw T., \(w £ w,) (w0, +w.)
Y e S o (Y 1_._°_J-_)__."____..°_°_ exp| — ~2r T Lee)
K lo7e w2 T, = P\T T

(237)

wrz (wf i wce)

2.2 2
c°k? )
x(l+ L4 L

where use has been made of (236) in determining 4D, /dw, in (237).
For an isotropic plasma with T, =T,,, it is clear from (237) that y <0 and the
waves are weakly damped by resonant electrons with k.0, = w, + w,. On the other



hand, for T, > T.,, the energy anisotropy can cause wave growth (y > 0) in (237).
To illustrate this effect, consider the moderate density regime where wge Jwi > 1,
and the displacement current is negligibly small in (236). In this case, (236) gives

wZ

W, T W = £ W, (238)
¢ ¢ wge + k2

and (@t w,)/w = —(wl /c?k?). It follows from (237) that instability exists
(y > 0) whenever the inequality

W (T
k}<—‘;( £t -1) (239)

ct\ T

ell

is satisfied.

3.3.6. Waves and instabilities for propagation perpendicular to B,

In Section 3.3.1 the ordinary-mode and extraordinary-mode dispersion relations
[(50) and (52), respectively] were derived for wave propagation perpendicular to a
uniform, applied magnetic field B, = B,é,. The analysis in Section 3.3.1 was carried
out for wavevector

k=k,é,. - (240)

and general equilibrium distribution function Fj( v, v,) subject to zero average flow
in the axial direction, i.e., /2 dv,v,F(v?,0,)=0 in (42). In this section, plasma
stability properties are considered for wave propagation perpendicular to Byé, with
particular emphasis on ordinary-mode electromagnetic instabilities driven by energy
anisotropy and on electrostatic instabilities associated with the Bernstein-mode
dispersion relation (54) when there are nonthermal loss-cone features associated with
the equilibrium distribution function F(v},v,).

Ordinary - mode dispersion relation
Assuming wave polarization
k=(k,,0,0), §E = (0,0,5E,). (241)

and expressing w = w, +iy, the ordinary-mode dispersion relation (50) can be
expressed as

2k2 w2
D. (k ,w +iy)=1- d L z—Z w. 2
(w0 +iy)" 5 (@ +iy)
- w? nw 2 9F
+Z Z pJ > - </ devJ"Z(bj)v_z J =0. (242)
7 nm—m (@ +iy)? @ TY TN, v, du,

where w,, = e B, /m c is the cyclotron frequency, and b=k v, /uw,. As indicated



in Section 3.3.1. the dispersion relation (242) predicts an electromagnetic Weibel-
like mstabllny when the plasma kinetic energy along the magnetlc field. A, f d’e
(m,v; /Z)F exceeds the perpendicular kinetic energy, #, i d’e (m; 02 /2)E, by a
suffxcxenlly large amount. To illustrate the essential features of th.lS ordman-mode
electromagnetic instability, consider the case where the equilibrium distribution
functions are bi-Maxwellian,

1/2 2 2 ’
: (™ m, _mpr omu;
N I e o 1 2

Substituting (243) into (242) gives the dispersion relation

T nw
(w, +iy)Y=c k2+2ww+z Z w2 —-——#—-—exp(—Aj)I,,()\j).

“s —
- I;L we F1Y — nay,

(244)

where A\, =kiT /m, “’cp and [,(A)) is the modified Bessel function of the first
kind of order n If F (ul,u) in (243) is replaced by equidensity bi-Maxwellian
plasmas counterstreammg with velocities + V) in the z-direction, the resulting
dispersion relation is identical to (244) with the replacemem T,—»T,+m, V2

As for the case of an unmagnetized plasma (Section 3.3.4), the dlspersmn relauon
(244) supports stable (y = 0) fast-wave solutions with w?/ k? > ¢?. Moreover, except
very close to cyclotron resonance (w, = nw, ;). the thermal corrections in (244) are
small for a nonrelalmsuc plasma and the fast-wave ordinary-mode dispersion
relation is given by w? = ¢? 2k +% /wp/ to good accuracy.

Depending on the degree of energy anisotropy, the ordinary-mode dispersion
relation (244) also supports purely growing (or damped) slow-wave solutions with

w, =0 and y = 0. This case is now considered in more detail.
Ordinary - mode electromagnetic instability
Asshming
w, =0, (245)

and making use of /__(A D=1 ()\ ). the terms in (244) can be rearranged and the
dispersion relation expressed in the equivalent form

yiL(k,.¥*)=R(k,), (246)
where
Lk ) =1+ E 2 8~ en(-a)1,(3) (247)
LY =1+ == ) ———exp(—\ ), (A).
Y J T}J- n=0 n2w3j+yz P ! !
and
2 J i T}Ii 212
R(k, ) Z“’S/ 7.——1)-—-7-.—exp(—>\/)10(>\/) —c*k}. (248)
J JL ! JL



Since the dispersion relation (246) depends on y2, the solutions +7y occur in
conjugate pairs. Moreover, since L(k_ ,y?) is manifestly positive, the necessary and
sufficient condition for instability is given by

R(k, )>0. (249)

Equation (248) determines the condition on system parameters 7, /T, . wg ,» €tc. for
instability to exist. Moreover, the range of unstable k| -values is given by

ki, < k2 <k, (250)

where k, and k., solve R(ky)=0= R(k,,) with y(ky)=0=y(k,,,). For an
isotropic plasma with 7;” = 7; . » hote from (248) that R(k, ) <0 for all values of k, ,
and the plasma is stable. Indeed, it is clear from (248) and (249) that instability
exists only if T exceeds T, by a sufficiently large amount for some plasma species
Jj- Because L(k,,y?)< L(k,,y?=0) follows from (247), a lower bound on the
growth rate in the region R(k, ) > 0 is readily obtained, namely

v?2 R(k,)/L(k,.0), (251)
for k2, <k} <k3.

As a simple example for direct computation, consider the case where the ions are

isotropic with T, =T, and O(m,/m;) terms are neglected. Extension of the

analysis to include ion anisotropy and finite ion mass is straightforward. Retaining
only electron terms, (248) can be expressed as

_ Te!l Te.L
R(kJ_)—wge?:[(l-—TJ)—G()\c)], (252)
where
G(A) =(2/B) A +exp(— A ) IH(A,). (253)

In (253). A, =kl T,, /mw%, and B, =874 T, /B¢ is the parallel electron beta. The
quantity G(A,) is plotted as a function of A, for various values of the parameter 8,
in Fig. 3.3.15. For an appropriate choice of T, /T, <1, it is clear that the constant
function (1-T,, /T,,) will intersect the curve G(A,) at two values of A, when
B.; > 2. These intersection points determine the marginal stability point, k., and
ko, where y=0. The unstable region of (7., /T, B.,) space is illustrated in Fig.
3.3.16. In the limiting case where B, > | (weak magnetic field). it is straightforward
to show that Ay = k2T, /m wZ, is determined (approximately) from A, = (8, /2)(1
~T,, /T, or equivalently k¢ = (wZ, /¢*X T, /T., — 1), which should be compared
with the unmagnetized result in (187).

Electrostatic dispersion relation for propagation perpendicular to B,

Circumstances are now considered where the extraordinary-mode dispersion rela-
tion (52) factors approximately into longitudinal (D, , = 0) and transverse (D,, = 0)



0 ST L

2 3 4

Ag ™™

Fig. 3.3.15. Plot of G(A,) versus A, for various values of B,:"==8'rrrie7',"/802 for ordinary-mode elec-
tromagnetic instability {Eq. (253)].
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Fig. 3.3.16. Regionof (T, /T,;. B.,) parameter space for ordinary-mode electromagnetic instability.

branches. In particular, the longitudinal branch with electrostatic wave polarization
k=(k, .0,0), 8§E = (8E,,0,0) (254)
is considered. The dispersion relation D, _ . (k, ,w)= 0 in (54) can be expressed as

n2w? JX (b)) OF,
D, (k, o +iy) —l+z pj /d3 - = - (5 a’-_-
n=-o0 (w, +iy) —nzng v, ov,

.

(255)

where w = w_+1y is the complex oscillation frequency, and b, = k, v, /w,. Setting
real and imaginary parts of (255) separately equal to zero gives, after some



straightforward algebra
_I+Z pJ Z
7okl Ao [(w,—nwcj)2+72][(w,+nwcj)2+72]

1 9F

2 22 2,22
(wr nwcj y)nwcj

3,72 _ J

x [d an(b,)vL o (256)

and
(4)2 %0 n2w2
0=yl = T ~
TR 2 [(w, nw,;) +yz][(w,+nwcj)2+y2]

ws2(p) L 95

X / d’oJ; (bj)vl 7. (257)

Assuming w, = 0, it follows from (257) that dF / dv? <0 is a sufficient condmon
for stablhty That is, if F, (vl, v,)is a monotomc decreasing function of v with
dF; /3v? <0, every term in the summation over » in (257) has the same sign, and
the only ailowed solution to (257) is y = 0, which corresponds to stable oscillations.
In circumstances where ¥ = 0, (256) reduces to

= i | dF,
0=1+ doJ2(b)— 5=
; kf ,,_,wz—nw f )

o, 35, " (258)
which determines the real oscillation frequency w, as a function of k, and equi-
librium plasma properties.

It is evident from the discussion in the preceding paragraph that JF. / dvi >0
over a sufficiently large region of v L-space is a necessary condition for mstabxhty to
exist. In this regard, when 9F,/ dv? > 0 over a large enough region and the plasma
density is sufficiently high, it will be shown later in Section 3.3.6 that (256) and (257)
support purely growing (or purely damped) solutions with y = 0 and w_= 0. In this
case, the dispersion relation (256) reduces to

) nz 2 ] }:;

0=1-7 2 ¥ ;[ d0s2(6) -
J kf ,,_,nw +y v,

: (259)

which can be used to calculate the growth rate y.

Stable cyclotron harmonic oscillations

As a simple application of the electrostatic dispersion relation ( 255) corresponding
to stable oscillations with y =0, consider the case where F (v}, v,) has a Max-
wellian dependence on v, , i.e.

2 - m/ _ m/vi
Ii(vi’u:) (2,”7' )CXP( 27-}& )G(U_.), (260)

J4



where [*_ dv G(v,)=1. Substituting (260) into (255) or (258) gives

n*l  L(A))
0=1-Z ? Z — }\’ exp(—A,). (261)

J wc; n-l""_nwc 7

where A, = k1T /m, . s and /,(A,) is the modified Bessel function of the first kmd»
of order n. Since 9 F, / dv? <0, the growth rate y = 0 follows from the discussion in
the last subsection, and (261) can be used to determine the real oscillation frequency
W

Equation (261) simplifies in several limiting cases. For purposes of illustration,
two examples of stable oscillations are considered here.

Hybrid oscillations in a cold plasma. For T, — 0 and/or sufficiently long perturba-
tion wavelength that

Kl = sk2r <1, (262)

only the n=1 term in (261) survives. Making use of exp(—A;)I;(A;)=A,/2 for
A, <1, (261) reduces to

2 w2
(1 (e - SEp—— 263
W-wl Wik (263)

Equation (263) supports high-frequency (w? > w2) and intermediate-frequency (w2
< w? <« L) solutions given by

wf=w§e+w§c5w{m. (264)
and
2
W=
2 p = .2
= —P =2 (265)
' I-i-w]ie/mée

where wyy and wyy are upper hybrid and lower hybrid frequencies, respectively,
and wy; > w7 has been assumed.

Cyclotron harmonic oscillations in a warm plasma. Note from (261) that the inclusion
of thermal effects leads to a rich cyclotron harmonic structure in the dispersion
relation. For present purposes, high-frequency perturbations with w? > w2 are
considered, and the positive ions in (261) are treated as an infinitely massive
background with m;, = 0. In addition, the plasma density is assumed to be suffi-
ciently low that

pe/w <l1. (266)

Within the context of (266), the individual harmonic terms in (261) are isolated from
neighboring harmonics, and the solutions to the dispersion relation (261) can be



approximated by

2 = p2e2 2wpe 1,(A,)
r wee |1+ 2 A
Wee ¢

w

exp(—A.) ], n=1,23--. (267)

For A, < 1, the first harmonic (n = 1) solution in (267) reduces to the upper hybrid
oscillation in (264) with w? = w2 + wZ,. Unlike a cold plasma, the striking feature of
(267) is that the warm plasma dispersion relation perrm'ts wave propagation near all
harmonics of w,. For a tenuous plasma with wpe /w? < 1, the propagation band-
width is narrow, but increases with increasing wpe Jwi.

For wpe /w& > 1, the approximations used in denvmg (267) are no longer valid,
and it is necessary to retain several adjacent harmonic terms when analyzing the
dispersion relation (261) for a given range of w,. Since dF, / dv? < 0 for the choice of
distribution function in (260), we reiterate that all solutions to the dispersion relation
(261) have zero growth rate y = 0 independent of the size of wge Jwi.

Cyclotron harmonic instability for loss - cone equilibria

In this section. use is made of the electrostatic dispersion relation (235) for
propagation perpendicular to Byé, to investigate cyclotron harmonic instabilities in
circumstances where F (v},v,) corresponds to a loss-cone equilibrium with
aF / dv? >0 over a sxgmfxcant region of v, -space. For purposes of illustration, the
1ons are treated as an infinitely massive background with m; — co, and the nonther-
mal equilibrium features are associated with the electron distribution function
F.(v?.v.). The electrostatic dispersion relation (255) can be expressed as

w: ® 2,2
D, (k, .o +iy)=1-—2 ¥ Ly (k,)=0. (268)
Wee n=i (w, +iy) - nil

where x ,(k, ) is defined by

1 JF,
v, dv,’

2«:¢c

Xnlk )=~

/d3 J2(b)— (269)

with b, = k, v, /w,. As an extreme example of a loss-cone equilibrium. consider the
electron distribution function

1
(2m>l)6(v* - vy)G(v,), (270)

where [*_dv.G(v.)=1. Note that the equilibrium specified by (270) is empty
(F,=0) for small perpendicular velocities v, < v,. Substituting (270) into (269)
gives

2 d
xn(ki)=b—0370[vln2(bo)]» (271)



where b = k? v3 /wl, and the dispersion relation (268) can be expressed as

xc nZwZ 2 4
0=1- Y e E = —J2(by)|. (272)
n=l (w,+iy)2—n2w§e(‘d¢2¢ by dby, 0
For a tenuous plasma with w2, /w <1, it is clear from (268) and (269) that the
dispersion relation supports stable cyclotron harmonic waves with y =0 and

ce

wz
w3=n2w3,(1+—‘;—°x,,(kl)), n=1,2.3,.... (273)

Equation (273) is an extension of (267) for gencral distribution function F,(v?,v,)
As indicated in the last subsection, for w? /w <« ], the bandwidth for each
cyclotron harmonic is narrow. However, dependmg on the sign of x,, propagation
may be above (x, > 0) or below (x, <0) the nth harmonic w? = nwZ.

As wpe /W% is increased, the mode structure becomes mcreasmgly broad-band,
with significant departures from (273) and sharply defined oscillations at harmonics
of w,. A careful examination of (268) and (271)-(273) shows that

X,>0 and Xne1<0 (274)

are necessary for instability (y > 0) for waves propagating in the frequency range

nwl < Ww? <(n+1)zw§c, nx1l. (275)

Making use of (271) and (274) gives the range of unstable k | -values,
a m<'kL UO/wcc|<an+l.m’ (276)

where a,, ,, is the mth zero of J,(x) = 0. A detailed numerical analysis of (272) shows
that

wle /wk, > 6.62, (277)

is required for onset of unstable solutions to (272).

As wge /wZ. is increased above the value in (277), the growth rate y becomes larger,
and the real frequency mode structure becomes increasingly broad-band. Eventually,
for sufficiently large wZ, /w% =17.02, the n =1 mode is depressed to zero frequency
(w, =0) for |k vy/w.| =3, and there is the onset of purely growing (and purely
damped) solutions with y = 0 and «, = 0. For w, =0, the dispersion relation (272)
can be expressed as [see also (259)]

wae 1 d =y pe 2 d
0=1 wgc bO dbOJ (bO) Z (w’ bO dbo (bo)) (278)

A careful examination of (278) shows that x,>0 and x, <0 are nécessary for
instability, and the corresponding range of unstable & -values is given by a, ,, < |k,
Vo /Weel < &y ,,. Making use of (278), the density threshold for instability with w, =0
is determined from
Wee (1 d
_pe 2
( by a0 (bo)) (279)

2 2.2
-1 Y +nwce



which gives
wgc Jwi >17.02, (280)

for onset of instability.
To conclude this section, note that a similar stability analysis can be carried out
for unstable ion loss-cone equilibria F;(v?, v,).

3.3.7. Electrostatic waves and instabilities in a
magnetized plasma

Introduction and dispersion relation

In this section, use is made of the electrostatic dispersion relation (60) derived for
a magnetized plasma in Section 3.3.1 to investigate several important instabilities
driven by strong nonthermal equilibrium features of the distribution function
f;(vf . v.). The starting point is (60), which can be expressed as

0=D(k.w +iy)=1+x (ko +iy)+x;(k, 0, +iy)

_1+Z Pl Z de -I,,Z(bj) : k:f—{;—.{.i‘:ﬂﬂ
I (e, - nw, = k., +iy) dv, v, du,

(281)

where k* "kz +k2, b=k, v, /u,,w=w +iyis the complex oscillation frequency,

Xe and x; are the electron and ion dlelectnc responses, respectively, and Imw=y> 0
is assumed in (281). The wave polarization corresponding to (281) is given by

k=(k, .0.k,), §E = -i(k,.0,k.)59, (282)

where §¢ is the perturbed potential. The dispersion relation (281) is valid for
arbitrary angle of propagation with respect to the applied magnetic field B, = Byé,.

Equation (281) supports a broad range of electrostatic waves and instabilities
associated with nonthermal features of F, (v.v,). In the special case of propagation
parallel to Byé, with k, =0 and k =k e (281) reduces to the familiar electrostatic
dispersion relation for an unmagnenzed plasma given in (81) which was studied
extensively in Section 3.3.3. That is, as expected, for wavevector k parallel to B,é,,
the electrostatic stability properties are unaffected by the presence of the magnetic
field. In contrast. for k, = 0, the presence of the magnetic field as well as the choice
of distribution function Ij(vi ,v.) have an important influence on determining
detailed stability properties.

For purposes of illustration, in the remainder of Section 3.3.7, (281) is considered
in circumstances where the propagation is nearly perpendicular to Byé, with

k1/k? <1, (283)

In addition. it is assumed that the electrons are strongly magnetized and the ions are
unmagnetized in the region of w- and k-space under investigation. Within the



context of these approximations, the specific instabilities investigated later in Section
3.3.7 include the convective-loss-cone instability, the ion-ion cross-field instability,
and the modified-two-stream instability, all of which are driven by nonthermal
equilibrium features of the ion distribution function.

Strongly magnetized electron response

For present purposes, it is assumed that the electron distribution function is an
isotropic Maxwellian,

F(v?,v,)= ( 2:;; )mexp( ;nT (v + 0] )) (284)

Substituting (284) into (281) gives, after some straightforward algebra and rearrange-
ment of terms, the electron dielectric response

w, +iy

k Vre

: (285)

1+exp(= A ) (A,)

N

k2wl
+. =-—£’——p_
Xe(k.w, +iy) Py .

w, +1y)

Te

w, Fiy : W, — nw, +1y
() £ en(-ran 00z et

ne( z¥Te

where vy, = (2T, /m,)"/% A, = kae/m,:wcze k?=k} + k2 Z(¢) is the plasma dis-
persion function defined in (105), 7,(A,) is the modxfled Bessel function of the first
kind of order n, and L, ., implies deletion of the n = 0 term from the summation. In
(285), no approximation has been made that k., is small or that the electrons are
strongly magnetized.

[t is now assumed that the electrons are strongly magnetized with
|we +1Y| < el (286)

and that the axial wavelength is sufficiently long and/or the electron temperature is
sufficiently low that

|k:vTeI < lwr + lYl (287)
Expanding Z(§.) = —1/£, —1/2¢2 in (285) for |£.| > 1 then gives to lowest order

X(k,w +iy)=f§5k_f [1-exp(=A)IH(A,)]

wge kz }‘e
k? w2
= ZEexp(= A) fp(A,) —2—. (288)
5 T (i)

If, in addition, it is assumed that the perpendicular wavelength is long in comparison
with the thermal electron Larmor radius r, = vy, /|w,.|, then

A =tkirg, <1, (289)



and (288) can be approximated by
Wpe kI wpe
Xelkow +iy)=—F——=—"". (290)

5
«

Wee k* (wr+i7)2

In obta.mmg (290), use has been made of exp(— A ) (A, ) =1- A, for A, <1, and
k}/(k}+k?)y=1 for k2 < k}. The frequency-dependent dielectric response in
(288) and (290) is propomonal to (kZ/k?)wl, /(w, +iy)? and is associated with the
parallel electron motion. The frequency-independent dielectric response in (288) and
(290) is proportional to wée /w2, and is associated with the perpendicular polariza-
tion drift of an electron fluid element.

Although A, <1 will be assumed in the applications considered later in Section
3.3.7. it should be emphasized that the expression for x, given in (288) is also valid
when A, is of order unity or larger, provided the inequalities (286) and (287) are
satisfied.

Unmagnetized ion response

For present purposes, perturbations are considered with perpendicular wavelength
short in comparison with the characteristic ion Larmor radius, and frequency large
in comparison with the ion cyclotron frequency, 1.e.

tk, v, Jwg|>1, w, +iy)/wy| > 1. (291)

Rather than consider the weak magnetic field limit of the ion dielectric response in
(281) it is expeditious to make use of the fact that the ions have straight line orbits
x’=x+ o7 and v'= v on the time and length scales of interest. A direct calculation
of the perturbed ion distribution function Bf then gives (see last subsection of
Section 3.3.1),

5 = - ey _k:9F/ 90 g (292)

m;, w,—kev+i1y

and the ion dielectric response can be approximated by

7
k-dF. /dv

=_ﬂ KAl E A

X, (k.w, +iy) pE de,—k'v+iy' (293)

where k> =k} +klandk=k é +k.é..

Equation (293) is a valid approximation to x; within the context of the inequalities
(291). Strictly speaking, it is not necessary to assume in (293) that the ion dlstnbu-
tion function is isotropic in the plane perpendicular to Byé. with F (v) = F( vlle. )
That is. (293) can also be applied for general Fi(v) on a timescale shorter than fwg ™!
after formation of the plasma.

To summarize. for strongly magnetized electrons (|w, +1y| < we|: |k, U /we| <
1), and unmagnetized ions (o, +iy| > |wgl; |k, v /w| > 1), the electrostatic dis-



persion relation (281) can be approximated by
k-9F/dv  ©l. kI Wl
w, —kro+iy wi o k? (wr_*_h,)Z

w?,
D(k,w +iy) =1 +—k%fd30

where |k.vr.| <o, +iy|and k2 < k? are assumed in (294). Specific applications of
(294) are now considered.

Convective loss - cone instability
Consider the ion loss-cone equilibrium illustrated in Fig. 3.3.17. Note that
o0
G(02 ) =mok, [* du.F(02,0,) (295)
-

shows a depletion of particles with small perpendicular speed v, . In (295), the scale
factor vy, is the characteristic ion thermal speed. The distribution function shown in
Fig. 3.3.17 can arise in a magnetic mirror where particles with small v? and large v?
are lost out the ends of the device. Since k? < k2 is assumed, the approximation
k =k, €, is made in the ion dielectric response in (294). Paralleling the analysis in
Section 3.3.3, it is also assumed that the growth (or damping) is weak with

[v/w <1 (296)

Making use of (96) and (294), the quantities D.=ReD(k,w +iy) and D, =
Im D(k.w, +iy) are evaluated in the limit y - 0,. This gives

20y ¢ d% 2k, v, 3G/9vF Wk k? W '

D (k, =]+ —Lp EA Lo P s ke 97

(ko) PEY f(zn) wo=ktop TGl kW2 27
26} d% G
= — gy - . eg 2
D,(k.w.) ﬂkzuzﬁj(zﬂ)a(w, k. v, )2k, v, 70!
20k ¢ d% ' 3G

- St L - N 29

2ﬂwrkzv§-i/(27)8(wr k, LLCOS¢)an. (298)

Resonant region of v, - spoce —=

M’Oﬁ%ﬁﬁ T T _T_
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Fig. 3.3.17. Plot of reduced ion equilibrium G(v3 )=me}, (= _de.F(¢l.¢.) for convective loss-cone
instability.



where [d*v = [}"d¢ [*dv, v, , P denotes Cauchy principal value, and k, v, =k,
v, cos ¢ with v, cos ¢ = v,. After some straightforward algebra, the integrations over
¢ in (297) and (298) can be carried out to give

2 2
1 w Woe kI
D.(k.w)=1+ G(0 +1,(—'—) B . 299
r( w ) kzxzbi[ ( ) kJ- ge k wz ( )
and
[Sgn“’ ] )/a'-h
Di(k,w )= 2 , 300
(ko) k2N, fz/k’ / 2_1)"2 (300)
where Ay, = v,/ pri, and the real ion response I, is defined by
! aG(v?)/3v?
L(ﬁ);/ '/k"zdvi (U.L )/ UJ.I - (301)
e T kel )

From (300). note that the resonant region of v, -space satisfying w, =k, v, cos¢
covers the entire region v? > w2/k2, whereas the nonresonant (principal-value)
contribution with w_ =k, v, cos¢ corresponds to v? <w?/k? in (301). Solving
D, (k. w,)=0 for the real frequency w, gives

K2R,

w? = w? . 302
P [N (14 @l /02 )+ G(0) + 1] (302)
Moreover, the growth rate y = — D, /(dD, /dw,) is given by
aG(v?)/av? _
Y = o, |f dv} (01 )90} [kzkzm(1+w§e/wcze)+6(0)+ Ir] I
siski (kiol sut-1)"? '
(303)

In obtaining (303) the dI,/dw, contribution to D, /dw, has been neglected in
comparison with (d/dw, )(kzm2 /k%w?). Note from (303) that instability exists
(y>0) provided dG/dv? >0 over a suffmemly large region of v, -space, i.e.
provided the loss-cone depression in G(v? ) is sufficiently deep and wide.

Ion-ion cross - field instability

As an example of a strong electrostatic instability, consider the case where F;(v)
corresponds to counterstreaming ion beams propagating perpendicular to the mag-
netic field Byé.. Assuming

k.=0, (304)

the electrostatic dispersion relation (294) for strongly magnetized electrons and
unmagnetized ions can be expressed as
*dF,(v)/0dv

D(k, w+1y)—1+ P‘jd’ Tl (305)
L



where k, =k, é . As a simple example that is amenable to direct calculation, it is
assumed that the ion distribution function F;(v) corresponds to equidensity, sym-
metric ion beams counterstreaming with mean velocities + ¥ in the x-direction,
E(v)-;?l ] 9 + l 2 GZ(vv)Gfi(U:)’ (306)
TWo - V) +80 (v, +Vy) + 4 '
where [Z_do,G,(v,)=1=[?_dv,G,y(v,), and [d’vF(v)=1. In (306), A; models
the effect of finite ion temperature.

Substituting (306) into Eq. (305) and carrying out the required velocity integration
gives

w2 wzi p)
D(kj_.wr+iy)=]+..%°_ ( p/) :
Wee (w,—k Vy+iy+ik, 4))
(wﬁi/Z)

> =0. (307)
(w, +k, Vy+iv+ilk 4,)
Because of the symmetry in (307), it is straightforward to show that the unstable
two-stream solutions to (307) necessarily have w, = 0. Introducing the lower hybrid
frequency defined by

2

ol = —2 (308)
1+ Woe /Wee
(307) can be expressed as
L KAVE—(y+lk, A
l=w‘i_ 4d (Y l L ll) (309)

He | 2
(k202 + (v +1k, 8,0]
for w, = 0. From (309), the threshold for instability is given by
vi> a2, (310)
That is, the drift velocity must exceed the characteristic ion thermal speed. Solving
(309) for the growth rate y of the unstable branch gives
k2 V2 172 2 VZ 172
= ZLH || 4 g-ed “f1+25 —k, 4l (311)
V2
where de > AZ, is required for instability (y > 0) at small &, .
In the limit of negligible ion thermal effects (4, — 0), the growth rate v in (311)
assumes its maximum value

2 2
Wi WLH

(Ve = 0ru/2V2, (312)
for k* =kl =3k, where
ko=wry/Vy. (313)

Here. k corresponds to marginal stability with y(+ k;) =0 in (311) when 4, =0.



From (312), it is evident that the ion-ion cross-field instability can have very large
growth rate in a parameter regime where the electrons are strongly magnetized
(wry ¥ |Weelilkgtre /weel < 1), and the ions are effectively unmagnetized (w4 >
lwgls lkovrl /wgl > 1). In this regard, note that w y = |w,w|'/? follows from (308)
for wp. Jwi > 1.

Modified two - stream instability

For the modified two-stream instability, allowance is made for k. = 0 in (294),
and it is assumed that there is a single component of ions drifting with velocity V; in
the x-direction,

F(0) = 1) exp( = Pt (0.~ 1)) 6u(8,)x(.). (314)

where f°° dv,Gy(v,)=1=[2_do,G5(v,). Assuming k? < k!, the approximation
k=k é is made in the ion dielectric response (294). Th15 gives the dlspersxon
relation

2 2 k2 wZ
D(k,w +iy)=1+ [1+gz(g)]+————-—~’z——5°——=0, - (315)
Lle Wee k ( +1Y)

where vy, = (2T, /m)'/?, ¢ =(w,—k, V,+iy)/k, vop, and Z(§,) is the plasma
dispersion function defined in (105). In the limit where

1€l =w, —k Vy+iv)/k o> 1, (316)
the approximation Z(¢;)= —1/§, — 1/2¢? is made and (315) reduces to
2 k2 m. 2 )
0=1- i 2—(—*; s ) “in (317)
(w, =k, Vy+iy) kP Zime] (o +iy)

where w} ;= pl/(1 + wpe/‘*’ce) wpl/w =Zm,/m; e =Zeis the ion charge. and
use has been made of equilibrium charge neutrality, A; ( Z e)+ h(—e)=0.

The dispersion relation (316) is identical in form to the electron ion two-stream
dispersion relation (143) with the replacements in (143)

k? m,
2 2 2 A 2
Woe = Wi il Zom YL (318)

One of the important features of the two-stream instability is that maximum growth
rate occurs for equidensity streams. Therefore, from (318), maximum growth occurs
for k. determined from

[k2/k2] . = Zi(m,/m) <1, (319)

Moreover, when (319) is satisfied, making use of (317), maximum growth occurs for
[w /k, ) max =Va/2. (320)



Consistent with (319) and (320), the maximum growth rate [y],,, is given by

[Y]max=wLH/2 (321)

for [k} ] max = #k3, Where y(£ ko) =0, with kg =V2 w /¥,

Like the ion-ion cross-field instability, the modified-two-stream instability ex-
hibits strong growth with [y],,., > |w,| and [y] p. < |@. ), Which is consistent with
the assumptions of strongly magnetized electrons and unmagnetized ions.
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