CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C Changes (to run inder unix f77): C ------------------------------- C Programme renamed from nuc123.for to new123.f C ir=1 -> ir=5 ... input unit number C iw=1 -> iw=6 ... output unit number C COMMON /check/ itime -> COMMON /checkcb/ itime C COMMON /time/ -> COMMON /ttime/ C output nuc123.dat -> new123.dat C C========================IDENTIFICATION DIVISION================================ PROGRAM new123 C----------LINKAGES. C CALLED BY - none C CALLS - [subroutine] help, setcom, setmod, run, output C----------REMARKS. C Control program - C Offers user the main menu and channels through to various options. C Implementation - C To run this program, new123.f must be linked with nuccom.f C (containing the computation subroutines), nucrat.f (with the C reaction rates), and newint.f (with an interface subroutine). C This program has been written to be compatible with C ANSI FORTRAN-77 with the exception of the END DO statement C used to limit the number of statement labels. C This code was modified on the DEC/AXP system. C Notes - C The program utilizes Wagoner's code as the core of the computational C routines. C Documentation - C Kawano, L., 1992, Fermilab preprint FERMILAB-PUB-92/04-A, C Kellogg Radiation Lab preprint OAP-714. C Copy - C Version 4.1 (December 1991) C----------PARAMETERS. PARAMETER (ir=5) !Input unit number (previous value = 1). PARAMETER (iw=6) !Output unit number (previous value = 1). PARAMETER (nrec=88) !Number of nuclear reactions. PARAMETER (nnuc=26) !Number of nuclides in calculation. C----------COMMON AREAS. COMMON /recpr0/ reacpr !Reaction parameter values. COMMON /recpr/ iform,ii,jj,kk,ll,rev,q9 !Reaction parameter names. COMMON /rates/ f,r !Reaction rates. COMMON /compr0/ cy0,ct0,t9i0,t9f0,ytmin0,inc0 !Default comp parameters. COMMON /compr/ cy,ct,t9i,t9f,ytmin,inc !Computation parameters. COMMON /modpr0/ c0,cosmo0,xi0 !Default model parameters. COMMON /modpr/ g,tau,xnu,c,cosmo,xi !Model parameters. COMMON /varpr0/ dt0,eta0 !Default variationl params. COMMON /varpr/ dt1,eta1 !Variational parameters. COMMON /checkcb/ itime !Computation location. COMMON /runopt/ irun,isize,jsize !Run options. COMMON /outopt/ nout,outfile !Output option. C==========================DECLARATION DIVISION================================= C----------REACTION PARAMETERS FROM BLOCK DATA. REAL reacpr(nrec,8) !Reaction parameters. C----------REACTION PARAMETERS. INTEGER iform(nrec) !Reaction type code (1-11). INTEGER ii(nrec) !Incoming nuclide type (1-26). INTEGER jj(nrec) !Incoming light nuclide type (1-6). INTEGER kk(nrec) !Outgoing light nuclide type (1-6). INTEGER ll(nrec) !Outgoing nuclide type (1-26). REAL rev(nrec) !Reverse reaction coefficient. REAL q9(nrec) !Energy released in reaction. C----------REACTION RATES. REAL f(nrec) !Forward reaction rate coefficients. REAL r(nrec) !Reverse reaction rate coefficients. C----------DEFAULT COMPUTATION PARAMETERS. REAL cy0 !Default cy. REAL ct0 !Default ct. REAL t9i0 !Default t9i. REAL t9f0 !Default t9f. REAL ytmin0 !Default ytmin. INTEGER inc0 !Default accumulation increment. C----------COMPUTATIONAL PARAMETERS. REAL cy !Time step limiting constant on abundances. REAL ct !Time step limiting constant on temperature. REAL t9i !Initial temperature (in 10**9 K). REAL t9f !Final temperature (in 10**9 k). REAL ytmin !Smallest abundances allowed. INTEGER inc !Accumulation increment. C----------DEFAULT MODEL PARAMETERS. REAL c0(3) !Default c. REAL cosmo0 !Default cosmological constant. REAL xi0(3) !Default neutrino degeneracy parameters. C----------EARLY UNIVERSE MODEL PARAMETERS. REAL c(3) !c(1) is variation of gravitational constant. | !c(2) is neutron lifetime (sec). | !c(3) is number of neutrino species. REAL cosmo !Cosmological constant. REAL xi(3) !Neutrino degeneracy parameters. C----------DEFAULT VARIATIONAL PARAMETERS. REAL dt0 !Default initial time step. REAL eta0 !Default baryon-to-photon ratio. C----------VARIATIONAL PARAMETERS. REAL dt1 !Initial time step. REAL eta1 !Baryon-to-photon ratio. C----------COMPUTATION LOCATION. INTEGER itime !Time check. C----------RUN OPTION. INTEGER irun !Run network size. INTEGER isize !Number of nuclides in computation. INTEGER jsize !Number of reactions in computation. C----------OUTPUT FILE STATUS. INTEGER nout !Number of output requests. LOGICAL outfile !Indicates if output file used. C----------USER RESPONSE VARIABLES. INTEGER inum !Selection number. C===========================PROCEDURE DIVISION================================== C10--------OPEN FILES AND PRINT GREETING---------------------------------------- OPEN (unit=2, file='new123.dat', status='new') !Output file. itime = 1 !Time = beginning of program. CALL check !Check interface subroutine. WRITE (iw,1000) 1000 FORMAT (6(/), | 2(' ',4x,'NN',6x,'NN UU',6x,'UU',4x,8('C'),6x,'11',8x, | 6('2'),6x,6('3'),/), | 2(' ',4x,'NN',6x,'NN UU',6x,'UU CC',12x,'1111',6x, | '22',6x,'22 33',6x,'33',/), | 2(' ',4x,'NNNN NN UU',6x,'UU CC',14x,'11',14x, | '22',10x,'33',/), | 2(' ',4x,'NN NN NN UU',6x,'UU CC',14x,'11',12x, | '22',10x,'33',/), | 2(' ',4x,'NN NNNN UU',6x,'UU CC',14x,'11',10x, | '22',14x,'33',/), | 2(' ',4x,'NN',6x,'NN UU',6x,'UU CC',14x,'11',8x, | '22',8x,'33',6x,'33',/), | 2(' ',4x,'NN',6x,'NN ',10('U'),4x,8('C'),4x,6('1'),4x, | 10('2'),4x,6('3'),/),/, | ' ',26x,'MODIFIED APRIL 1994',///, | ' ','(Press to continue): ',$) C20--------INPUT INITIALIZATION INFORMATION AND PAUSE--------------------------- DO i = 1,nrec C..........READ IN REACTION PARAMETERS. iform(i) = int(reacpr(i,2))!Reaction type. ii(i) = int(reacpr(i,3))!Incoming nuclide type. jj(i) = int(reacpr(i,4))!Incoming nuclide type. kk(i) = int(reacpr(i,5))!Outgoing nuclide type. ll(i) = int(reacpr(i,6))!Outgoing nuclide type. rev(i) = reacpr(i,7) !Reverse reaction coefficient. q9(i) = reacpr(i,8) !Energy released. C..........INITIALIZE REACTION RATES. f(i) = 0. !Forward rate coeff. r(i) = 0. !Reverse rate coeff. C..........SET RUN OPTIONS TO DEFAULT. END DO irun = 1 !Do full run. isize = nnuc !Use all 26 nuclides. jsize = nrec !Use all 88 reactions. C..........SET OUTPUT OPTION TO DEFAULT. nout = 0 !No output requests. outfile = .false. !Output file not used. C..........SET VALUES TO DEFAULT. cy = cy0 !Time step limiting constant on abundances. ct = ct0 !Time step limiting constant on temperature. t9i = t9i0 !Initial temperature. t9f = t9f0 !Final temperature. ytmin = ytmin0 !Smallest abundances allowed. inc = inc0 !Accumulation increment. c(1) = c0(1) !Variation of gravitational constant. c(2) = c0(2) !Neutron lifetime. c(3) = c0(3) !Number of neutrino species. cosmo = cosmo0 !Cosmological constant. xi(1) = xi0(1) !Electron degeneracy parameter. xi(2) = xi0(2) !Muon degeneray parameter. xi(3) = xi0(3) !Tauon degeneracy parameter. dt1 = dt0 !Initial time step. eta1 = eta0 !Baryon-to-photon ratio. C..........ACCEPT RETURN TO CONTINUE. READ (ir,*) !Pause. C30--------PRINT MENU AND AWAIT RESPONSE---------------------------------------- C..........RETURN FROM LOOPING. 300 CONTINUE C..........DISPLAY MENU. WRITE (iw,3000) 3000 FORMAT (8(/), | ' ',32x,'MENU SELECTION',/, | ' ',32x,'---- ---------',//, | ' ',24x,'1. HELP',/, | ' ',24x,'2. SET COMPUTATION PARAMETERS',/, | ' ',24x,'3. SET MODEL PARAMETERS',/, | ' ',24x,'4. RUN',/, | ' ',24x,'5. OUTPUT',/, | ' ',24x,'6. EXIT',8(/), | ' ',24x,'Enter selection (1-6): ',$) C..........READ IN SELECTION NUMBER. READ (ir,3001) inum 3001 FORMAT(i1) C40--------BRANCH TO APPROPRIATE SECTION---------------------------------------- GO TO (410,420,430,440,450,460),inum GO TO 460 !Improper input or . 410 CONTINUE !Help section. CALL help GO TO 500 420 CONTINUE !Set computation parameters section. CALL setcom GO TO 500 430 CONTINUE !Set model parameters section. CALL setmod GO TO 500 440 CONTINUE !Run section. itime = 2 !Time = beginning of run section. CALL check !Check interface subroutine. CALL run itime = 9 !Time = end of run section. CALL check !Check interface subroutine. GO TO 500 450 CONTINUE !Output section. CALL output GO TO 500 460 CONTINUE !Exit section. IF (outfile) THEN CLOSE (unit=2,status='keep') !Close output file. ELSE CLOSE (unit=2,status='delete') !File not used - dispose. END IF itime = 10 !Time = end of program. CALL check !Check interface subroutine. STOP C50---------GO BACK TO MENU----------------------------------------------------- 500 CONTINUE GO TO 300 END C========================IDENTIFICATION DIVISION================================ SUBROUTINE help C----------LINKAGES. C CALLED BY - [program] nuc123 C CALLS - none C----------REMARKS. C Displays description and workings of the program. C----------PARAMETERS. PARAMETER (ir=5) !Input unit number (previous value = 1). PARAMETER (iw=6) !Output unit number (previous value = 1). C==========================DECLARATION DIVISION================================= C----------USER RESPONSE VARIABLES. INTEGER inum !Selection number. C===========================PROCEDURE DIVISION================================== C10--------PRINT HELP SELECTION------------------------------------------------- C..........RETURN FROM LOOPING. 100 CONTINUE C..........DISPLAY MENU. WRITE (iw,1000) 1000 FORMAT (8(/), | ' ',32x,'HELP SELECTION',/, | ' ',32x,'---- ---------',//, | ' ',24x,'1. INTRODUCTION',/, | ' ',24x,'2. SETTING UP A RUN',/, | ' ',24x,'3. RUNNING THE PROGRAM',/, | ' ',24x,'4. OUTPUT OPTIONS',/, | ' ',24x,'5. GENERAL METHOD OF COMPUTATION',/, | ' ',24x,'6. USING THE INTERFACE SUBROUTINE',/, | ' ',24x,'7. EXIT',7(/), | ' ',24x,'Enter selection (1-7): ',$) C..........READ IN SELECTION NUMBER. READ (ir,1001) inum 1001 FORMAT (i1) C20--------BRANCH TO APPROPRIATE SECTION---------------------------------------- GO TO (210,220,230,240,250,260,270),inum GO TO 270 !Improper input or . C21--------INTRODUCTION SECTION------------------------------------------------- 210 CONTINUE !Setting up a run section. WRITE (iw,2100) 2100 FORMAT (/, | ' ',31x,'INTRODUCTION',/, | ' ',31x,'------------',2(/), | ' ','Welcome to the wonderful world of primor', | 'dial nucleosynthesis. NUC123 is a ',/, | ' ','FORTRAN program designed to provide the ', | 'early universe researcher with the tools',/, | ' ','necessary for the investigation of primo', | 'rdial nucleosynthesis. Its menu-driven ',/, | ' ','interface allows the user to first set c', | 'omputation parameters (such as the time ',/, | ' ','step) and model parameters (such as the ', | 'neutron lifetime and number of neutri- ',/, | ' ','nos) before doing single runs or multipl', | 'e runs (in which desired model parame- ',/, | ' ','ters are varied over a desired range.) ', | 'After the run, the user can utilize the ',/, | ' ','menu to either produce an output file or', | ' to view the most recent run on the ',/, | ' ','screen. The program comes with an empty', | ' subroutine CHECK into which the user ',/, | ' ','may wish to put additional code to add t', | 'o the computation in an original manner.',10(/), | ' ','(Enter to go back to help menu): ',$) READ (ir,*) GO TO 300 C22--------SET UP RUN SECTION--------------------------------------------------- 220 CONTINUE !Setting up a run section. WRITE (iw,2200) 2200 FORMAT (/, | ' ',29x,'SETTING UP A RUN',/, | ' ',29x,'------- -- - ---',2(/), | ' ','I. Setting computation parameters. ',/, | ' ',' The accuracy of the computation and t', | 'he relevant temperature region can be ',/, | ' ',' set by the following parameters: ',/, | ' ',' A. Time step limiting constant 1 (d', | 'efault value of 0.03) ',/, | ' ',' B. Time step limiting constant 2 (d', | 'efault value of 0.003) ',/, | ' ',' C. Initial time step (default value', | ' of 10**-4) ',/, | ' ',' D. Initial temperature (default val', | 'ue of 10**2) ',/, | ' ',' This is the temperature at the be', | 'ginning of the run in units of 10**9 K ',/, | ' ',' E. Final temperature (default value', | ' of 10**-2) ',/, | ' ',' This is the termination temperatu', | 're of the run in units of 10**9 K ',/, | ' ',' F. Smallest abundances allowed (def', | 'ault value of 10**-25) ',/, | ' ',' Elemental abundances are not allo', | 'wed to drop below this value ',/, | ' ',' G. # of iterations for each accumula', | 'tion (default value of 300) ',/, | ' ',' This is the number of iterations ', | 'before values are put in an output array',6(/), | ' ','(Enter 1 to continue, to end): ',$) READ (ir,1001) inum IF (inum.eq.1) THEN WRITE (iw,2202) 2202 FORMAT (/, | ' ','II. Setting model parameters. ',/, | ' ',' Default values here give what is know', | 'n as the standard model with best guess ',/, | ' ',' figure on the neutron lifetime of 889', | '.1 seconds. Nonstandard scenarios can',/, | ' ',' be investigated by varying the follow', | 'ing parameters: ',/, | ' ',' A. The gravitational constant ',/, | ' ',' (The default value of one here gi', | 'ves the usual 6.6720e-8 dyne*cm**2/g**2)',/, | ' ',' B. Neutron life-time (default value', | ' of 889.1 seconds) ',/, | ' ',' C. Number of neutrino species (defa', | 'ult value of 3 light neutrinos) ',/, | ' ',' D. Final baryon-to-photon ratio (se', | 't to log(eta) = -9.5) ',/, | ' ',' E. Cosmological constant (default v', | 'alue of 0) ',/, | ' ',' F. Neutrino degeneracy parameters (', | 'default values all 0) ',/, | ' ',' There are 3 separate parameters f', | 'or the electron, muon, and tau neutrinos',11(/), | ' ','(Enter to go back to help menu): ',$) READ (ir,*) GO TO 300 ELSE GO TO 300 END IF !(inum.eq.1) C23--------RUN PROGRAM SECTION-------------------------------------------------- 230 CONTINUE !Running the program section. WRITE (iw,2300) 2300 FORMAT (/, | ' ',28x,'RUNNING THE PROGRAM',/, | ' ',28x,'------- --- -------',2(/), | ' ','I. Setting run speed. ',/, | ' ',' The code can be run at 3 different se', | 'ttings of speed. The running of the ',/, | ' ',' code can be speeded up by reducing th', | 'e number of nuclides and reactions. The',/, | ' ',' complete computation takes into accou', | 'nt the following nuclides: n, p, d, t, ',/, | ' ',' He3, He4, Li6, Li7, Be7, Li8, B8, Be9', | ',B10, B11, C11, B12, C12, N12, C13, N13,',/, | ' ',' C14, N14, O14, N15, O15, and O16. ',/, | ' ',' The given CPU percentages and abundan', | 'ce variations are with regard to a ',/, | ' ',' single run with all default parameter', | ' values. ',/, | ' ',' A. 26 nuclides, 88 reactions (defaul', | 't) ',/, | ' ',' nuclides from n to O16 ',/, | ' ',' B. 18 nuclides, 60 reactions ',/, | ' ',' nuclides from n to N12 ',/, | ' ',' (63% CPU time, variation = .1%) ',/, | ' ',' C. 9 nuclides, 25 reactions ',/, | ' ',' nuclides from n to Be7 ',/, | ' ',' (20% CPU time, variation = .5%) ',4(/), | ' ','(Enter 1 to continue, to end): ',$) READ (ir,1001) inum IF (inum.eq.1) THEN WRITE (iw,2302) 2302 FORMAT (/, | ' ','II. Do single run. ',/, | ' ',' A. Interactive. ',/, | ' ',' In an interactive session, the us', | 'er can readily input the computational ',/, | ' ',' and model parameters and begin th', | 'e computation process. The run itself ',/, | ' ',' is commenced when option 2, "GO",', | ' in the "RUN" section is requested. ',//, | ' ',' B. Batch. ',/, | ' ',' To run the program in a batch mod', | 'e, it must be altered slightly so that ',/, | ' ',' the I/O takes place with files in', | 'stead of a terminal. This is done by ',/, | ' ',' setting different values for the ', | 'input and output unit number parameters ',/, | ' ',' "ir" and "iw" and assigning them ', | 'to different files in NUC123. In the ',/, | ' ',' file assigned the "ir" unit numbe', | 'r, one must place the responses to the ',/, | ' ',' queries of the program. ',10(/), | ' ','(Enter 1 to continue, to end): ',$) READ (ir,1001) inum IF (inum.eq.1) THEN WRITE (iw,2304) 2304 FORMAT (/, | ' ','III. Do multiple runs. ',/, | ' ',' A wide range of early universe model', | 's can be covered by doing many runs ',/, | ' ',' while one or more parameters are var', | 'ied over a range of interest. The ',/, | ' ',' parameters that can be varied are th', | 'e following: ',/, | ' ',' A. Eta ', | ' - Logrithmic variation ',/, | ' ',' B. Gravitational constant ', | ' - Linear variation ',/, | ' ',' C. Neutron lifetime ', | ' - Linear variation ',/, | ' ',' D. Number of neutrino species ', | ' - Linear variation ',/, | ' ',' E. Cosmological constant ', | ' - Linear variation ',/, | ' ',' F. Neutrino degeneracy parameters ', | ' - Linear variation ',/, | ' ',' 1. Electron neutrino ',/, | ' ',' 2. Muon neutrino ',/, | ' ',' 3. Tauon neutrino ',/, | ' ',' At most 3 parameters can be varied. ', | ' The first parameter inputted will be ',/, | ' ',' will be varied in the outermost loop', | ' and the third parameter inputted will ',/, | ' ',' be varied in the innermost loop. ',7(/), | ' ','(Enter to go back to help menu): ',$) READ (ir,*) GO TO 300 ELSE GO TO 300 END IF !(inum.eq.1) ELSE GO TO 300 END IF !(inum.eq.1) C24--------OUTPUT OPTIONS SECTION----------------------------------------------- 240 CONTINUE !Output options section. WRITE (iw,2400) 2400 FORMAT (/, | ' ',30x,'OUTPUT OPTIONS',/, | ' ',30x,'------ -------',2(/), | ' ','I. Request output file. ',/, | ' ',' After a run, the user can request the', | ' program to put the resulting numbers ',/, | ' ',' into an output file. This can be don', | 'e as many times as desired and all the ',/, | ' ',' information will be put in one new fi', | 'le under the name of "NUC123.DAT." If ',/, | ' ',' there is no request during the entire', | ' running of the program, this file is ',/, | ' ',' not created. If an output file is re', | 'quested after a multiple run, only the ',/, | ' ',' information from the very last run wi', | 'll be given. The output file will give ',/, | ' ',' the computational and model parameter', | 's for each run and will contain the ',/, | ' ',' following information: ',/, | ' ',' A. Temperatures in decreasing order ',/, | ' ',' B. Abundances for n, p, d, t, He3, H', | 'e4, Li6, Li7, Be7, and Li8 & up ',/, | ' ',' (p and He4 are in mass fraction, ', | 'the rest in ratios to the p abundance) ',/, | ' ',' C. Time, time interval, chemical pot', | 'ential of the electron ',/, | ' ',' D. Energy densities for photons, ele', | 'ctrons, electron neutrinos, and baryons ',/, | ' ',' E. Baryon-to-photon ratio, expansion', | ' rate of the universe ',5(/), | ' ','(Enter 1 to continue, to end): ',$) READ (ir,1001) inum IF (inum.eq.1) THEN WRITE (iw,2402) 2402 FORMAT (/, | ' ','II. Request output on screen. ',/, | ' ',' Instead of waiting to print out an o', | 'utput file, the user can immediately ',/, | ' ',' access the results of the latest run', | ' by requesting the output on the ',/, | ' ',' screen. There are four screens on e', | 'ach of which are displayed the ',/, | ' ',' computational and model parameters a', | 'nd the temperature: ',/, | ' ',' A. Abundances for d, t, He3, He4, a', | 'nd Li7 ',/, | ' ',' (He4 in mass fraction, rest as a', | ' ratio with the p abundance) ',/, | ' ',' B. Abundances for n, p, Li6, Be7, a', | 'nd Li8 & up ',/, | ' ',' (p in mass fraction, rest as a r', | 'atio with the p abundance) ',/, | ' ',' C. Energy densities for photons, el', | 'ectrons, electron neutrinos, & baryons ',/, | ' ',' D. Time, time interval, chemical po', | 'tential of the electron, ',/, | ' ',' baryon-to-photon ratio, and expa', | 'nsion rate of the universe ',11(/), | ' ','(Enter to go back to help menu): ',$) READ (ir,*) GO TO 300 ELSE GO TO 300 END IF !(inum.eq.1) C25--------METHOD OF COMPUTATION SECTION---------------------------------------- 250 CONTINUE !General method of computation section. WRITE (iw,2500) 2500 FORMAT (/, | ' ',22x,'GENERAL METHOD OF COMPUTATION',/, | ' ',22x,'------- ------ -- -----------',2(/), | ' ','I. Time evolution algorithm. ',/, | ' ',' The program utilizes a 2-point Runge-', | 'Kutta scheme (located in subroutine ',/, | ' ',' DRIVER) to time-evolve the temperatur', | 'e, the quantity hv (the ratio of the ',/, | ' ',' baryon density to T**3), the chemical', | ' potential of the electron, and the ',/, | ' ',' nuclide abundances. In the 2-point R', | 'unge-Kutta routine, a variable v at time',/, | ' ',' t0 (= v0) is evolved to a time t1 by ', | 'adding to v0 the average of the ',/, | ' ',' derivatives evaluated at t0 and at t1', | ' multiplied by dt: ',/, | ' ',' v1 = v0 + 0.5(dvdt(t0)+dvdt(t1)) ',/, | ' ',' where dvdt(t1) is gotten by first fin', | 'ding v1'' = v0 + dvdt(t0). The ',/, | ' ',' derivatives of the nuclide abundances', | ' are first computed and these are used ',/, | ' ',' to find the derivatives of t9, hv, an', | 'd phie (this is done in subroutine ',/, | ' ',' DERIVS). To compute the time derivat', | 'ives of the nuclide abundances, a matrix',/, | ' ',' equation is set up (in subroutine SOL', | ') and is solved (in subroutine EQSLIN) ',/, | ' ',' by gaussian elimination utilizing imp', | 'licit differentiation. ',6(/), | ' ','(Enter 1 to continue, to end): ',$) READ (ir,1001) inum IF (inum.eq.1) THEN WRITE (iw,2502) 2502 FORMAT (/ | ' ','II. Hierarchy of Subroutines. ',/, | ' ',' NUC123 ', | ' Main program (main menu) ',/, | ' ',' HELP ', | ' Help option ',/, | ' ',' SETCOM ', | ' Set computational parameters',/, | ' ',' SETMOD ', | ' Set model parameters ',/, | ' ',' RUN ', | ' Run computation code ',/, | ' ',' DRIVER ', | ' Main routine (Runge-Kutta loop) ',/, | ' ',' START ', | ' Initialization routine ',/, | ' ',' RATE0 ', | ' Computes weak decay rates ',/, | ' ',' DERIVS ', | ' Computes time derivatives ',/, | ' ',' THERM ', | ' Computes energy densities ',/, | ' ',' BESSEL ', | ' Gives functions of Kn ',/, | ' ',' KNUX ', | ' Computes modified Bessel fcn Kn ',/, | ' ',' NUDENS ', | ' Computes neutrino energy density ',/, | ' ',' RATE1-4 ', | ' Computes rates for reactions',/, | ' ',' SOL ', | ' Builds A matrix for eqn dy/dt = Ay ',/, | ' ',' EQSLIN ', | ' Solves dy/dt=Ay by gaussian elim ',/, | ' ',' ACCUM ', | ' Output accumulator ',/, | ' ',' OUTPUT ', | ' Allows user to output result',4(/), | ' ','(Enter to go back to help menu): ',$) READ (ir,*) GO TO 300 ELSE GO TO 300 END IF !(inum.eq.1) C26--------USING INTERFACE SUBROUTINE SECTION. 260 CONTINUE !Using the interface subroutine section. WRITE (iw,2600) 2600 FORMAT (/, | ' ',22x,'USING THE INTERFACE SUBROUTINE',/, | ' ',22x,'----- --- --------- ----------',2(/), | ' ','I. Purpose. ',/, | ' ',' The interface subroutine CHECK is des', | 'igned to be an outlet of the program ',/, | ' ',' into which alterations can be easily ', | 'plugged. Programs are normally modified',/, | ' ',' by searching through the program, ide', | 'ntifying the appropriate areas for ',/, | ' ',' alterations, and interspersing new co', | 'mmands while deleting some old ones. ',/, | ' ',' This process can get tricky unless on', | 'e actively documents the alterations: ',/, | ' ',' one might lose track of all of the mo', | 'difications and deletions. Thus, it is ',/, | ' ',' worthwhile to put most if not all of ', | 'the necessary changes into one ',/, | ' ',' subroutine which is to be called from', | ' strategic locations in the main ',/, | ' ',' program. Furthermore, by putting cha', | 'nges into one small subroutine, one need',/, | ' ',' only to compile the subroutine CHECK ', | 'each time instead of the entire nucleo- ',/, | ' ',' synthesis code. ',8(/), | ' ','(Enter 1 to continue, to end): ',$) READ (ir,1001) inum IF (inum.eq.1) THEN WRITE (iw,2602) 2602 FORMAT (/, | ' ','II. Description. ',/, | ' ',' Subroutine CHECK is an empty subrouti', | 'ne with a large COMMON area, giving the ',/, | ' ',' user ready access to all of the impor', | 'tant variables in the computations. The',/, | ' ',' routine is called from various locati', | 'ons in the main program and the location',/, | ' ',' spot in the program is labeled by the' | ' flag "itime". The set call locations ',/, | ' ',' are given below: ',/, | ' ',' A. itime = 1 (NUC123, very beginning', | ' of program run) ',/, | ' ',' (appropriate for opening files, i', | 'nitializing variables) ',/, | ' ',' B. itime = 2 (NUC123, right before g', | 'oing into the RUN section) ',/, | ' ',' C. itime = 3 (RUN, right before goin', | 'g into DRIVER to do the computations) ',/, | ' ',' D. itime = 4 (DRIVER, in 1st R-K loo', | 'p after computing derivatives in DERIVS)',/, | ' ',' E. itime = 7 (DRIVER, in 2nd R-K loo', | 'p after computing derivatives in DERIVS)',/, | ' ',' F. itime = 8 (RUN, right after comin', | 'g back from DRIVER) ',/, | ' ',' G. itime = 9 (NUC123, right after co', | 'ming back from the RUN section) ',/, | ' ',' H. itime =10 (NUC123, very end of pr', | 'ogram run) ',/, | ' ',' (appropriate for closing files) ',/, | ' ',' The difference between the (2,9) pair', | 'ing and the (3,8) pairing is that for a ',/, | ' ',' multiple run, the (3,8) pairing would', | ' be called before and after every run ',/, | ' ',' but the (2,9) pairing would be called', | ' before and after the entire sequence. ',4(/), | ' ','(Enter 1 to continue, to end): ',$) READ (ir,1001) inum IF (inum.eq.1) THEN WRITE (iw,2604) 2604 FORMAT (/, | ' ','III. Implementation. ',/, | ' ',' The additional program statements ar', | 'e needed in the subroutine CHECK. If a',/, | ' ',' particular command is to be executed', | ' when the computer is at a certain ',/, | ' ',' location in the program -- say label', | 'ed by itime = 8 -- then in CHECK, one ',/, | ' ',' must place the command under the sta', | 'tement, IF (itime.eq.8).... The user ',/, | ' ',' is at leisure to place his own locat', | 'ion indicators (5,6) and CALL CHECK ',/, | ' ',' statements anywhere in the program a', | 's long as there is a COMMON /checkcb/ ',/, | ' ',' statement in the particular subrouti', | 'ne to carry the value of itime along. ',15(/), | ' ','(Enter to go back to help menu): ',$) READ (ir,*) GO TO 300 ELSE GO TO 300 END IF !(inum.eq.1) ELSE GO TO 300 END IF !(inum.eq.1) C27--------EXIT SECTION--------------------------------------------------------- 270 CONTINUE !Exit section. RETURN C30--------GO BACK TO MAIN MENU------------------------------------------------- 300 CONTINUE GO TO 100 END C========================IDENTIFICATION DIVISION================================ SUBROUTINE setcom C----------LINKAGES. C CALLED BY - [program] nuc123 C CALLS - none C----------REMARKS. C Allows resetting of computation parameters. C----------PARAMETERS. PARAMETER (ir=5) !Input unit number (previous value = 1). PARAMETER (iw=6) !Output unit number (previous value = 1). C----------COMMON AREAS. COMMON /compr0/ cy0,ct0,t9i0,t9f0,ytmin0,inc0 !Default comp parameters. COMMON /compr/ cy,ct,t9i,t9f,ytmin,inc !Computation parameters. COMMON /varpr0/ dt0,eta0 !Default variationl params. COMMON /varpr/ dt1,eta1 !Variational parameters. C==========================DECLARATION DIVISION================================= C----------DEFAULT COMPUTATION PARAMETERS. REAL cy0 !Default cy. REAL ct0 !Default ct. REAL t9i0 !Default t9i. REAL t9f0 !Default t9f. REAL ytmin0 !Default ytmin. INTEGER inc0 !Default accumulation increment. C----------COMPUTATION PARAMETERS. REAL cy !Time step limiting constant on abundances. REAL ct !Time step limiting constant on temperature. REAL t9i !Initial temperature (in 10**9 K). REAL t9f !Final temperature (in 10**9 K). REAL ytmin !Smallest abundances allowed. INTEGER inc !Accumulation increment. C----------DEFAULT VARIATIONAL PARAMETERS. REAL dt0 !Default initial dt. C----------VARIATIONAL PARAMETERS. REAL dt1 !Initial time step. C----------LOCAL VARIABLES. INTEGER inum !Selection number. C===========================PROCEDURE DIVISION================================== C10--------PRINT RESET SELECTION AND AWAIT RESPONSE----------------------------- C..........RETURN FROM LOOPING. 100 CONTINUE C..........DISPLAY RESET SELECTIONS. WRITE (iw,1000) cy,ct,dt1,t9i,t9f,ytmin,float(inc) 1000 FORMAT (8(/), | ' ',21x,'SET COMPUTATION PARAMETERS SELECTION',/, | ' ',21x,'--- ----------- ---------- ---------',//, | ' ',10x,' 1. CHANGE TIME-STEP LIMITING CONSTANT 1 FROM ', | f5.3,/, | ' ',10x,' 2. CHANGE TIME-STEP LIMITING CONSTANT 2 FROM ', | f5.3,/, | ' ',10x,' 3. CHANGE INITIAL TIME-STEP FROM ', | 1pe8.2,' SECONDS',/, | ' ',10x,' 4. CHANGE INITIAL TEMPERATURE FROM ', | 1pe8.2,' (10**9 K)',/, | ' ',10x,' 5. CHANGE FINAL TEMPERATURE FROM ', | 1pe8.2,' (10**9 K)',/, | ' ',10x,' 6. CHANGE SMALLEST ABUNDANCES ALLOWED FROM ', | 1pe8.2,/, | ' ',10x,' 7. CHANGE ACCUMULATION INCREMENT FROM ', | 1pe8.2,' ITERATIONS',/, | ' ',10x,' 8. RESET ALL TO DEFAULT VALUES',/, | ' ',10x,' 9. EXIT',5(/), | ' ',10x,'Enter selection (1-9): ',$) C..........READ IN SELECTION NUMBER. READ (ir,1001) inum 1001 FORMAT (i1) C20--------BRANCH TO APPROPRIATE SECTION---------------------------------------- GO TO (210,220,230,240,250,260,270,280,300),inum GO TO 300 !Improper input or . 210 CONTINUE !Change time step limiting const 1 section. WRITE (iw,2100) 2100 FORMAT (' ','Enter value for time step limiting constant 1: ',$) READ (ir,*) cy 2101 FORMAT (f5.3) GO TO 400 220 CONTINUE !Change time step limiting const 2 section. WRITE (iw,2200) 2200 FORMAT (' ','Enter value for time step limiting constant 2: ',$) READ (ir,*) ct GO TO 400 230 CONTINUE !Change initial time step section. WRITE (iw,2300) 2300 FORMAT (' ','Enter value for initial time step: ',$) READ (ir,*) dt1 GO TO 400 240 CONTINUE !Change initial temperature section. WRITE (iw,2400) 2400 FORMAT (' ','Enter value for initial temperature: ',$) READ (ir,*) t9i GO TO 400 250 CONTINUE !Change final temperature section. WRITE (iw,2500) 2500 FORMAT (' ','Enter value for final temperature: ',$) READ (ir,*) t9f GO TO 400 260 CONTINUE !Change smallest abundances allowed section. WRITE (iw,2600) 2600 FORMAT (' ','Enter value for smallest abundances allowed: ',$) READ (ir,*) ytmin GO TO 400 270 CONTINUE !Change accumulation increment section. WRITE (iw,2700) 2700 FORMAT (' ','Enter value for accumulation increment: ',$) READ (ir,*) inc GO TO 400 280 CONTINUE !Reset all to default values section. cy = cy0 !Time step limiting constant on abundances. ct = ct0 !Time step limiting constant on temperature. dt1 = dt0 !Time step. t9i = t9i0 !Initial temperature. t9f = t9f0 !Final temperature. ytmin = ytmin0 !Smallest abundances allowed. inc = inc0 !Accumulation increment. WRITE (iw,2800) 2800 FORMAT (' ','All values reset to default - Press ' | 'to continue: ',$) READ (ir,*) GO TO 400 300 CONTINUE !Exit section. RETURN C40--------GO BACK TO MENU------------------------------------------------------ 400 CONTINUE GO TO 100 END C========================IDENTIFICATION DIVISION================================ SUBROUTINE setmod C----------LINKAGES. C CALLED BY - [program] nuc123 C CALLS - none C----------REMARKS. C Allows resetting of model parameters. C----------PARAMETERS. PARAMETER (ir=5) !Input unit number (previous value = 1). PARAMETER (iw=6) !Output unit number (previous value = 1). C----------COMMON AREAS. COMMON /modpr0/ c0,cosmo0,xi0 !Default model parameters. COMMON /modpr/ g,tau,xnu,c,cosmo,xi !Model parameters. COMMON /varpr0/ dt0,eta0 !Default variationl params. COMMON /varpr/ dt1,eta1 !Variational parameters. C==========================DECLARATION DIVISION================================= C----------DEFAULT MODEL PARAMETERS. REAL c0(3) !Default c. REAL cosmo0 !Default cosmological constant. REAL xi0(3) !Default neutrino degeneracy parameters. C----------EARLY UNIVERSE MODEL PARAMETERS. REAL c(3) !c(1) is variation of gravitational constant. | !c(2) is neutron lifetime (sec). | !c(3) is number of neutrino species. REAL cosmo !Cosmological constant. REAL xi(3) !Neutrino degeneracy parameters. C----------DEFAULT VARIATIONAL PARAMETERS. REAL eta0 !Default eta. C----------VARIATIONAL PARAMETERS. REAL eta1 !Intial baryon-to-photon ratio. C----------USER RESPONSE VARIABLES. INTEGER inum !Selection number. C===========================PROCEDURE DIVISION================================== C10--------PRINT RESET SELECTION AND AWAIT RESPONSE----------------------------- C..........RETURN FROM LOOPING. 100 CONTINUE C..........DISPLAY RESET SELECTIONS. WRITE (iw,1000) c(1),c(2),c(3),eta1,cosmo,xi(1),xi(2),xi(3) 1000 FORMAT (8(/), | ' ',24x,'SET MODEL PARAMETERS SELECTION',/, | ' ',24x,'--- ----- ---------- ---------',//, | ' ',10x,' 1. CHANGE GRAVITATIONAL CONSTANT FROM ', | 1pe10.3,/, | ' ',10x,' 2. CHANGE NEUTRON LIFETIME FROM ', | 1pe10.3,' SECONDS',/, | ' ',10x,' 3. CHANGE NUMBER OF NEUTRINO SPECIES FROM ', | 1pe10.3,/, | ' ',10x,' 4. CHANGE FINAL BARYON-TO-PHOTON RATIO FROM ', | 1pe10.3,/, | ' ',10x,' 5. CHANGE COSMOLOGICAL CONSTANT FROM ', | 1pe10.3,/, | ' ',10x,' 6. CHANGE XI-ELECTRON FROM ', | 1pe10.3,/, | ' ',10x,' 7. CHANGE XI-MUON FROM ', | 1pe10.3,/, | ' ',10x,' 8. CHANGE XI-TAUON FROM ', | 1pe10.3,/, | ' ',10x,' 9. RESET ALL TO DEFAULT VALUES',/, | ' ',10x,'10. EXIT',4(/), | ' ',10x,' Enter selection (1-10): ',$) C..........READ IN SELECTION NUMBER. READ (ir,1001) inum 1001 FORMAT (i2) C20--------BRANCH TO APPROPRIATE SECTION---------------------------------------- GO TO (210,220,230,240,250,260,270,280,290,300),inum GO TO 300 !Improper input or . 210 CONTINUE !Change gravitational constant section. WRITE (iw,2100) 2100 FORMAT (' ','Enter value for variation of gravitational ', | 'constant: ',$) READ (ir,*) c(1) GO TO 400 220 CONTINUE !Change neutron lifetime section. WRITE (iw,2200) 2200 FORMAT (' ','Enter value for neutron lifetime (sec): ',$) READ (ir,*) c(2) GO TO 400 230 CONTINUE !Change number of neutrino species section. WRITE (iw,2300) 2300 FORMAT (' ','Enter value for number of neutrino species: ',$) READ (ir,*) c(3) GO TO 400 240 CONTINUE !Change baryon-to-photon ratio section. WRITE (iw,2400) 2400 FORMAT (' ','Enter value for baryon-to-photon ratio: ',$) READ (ir,*) eta1 GO TO 400 250 CONTINUE !Change cosmological constant section. WRITE (iw,2500) 2500 FORMAT (' ','Enter value for cosmological constant: ',$) READ (ir,*) cosmo GO TO 400 260 CONTINUE !Change neutrino degeneracy section. WRITE (iw,2600) 2600 FORMAT (' ','Enter value for xi electron: ',$) READ (ir,*) xi(1) GO TO 400 270 CONTINUE !Change neutrino degeneracy section. WRITE (iw,2700) 2700 FORMAT (' ','Enter value for xi muon: ',$) READ (ir,*) xi(2) GO TO 400 280 CONTINUE !Change neutrino degeneracy section. WRITE (iw,2800) 2800 FORMAT (' ','Enter value for xi tauon: ',$) READ (ir,*) xi(3) IF ((xi(3).ne.0.).and.(c(3).lt.3.)) THEN c(3) = 3. WRITE (iw,2802) 2802 FORMAT (' ','Number of neutrinos set to 3') WRITE (iw,2804) 2804 FORMAT (' ','Press to continue: ',$) READ (ir,*) END IF GO TO 400 290 CONTINUE !Reset all to default values section. c(1) = c0(1) c(2) = c0(2) c(3) = c0(3) cosmo = cosmo0 xi(1) = xi0(1) xi(2) = xi0(2) xi(3) = xi0(3) eta1 = eta0 WRITE (iw,2900) 2900 FORMAT (' ','All values reset to default - Press ' | 'to continue: ',$) READ (ir,*) GO TO 400 300 CONTINUE !Exit section. RETURN C40--------GO BACK TO MENU------------------------------------------------------ 400 CONTINUE GO TO 100 END C========================IDENTIFICATION DIVISION================================ SUBROUTINE run C----------LINKAGES. C CALLED BY - [program] nuc123 C CALLS - [subroutine] driver C----------REMARKS. C Activates computation routine. C----------PARAMETERS. PARAMETER (ir=5) !Input unit number (previous value = 1). PARAMETER (iw=6) !Output unit number (previous value = 1). PARAMETER (nrec=88) !Number of nuclear reactions. PARAMETER (lrec=64) !Total # of nuclear reactions for irun = 2. PARAMETER (krec=34) !Total # of nuclear reactions for irun = 3. PARAMETER (nnuc=26) !Number of nuclides in calculation. PARAMETER (lnuc=18) !Total # of nuclides for irun = 2. PARAMETER (knuc=9) !Total # of nuclides for irun = 3. C----------COMMON AREAS. COMMON /modpr/ g,tau,xnu,c,cosmo,xi !Model parameters. COMMON /varpr/ dt1,eta1 !Variational parameters. COMMON /checkcb/ itime !Computation location. COMMON /runopt/ irun,isize,jsize !Run options. C==========================DECLARATION DIVISION================================= C----------MODEL PARAMETERS. REAL eta1 !Baryon-to-photon ratio. REAL c(3) !c(1) is variation of gravitational constant. | !c(2) is neutron lifetime (sec). | !c(3) is number of neutrino species. REAL cosmo !Cosmological constant. REAL xi(3) !Neutrino degeneracy parameters. C----------RUN OPTION. INTEGER irun !Run network size. INTEGER isize !Number of nuclides in computation. INTEGER jsize !Number of reactions in computation. C----------USER INTERACTION VARIABLES. REAL rnumb1 !Run parameter for outer loop. REAL rnumb2 !Run parameter for middle loop. REAL rnumb3 !Run parameter for inner loop. REAL rnum1(3) !Run parameter starting value. REAL rnum2(3) !Run parameter end value. REAL rnum3(3) !Run parameter increment. INTEGER inumb !Selection number. INTEGER inum(3) !Selection number. INTEGER jnum !Number of loopings to be done. INTEGER knum !Number of loopings rejected. INTEGER lnumb1 !Run parameter for outer loop. INTEGER lnumb2 !Run parameter for middle loop. INTEGER lnumb3 !Run parameter for inner loop. INTEGER lnum(3) !Run parameter end value. INTEGER lchose !User response (alphanumeric). C----------FLAG AND LABELS. INTEGER itime !Computation location. CHARACTER*22 vtype(8) !Label for quantities being varied. C----------EQUIVALENCE VARIABLE. REAL qvary(7) !Array set equal to c, cosmo, and xi. C----------EQUIVALENCE STATEMENTS. EQUIVALENCE (qvary(1),c(1)), (qvary(4),cosmo), (qvary(5),xi(1)) C==============================DATA DIVISION==================================== C----------LABELS FOR QUANTITIES BEING VARIED. DATA vtype /'baryon/photon ratio ', | 'gravitational constant', | 'neutron lifetime ', | '# of neutrino species ', | 'cosmological constant ', | 'xi-electron ', | 'xi-muon ', | 'xi-tauon '/ C===========================PROCEDURE DIVISION================================== C10--------PRINT RUN SELECTION AND AWAIT RESPONSE------------------------------- C..........RETURN FROM LOOPING. 100 CONTINUE C..........DISPLAY RUN SELECTIONS. WRITE (iw,1000) 1000 FORMAT (8(/), | ' ',32x,'RUN SELECTION',/, | ' ',32x,'--- ---------',//, | ' ',27x,' 1. SET RUN NETWORK',/, | ' ',27x,' 2. GO',/, | ' ',27x,' 3. DO MULTIPLE RUNS',/, | ' ',27x,' 4. EXIT',10(/), | ' ',27x,' Enter selection (1-4): ',$) C..........READ IN SELECTION NUMBER. READ (ir,1001) inumb 1001 FORMAT (i1) C20--------BRANCH TO APPROPRIATE SECTION---------------------------------------- GO TO (210,220,230,240),inumb GO TO 240 !Improper input or . C21--------SET RUN NETWORK SECTION---------------------------------------------- 210 CONTINUE WRITE (iw,2100) 2100 FORMAT (' ','Enter network size (1-26 nuclides (default); ', | '2-18; 3-9): ',$) READ (ir,*) inumb !Read in selection number. IF ((inumb.ne.1).and.(inumb.ne.2).and.(inumb.ne.3)) inumb = 1 !Default. IF (inumb.ne.irun) THEN !Run network changed from previously. irun = inumb !Run network size selection. END IF IF (irun.eq.1) THEN !Maximal network size. isize = nnuc jsize = nrec ELSE IF (irun.eq.2) THEN !Abridged network size. isize = lnuc jsize = lrec ELSE IF (irun.eq.3) THEN !Minimal network size. isize = knuc jsize = krec END IF END IF END IF !(irun.eq.1) WRITE (iw,2104) irun 2104 FORMAT (' ','Run network set to ',i1,' - Press ', | 'to continue: ',$) READ (ir,*) GO TO 300 C22--------GO SECTION----------------------------------------------------------- 220 CONTINUE WRITE (iw,2200) 2200 FORMAT (' ','Begin computation run....') itime = 3 CALL check !Call interface subr before computation. CALL driver !Do nucleosynthesis computation. itime = 8 CALL check !Call interface subr after computation. WRITE (iw,2202) 2202 FORMAT (' ','Computation completed - Press to ' | 'continue: ',$) READ (ir,*) GO TO 300 C23--------DO MULTIPLE RUNS SECTION--------------------------------------------- C..........GET NUMBER OF LOOPINGS. 230 CONTINUE WRITE (iw,2300) 2300 FORMAT (' ','Enter the number of loopings to be done (1 ', | '(default); 2; 3): ',$) READ (ir,*) jnum !Read in number of loopings to be done. IF ((jnum.ne.1).and.(jnum.ne.2).and.(jnum.ne.3)) THEN jnum = 1 !Default number of loopings. END IF knum = 0. !No loopings rejected for now. DO i = 1,3 IF (i.gt.jnum) THEN rnum1(i) = 0. !Initialize initial parameter. rnum2(i) = 0. !Initialize terminal parameter. rnum3(i) = 1. !Initialize incremental parameter. inum(i) = 0 !Initialize selection number. ELSE C..........OBTAIN QUANTITY TO VARY. WRITE (iw,2302) 2302 FORMAT (8(/), | ' ',30x,'QUANTITY TO VARY',/, | ' ',30x,'-------- -- ----',//, | ' ',25x,' 1. ETA (LOGRITHMIC VARIATION)',/, | ' ',25x,' 2. G (LINEAR VARIATION)',/, | ' ',25x,' 3. TAU (LINEAR VARIATION)',/, | ' ',25x,' 4. # NEUTRINOS (LINEAR VARIATION)',/, | ' ',25x,' 5. LAMBDA (LINEAR VARIATION)',/, | ' ',25x,' 6. XI-ELECTRON (LINEAR VARIATION)',/, | ' ',25x,' 7. XI-MUON (LINEAR VARIATION)',/, | ' ',25x,' 8. XI-TAUON (LINEAR VARIATION)',/, | ' ',25x,' 9. NO SELECTION',5(/), | ' ',25x,' Enter selection (1-9): ',$) READ (ir,1001) inum(i) IF ((inum(i).lt.1).or.(inum(i).gt.8)) THEN !No selection made. WRITE (iw,2304) 2304 FORMAT (' ','No selection made - Reduce number of ', | 'loopings by one',/, | ' ','Press to continue: ',$) READ (ir,*) knum = knum + 1 !Step up number of loopings rejected. rnum1(i) = 0. !Initialize initial parameter. rnum2(i) = 0. !Initialize terminal parameter. rnum3(i) = 1. !Initialize incremental parameter. inum(i) = 0 !Initialize selection number. ELSE !((inum(i).ge.1).and.(inum(i).le.8)) C..........INPUT RUN SPECIFICATIONS. 231 CONTINUE WRITE (iw,2306) 2306 FORMAT (' ','Enter minimum value: ',$) READ (ir,*) rnum1(i) !Read in starting value. WRITE (iw,2308) 2308 FORMAT (' ','Enter maximum value: ',$) READ (ir,*) rnum2(i) !Read in terminating value. 232 CONTINUE WRITE (iw,2310) 2310 FORMAT (' ','Enter increment: ',$) READ (ir,*) rnum3(i) !Read in incremental value. IF (rnum3(i).eq.0.) THEN !Trouble with 0 division later on. WRITE (iw,2312) 2312 FORMAT (' ','Zero increment not allowed: trouble with ', | 'dividing by zero') GO TO 232 END IF WRITE (iw,2314) rnum1(i), rnum2(i), rnum3(i) !Display input info. 2314 FORMAT (' ','Run from ',1pe12.5,' to ',1pe12.5, | ' in increments of ',1pe12.5) WRITE (iw,2316) 2316 FORMAT (' ','Confirm these values (Y or N): ',$) READ (ir,2301) lchose !Get confirmation. 2301 FORMAT (a1) IF ((lchose.ne.'Y').and.(lchose.ne.'y')) GO TO 231 END IF !((inum(i).lt.1).or.(inum(i).gt.8)) END IF !(i.gt.jnum) END DO !i = 1,3 jnum = jnum-knum !Number of valid loopings. IF (jnum.ne.0) THEN !Run requested. C..........WRITE OUT QUANTITY TO VARY, RUN SPECIFICATIONS. DO l = 1,jnum+knum !Check all loopings. IF (inum(l).ne.0) THEN !Proper selection was made. WRITE (iw,2318) vtype(inum(l)),rnum1(l), !Display run params. | rnum2(l), rnum3(l) 2318 FORMAT (' ','Run ',a22,/, | ' from ',1pe12.5,' to ',1pe12.5, | ' in increments of ',1pe12.5) C..........GET LOGS OF eta VALUES FOR LOGRITHMIC INCREMENTATION. IF (inum(l).eq.1) THEN !Work with exponents for eta increments. rnum1(l) = log10(rnum1(l)) rnum2(l) = log10(rnum2(l)) END IF END IF END DO C..........COMPUTE NUMBER OF RUNS FOR EACH LOOPING. DO l = 1,3 lnum(l) = nint((rnum2(l)-rnum1(l)+rnum3(l))/rnum3(l)) END DO C..........DO MULTIPLE RUNS. WRITE (iw,2200) !Inform user of beginning of computation. DO lnumb1 = 0,lnum(1)-1 !Outer loop. rnumb1 = rnum1(1)+float(lnumb1)*rnum3(1) !Value of param for run. IF ((inum(1).ge.1).and.(inum(1).le.8)) THEN IF (inum(1).eq.1) THEN eta1 = 10**rnumb1 !Vary baryon-to-photon ratio. ELSE qvary(inum(1)-1) = rnumb1 !Vary other quantities. END IF END IF DO lnumb2 = 0,lnum(2)-1 !Middle loop. rnumb2 = rnum1(2)+float(lnumb2)*rnum3(2) !Value of param for run. IF ((inum(2).ge.1).and.(inum(2).le.8)) THEN IF (inum(2).eq.1) THEN eta1 = 10**rnumb2 !Vary baryon-to-photon ratio. ELSE qvary(inum(2)-1) = rnumb2 !Vary other quantities. END IF END IF DO lnumb3 = 0,lnum(3)-1 !Inner loop. rnumb3 = rnum1(3)+float(lnumb3)*rnum3(3) !Value of parameter. IF ((inum(3).ge.1).and.(inum(3).le.8)) THEN IF (inum(3).eq.1) THEN eta1 = 10**rnumb3 !Vary baryon-to-photon ratio. ELSE qvary(inum(3)-1) = rnumb3 !Vary other quantities. END IF END IF itime = 3 CALL check !Check interface subr before computation. CALL driver !Do nucleosynthesis computation. itime = 8 CALL check !Check interface subroutine after computation END DO !lnumb3 = 0,lnum(3)-1 END DO !lnumb2 = 0,lnum(2)-1 END DO !lnumb1 = 0,lnum(1)-1 WRITE (iw,2202) !Inform user of completion of computation. ELSE !(jnum.eq.0) WRITE (iw,2320) 2320 FORMAT (' ','No selection made - ', | 'Press to continue: ',$) END IF !(jnum.ne.0) READ (ir,*) GO TO 300 C24--------EXIT SECTION--------------------------------------------------------- 240 CONTINUE RETURN C30--------GO BACK TO MENU------------------------------------------------------ 300 CONTINUE GO TO 100 END C========================IDENTIFICATION DIVISION================================ SUBROUTINE output C----------LINKAGES. C CALLED BY - [program] nuc123 C CALLS - none C----------REMARKS. C Outputs computational results either into an output file or onto C the screen C----------PARAMETERS. PARAMETER (ir=5) !Input unit number (previous value = 1). PARAMETER (iw=6) !Output unit number (previous value = 1). PARAMETER (nnuc=26) !Number of nuclides in calculation. PARAMETER (itmax=40) !Maximum # of line to be printed. C----------COMMON AREAS. COMMON /compr/ cy,ct,t9i,t9f,ytmin,inc !Computation parameters. COMMON /modpr/ g,tau,xnu,c,cosmo,xi !Model parameters. COMMON /flags/ ltime,is,ip,it,mbad !Flags, counters. COMMON /outdat/ xout,thmout,t9out,tout,dtout, !Output data. | etaout,hubout COMMON /outopt/ nout,outfile !Output option. C==========================DECLARATION DIVISION================================= C----------COMPUTATION SETTINGS. REAL cy !Time step limiting constant on abundances. REAL ct !Time step limiting constant on temperature. REAL t9i !Initial temperature (in 10**9 K). REAL t9f !Final temperature (in 10**9 K). REAL ytmin !Smallest abundances allowed. C----------EARLY UNIVERSE MODEL PARAMETERS. REAL c(3) !c(1) is variation of gravitational constant. | !c(2) is neutron lifetime (sec). | !c(3) is number of neutrino species. REAL cosmo !Cosmological constant. REAL xi(3) !Neutrino degeneracy parameters. C----------COUNTER. INTEGER it !# times accumulated in output buffer. C----------OUTPUT ARRAYS. REAL xout(itmax,nnuc) !Nuclide mass fractions. REAL thmout(itmax,6) !Thermodynamic variables. REAL t9out(itmax) !Temperature (in units of 10**9 K). REAL tout(itmax) !Time. REAL dtout(itmax) !Time step. REAL etaout(itmax) !Baryon-to-photon ratio. REAL hubout(itmax) !Expansion rate. C----------OUTPUT FILE STATUS. INTEGER nout !Number of output requests. LOGICAL outfile !Indicates if output file used. C----------USER INTERACTION VARIABLES. INTEGER inum !Selection number. C===========================PROCEDURE DIVISION================================== C10--------PRINT OUTPUT SELECTION AND AWAIT RESPONSE---------------------------- C..........RETURN FROM LOOPING. 100 CONTINUE C..........DISPLAY OUTPUT SELECTIONS. WRITE (iw,1000) 1000 FORMAT (8(/), | ' ',30x,'OUTPUT SELECTION',/, | ' ',30x,'------ ---------',//, | ' ',25x,' 1. REQUEST OUTPUT FILE',/, | ' ',25x,' 2. REQUEST OUTPUT ON SCREEN',/, | ' ',25x,' 3. EXIT',11(/), | ' ',25x,' Enter selection (1-3): ',$) C..........READ IN SELECTION NUMBER. READ (ir,1001) inum 1001 FORMAT (i1) C..........BRANCH TO APPROPRIATE SECTION. GO TO (200,300,400),inum GO TO 400 !Improper input or . C20--------REQUEST OUTPUT SECTION----------------------------------------------- 200 CONTINUE c DO j = 1,it !Temperature in MeV. c t9out(j) = t9out(j)*.08617 c END DO c DO j = 1,it !Energy density as fraction of total. c thmout(j,1) = thmout(j,1)/thmout(j,6) !Rhog. c thmout(j,2) = thmout(j,2)/thmout(j,6) !Rhoe. c thmout(j,3) = thmout(j,3)/thmout(j,6) !Rhone. c thmout(j,4) = thmout(j,4)/thmout(j,6) !Rhob. c END DO C..........PRINT CAPTION. nout = nout + 1 !Keep track of number of output requests. IF (nout.eq.1) THEN WRITE (2,2000) 2000 FORMAT (54x,'NUCLIDE ABUNDANCE YIELDS',/, | 54x,'------- --------- ------',//) END IF WRITE (2,2002) cy,ct,t9i,t9f,ytmin 2002 FORMAT (' Computational parameters:',/, | ' cy = ',f5.3,'/ ct = ',f5.3, | '/ initial temp = ',1pe8.2, | '/ final temp = ',1pe8.2, | '/ smallest abundances allowed = ',1pe8.2) WRITE (2,2004) c(1),c(2),c(3),cosmo,xi(1),xi(2),xi(3) 2004 FORMAT (' Model parameters:',/, | ' g = ',f5.2,'/ tau = ',f6.2, | '/ # nu = ',f5.2,'/ lambda = ',1pe10.3, | '/ xi-e = ',e10.3,'/ xi-m = ',e10.3, | '/ xi-t = ',e10.3,/) C..........PRINT HEADINGS, ABUNDANCES FOR NEUTRON TO LI8. WRITE (2,2006) 2006 FORMAT (4x,'Temp',8x,'N/H',10x,'P',10x,'D/H',9x,'T/H',8x, | 'He3/H',8x,'He4',8x,'Li6/H',7x,'Li7/H',7x, | 'Be7/H',6x,'Li8/H&up',/,132('-')) DO j = 1,it WRITE (2,2008) t9out(j),(xout(j,i),i=1,10) 2008 FORMAT (1pe10.3,1p10e12.3) END DO C..........PRINT THERMODYNAMIC QUANTITIES. WRITE (2,2010) 2010 FORMAT (' ',/,4x,'Temp',9x,'T',10x,'rhog',8x,'rhoe',7x, | 'rhone',8x,'rhob',8x,'phie',9x,'dt',9x, | 'eta',10x,'H',/,132('-')) DO j = 1,it WRITE (2,2012) t9out(j),tout(j),(thmout(j,i),i=1,5),dtout(j), | etaout(j),hubout(j) 2012 FORMAT (1pe10.3,9e12.3) END DO WRITE (2,2014) 2014 FORMAT (///) outfile = .true. !Output file requested. WRITE (iw,2016) 2016 FORMAT (' ','Output file requested - Press to ' | 'continue: ',$) READ (ir,*) GO TO 500 C30--------REQUEST OUTPUT ON SCREEN SECTION------------------------------------- C..........RETURN FROM LOOPING. 300 CONTINUE c DO j = 1,it !Temperature in MeV. c t9out(j) = t9out(j)*.08617 c END DO c DO j = 1,it !Energy density as fraction of total. c thmout(j,1) = thmout(j,1)/thmout(j,6) !Rhog. c thmout(j,2) = thmout(j,2)/thmout(j,6) !Rhoe. c thmout(j,3) = thmout(j,3)/thmout(j,6) !Rhone. c thmout(j,4) = thmout(j,4)/thmout(j,6) !Rhob. c END DO C..........DISPLAY SCREEN OUTPUT SELECTIONS. WRITE (iw,3000) 3000 FORMAT (8(/), | ' ',26x,'SCREEN OUTPUT SELECTION',/, | ' ',26x,'------ ------ ---------',//, | ' ',25x,' 1. DISPLAY D,T,HE3,HE4,LI7',/, | ' ',25x,' 2. DISPLAY N,P,LI6,BE7,LI8&UP',/, | ' ',25x,' 3. DISPLAY RHOG,RHOE,RHONE,RHOB',/, | ' ',25x,' 4. DISPLAY T,DT,PHIE,ETA,H',/, | ' ',25x,' 5. EXIT',9(/), | ' ',25x,' Enter selection (1-5): ',$) C..........READ IN SELECTION NUMBER. READ (ir,1001) inum GO TO (310,320,330,340,350),inum GO TO 350 !Improper input or . 310 CONTINUE !Display d,t,he3,he4,li7. C..........PRINT CAPTION. WRITE (iw,2014) WRITE (iw,3100) cy,ct,t9i,t9f,ytmin 3100 FORMAT (' ','Computational parameters:',/, | ' ',' cy = ',f5.3,'/ ct = ',f5.3, | '/ initial temp = ',1pe8.2, | '/ final temp = ',1pe8.2,/, | ' ',' smallest abundances allowed = ',1pe8.2) WRITE (iw,3102) c(1),c(2),c(3),cosmo,xi(1),xi(2),xi(3) 3102 FORMAT (' ','Model parameters:',/, | ' ',' g = ',f5.2,'/ tau = ',f6.2, | '/ # nu = ',f5.2,'/ lambda = ',1pe10.3,/, | ' ',' xi-e = ',e10.3,'/ xi-m = ',e10.3, | '/ xi-t = ',e10.3,/) C..........PRINT HEADINGS, ABUNDANCES FOR D,T,HE3,HE4,LI7. WRITE (iw,3104) 3104 FORMAT (4x,'Temp',8x,'D/H',9x,'T/H',8x,'He3/H',8x, | 'He4',8x,'Li7/H',/,' ',80('-')) DO j = 1,it WRITE (iw,3106) t9out(j),(xout(j,i),i=3,6),xout(j,8) 3106 FORMAT (1pe10.3,1p5e12.3) END DO WRITE (iw,2014) WRITE (iw,3108) 3108 FORMAT (' ','Press to continue: ',$) READ (ir,*) GO TO 360 320 CONTINUE !Display n,p,li6,be7,li8&up. C..........PRINT CAPTION. WRITE (iw,2014) WRITE (iw,3100) cy,ct,t9i,t9f,ytmin WRITE (iw,3102) c(1),c(2),c(3),cosmo,xi(1),xi(2),xi(3) C..........PRINT HEADINGS, ABUNDANCES FOR N,P,LI6,BE7,LI8&UP. WRITE (iw,3204) 3204 FORMAT (4x,'Temp',8x,'N/H',10x,'P',9x, | 'Li6/H',7x,'Be7/H',6x,'Li8/H&up',/,' ',80('-')) DO j = 1,it WRITE (iw,3106) t9out(j),(xout(j,i),i=1,2),xout(j,7), | (xout(j,i),i=9,10) END DO WRITE (iw,2014) WRITE (iw,3108) READ (ir,*) GO TO 360 330 CONTINUE !Display rhog,rhoe,rhone,rhob. C..........PRINT CAPTION. WRITE (iw,2014) WRITE (iw,3100) cy,ct,t9i,t9f,ytmin WRITE (iw,3102) c(1),c(2),c(3),cosmo,xi(1),xi(2),xi(3) C..........PRINT ENERGY DENSITIES. WRITE (iw,3304) 3304 FORMAT (4x,'Temp',8x,'rhog',8x,'rhoe',7x,'rhone',8x,'rhob', | /,' ',80('-')) DO j = 1,it WRITE (iw,3306) t9out(j),(thmout(j,i),i=1,4) 3306 FORMAT (1pe10.3,4e12.3) END DO WRITE (iw,2014) WRITE (iw,3108) READ (ir,*) GO TO 360 340 CONTINUE !Display t,dt,phie,eta,hubcst. C..........PRINT CAPTION. WRITE (iw,2014) WRITE (iw,3100) cy,ct,t9i,t9f,ytmin WRITE (iw,3102) c(1),c(2),c(3),cosmo,xi(1),xi(2),xi(3) C..........PRINT THERMODYNAMIC QUANTITIES. WRITE (iw,3404) 3404 FORMAT (4x,'Temp',8x,'time',8x,'phie',9x,'dt',9x,'eta',10x, | 'H',/,' ',80('-')) DO j = 1,it WRITE (iw,3406) t9out(j),tout(j),thmout(j,5),dtout(j), | etaout(j),hubout(j) 3406 FORMAT (1pe10.3,5e12.3) END DO WRITE (iw,2014) WRITE (iw,3108) READ (ir,*) GO TO 360 350 CONTINUE !Exit. GO TO 500 360 CONTINUE GO TO 300 C40--------EXIT SECTION--------------------------------------------------------- 400 CONTINUE RETURN C50--------GO BACK TO MENU------------------------------------------------------ 500 CONTINUE GO TO 100 END