
Problem Set 1 1
Getting Started!

1.1 Required: Due Fri Week 4, 11 pm

Preliminary Note:

The definition of the Kauffman Bracket invariant differs slightly de-

pending on which reference you read. For the following problems please

use this definition:

= − A2
−A−2 = d

= A + A−1

Fig. 1.1 Rules for evaluating the Kauffman bracket invariant. Note: This definition

agrees with the 2022 version of the Book. The 2021 version exchanges A with A−1.

Exercise 2.1 from Book

Trefoil Knot and the Kauffman Bracket

Using the Kauffman rules, calculate the Kauffman bracket invariant of the
right- and left-handed trefoil knots shown in Fig. 1.2. Conclude these two
knots are topologically inequivalent. While this statement appears obvious on
sight, it was not proved mathematically until 1914 (by Max Dehn). It is easy
using this technique!

Fig. 1.2 Left- and Right-Handed Tre-
foil Knots (on the left and right respec-
tively)

Exercise 2.2 from Book

Abelian Kauffman Anyons

= eiϑ

Fig. 1.3 For abelian anyons, exchange
gives a phase eiϑ.

= ±

Fig. 1.4 For bosons or fermions the
sign in this figure is +, for semions the
sign is −.

Particles where the quantum amplitudes of their trajectories are given by
the Kauffman bracket invariant with certain special values of the constant A
are abelian anyons — meaning an exchange introduces only a simple phase as
shown in Fig. 1.3. Here we mean that the vertical direction now means time
and the knot or link describes the motion of particles in space-time.

(a) For A = ±eiπ/3, show that the anyons are bosons or fermions respec-
tively (i.e., eiϑ = ±1). Further show that for these values of A any diagram
calculated with A gives exactly the same result if you use the complex conju-
gate of A instead.

(b) For A = ±eiπ/6 show the anyons are semions (i.e., eiϑ = ±i). Further
show that calculating a diagram using A = ±eiπ/6 gives exactly the same
value as calculating the diagram using A = ∓e−iπ/6.

HINT: For both (a) and (b) show first the identity shown in Fig. 1.4. If
you can’t figure it out, try evaluating the Kauffman bracket invariant for a
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few knots with these values of A and see how the result arises.
Case (b) corresponds to the anyons that arise for the ν = 1/2 fractional

quantum Hall effect of bosons. This particular phase of quantum Hall matter
has been produced experimentally, but only in very small puddles so far and
it has not been possible to measure braiding statistics as of yet.

Exercise 3.3 a,b from Book

Ising Anyons and Majorana Fermions

The most commonly discussed type of nonabelian anyon is the Ising anyon.
Ising anyons occurs in the Moore-Read quantum Hall state (ν = 5/2), as well
as in any chiral p-wave superconductor and in recently experimentally relevant
so called “Majorana” systems.

The nonabelian statistics of these anyons may be described in terms of
Majorana fermions by attaching a Majorana operator to each anyon. The
Hamiltonian for these Majoranas is zero — they are completely noninteracting.

In case you haven’t seen them before, Majorana Fermions γj satisfy the
anticommutation relati on

{γi, γj} ≡ γiγj + γjγi = 2δij (1.1)

as well as being self conjugate γ†
i = γi.

(a) Show that the ground-state degeneracy of a system with 2N Majoranas
is 2N if the Hamiltonian is zero. Thus conclude that each pair of Ising anyons
is a two-state system. Hint: Construct a regular (Dirac) fermion operator
from two Majorana fermion operators. For example,

c† =
1

2
(γ1 + iγ2)

will then satisfy the usual fermion anti-commutation {c, c†} = cc† + c†c = 1.
(If you haven’t run into fermion creation operators yet, you might want to
read up on this first!)

(b) When anyon i is exchanged clockwise with anyon j, the unitary trans-
formation that occurs on t he ground state is

Uij =
eiα√
2
[1 + γiγj ] i < j. (1.2)

for some real value of α. Show that these unitary operators form a represen-
tation of the braid group. In other words we must show that replacing σi with
Ui,i+1 in the following two equations below yields equalities.

σi σi+1 σi = σi+1 σi σi+1 (1.3)

σi σj = σj σi for |i− j| > 1 (1.4)

This representation is 2N -dimensional since the ground-state degeneracy is
2N .
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c̄

a b

Fig. 1.5 A three-times punctured sphere is known as a “pair of pants”.

Exercise 8.2a,b,c from Book.

Fusion and Ground-State Degeneracy

To determine the ground-state degeneracy of a 2-manifold in a (2+1)-
dimensional TQFT one can cut the manifold into pieces and glue back to-
gether. One can think of the open “edges” or connecting tube-ends as each
having a label given by one of the particle types (i.e., one of the anyons) of
the theory. Really we are labeling each edge with a basis element of a possible
Hilbert space. The labels on two tubes that have been connected together
must match (label a on one tube fits into label ā on another tube.) To cal-
culate the ground-state degeneracy we must keep track of all possible ways
that these assembled tubes could have been labeled. For example, when we
assemble a torus from a cylinder, we must match the quantum number on one
open end to the (opposite) quantum number on the opposite open end. The
ground-state degeneracy is then just the number of different possible labels,
or equivalently the number of different particle types.

For more complicated 2-d manifolds, we can decompose the manifold into
so-called pants diagrams (see Fig. 1.5). When we sew together pants diagrams,
we should include a factor of the fusions multiplicity Nc

ab for each pants which
has its three tube edges labeled with a, b and c̄.

(a) Show that the general formula for the ground-state degeneracy of an
g-handled torus in terms of the N matrices can be written as follows

DimV (g-handled torus) = Tr[Mg−1] where Mcd =
∑

a,b

N c̄
abN

d
āb̄ (1.5)

where the sum over a and b are over all particle types (including the identity).
(b) For the Fibonacci anyon model, find the ground-state degeneracy of a

four-handled torus.
(c) Show that in the limit of large number of handles g the ground-state

degeneracy scales as ∼ D 2g where D2 =
∑

a d
2
a.

Exercise 9.4 from Book

Fibonacci Pentagon

In the Fibonacci anyon model, there are two particle types which are usually
called I and τ . The only nontrivial fusion rule is τ × τ = I + τ . With
these fusion rules, the F -matrix is completely fixed up to a gauge freedom
(corresponding to adding a phase to some of the kets). If we choose all elements
of the F -matrix to be real, then the F -matrix is completely determined by
the pentagon equations up to one sign (gauge) choice. Using the pentagon
equation determine the F -matrix.

If you are stuck as to how to start, part of the calculation is given in Nayak
et al Rev Mod Phys Review article from 2008.
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1.2 Optional Problems (Easy)

[These problems will be discussed in class only if you find them hard.]

Exercise 4.1 from Book

Abelian Anyon Vacuum on a Two-Handle Torus

Show that the ground-state vacuum degeneracy on a two handle torus is
m2 for a system of abelian anyons with statistical angle ϑ = πp/m for integers
p and m relatively prime. Hint: Consider what the independent nontrivial
cycles i are on a two-handled torus and determine the commutation relations
for operators Ti that create an anyon-antianyon pairs, takes one of the particles
around cycle i and then reannhilate.

Exercise 8.3 from Book

Consistency of Fusion Rules

Show by using commutativity and associativity of fusion along with identity
Nc
ab = N c̄

āb̄ that no anyon theory can have a particle a different from the
vacuum I such that a × a = a, meaning a fuses with a to form only a and
nothing else.

Exercise 9.1 from Book

F Gauge Choice

(a) Explain why in the Fibonacci theory, [F ττττ ]ττ is gauge independent but
[F ττττ ]Iτ is gauge dependent.

(b) Explain why in the Ising theory [Fψσψσ ]σσ is gauge independent, but
[F σψσ
ψ ]σσ is gauge dependent.

Exercise 9.2 from Book F ’s With the Vacuum Field I
Explain why [F aIce ]ac = [F abId ]db = [F Ibce ]be = 1.

1.3 Optional Problems (The Best Ones)

[We hope to discuss these in class.]

Exercise 2.3 from Book

Reidemeister moves and the Kauffman Bracket

Show that the Kauffman bracket invariant is unchanged under application
of Reidemeister move of type II and type III. Thus conclude that the Kauffman
invariant is an invariant of regular isotopy.

Exercise 3.1 from Book

About the Braid Group

(a) Convince yourself geometrically that the defining relations of the braid
group on M particles BM are:

σi σi+1 σi = σi+1 σi σi+1 1 ≤ i ≤M − 2 (1.6)

σi σj = σj σi for |i− j| > 1, 1 ≤ i, j ≤M − 1 (1.7)

(b) Instead of thinking about particles on a plane, let us think about par-
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ticles on the surface of a sphere. In this case, the braid group of M strands
on the sphere is w ritten as BM (S2). To think about braids on a sphere, it
is useful to think of time as being the radial direction of the sphere, so that
braids are drawn as in Fig. 1.6.

The braid generators on the sphere still obey Eqns. 1.6 and 1.7, but they
also obey one additional identity

σ1σ2 . . . σM−2σM−1σM−1σM−2 . . . σ2σ1 = I (1.8)

where I is the identity (or trivial) braid. What does this additional identity
mean geometrically?

Fig. 1.6 An element of the braid group
B3(S2). The braid shown here (reading
right to left meaning bottom to top in
the braid) is σ2σ1.

Exercise 8.2d from Book

Fusion and Ground-State Degeneracy: More

(extension to above exercise 8.2 a,b,c)
(d) Generalize Eq. 1.5 to the case of a g-handled torus where there are also

m particles on the surface of the manifold with quantum numbers a1, . . . , am.

Exercise 9.3 from Book

Ising Pentagon

Consider a system of Ising anyons. Given the fusion rules, F xyzw will be the
2 by 2 matrix

1√
2

(

1 1
1 −1

)

in the case of x = y = z = w = σ and is a simply a scalar otherwise. One
might hope that these scalars can all be taken to be unity. Unfortunately this
is not the case. By examining the pentagon equation,

[F fcde ]gl[F
abl
e ]fk =

∑

h

[F abcg ]fh[F
ahd
e ]gk[F

bcd
k ]hl (1.9)

in the case of a = b = c = σ and d = f = ψ show that taking the scalar to
always be unity is not consistent. Show further that choosing [Fψσψσ ]σσ = −1
(and leaving the other scalars to be unity) allows a consistent solution of the
pentagon equations for a = b = c = σ and d = f = ψ.

1.4 Optional Problems (More)

[Solve these if you have time. We can discuss them after class if you are
interested!]

Exercise 3.4 a,c from Book

Small Numbers of Anyons on a Sphere

On the plane, the braid group of two particles is an infinite group (the group
of integers describing the number of twists!). However, this is not true on a
sphere

(a) First review the problem “About the Braid Group” about braiding on a
sphere. Now consider the case of two particles on a sphere. Determine the full
structure of the braid g roup. Show it is a well known finite discrete group.
What group is it?

(b) [Skip this part, it is hard!]
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(c) Suppose we have two (or three) anyons on a sphere. Suppose the ground
state is two-fold degenerate (or more generally N-fold degenerate for some
finite N). Since the braid group is discrete, conclude that no type of anyon
statistics can allow us to do arbitrary SU(2) (or SU(N)) rotations on this
degenerate ground state by braiding.

Exercise 5.2 from Book

Gauge Transforming the Chern-Simons Action

The Chern-Simons action on a manifold M is

SCS =
k

4π

∫

M

d3x ǫαβγ Tr

[

aα∂βaγ +
2

3
aαaβaγ

]

(1.10)

where aα is a vector of fields valued in a Lie algebra and ǫ is the antisymmetric
tensor (α, β, γ ∈ 0, 1, 2).

A gauge transformation on the Chern-Simons field is

aµ → U−1aµU + U−1∂µU

for arbitrary U(x) in the Lie group (we are considering unitary representations
of the Lie group).

Show that this gauge transformation results in

SCS → SCS + 2πνk (1.11)

where

ν =
1

24π2

∫

M

d3x ǫαβγ Tr
[

(U−1∂αU)(U−1∂βU)(U−1∂γU)
]

(1.12)

is known as the Pontryagin index, which can be shown to be an integer (you
do not need to show this fact). Note that there will be an additional term that
shows up which is a total derivative and will therefore vanish when integrated
over the whole manifold M.

Exercise 8.1 from Book

Quantum Dimension

Let Nc
ab be the fusion multiplicity matrices of a TQFT

a× b =
∑

c

Nc
ab c

meaning that Nc
ab is the number of distinct ways that a and b can fuse to c.

(In many, or even most, theories of interest all N ’s are either 0 or 1).
The quantum dimension da of a particle a is defined as the largest eigenvalue

of the matrix [Na]
c
b where this is now thought of as a two-dimensional matrix

with a fixe d and b, c the indices.
Show that

dadb =
∑

c

Nc
ab dc

We will prove this formula algebraically later. However there is a simple
and much more physical way to get to the result: Imagine fusing together
M anyons of type a and M anyons of type b where M gets very large and
determine the dimension of space that results. Then imagine fusing together
a× b and do this M times and then fuse together all the results.
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Exercise 9.6a from Book

Gauge Change

(a.i) Confirm that the F -matrix transforms under gauge change as

[̃F abce ]df =
uafe ubcf
uabd u

dc
e

[F abce ]df

where the u coefficients transform the vertices as

c

a b

= uabc
∼

c

a b

(a.ii) Show that a solution of the pentagon equation remains a solution
under any gauge transformation.
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More Fun!

2.1 Required: Due Fri Week 7, 11 pm

Exercise 10.6a,b,c,d from Book

Enforcing the Locality Constraint
aa a

c f

=

ac

f

Fig. 2.1 The locality constraint.

The locality constraint shown in Fig. 2.1 turns out to be extremely powerful.
In this exercise we will use this constraint to (almost) derive the possible values
for the R-matrix for Fibonacci anyons given the known F -matrix.

Consider an anyon theory with Fibonacci fusion rules and Fibonacci F -
matrix

F ττττ = F =

(

φ−1 φ−1/2

φ−1/2 −φ−1

)

(2.1)

where φ = (
√
5 + 1)/2 is the golden mean (and the matrix notation has the

first row/column being I and the second row/column being τ ).
(a) [Easy] Confirm the locality constraint shown in Fig. 2.1 given the right-

handed R-matrix

Rτττ = e+3πi/5

RττI = e−4πi/5 (2.2)

(the left-handed R-matrix would have these values complex conjugated).
Make sure to confirm the equality for all three cases f = I, c = τ and

f = τ, c = I and f = τ, c = τ .
Note that on the left of Fig. 2.1 is the braiding operation Ô = σ̂2σ̂1σ̂1σ̂2.

whereas the operation on the right is σ2.
(b) Show that the locality constraint of Fig. 2.1 would also be satisfied by

RττI → −RττI Rτττ → −Rτττ (2.3)

(c) In addition to right- and left-handed Fibonacci anyons and the two
additional spurious solutions provided by Eq. 2.3, there are four additional
possible sets of R-matrices that are consistent with the F -matrices of the
Fibonacci theory given the locality constraint of Fig. 2.1. These additional
solutions are all fairly trivial. Can you guess any of them?

If we cannot guess the additional possible R-matrices, we can derive them
explicitly (and show that no others exist). Let us suppose that we do not
know the values of the R-matrix elements RττI and Rτττ .

(d) For the case of f = I and c = τ show that Fig. 2.1 implies

[Rτττ ]4 = [RττI ]2 (2.4)
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Exercise 11.1 from Book

Ising Nonuniversality

The braiding matrices for Ising anyons are given by

σ̂1 = e−iπ/8
(

1 0
0 i

)

.

(2.5)

σ̂2 =
eiπ/8√

2

(

1 −i
−i 1

)

.

(2.6)

where the order of rows and columns are I, ψ.
Demonstrate that any multiplication of these matrices and their inverses

will only produce a finite number of possible results. Thus conclude that Ising
anyons are not universal for quantum computation. Hint: write the braiding
matrices as eiαUj where Uj is unitary with unit determinant, i.e., is an element
of SU(2). Then note that any SU(2) matrix can be thought of as a rotation
exp(i n̂ · σ θ/2) where here θ is an angle of rotation, n̂ is the axis of rotation,
and σ is the vector of Pauli spin matrices.

Exercise 13.4a,b,c,d of 2021 from Book =

Exercise 13.6a,b,c,d of 2022 from Book

Reidemeister Moves

(a) Use the R-matrix, and the completeness relationship, to derive the
equivalence shown in Fig. 2.2

a b = ab

Fig. 2.2 “Reidemeister” Move II (The
quotes are here because we have labeled
the strands which is more general than
the original Reidemeister definitions)

(b) How does the hexagon equation imply the equivalence shown in Fig. 2.3.
Hint: This is very subtle, but is almost trivial.

a

b c

f a

b c

f

=

Fig. 2.3 This move is implied by the hexagon equations. (Similar with the straight
line f going under the other two, and similar if the left-to-right slope of f is negative
instead of positive.)

(c) Use Fig. 2.3 to show the equality of Fig. 2.4.

a

b

=
a

b

Fig. 2.4 “Reidemeister” Move II ori-
ented sideways

(d) Use the result of Fig. 2.3 along with completeness and the R-matrix to
demonstrate

a bc

=

a bc
Fig. 2.5 “Reidemeister” Move III

This exercise shows that equalities like those shown in Fig. 2.2 and 2.5 are
not independent assumptions but can be derived from the planar algebra and
the definition of an R-matrix satisfying the hexagon equation.
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2.2 Optional Problems (Easy)

[These problems will be discussed in class only if you find them hard.]

Exercise 10.1a,b,c from Book

Calculating Exchanges

As shown in the book (Eq. 10.1), given three anyons of type a. If anyons
1 and 2 are in fusion channel c and all three anyons together are in fusion
channel f (see left of Fig. 2.1), the counterclockwise exchange of anyons 2 and
3 is given by

σ̂2|c; f〉 =
∑

g,z

[F aaaf ]cg Raag [(F aaaf )−1]gz |z; f〉 (2.7)

You should make sure you know where this expression comes from!
(a) Use Eq. 2.7 to confirm Eq. 2.5 and 2.6.
(b) Use Eq. 2.7 to confirm (given the information in Exercise 10.6a,b,c,d

above) that

σ̂1 =





e3πi/5

e−4πi/5

e3πi/5



 (2.8)

σ̂2 =





e3πi/5

φ−1e4πi/5 φ−1/2e−3πi/5

φ−1/2e−3πi/5 −φ−1



 (2.9)

where φ = (1 +
√
5)/2 is the golden mean, and the order of rows/columns is

N, I, τ . Here N means all three anyons fuse together to the vacuum (f = I),
and whereas I and τ indicate that c = I or τ with f = τ .

(c) Confirm the braiding relation σ̂1σ̂2σ̂1 = σ̂2σ̂1σ̂2 in both cases. What
does this identity mean geometrically?
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2.3 Optional Problems (The Best Ones)

[We hope to discuss these in class.]

Exercise 10.2

Ising Anyons Redux

In exercise 3.3 (Required in the first Homework set), we introduced a repre-
sentation for the exchange matrices for Ising anyons which, for three anyons,
would be of the form

σ̂1 =
eiα√
2
(1 + γ1γ2) (2.10)

σ̂2 =
eiα√
2
(1 + γ2γ3) (2.11)

where the γ’s are Majorana operators defined by

{γi, γj} ≡ γiγj + γjγi = 2δij

with γi = γ†
i .

Show that the exchange matrices in Eqs. 2.5-2.6 are equivalent to this rep-
resentation. How does one represent the |0〉 and |1〉 states of the Hilbert space
in this language? The answer may not be unique.

Exercise 10.4

Determinant and Trace of Braid Matrices

Consider a system of N-identical anyons with a total Hilbert space dimen-
sion D. The braid matrix σ̂1, σ̂2, . . . , σ̂N−1 are all D-dimensional. Show that
each of these matrices has the same determinant, and each of these matrices
has the same trace. Hint: This is easy if you think about it right!

Exercise 13.1

Fibonacci Hexagon

Once the F -matrices for a TQFT are defined, the consistency of the R-
matrix is enforced by the so-called hexagon equations. For the Fibonacci anyon
theory, once the F -matrix is fixed as in Eq. 2.1, the R-matrices are defined up
to complex conjugation (i.e., there is a right- and left-handed Fibonacci anyon
theory — both are consistent). Derive these R-matrices. Confirm Eqs. 2.2 as
one of the two solutions and show no other solutions exist.
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Exercise 15.2 of 2021 from Book=

Exercise 15.4 of 2022 from Book

Using Geometric Moves I

(a) Using the allowed geometric moves such as Fig. 2.2, 2.4, 2.3, show the
equivalence of the left and right of Fig. 2.6 (b) Similarly, show the equivalence
of the left and right of Fig. 2.7. (c) Similarly show the equivalence of the
middle two figures in Fig. 2.8.

a = a

Fig. 2.6 This equality establishes
θaθ

∗
a = 1

a

=

ā

Fig. 2.7 The equality of these dia-
grams establishes θa = θā.

a

= ǫa

a

= ǫa

a

= ǫaθ
∗

a

a

Fig. 2.8 A curl in a rope turned sideways gets a twist factor θ∗ along with a zig-zag
factor ǫa.

2.4 Optional Problems (More)

[Solve these if you have time. We can discuss them after class if you are
interested!]

Exercise 10.5 from Book

Checking the Locality Constraint

[Easy] Consider Fig. 2.1. The braid on the left can be written as b̂3 =
σ̂2σ̂

2
1σ̂2.

(a) For the Fibonacci theory with a = τ check that the matrix b̂3 gives just
a phase, which is dependent on the fusion channel c. I.e., show the matrix
b̂3 is a diagonal matrix of complex phases. Show further that these phases
are the same as the phases that would be accumulated for taking a single τ
particle around the particle c.

aaa a

c f

=

ac

f

Fig. 2.9 The locality constraint.

(b) Consider the same braid for the Ising theory with a = σ. Show again
that the result is a c-dependent phase.

[Hard] Consider the braid shown on the left of Fig. 2.9. The braid can be
written as b̂4 = σ̂3σ̂2σ̂

2
1σ̂2σ̂3.

(c) Consider Ising anyons where a = σ. Use the F - and R-matrices to
calculate σ̂3. Since the fusion of three σ anyons always gives c = σ, show that
b̂4 is just a phase times the identity matrix. Show further that this phase is
the same as the phase accumulated by taking a single σ all the way around
another σ.

(d) Consider Fibonacci anyons with a = τ , Use the F - and R-matrices to
calculate σ̂3. Check that b̂4 is a diagonal matrix of phases. Check that the
phases match the two possible phases accumulated by wrapping a single τ all
the way around a single particle c which can be I or τ .
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Exercise 12.1

Evaluating Diagrams with F -matrices

(a) Evaluate the following diagram, writing the result in terms of F ’s.

a

b

c

d f
g

(b) If we take the magnitude squared of this diagram and sum over all g,
we should get one. Physically, why is this?

Exercise 13.2 from 2021 Book=

Exercise 13.3 from 2022 Book

Evaluation of a Diagram

Evaluate the diagram shown in Fig. 2.10 in terms of R’s and F ’s. Hint:
First reduce the diagram to that shown in exercise 2.9.

b

f
g

Fig. 2.10 Evaluate this diagram.
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The Final Frontier!

3.1 Required: Due Fri Week 0 HT, 11 pm

Exercise 17.4

Evaluation of the S-link

a

x

= S̃ax

x

Fig. 3.1 Definition of the unlinking matrix

(a) Use the R-matrices and the ribbon identity to derive the value of the
matrix S̃ax (see Fig. 3.1) in terms of fusion multiplicities, twist factors θa, and
the quantum dimensions da.

(b) From your result show that

a b =
∑

c

Nc
ab̄

θc
θaθb

dc

Note that this diagram differs from Sab by a factor of Z(S3) = 1/D.

Exercise 17.5

Theories With One Nontrivial Particle

Consider an anyon theory with only the identity and one nontrivial particle
type s having twist factor θs. The only possible fusion rules are s×s = I+ms
for some integer m (the semion model is m = 0 the Fibonacci model ism = 1).
Calculate ds and D from the fusion rules. Use the result of Exercise 17.4b to
calculate the S-matrix in terms of θs. Show that this matrix cannot be unitary
for any m > 1. This justifies that on our “periodic table” there are only two
types of theory with one nontrivial particle.
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Exercise 22.2 in 2021 Book =

Exercise 24.2 in 2022 Book

Surgery on the Hopf Link [Not hard if you think about it right!]

Fig. 3.2 A Hopf Link

Consider two linked rings, known as the Hopf link (See Fig. 3.2). Consider
starting with S3 and embedding the Hopf link within the S3 with “blackboard
framing” (i.e., don’t introduce any additional twists when you embed it).
Thicken both strands into solid tori and perform surgery on each of the two
links. Argue that the resulting manifold is S3.

Fig. 3.3 Borromean Rings. Cutting
any one strand disconnects the other
two. Surgery on this link in S3 creates
the three-torus S1

× S1
× S1.

Exercise 22.4 from 2021 Book=

Exercise 24.4 from 2022 Book

Evaluation of Borromean Ring Ω-Link
Use the Killing property of Ω to evaluate the Ω-link of Borromean rings

shown in Fig. 3.3. Use this to establish Z(T 3) = number of particle species.
Note that the signature of the link is zero.

Exercise 22.5 from 2021 Book=

Exercise 24.5 from 2022 Book

Product of Blow Up and Blow Down

Use the handle-slide and the killing property of Ω to prove that the diagram
made of two oppositely twisted Ω loops, as shown in Fig. 3.4, gives the identity.

ΩΩ

Fig. 3.4 The product of these two op-
positely twisted Ω loops gives the iden-
tity.

Exercise 28.1 from 2021 Book=

Exercise 30.1 from 2022 Book

Toric Code S-matrix

Derive the S-matrix of the toric code by using modular transformation of
the torus, as described in section 28.4 (2021 Book) or 30.4 (2022 Book). If
you need help with this calculation look at the more general calculation given
for the ZN version of the toric code.

Exercise 28.2 from 2021 Book=

Exercise 30.2 from 2022 Book

Braiding Quasiparticles in Toric Code Loop Gas

(a) Use the graphical technique of section 28.5 (2021 Book) or 30.5 (2022
Book) to show that exchanging two f ’s gives a minus sign (i.e., confirm the
details of the argument given there).

(b) Use similar techniques to show that exchanging two e particles gives no
sign and exhanging two m particles gives no sign.

(c) Show that braiding an e particle or an f particle all the way around an
m particle give a minus sign but braiding around the identity gives no sign.

(d) Show that braiding e all the way around f gives a minus sign.
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3.2 Optional Problems (Easy)

[These problems will be discussed in class only if you find them hard.]

Exercise 15.4 from 2021 Book=

Exercise 15.6 from 2022 Book

Gauge Independence of Ribbon Identity

Show that the ribbon identity

Rbac R
ab
c =

θc
θaθb

is gauge independent.

Exercise 22.1 from 2021 Book=

Exercise 24.1 from 2022 Book

Surgery on a Loop

Beginning with the three-sphere S3, consider the so-called “unknot” (a sim-
ple unknotted circle S1 with no twists) embedded in this S3. Thicken the circle
into a solid torus (S1×D2) which has boundary S1×S1. Now perform surgery
on this torus by excising the solid torus from the manifold S3 and replacing it
with another solid torus that has the longitude and meridian swi tched. I.e.,
replace S1 ×D2 with D2 × S1. Note that both of the two solid tori have the
same boundary S1 ×S1 so that the new torus can be smoothly sewed back in
where the old one was removed. What is the new manifold you obtain? (This
should be easy because it is in the book!).

3.3 Optional Problems (The Best Ones)

[We hope to discuss these in class.]

c

a b

=

c

a b

Fig. 3.5 The pivotal identity

Exercise 15.3 from 2021 Book=

Exercise 15.5 from 2022 Book

Using Geometric Moves II

Demonstrate the middle step of Fig. 3.6 by using allowed geometric moves
such as Fig. 2.2 and Fig. 2.5 and Fig. 2.3. You may also need the pivotal
identity.
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Rba
c
Rab

c

b a

c

=

b a

c

=

b a

c

=
θc

θaθb

b a

c

Fig. 3.6 Deriving the ribbon identity. The middle is the nonobvious geometric step.

Exercise 17.2

Using the Pivotal Property

Use the pivotal property to demonstrate the identity shown in Fig. 3.7. You
should not assume full isotopy invariance. Nor should you assume ǫ = +1 for
any of the particles.

c b a = ac b

Fig. 3.7 This identity can be shown
without full isotopy invariance by using
the pivotal property.

3.4 Optional Problems (More)

[Solve these if you have time. We can discuss them after class if you are
interested!]

Exercise 18.4 from 2021 Book=

Exercise 18.7 from 2022 Book

Evaluating Diagrams I

Fig. 3.8 A Fibonacci branching loop diagram allows intersections of loops, but no
loop ends.

Show that evaluation of the diagram in Fig. 3.8 gives −d9/2τ .

Exercise 18.5 from 2021 Book=

Exercise 18.8 from 2022 Book

Evaluating Diagrams II

Fig. 3.9 A diagram with Ising fusion rules. Here σ is red and ψ is blue.

Show that evaluation of the diagram in Fig. 3.9 gives d2ψd
3
σκσ.
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Exercise 22.3 from 2021 Book=

Exercise 24.3 from 2022 Book

Surgery on the Borromean Rings [Hard]
Consider the link shown in Fig. 3.3 known as the Borromean rings. Con-

sider starting with S3 and embedding the Borromean rings within the S3 with
“blackboard framing”. Thicken all three strands into solid tori and perform
surgery on each of the three links exactly as we did in the previous two prob-
lems. Show that one gets the three torus as a result. Hint 1: Think about
the group of topologically different loops through the manifold starting and
ending at the same point, the so-called “fundamental group” or first homotopy
group. Hint 2: If we say a path around the meridian of one of the three Bor-
romean rings (i.e., threading though the loop) is called a and the path around
the meridian of the second ring is called b, then notice that the third ring is
topologically equivalent to aba−1b−1. Hint 3: In some cases the fundamental
group completely defines the manifold! (Don’t try to prove this, just accept
this as true in this particular case.)

Exercise 30.1 from 2021 Book=

Exercise 32.1 from 2022 Book

Fusing Quasiparticles in the Doubled-Semion Loop Gas

Use the graphical technique of section 28.5 (2021 Book) or 30.5 (2022 Book)
to deduce the full fusion table for the doubled-semion model.

(a) First try using the d = −1 algebra (section 30.2, 2021 Book) or 32.2,
2022 Book).

(b) Now try the unitary version of this algebra (section 30.3, 2021 Book or
32.3 2022 Book)

Exercise 30.2 from 2021 Book=

Exercise 32.2 from 2022 Book

Braiding Quasiparticles in the Doubled-Semion Loop Gas

Use the graphical technique (as in Exercise 28.2/30.2 above for toric code)
to calculate the R-matrix for the doubled-semion model.

(a) Show that wrapping an sL all the way around an sR gives no phase.
(b) Show that wrapping an m particle around either an sL or an sR gives

a phase of −1.
(c) Show that wrapping an m particle around another m particle gives no

phase.
(d) [Harder] Use the graphical technique to calculate the phase from ex-

changing two sL particles and the phase for exchanging two sR particles. In
this part of this problem you will get an incorrect sign if you work with the
non-unitary theory (d < 0).


