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Some thoughts about this book

This book originated as part of a lecture course given at Oxford in the
fall of 2016 and then again in 2017 and 2018.

The idea of this book is to give a general introduction to topological
quantum ideas. This includes topological quantum field theories, topo-
logical quantum memories, topological quantum computing, topological
matter and topological order — with emphasis given to the examples of
toric code, loop gases, string nets, and particularly quantum Hall effects.
The book is aimed at a physics audience (i.e., we avoid the language of
category theory like the plague!), although some mathematicians may
also find the perspectives presented here to be useful.

How to read this book

The book was originally written to be read roughly sequentially. How-
ever, you may be able to jump around quite a bit depending on your
interests. When the toric code is introduced, it is quite independent of
the prior chapters on the general structure of TQFTs.

I should also mention that chapter 3 introduces some basic mathemat-
ics that many people may know, and even if you don’t, you might be
able to carry on without fully reading this chapter (maybe just return
to it if you get confused!).

There are often small hitches and caveats that are swept under the rug
in the name of simplifying the discussion. I try to footnote these caveats
when they occur. Later in the book (in an appendix?) we introduce
the bookkeeping rules for TQFTs more carefully. Anyone needing an
authoritative set of usable rules for calculations should refer to that
part of the book.

A list of useful references with commentary is given at the end of the
book.
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Introduction: History of
Topology, Knots, Peter Tait and
Lord Kelvin

The field of quantum topology inhabits a beautiful nexus between math-
ematics, computer science and physics. Within the field of physics, it has
been fundamental to a number of subfields. On the one hand, topology
and topological matter are key concepts of modern condensed matter
physics'. Similarly, in the field of quantum information and quantum
computation, topological ideas are extremely prominent?. At the same
time much of our modern study of topological matter is rooted in ideas of
topological quantum field theories that developed from the high energy
physics, quantum gravity®, and string theory community starting in the
1980s. These earlier works have even earlier precidents in physics and
mathematics. Indeed, the historical roots of topology in physics date all
the way back to the 1800s which is where we will begin our story.

In 1867 Lord Kelvin* and his close friend Peter Tait were interested in
a phenomenon of fluid flow known as a smoke ring® — configurations of
fluid flow where lines of vorticity form closed loops as shown in Fig. 1.1.
Peter Tait built a machine that could produce smoke rings, and showed
it to Kelvin who had several simultaneous epiphanies. First, he realized
that there should be a theorem (now known as Kelvin’s circulation theo-
rem) stating that in a perfectly dissipationless fluid, lines of vorticity are
conserved quantities, and the vortex loop configurations should persist
for all time. Unfortunately, few dissipationless fluids exist — and the
ones we know of now, such as superfluid helium at very low tempera-
tures, were not discovered until the next century®. However, at the time,
scientists incorrectly believed that the entire universe was filled with a
perfect dissipationless fluid, known as Luminiferous Aether, and Kelvin
wondered whether one could have vortex loops in the Aether.

At the same time, one of the biggest mysteries in all of science was
the discreteness and immutability of the chemical elements. Inspired by
Tait’s smoke ring demonstration, Kelvin proposed that different atoms
corresponded to different knotting configurations of vortex lines in the
Aether. This theory of vortex atoms was appealing in that it gave a

4 Actually, in 1867 he was just William Thomson, but would later be elevated to the
peerage and take the name Lord Kelvin after the River Kelvin that flowed by his
laboratory.

IThe 2016 Nobel Prize was awarded
to Kosterlitz, Thouless, and Haldane
for the introduction of topological ideas
into condensed matter physics. The
topic of this book is a great-grand-
daughter of some of those ideas. In
chapter *** we will discuss some of the
key works that this Nobel prize hon-
ored.

2We will see this in chapters *** below.

3See chapter 6.

Fig. 1.1 A smoke ring or vortex loop
is an invisible ring in space where the
fluid flows around the invisible ring as
shown by the arrows. The whole thing
moves out of the plane of the page at
you as the fluid circulates.

5A talented smoker can produce a
smoke ring from their mouth.

61n fact Helium was not even discov-
ered yet in 1867!



2 Introduction: History of Topology, Knots, Peter Tait and Lord Kelvin
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Fig. 1.2 The simplest few knots made
from one strand of string. The top
knot, a simple loop, is known as the
“unknot”, and corresponds to the sim-
ple smoke ring in Fig. 1.1. The second
knot from the top, known as the trefoil,
is not the same as its mirror image (see
exercise 2.1)

reason why atoms are discrete and immutable — on the one hand there
are only so many different knots that one can make. (See for example,
the list of the simplest few knots you can form from one piece of string
shown in Fig. 1.2.) On the other hand, by Kelvin’s circulation theorem,
the knotting of the vortices in a dissipationless fluid (the Aether) should
be conserved for all time. Thus, the particular knot could correspond to
a particular chemical element, and this element should never change to
another one. Hence the atoms should be discrete and immutable!

For several years the vortex theory of the atom was quite popular,
attracting the interest of other great scientists such as Maxwell, Kirch-
hoff, and J. J. Thomson (no relation). However after further research
and failed attempts to extract predictions from this theory, the idea of
the vortex atom lost popularity.

Although initially quite skeptical of the idea, Tait eventually came
to believe that by building a table of all possible knots (knotted con-
figuration of strands such that there are no loose ends) he would gain
some insight into the periodic table of the elements, and in a remarkable
series of papers he built a catalogue of all knots with up to 7 crossings
(the first few entries of the table being shown in Fig. 1.2). From his
studies of knots, Tait is viewed as the father of the mathematical theory
of knots, which has been quite a rich field of study since that time (and
particularly during the last fifty years).

During his attempt to build his “periodic table of knots”, Tait posed
what has become perhaps the fundamental question in mathematical
knot theory: how do you know if two pictures of knots are topologically
identical or topologically different. In other words, can two knots be
smoothly deformed into each other without cutting any of the strands.
Although this is still considered to be a difficult mathematical problem,
a powerful tool that helps answer this question is the idea of a knot
invariant which we will study in the next chapter. Shortly, it will become
clear how this idea is related to physics.

Although Tait invented a huge amount of mathematics of the theory
of knots” and developed a very extensive table of knots, he got no closer
to understanding anything about the periodic table of the atoms. In
his later life he became quite frustrated with his lack of progress in this
direction and he began to realize that understanding atoms was probably
unrelated to understanding knots. Tait died® in 1901 not realizing that
his work on the theory knot would be important in physics, albeit for
entirely different reasons.

7Some of his conjectures were way ahead of their time — some being proven only in
the 1980s or later! See Stoimenow [2008] for a review of the Tait conjectures proven
after 1985.

8Peter Tait was also a huge fan of golf and wrote some beautiful papers on the
trajectory of golf balls. His son, Freddie Tait, was a champion amateur golfer, being
the top amateur finisher in the British Open six times and placing as high as third
overall twice. Freddie died very young, at age 30, in the Boer wars in 1900. This
tragedy sent Peter into a deep depression from which he never recovered.



Kauffman Knot Invariant and
Relation to Physics

The purpose of this chapter is to introduce you to a few of the key ideas
and get you interested in the subject!

2.1 The idea of a knot invariant

Topological equivalence. We say two knots are topologically equiva-
lent if they can be deformed smoothly into each other without cutting!.
For example, the picture of a knot (or more properly, the picture of the
link of two strings) on the left of Fig. 2.1 is topologically equivalent to
the picture on the right of Fig. 2.1.

While it appears easy to determine whether two simple knots are
topologically equivalent and when they are not, for more complicated
knots, it becomes extremely difficult to determine equivalence.

A Knot Invariant is a mapping from a knot (or a picture of a knot)
to an output via a set of rules which are cooked up in such a way that
two topologically equivalent knots give the same output. (See Fig. 2.2.)

To demonstrate how knot invariants work, we will use the example of
the Kauffman invariant?. The Kauffman invariant was actually invented
by V. Jones who won the Fields medal for his work on knot theory[Jones,
1985]. Kauffman explained this work in very simple terms.

To define the Kauffman Invariant, we first choose a number, A.
For now, leave it just a variable, although later we may give it a value.
There are two rules to the Kauffman invariant. First, a simple loop of
string (with nothing going through it) can be removed from the diagram

LA few pieces of fine print here. (1) T am not precise about knot versus link. Strictly
speaking a knot is a single strand, and a link is more generally made of multiple
strands. Physicists call them all knots. A knot can be defined as a particular
embedding of a circle (S1) into a three dimensional reference manifold such as R3
(regular 3-dimensional space) with no self-intersections. A link is an embedding of
several circles into the three dimensional manifold with no intersections. (2) When
I say “topologically equivalent” here I mean the concept of regular isotopy (See
section 2.2.1 and 3.4) . This asks the question of whether there is a continuous
smooth family of curves from the initial knot to the final knot — however to be more
precise, as we will see below in section 2.2.1, we should think of the curves as being
thickened to ribbons

2Be warned: there are multiple things that are called the Kauffman invariant. The
one we want is the “bracket polynomial” multiplied by d. See Kauffman [1987].

Fig. 2.1 Topological equivalence of
two knots. The knot on the left can be

deformed continuously into the knot on
the right without cutting any strands.

Knot
fuchl that”
opologica
Rules eqﬁiva%ent v

knots give the
same output

Y
Output

Fig. 2.2 Schematic description of a
knot invariant as a set of rules taking an
input knot to some mathematical out-
put such that topologically equivalent
knots give the same output.



4 Kauffman Knot Invariant and Relation to Physics

3The word “skein” is an infrequently
used English word meaning loosely
coiled yarn, or sometimes meaning an
element that forms part of a compli-
cated whole (probably both of these are
implied for our mathematical usage).
“Skein” also means geese in flight, but
I suspect this is unrelated.

4To a mathematician the Kauffman in-
variant is an invariant of regular isotopy
— see Section 2.2.1 below.

5The converse is not true. If two knots
give the same output, they are not nec-
essarily topologically equivalent. It is
an open question whether there are any
knots besides the simple unknot which
has Kauffman invariant d.

and replaced with the number
d=—A% - A2 (2.1)

The second rule replaces a diagram with a crossing of strings by a sum of
two diagrams where these strings don’t cross — where the two possible
uncrossings are weighted by A and A~! respectively as shown in Fig. 2.3.
This type of replacement rule is known as a skein rule.?

— A2 A2 — ¢

Xo=a )

Fig. 2.3 Rules for evaluating the Kauffman Invariant.

AN
7\

The general scheme is to use the second rule of Fig. 2.3 to remove
all crossings of a diagram. In so doing, one generates a sum of many
diagrams with various coefficients. Then once all crossings are removed,
one is just left with simple loops, and each loop can just be replaced by
a factor of d.

To give an example of how these rules work we show evaluation of
the Kauffman invariant for the simple knot in the upper left of Fig. 2.4.
The output of the calculation is that the Kauffman invariant of this
knot comes out to be d. This results is expected since we know that the
original knot (in the upper left of the figure) is just a simple loop (the
so-called “unknot”) and the Kauffman rules tell us that a loop gets a
value d. We could have folded over this knot many many times* and
still the outcome of the Kauffman evaluation would be d.

The idea of a knot invariant seems like a great tool for distinguishing
knots from each other. If you have two complicated knots and you do
not know if they are topologically equivalent, you just plug them into
the Kauffman machinery and if they don’t give the same output then
you know immediately that they cannot be deformed into each other
without cutting®. However, a bit of thought indicates that things still
get rapidly difficult for complicated knots. In the example of Fig. 2.4
we have two crossings, and we ended up with 4 diagrams. If we had a
knot with N crossings we would have gotten 2%V diagrams, which can be
huge! While it is very easy to draw a knot with 100 crossings, even the
world’s largest computer would not be able to evaluate the Kaufffnman
invariant of this knot! So one might then think that this Kauffman
invariant is actually not so useful for complicated knots. We will return
to this issue later in Section 2.4.



2.1 The idea of a knot invariant 5

( ) ( )
=AqA + A7! § A1) a O ' A18

L O ) Lo ,
= A+ d + d? + A=2d?

\

—d?
=d (/)

Fig. 2.4 Example of evaluation of the Kauffman invariant for the simple twisted loop in the upper
left. The light dotted red circle is meant to draw attention to where we apply the Kauffman crossing
rule first to get the two diagrams on the right hand side. After applying the Kauffman rules again,
we have removed all crossings and we are left only with simple loops, which each get the value d. In
the penultimate line we have used the definition of d to replace A% + A=2 = —d. The fact that we
get d in the end of the calculation is expected since we know that the original knot is just a simple
loop (the so-called “unknot”) and the Kauffman rules tell us that a loop gets a value d.



6 Kauffman Knot Invariant and Relation to Physics

6 There is also some discussion of “topo-
logical” systems in 1+1 D later in sec-
tion ***.

time

-

Fig. 2.5 A space-time process show-
ing world lines of particles for a
241 dimensional system (shown as the
shaded disk at the bottom). The X’s
mark the points in space-time where
particles-anti-particle pairs are either
pair-created or pair-annihilated.

2.2 Relation to Physics

There is a fascinating relationship between the Kauffman invariant and
quantum physics. For certain types of so-called “topological quantum
systems” the amplitudes of space-time processes can be directly calcu-
lated via the Kauffman invariant.

We should first comment that most of what we will discuss in this
book corresponds to 2 dimensional systems plus 1 dimension of time.
There are topological systems in 3+1 dimension (and higher dimensions
as well!) but more is known about 2+1 D and we will focus on that at
least for now.°

Figure 2.5 shows a particular space-time process of particle world lines.
At the bottom of the figure is shown the shaded 2 dimensional system
(a disk). At some early time there is a pair creation event — a particle-
antiparticle appear from the vacuum, then another pair creation event;
then one particle walks around another, and the pairs come back to-
gether to try to reannihilate. At the end of the process, it is possible
that the particles do reannihilate to the vacuum (as shown in the di-
agram), but it is also possible that (with some probability amplitude)
the particle-antiparticle pairs form bound states that do not annihilate
back to the vacuum.

In a topological theory, the quantum amplitude for these processes
depends on the topology of the world lines, and not on the detailed
geometry (IL.e., the probability that the particles reannihilate versus form
bound states). In other words, as long as the topology of the world lines
looks like two linked rings, it will have the same quantum amplitude as
that shown in Fig. 2.5. It should surprise us that systems exist where
amplitudes depend only on topolgy, as we are used to the idea that
amplitudes depend on details of things, like details of the Hamiltonian,
how fast the particles move, and how close they come together. But in
a topological theory, none of these things matter. What matters is the
topology of the space-time paths.

What should be obvious here is that the quantum amplitude of a
process is a knot invariant. It is a mapping from a knot (made by the
world lines) to an output (the amplitude) which depends only on the
topology of the knot. This connection between quantum systems and
knot invariants was made famously by Ed Witten, one of the world’s
leading string theorists [Witten, 1989]. He won the Fields medal along
with Vaughan Jones for this work.

Such topological theories were first considered as an abstract possi-
bility, mainly coming from researchers in quantum gravity (see chapter
*#%). However, now several systems are known in condensed matter
which actually behave like this. While not all topological theories are
related to the Kauffman invariant, many of them are (There are other
knot invariants that occur in physical systems as well — including the
famous HOMFLY invariant[Freyd et al., 1985]). A brief table of some of
the physical systems that are believed to be related to nontrivial knot
invariants is given in Table 2.1.



(1) SU(2)2 class. For these, the Kauffman invariant gives
the quantum amplitude of a process by using the value
A = je~ "™/ (22+2) — j3/4 This is also known as “Ising”
anyons’. Possibly physical realizations include

e v = 5/2 Fractional Quantum Hall Effect (2D elec-
trons at low temperature in high magnetic field). We
will say more about FQHE later.

e 2D Films of exotic superconductors, particularly
SI‘QRUO4

e 2D Films of 3HeA superfluids.

e A host of “engineered” structures that are designed
to have these interesting topological properties. Typ-
ically these have a combination of spin-orbit coupling,
superconductivity, and magnetism of some sort. Re-
cent experiments have been quite promising.

(2) SU(2)3 class. For this, the Kauffman invariant gives the
quantum amplitude of a process by using the value A =
ie~1m/(2243)) — j4/5  The only physical system known in
this class is the v = 12/5 Fractional quantum hall effect.

(3) SU(2)4 class. For this, the Kauffman invariant gives
the quantum amplitude of a process by using the value
A = e/ EH)) = j5/6 Tt is possible that v = 2 +2/3
Fractional quantum hall effect is in this class.

(4) SU(2); class Also known as semions. These are proposed
to be realized in rotating boson fractional quantum Hall
effect (although not convincingly produced in experiment
yet. See comments in chapter ***). This corresponds to a

fairly trivial knot invariant as we will see later in section
kokok

(5) SU(3)2 class. This corresponds to a case of the HOM-
FLY knot invariant rather than the Kauffman invariant.
It is possible that the unpolarized v = 2 + 4/7 Fractional
quantum hall effect is in this class.

Table 2.1 Table of some interesting topological systems related to knot invariants.
Note that these are closely related to, but not precisely the same as SU(2); Chern-
Simons theory (which we discuss in chapter 5). The slight differences are related to
extra phases that appear in braiding. See also chapter ****. GIVE A REF FOR
EACH?

In addition there are a host of complicated systems that could in
principle be engineered but are much too hard for current technology to
contemplate. There are also other many other quantum hall states that
are also topological, but have corresponding knot invariants are fairly
trivial, as we will later see in ***,

2.2 Relation to Physics 7

"The Ising conformal field theory, de-
scribes the critical point of the 2D
classical Ising model. We will dis-
cuss the relationship between confor-
mal field theory and topological theo-
ries in chapters 21 and ***

8Two nobel prizes have been given for
work on Helium-3 superfluidity.



8 Kauffman Knot Invariant and Relation to Physics

9In mathematics we say they are am-
bient isotopic but not regular isotopic!
(See section 3.4)

2.2.1 Twist and Spin-Statistics

Before moving on, let us do a bit of more careful examination of the
Kauffman invariant. To this end, let us examine a small loop in a piece of
string (as shown in Fig. 2.6) and try to evaluate its Kauffman invariant.

&
O
(5

/

Fig. 2.6 Evaluation of a twist loop in a string. The dotted lines
going off the top and bottom of the diagrams mean that the string
will be connected up with itself, but we are not concerned with any
part of the knot except for piece shown. The result of this calculation
is that removal of the little twist in the loop incurs a factor of —A3.

We see from the calculation, that the little loop in the string has value
of —A3 compared to a straight string. But this seems to contradict what
we said earlier! We claimed earlier that any two knots that can be de-
formed into each other without cutting should have the same Kauffman
invariant, but they don’t!

The issue here is that the unlooped string on the right and the looped
string on the left are, in fact, not topologically equivalent®. To see this
we should think of the string as not being infinitely thin, but instead
having some width, like a garden hose, or a “ribbon”!?. If we imagine
straightening a thick string (not an infinitely thin string) we realize that
pulling it straight gives a twisted string (see fig 2.7) — anyone who has
tried to straighten a garden hose will realize this!

10We should thus think of our knots as not just being a simple embedding of a
circle S' into a three manifold R3, but rather an embedding of a ribbon. This is
equivalent to specifying an orthogonal vector at each point along knot which gives
the orientation of the ribbon cross section at each point. When one draws an knot
as a line, one must have a convention as to what this means for the orientation of
the ribbon. See comment on blackboard framing at the end of this section.
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Fig. 2.7 Pulling straight a small loop introduces a twist in the
string. This twist can be replaced with a factor of —A3.

So the looped string is equivalent to a string with a self-twist, and this
is then related to a straight string by the factor of —A3. In fact, this is a
result we should expect in quantum theory. The string with a self-twist
represents a particle that stays in place but rotates around an axis. In
quantum theory, if a particle has a spin, it should accumulate a phase
when it does a 27 rotation, and indeed this factor of —A? is precisely
such a phase in any well defined quantum theory.

In fact, Fig. 2.7 is a very slick proof of the famous spin statistics the-
orem. In the left picture with the loop, we have two identical particles
that change places. When we pull this straight, we have a single particle
that rotates around its own axis. In quantum theory, the phases accu-
mulated by these two processes must be identical. As we will see below
in chapter 4, in 2+1D this phase can be arbitrary (not just +1, or -1),
but the exchange phase (statistical phase) and the twist phase (the spin
phase) must be the same'!.

As a side comment, one can easily construct a knot invariant that
treats the looped string on the left of Fig. 2.6 as being the same as the
straight piece of string. One just calculates the Kauffman invariant and
removes a factor of —A3 for each self twist that occurs'?. This gives the
famed Jones Polynomial knot invariant.

Blackboard Framing

Since it is important to specify when a strand of string has a self-twist
(as in the middle of Fig. 2.7) it is a useful convention to use so-called
blackboard framing. With this convention we always imagine that the
string really represents a ribbon and the ribbon always lies in the plane
of the blackboard. An example of this is shown in Fig. 2.8. If we intend
a strand to have a self twist, we draw it as a loop as in the left of Fig. 2.7
or the left of Fig. 2.6.

2.2 Relation to Physics 9

M1y the most interesting case of non-
Abelian statistics, there may be mul-
tiple possible exchange phases for two
particles, although this does not effect
the equivalence of diagrams stated here.
We will discuss this more in chapter 4.

12m, properly count the self twists, one
calculates the so-called “writhe” of the
knot. Give the string an orientation
(a direction to walk along the string)
and count +1 for each positive cross-
ing and -1 for each negative crossing
where a positve crossing is when, trav-
eling in the direction of the string that
crosses over, one would have to turn left
to switch to the string that crosses un-
der. If we orient the twisted string on
the left of Fig. 2.6 as up-going it then
has a negative crossing by this defini-
tion.
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Fig. 2.8 Blackboard framing. The knot drawn on the left represents the ribbon on
the right, where the ribbon always lies flat in the plane of the page (i.e., the plane of
the blackboard).

2.3 Bras and Kets

For many topological theories (the so-called non-abelian theories) the
physical systems have an interesting, and very unusual property. Imag-
ine we start in a the ground state (or vacuum) state of some systems
and create two particle-hole pairs, and imagine we tell you everything
that you can locally measure about these particles (their positions, if
their spin, etc etc). For most gapped systems (insulators, superconduc-
tors, charge density waves) once you know all of the locally measurable
quantities, you know the full wavefunction of the system. But this is
not true for topological systems. As an example, see Fig. 2.9.

©
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Fig. 2.9 Two linearly independent quantum states that look iden-
tical locally but have different space-time history. The horizontal
plane is a space-time slice at fixed time, and the diagrams are all
oriented so time runs vertically.
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Fig. 2.10 Kets are turned into bras by reversing time.

To demonstrate that these two different space-time histories are lin-
early independent quantum states, we simply take inner products as
shown in Fig. 2.11 by gluing together a ket with a bra. Since (0]|0) =



(1]1) = d? but (0[]1) = d, we see that |0) and |1) must be linearly in-
dependent, at least for |d| # 1. (We also see that the kets here are
not properly normalized, we should multiply each bra and ket by 1/d in
order that we have normalized states.)

(00) =

(i) = - @ ~
Fig. 2.11 Showing that the kets |0) and |1) are linearly indepen-

dent. For |d| # 1 the inner products show they must be linearly
independent quantities.

We can think of the |0) and |1) states as being particular operators
that produce particle-hole pairs from the vacuum, and (up to the issue
of having properly normalized states) the inner product produced by
graphical gluing a bra to a ket is precisely the inner product of these
two resulting states. So for example, the inner product (0|1) as shown in
the bottom of Fig. 2.11 can be reinterpreted as starting from the vacuum,
time evolving with the operator that gives |0) then time evolving with
the inverse of the operator that produces |1) to return us to the vacuum.

We can even do something more complicated, like insert a braid be-
tween the bra and the ket as shown in Fig. 2.12. The braid makes a
unitary operation on the two dimensional vector space spanned by |0)
and |1).

2.3 Bras and Kets 11
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3 0ne of my favorite quotes is “Any id-
iot with a two state system thinks they
have a quantum computer.” The objec-
tive here is to show that we are not
just any idiot — that quantum com-
puting this way is actually a good idea!
We will discuss quantum computation
more in chapter ***

Q E
Q\ = (0|Braid|0)
0) =

Fig. 2.12 Inserting a braid between the bra and the ket. The braid
performs a unitary operation on the two dimensional vector space
spanned by |0) and |1)

2.4 Quantum Computation with Knots

Why do we care so much about topological systems and knot invariants?
A hint is from the fact that we wrote states above as |0) and |1). This
notation suggests the idea of qubits'3, and indeed this is one very good
reason to be interested interested.

It turns out that many topological quantum systems can compute
quanitites efficiently that classical computers cannot. To prove this,
suppose you wanted to calculate the Kauffman invariant of a very com-
plicated knot, say with 100 crossings. As mentioned above, a classical
computer would have to evaluate 2'°° diagrams, which is so enormous,
that it could never be done. However, suppose you have a topological
system of Kauffman type in your laboratory. You could actually ar-
range to physically measure the Kauffman invariant'*. The way we do
this is to start with a system in the vacuum state, arrange to “pull”
particle-hole (particle-antiparticle) pairs out of the vacuum, then drag
the particles around in order to form the desired knot, and bring them

14Perhaps the first statements ever made about a quantum computer were made by
the Russian mathematician Yuri Manin, in 1980. He pointed out that doing any
calculation about some complicated quantum system with 100 interacting particles
is virtually impossible for a classical computer. Say for 100 spins you would have to
find the eigenvalues and eigenvectors of a 2100 dimensional matrix. But if you had the
physical system in your lab, you could just measure its dynamics and answer certain
questions. So in that sense the physical quantum system is able to compute certain
quantities, i.e., its own equations of motion, that a classical computer cannot. In the
following year Feynman starting thinking along the same lines and asked the question
of whether one quantum system can compute the dynamics of another quantum
system — which starts getting close to the ideas of modern quantum computation.
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back together to reannihilate. Some of the particles will reannihilate,
and others will refuse to go back to the vacuum (forming bound states
instead). The probability that they all reannihilate is (up to a normal-
ization'®) given by the absolute square of the Kauffman invariant of the
knot (since amplitudes are the Kauffman invariant, the square of the
Kauffman invaraint is the probabiltiy). Even estimation of the Kauff-
man invariant of a large knot is essentially impossible for a classical
computer, for almost all values of A. However, this is an easy task if
you happen to have a topological quantum system in your lab!'® Thus
the topological quantum system has computational ability beyond that
of a classical computer.

It turns out that the ability to calculate Kauffman invariant is suffi-
cient to be able to do any quantum computation. One can use this
so-called topological quantum computer to run algoritms such as
Shor’s famous factoring (i.e., code breaking) algorithm!”. The idea of
using topological systems for quantum computation is due to Michael
Freedman and Alexei Kitaev!®.

So it turns out that these topological systems can do quantum com-
putation. Why is this a good way to do quantum computation?!3. First
we must ask about why quantum computing is hard in the first place.
In the conventional picture of a quantum computer, we imagine a bunch
of two state systems, say spins, which act as our qubits. Now during
our computation, if some noise, say a photon, or a phonon, enters the
system and interacts with a qubit, it can cause an error or decoherence,
which can then ruin your computation. And while it is possible to pro-
tect quantum systems from errors (we will see in section *** below how
you do this) it is very hard.

Now consider what happens when noise hits a topological quantum
computer. In this case, the noise may shake around a particle, as shown
in Fig. 2.13. However, as long as the noise does not change the topology
of the knot, then no error is introduced. Thus the topological quan-
tum computer is inherently protected from errors. (of course sufficiently
strong noise can change the topology of the knot and still cause errors.)

151f we pull a single particle-hole pair from the vacuum and immediately bring them
back together, the probability that they reannihilate is 1. However, the spacetime
diagram of this is a single loop, and the Kauffman invariant is d. The proper normal-
ization is that each pair pulled from the vacuum and then returned to the vacuum
introduces a 1/v/d factor in front of the Kauffman invariant.

16The details of this are a bit subtle and are discussed by Aharonov et al. [2009];
Aharonov and Arad [2011]; Kuperberg [2015].

17See Nielsen and Chuang [2000], for example, for more detail about quantum com-
putation in general.

18Freedman is another Fields medalist, for his work on the Poincare conjecture in
4d. Alexei Kitaev is one of the most influential scientists alive, a MacArthur winner,
Milnor Prize winner, etc. Both smart people.
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19 Electronic systems can be made two
dimensional in several ways. Most usu-
ally electrons are confined in between
layers of semiconductors in a so-called
heterostructure quantum well. How-
ever, one can also use substances like
graphene which are only one atom thick
and allow electron motion strictly in 2d

20A  comment in comparing this
paradigm to the common paradigm of
high energy physics: In high energy
there is generally the idea that there
is some grand unified theory (GUT)
at very high energy scale and it is
extremely symmetric, but then when
the universe cools to low temperature,
symmetry breaks (such as electro-weak
symmetry) and we obtain the physics
of the world around us. The paradigm
is opposite here. The electrons in
magnetic field at high temperature
have no special symmetry. However,
as we cool down to lower temperature,
a huge symmetry emerges. The topo-
logical theory is symmetric under all
diffeomorphisms (smooth distortions)
of space and time.

noise

=

4 4

Fig. 2.13 The effect of noise on a topological quantum computa-
tion. As long as the noise does not change the topology of the knot,
then no error is introduced.

2.5 Some quick comments about Fractional
Quantum Hall Effect

There will be chapters later about Fractional Quantum Hall Effect (FQHE).
But it is worth saying a few words about FQHE as a topological system
now.

FQHE occurs in two dimensional electronic systems'® in high mag-
netic field at low temperature (typically below 1K). There are many
FQHE states which are labeled by their so called filling fraction v = p/q
with p and ¢ small integers. The filling fraction can be changed in ex-
periment (we will discuss this later in chapter ***). The FQHE state
emerges at low temperature and is topological?’.

How do we know that the system is topological? There are not a
whole lot of experiments that are easy to do on quantum Hall systems,
since they are very low temperature and complicated experiments to do.
However, one type of experiment is fairly straightforward — a simple
electrical resisitance measurement, as shown in Fig. 2.15. In the top of
the figure, the so-called longitudinal resistance is measured — where the
current runs roughly parallel to the voltage. In this case the measured
voltage is zero — like a superconductor. This shows that this state of
matter has no dissipation, no friction.

V=0
2D electron sample

field Dissipationless Flow

Fig. 2.14 Measurement of longitudinal resistance in FQHE experiment.
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V = (h/e?)(1/v)I
2D electron sample (h/e*)(1/v)
~ in B-field Quantized Resistance

Fig. 2.15 Measurement of Hall resistance in FQHE experiment.

The measurement in the lower half of the figure is more interesting.
In this case, the Hall voltage is precisely quantized as V = (h/e?)(1/v)I
where [ is the current, h is Plank’s constant, e the electron charge and
v = p/q is a ratio of small integers. This quantization of V/I is ex-
tremely precise — to within about a part in 10'°. This is like measuring
the distance from London to Los Angeles to within a millimeter. Exper-
iments of this sort are (soon to be) used in the metrological definition
of the Ohm. What is most surprising is that the measured voltage does
not depend on details, such as the shape of the sample, whether there is
disorder in the sample, or where you put the voltage leads or how you
attach them as long as the current and voltage leads are topologically
crossed, as they are in the lower figure, but not in the upper figure. We
should emphasize that this is extremely unusual. If you were to mea-
sure the resistance of a bar of copper, the voltage would depend entirely
on how far apart you put the leads and the shape of the sample. This
extremely unusual independence of all details is a strong hint that we
have something robust and topological happening here.

Finally we can ask about what the particles are that we want to braid
around each other in the FQHE case. These so-called quasiparticles are
like the point-vortices of the FQHE superfluid.

So in fact, Kelvin was almost right! He was thinking about vortices
knotting in the dissipationless aether. Here we are thinking about point
vortices in the dissipationless FQHE fluid, but we move the vortices
around in time to form knots!
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Chapter Summary

e Knot invariants, such as the Kauffman invariant, help distinguish
knots from each other.

e The quantum dynamics of certain particles are determined by cer-
tain knot invariants.

e Computation of certain knot invariants is computationally “hard”
on a classical computer, but not hard using particles whose dy-
namics is given by knot invariants.

e Computation by braiding these particles is equivalent to any other
quantum computer.

e Physical systems which have these particles include fractional
quantum Hall effect.

Further Reading

Louis Kauffman, Knots and Physics, World Scientific, (2001), 3ed.

Steven H. Simon,“Quantum Computing with a Twist”, Physics World,
September 2010, p35-40.
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Exercises

Exercise 2.1 Trefoil Knot and the Kauffman (Jones) Invariant
Using the Kauffman rules, calculate the Kauffman Invariant of the Right
and Left handed Trefoil knots. Conclude these two knots are topologically
inequivalent. While this statement appears obvious on sight, it was not proved
mathematically until 1914 (by Max Dehn). It is trivial using this technique!

QD QD

Fig. 2.16 Left and Right Handed Trefoil Knots (on the left and right respectively)

Exercise 2.2 Abelian Kauffman Anyons
Anyons described by the Kauffman invariant with certain special values of
the constant A are abelian anyons — meaning that an exchange introduces

only a simple phase.
/ i0

/ -

(a) For A = +e'™/? (and the complex conjugates of these values), show that
the anyons are bosons or fermions respectively (i.e., e = +1).

(b) For A = +¢"/® (and the complex conjugates of these values) show the
anyons are semions (i.e., el = +i). In fact these are precisely the anyons that
arise for the v = 1/2 fractional quantum Hall effect of bosons (We will discuss
this later in the term. While it is still controversial whether this particular
phase of quantum Hall matter has been produced experimentally as of now,
it is almost certain that it will be produced experimentally and convincingly

within a few years.)
HINT: Aim to show first in the two respective cases that

~_"
= +
”~ N

If you can’t figure it out, try evaluating the Kauffman invariant for a few
knots with these values of A and see how the result arises.






Some Mathematical Basics

Many undergraduates (and even many graduates) do not get any proper
education in advanced mathematics. As such I am including a very short
exposition of most of what you need to know. For much of the book, you
won’t even need to know this much! If you have even a little background
in mathematics, I recommend skipping this chapter and referring back
to the relevant sections only when you need it!

The section on manifolds is used mostly in sections ***

The section on groups is used in sections ***

3.1 Manifolds

We sometimes write R to denote the real line, i.e., it is a space where
a point is indexed by a real number z. We can write R” to denote n-
dimensional (real) space — a space where a point is indexed by n-real
numbers (z1,...,2,). Sometimes people call these spaces “Euclidean”
space.

Definition 3.1 A Manifold is a space that locally looks like a Eu-
clidean space.

3.1.1 Some Simple Examples: Euclidean Spaces and
Spheres

e R"” is obviously a manifold.

e The circle S!, also known as a 1-sphere (hence the notation, the
index 1 meaning it is a 1-dimensional object) is defined as as all
points in a plane equidistant from a central point. Locally this
looks like a line since position is indexed by a single variable (the
“curvature” of the circle is not important locally). Globally, one
discovers that the circle is not the same as a real line, as position
is periodic (if you walk far enough in one direction you come back
to where you start). We sometimes define a circle as a real number
from 0 to 27 which specifies the angle around the circle.

e The 2-sphere S? is what we usually call (the surface of) a sphere
in our regular life. We can define this similarly as all points in R3
equidistant from a central point.

e One can generally define the n-sphere, S™, as points equidistant
from a central point in R*+1.
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Fig. 3.1 This object is topologically a
circle, St.

Fig. 3.2 A Mobius strip is a nonori-
entable manifold (with boundary). If
we move the coordinate axes around
the strip, when they come back to the
same position, the normal vector will
be pointing downwards instead of up-
wards.

Fig. 3.3 A two handled torus is an ori-
entable two-dimensional manifold with-
out boundary. Because it has two holes
we say it has genus two. Two dimen-
sioanl manifolds without boundary are
classified by their genus.

1Alternatively spelled “donut” if you
are from the states and you like coffee.

Often when we discuss a manifold, we will be interested in its topo-
logical properties only. In other words, we will not care if a circle is
dented as shown in Fig. 3.1, it is still topologically S'. Mathematicians
say that two objects that can be smoothly deformed into each other are
homeomorphic, although we will not use this language often.

It is sometimes convenient to view the circle S* as being just the real
line R! with a single point added “at infinity” — think about joining
up 400 with —oco to make a circle. We can do the same thing with the
sphere S2 and R? — this is like taking a big flat sheet and pulling the
boundary together to a point to make it into a bag and closing up the
top (which gives a sphere S2). Obviously the idea generalizes: S is the
same as R? “compactified” with a point at infinity, and so forth.

Orientability

We say a manifold is orientable if we can consistently define a vector nor-
mal to the manifold at all points. Another way of defining orientability
(that does not rely on embedding the manifold in a higher dimension)
is that we should be able to consistently define an orientation of the
coordinate axes at all points on the manifold. Throughout this book we
will almost always assume that all manifolds are orientable.

An example of a nonorientable manifold is the Mobius strip shown
in Fig. 3.2. If we smoothy move the coordinate axes around the strip,
when we come back to the same point, the upward pointing normal will
have transformed into a downward facing normal.

There is a very simple classification of orientable closed two dimen-
sional manifolds without boundary by the number of ”"holes” which is
known as its “genus”. A sphere has no holes, a torus has one hole, a
two handled torus has two holes, and so forth. See Fig. 3.3.

3.1.2 TUnions of Manifolds M; U M,

We can take a “disjoint” union of manifolds, using the notation U. For
example, S* U S! is two circles (not connected in any way). If we think
of this as being a single manifold, it is a manifold made of two disjoint
pieces. Locally it still looks like a Euclidean space.

3.1.3 Products of Manifolds: M35 = M; x M,

One can take the product of two manifolds, or “cross” them together,
using the notation x. We write M3 = My X Ms. This means that a
point in Mj is given by one point in M; and one point in My. This
multiplication is often called the direct or Cartesian product.

e R? = R! x R'. Here, a point in R! is specified by a single real
number. Crossing two of these together, a point in R? is specified
by two real numbers (one in the first R! and one in the second
RY).

e 72 = S x S'. The 2-torus T2, or surface of a doughnut® is the



product of two circles. To see this note that a point on a torus is
specified by two angles, and the torus is periodic in both directions.
Similarly we can build higher dimensional tori (tori is the plural
of torus) by crossing S'’s together any number of times.

3.1.4 Manifolds with Boundary:

One can also have manifolds with boundary. A boundary of a manifold
locally looks like an m-dimensional half-Euclidean space. The interior
of a manifold with boundary looks like a Fuclidean space, and near
the boundary it looks like a half-space, or space with boundary . For
example, a half-plane is a 2-manifold with boundary. An example is
useful:

e The n-dimensional ball, denoted B™ is defined as the set of points
in n dimensional space such that the distance to a central point
is less than or equal to? some fixed radius r. Note: Often the
ball is called a disk and is denoted by D™ (so D™ = B"™). The
nomenclature makes good sense in two dimensions, where what
we usually call a disc is D?. The one-dimensional ball is just an
interval (one-dimensional segment) which is sometimes denoted
I=D'= B.

Note that a boundary of a manifold may have disconnected parts. For
example, the boundary of an interval (segment) in 1-dimension I = B!
is two disconnected points at its two ends>.

One can take cartesian products of manifolds with boundaries too. For
example, consider the interval (or 1-ball) I = B' which we can think of
as all the points on a line with |z| < 1. The cartesian product I x I is
described by two coordinates (x,y) where |z| < 1 and |y| < 1. This is
a square including its interior. However, in topology we are only ever
concerned with topological properties, and a square-with-interior can
be continuously deformed into a circle-with-interior, or a 2-ball (2-disc),
B2,

e The same reasoning gives us the general topological law B" x B™ =
Bn+m.

e The cylinder (hollow tube) is expressed as St x I (two coordinates,
one periodic, one bounded on both sides).

e The solid donut is expressed as D? x S! (= B? x S!), a 2-disc
crossed with a circle.

3.1.5 Boundaries of Manifolds: M; = O0M,.

The notation for boundary is 9, so if M is the boundary of My we
write M1 = OMs. The boundary OM has dimension one less than that
of M.

3.1 Manifolds 21

2This defines an “closed” ball. The
“open” ball would be the set of points
whose distance from the central points
is strictly less than the radius. Physi-
cists are not often concerned with this
difference, but to be precise, we will
usually talk about closed manifolds.

31n the notation of Section 3.1.5 below,
0l = pt U pt where pt means a point
and here U means the union of the two
objects as described above in 3.1.2.
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e The boundary of D?, the 2-dimensional disc is the one dimensional
circle S*.

e More generally, the boundary of B™ (also written as D") is ™71,
It is an interesting topological principle that the boundary of a mani-
fold is always a manifold without boundary. Or equivalently, the bound-

ary of a boundary is the empty set. We sometimes write 9> = 0 or
0(OM) = ) where () means the empty set.

e The boundary of the 3-dimensional ball B3 is the sphere S2. The
sphere S? is a 2-manifold without boundary.

The operation of taking a boundary obeys the Leibnitz rule analogous
to taking derivatives

6(/\/11 X MQ) = (8./\/11) XMy U Mjpx (8./\/12)
Lets see some examples of this:

o Consider the cylinder S' x I. Using the above formula with find
its boundary

AS' x ) =0@SY)YxT u S'xor=58"ust

To see how we get the final result here, start by examining the
first term, (0S') x I. Here, S has no boundary so 95! = ) and
therefore everything before the U symbol is just the empty set. In
the second term the boundary of the interval is just two points
O0I = pt Upt. Thus the second term gives the final result S' U S,
the union of two circles.

e Counsider writing the disc (topologically) as the product of two
intervals B2 = I x I. It is best to think of this cartesian product
as forming a filled-in square. Using the above formula we get

OB* = 0(I xI)=(ptUpt)xI U Ix (ptUpt)
= (JUl)U(UlI)=topUbottom U left U right
= square (edges only) = S*

The formula gives the union of four segments denoting the edges
of the square.

3.2 Groups

A group G is a set of elements g € G along with an operation that we
think of as multiplication. The set must be closed under this multipli-
cation. So if g1, 92 € G then g3 € G where

g3 = g192

where by writing g1¢9o we mean multiply ¢g; by g». Note: gigs is not
necessarily the same as gog1. If the group is always commutative (ie.



9192 = g2g1 for all g1,g2 € G), then we call the group Abelian?. If
there are at least some elements in the group where gi1g2 # gog1 then
the group is called Non-Abelian®.

A group must always be associative

91(9293) = (9192)93 = 919293

Within the group there must exist an identity element which is
sometimes® called e or I or 0 or 1. The identity element satisifies

ge=¢eg=g

for all elements g € G. Each element of the group must also have an
inverse which we write as ¢g~! with the property that

3.2.1

e The group of integers Z with the operation being addition. The
identity element is 0. This group is Abelian.

Some Examples of Groups

e The group {1, —1} with the operation being the usual multiplica-
tion. This is also called the group Zs. The identity element is 1.
We could have also written this group as {0, 1} with the operation
being the usual addition modulo 2, where here the identity is 0.
This group is Abelian.

e The group Zy which is the set of complex numbers e2™*?/N with
p an integer (which can be chosen between 1 and N inclusive) and
the operation being multiplication. This is equivalent to the set of
integers modulo N with the operation being addition. This group
is Abelian.

e The group of permutations of N elements, which we write as Sy
(known as the permutation group, or symmetric group). This
group is Non-Abelian. There are N! elements in the group. Think
of the elements of the group as being a one-to-one mapping from
the set of the first NV integers into itself. For example, in S3, one
of the elements is

1 - 2
g1 = 2 = 1
3 — 3
Another element is
1 - 2
92 = 2 — 3
3 — 1

The multiplication operation gz = gog; is meant to mean, do 1
first, then do 2 (you should be careful to make sure your conven-
tion of ordering is correct. Here we choose a convention that we
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4Named after Abel, the Norwegian
mathematician who studied such
groups in the early 1800s.

5Apparently named after someone
named Non-Abel.

61t may seem inconvenient that the
identity has several names. However,
it is sometimes convenient. If we are
thinking of the group of integers and
the operation of addition, we want to
use O as the identity. If we are think-
ing about the group {1,—1} with the
operation of usual multiplication, then
it is convenient to write the identity as
1. For more abstract groups, e or I is
often most natural.
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"Pronounced “Lee”, named after So-
phus Lie, also a Norwegian Mathemati-
cian of the 1800s. Like Ski-Jumping,
Norway seems to punch above its
weight in the theory of groups.

do the operation written furthest right first. You can choose ei-
ther convention, but then you must stick to it! You will see both
orderings in the literature!) So, if we start with the element 1,
when we do g7 the element 1 gets moved to 2. Then when we do
go the element 2 gets moved to 3. So in the product gog1 we have
1 getting moved to 3. In the end we have

1l

1
g3=gag1 =< 2

3
2
3 — 1

Note that if we multiply the elements in the opposite order we get

a different result (hence this group is Non-Abelian)

94 = g192 =

L1
O W

3.2.2 More Features of Groups

A subgroup is a subset of elements of a group which themselves form
a group. For example, the integers under addition form a group. The
even integers under addition are a subgroup of the integers.

The centralizer of an element g € G often written as Z(g) is the
set of all elements of the group G that commute with g. Le., h € G iff
hg = gh. Note that this set forms a subgroup (proof is easy!). For an
abelian group G the centralizer of any element is the entire group G.

A conjugacy class of an element g € G is defined as the set of
elements ¢’ € G such that ¢’ = hgh™! for some element h € G.

3.2.3 Lie Groups and Lie Algebras

A Lie group’ is a group which is also a manifold. Roughly, a group with
a continuous (rather than discrete) set of elements. Examples include:

e The group of invertible n x n complex matrices. We call this group
GL(n,C). Here GL stands for “general linear”. The identity is the
usual identity matrix. By definition all elements of the group are
invertable.

e The group of invertible n x n real matrices. We call this group
GL(n,R).

e The group, SU(2), the set of 2 by 2 unitary matrices with unit
determinant. In this case the fact that this is also a manifold can
be made particularly obvious. We can write all SU(2) matrices as

1 +1ry —x3+1x4
T3 +1ry X1 — T2

with all z; any real numbers with the constraint that z} + z3 +
23 4+ 23 = 1. Obviously the set of four coordinates (w1, z2, 3, z4)
with the unit magnitude constraint describes the manifold S®.



e SU(N), the group of unitary N by N matrices of determinant one
is a Lie group

e SO(N), the group of real rotation matrices in N dimensions is a
Lie group.

e The vector space R"™ with the operation being addition of vectors,
is a Lie group.

Note that certain Lie groups are known as “simple” because as man-
ifolds they have no boundaries and no nontrivial limit points (For ex-
ample, GL(n) is not simple because there is a nontrivial limit — you
can continuously approach matrices which have determinant zero (or
are not invertable) and are therefore not part of the group. The set of
simple Lie groups (including, SU(N) and SO(N) and just a few others)
is extremely highly studied.

A Lie Algebra is the algebra generated by elements infinitesimally
close to the identity in a Lie group®. For matrix valued Lie groups G,
we can write any element g € G as

g=eX =1+ X +(X)?/2+...

where X is an element of the corresponding Lie algebra (make it have
small amplitude such that g is infinitesimally close to the identity). Con-
ventionally if a Lie group is denoted as G the corresponding Lie algebra
is denoted g.

e For the Lie group SU(2), we know that a general element can be
written as ¢ = exp(in - o) where n is a real three-dimensional
vector and o are the Pauli matrices. In this case io, i0y and io,
are the three generators of the Lie algebra su(2) (in the, so-called,
fundamental representation).

e For the Lie group GL(n,R) the corresponding Lie algebra gl(n, R)
is just the algebra of n x n real matrices.

3.2.4 Representations of Groups:

A representation is a group homomorphism. This means it is a map-
ping from one group to another which preserves multiplication. We will
be concerned with the most common type of representation, which is
a homomorphism into the general linear group, ie, the group of ma-
trices. Almost always we will work with complex matrices. Thus an
n-dimensional representation is a mapping p to n-dimensional complex
matrices
p:G— GL(n,C)

preserving multiplication. Le.,

p(g1)p(g2) = p(9192)

for all ¢g1,92 € G.
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8A slightly more rigorous definition is
that a Lie algebra is an algebra of el-
ements u,v,w... which can be added
with coefficients a,b,c to give X =
au—+bv+cw+. .. where we have a com-
mutator [-,-] which satisfies [X, X] = 0
for all X as well as bilinearity [au +
v, X] = au, X] + bv, X] and simi-
larly [X,au + bv] = a[X,u] + b[X,v]
for all X, a,b,u,v, and finally we must
have the Jacobi identity [[X,Y],Z] +
[IY, 21, X] + (12, X, Y] = 0.
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Typically in quantum mechanics we are concerned with representa-
tions which are unitary, i.e., p(g) is a complex unitary matrix of some
dimension. (In case you don’t remember, a unitary matrix U has the
property that UUT = UTU = 1).

A representation is reducible if the representing matrices decomposes
into block diagonal form. I.e., p is reducible if p = p; ® po for two
representations p; and py. An irreducible representation is one that
cannot be reduced.

An amazing fact from representation theory of discrete groups is that
the number of irreducible representations of a group is equal to the
number of distinct conjugacy classes.

Representation theory of groups is a huge subject, but we won’t dis-
cuss it further here!

3.3 Fundamental Group II;(M)

A powerful tool of topology is the idea of the fundamental group of a
manifold M which is often called the first homotopy group, or Iy (M).
This is essentially the group of topologically different paths through the
manifold starting and ending at the same point.

First, we choose a point in the manifold. Then we consider a path
through the manifold that starts and ends at the same point. Any other
path that can be continuously deformed into this path (without changing
the starting point or ending point) is deemed to be topologically equiva-
lent (or homeomorphic, or in the same equivalence class). We only want
to keep one representative of each class of topologically distinct paths.

These topologically distinct paths form a group. As one might expect,
the inverse of a path (always starting and ending at the same point) is
given by following the same path in a backward direction. Multiplication
of two paths is achieved by following one path and then following the
other to make a longer path.

3.3.1 Examples of Fundamental Groups

e If the manifold is a circle S* the topologically distinct paths (start-
ing and ending at the same point) can be described by the number
n of clockwise wrappings the path makes around the circle before
coming back to its starting point (note n can be 0 or negative as
well). Thus the elements of the fundamental group are indexed by
a single integer. We write I1;(S!) = Z.

e If the manifold is a torus S! the topologically distinct paths can
be described by two integers indicating the number of times the
path winds around each handle. We write I1;(S* x S1) = Z x Z.

It is in fact, easy to prove that IIy (M7 x My) = II;(M;) x II3(M2).

e A fact known to most physicists is that the the group of rotations
of three dimensional space SO(3) is not simply connected — a 27
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rotation (which seems trivial) cannot be continuously deformed
to the trivial rotation, whereas a 47 rotation can be continuously
deformed to the trivial rotation.’ Correspondingly the fundama-
mental group is the group with two elements IT; (SO(3)) = Zo.

3.4 Isotopy, Reidermeister Moves

We ran into the idea of isotopy in chapter 2. Two knots (or two pictures
of knots) are isotopic if one can be deformed into each other other with-
out cutting any of the strands. Usually this is referred to as “ambient
isotopy”. In order for two pictures of knots to be ambient isotopic they
must be related to each other by a series of moves, known as Reider-

meister moves!?.

b < ‘ Type I

Ve

p H> Type 11
\

| > { Type I1I
AN/

Fig. 3.4 The Three Reidermeister Moves. Any two knots that can be deformed
into each other without cutting (they are “ambient isotopic”) can be connected by a
series of Reidermeister moves.

It is also useful to define regular isotopy which is when two knots can
be related to each other using only type-II and type-I1IT moves. Another
way of thinking about this is to think of the strings as being ribbons. A
type-I move inserts a twist in the ribbon (See Fig. 2.7) and gives back
a different ribbon diagram, whereas type-II and III moves do not twist
the ribbon'!.

Chapter summary

Some mathematical ideas introduced in this chapter:

9This is the origin of half-odd integer
angular momenta.

10This is a very old result, by Kurt
Reidemeister from 1927. Note that it
may take many many moves in order
to bring a knot into some particular
desired form. For example, if there
are ¢ crossings in a diagram which is
equivalent to the simple unknot (an un-
knotted loop), the strongest theorem
yet proven is that it can be reduced to
the simple unknot with (236¢)!! moves
[Lackenby, 2015].

oy regular isotopy of link diagrams
(as compared to than knot diagrams)
one needs to allow a version of the type
I move that allows cancelation of two
twists in opposite direction, as shown
in Fig. 3.5

< Type I’

Fig. 3.5 A Type I’ move. This is an
additional move needed for ambient iso-
topy of links.



28 FEzxercises

Manifolds are locally like Euclidean space: Examples include
sphere S?, circle S, torus surface T? = S! x S!, etc. Manifolds
can also have boundaries, like a two dimensional disk B2 (or D?)
bounded by a circle.

Groups are mathematical sets with an operation, and identity
and an inverse: Important examples include, Z the integers under
addition, Zy the integers mod N under addition, the symmetric
(or permutation group) on N elements Sy, and Lie groups such as
SU(2) which are also manifolds at the same time as being groups.

The Fundamental Group of a manifold is the group of topolog-
ically different paths through the manifold starting and ending at
the same point.

Isotopy is the topological equivalence of knot diagrams (what can
be deformed to what without cutting).

Further Reading

For background on more advanced mathematics used by physicists, in-
cluding some topological ideas, see:

e M. Nakahara, Geometry, Topology, and Physics, 2ed, (2003), Tay-

lor and Francis.

e M. Stone and P. Goldbart, Mathematics for Physics, Cambridge

(2009). Free pdf prepublication version available online.

For further information on mathematics of knots, isotopy, and Rie-
dermeister moves, see

e Louis Kauffman, Knots and Physics, World Scientific, (2001), 3ed.

Exercises

Exercise 3.1 Reidermeister moves and the Kauffman Invariant

Show that the Kauffman Invariant is unchanged under application of Rei-
dermeister move of type II and type III. Thus conclude that the Kauffman
invariant is an invariant of regular isotopy.



Particle Quantum Statistics

In chapter 2 we discussed braiding particles around each other, or ex-
changing their positions. This is the domain of what we call particle
statistics (or quantum statistics). What we mean by this is “what hap-
pens to the many particle wavefunction when particles are exchanged in
a certain way”.

We are familiar with bosons and fermions If we exchange two
bosons the wavefunction is unchanged, if we exchange two fermions the
wavefunction accumulates a minus sign. Various arguments have been
given as to why these are the only possibilities. The argument usually
given in introductory books is as follows:

1,2

If you exchange a pair of particles then exchange them again, you
get back where you started. So the square of the exchange operator
should be the identity, or one. There are two square roots of one:
+1 and -1, so these are the only two possibilities for the exchange
operator.

In the modern era this argument is considered to be incorrect (or
at least not really sufficient). To really understand the possibilities in
exchange statistics, it is very useful to think about quantum physics
from the Feynman path integral point of view.3

4.1 Single Particle Path Integral

Consider a space-time trajectory of a non-relativistic particle. We say
that we have x moving in R” where D is the dimension of space, so we
can write x(t) where ¢ is time.

Given that we start at position x; at the initial time ¢; we can define a
so-called propagator which gives the amplitude of ending up at position
Xy at the final time ¢;. This can be written as

(xs|U(tg,t:)]x:)

where U is the (unitary) time evolution operator.
The propagator can be used to propagate forward in time some arbi-
trary wavefunction ¥(z) = (x[¢) from ¢; to t; as follows

(x5l (t5)) = / dx; (g0 (L)) (cal(8)

If we are trying to figure out the propagator from some microscopic
calculation, there are two very fundamental properties it must obey.

I Bose cooked up the current picture of
Bose statistics in 1924 in the context of
photons and communicated it to Ein-
stein who helped him get it published.
Einstein realized the same ideas could
be applied to non-photon particles as
well.

2Based on ideas by Pauli, Fermi-Dirac
statistics were actually invented by Jor-
dan in 1925. Jordan submitted a paper
to a journal, where Max Born was the
referee. Born stuck the manuscript in
his suitcase and forgot about it for over
a year. During that time both Fermi
and Dirac published their results. Jor-
dan could have won a Nobel prize (po-
tentially with Born) for his contribu-
tions to quantum physics, but he be-
came a serious Nazi and no one really
liked him much after that.

31f you are familiar with path integrals
you can certainly skip down to section
4.2. If you are not familiar with path
integrals, please do not expect this to
be a thorough introduction! What is
given here is a minimal introduction to
give us what we need to know for our
purposes and nothing more! See the
Further Reading for this chapter for a
better introduction.
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First, it must be unitary — meaning no amplitude is lost along the
way (normalized wavefunctions stay normalized). Secondly it must obey
compisition: propagating from ¢; to ¢,, and then from ¢,, to t; must be
the same as propagating from ¢; to t;. We can express the composition
law as

oy 10t t)1) = [ (10t ) ) (3 U )

The integration over x,, allows the particle to be at any position at
the intermediate time (and it must be at some position). Another way
of seeing this statement is to realize that the integral over x,, is just
insertion of a complete set of states at some intermediate time

1 :/dxm|xm><xm|-

Feynman’s genius was to realize that you can subdivide time into
infinitessimally small pieces, and you end up doing lots of integrals over
all possible intermediate positions. In order to get the final result, you
must sum over all values of all possible intermediate positions, or all
possible functions x(¢). Feynman’s final result is that the propagator
can be written as

(xf|U(ts,t:)|x;) = N > et Sx®I/R (4.1)
paths x(¢) from
(xi7 ti) to (Xf7 t.f)

where A is some normalization constant. Here S[x(t)] is the (classicall)
action of the path

ty
S= / dt Lix(t), %(t), ]
tq
with L the Lagrangian.

The sum over paths in Eq. 4.1 is often well defined as a limit of dividing
the path into discrete time steps and integrating over x at each time.
We often rewrite this sum over paths figuratively as a so-called path
integral

. (xe.tr) .
xpU(ts, t)|xi) =N Dx(t) eSx®I/R (4.2)
(xi,t4)

Analogous to when we evaluate regular integrals of things that look
like [dx eSl?l/7 e can approximate the value of this integral in the
small A, or classical, limit by saddle point approximation. We do this
by looking for a minimum of S with respect to its argument — this
is where the exponent oscillates least, and it becomes the term which
dominates the result of the integral. Similarly, with the path integral,
the piece that dominates in the small % limit is the piece where S[x(¢)]
is extremized — the function x(t) which extremizes the action. This is
just the classical principle of least action!



4.2 Two ldentical Particles

For identical particles there is no meaning to saying that particle one
is at position x; and particle two is at position x. This would be the
same as saying that they are the other way around. Instead, we can only
say that there are particles at both positions x; and x,. To avoid the
appearance of two different states expressed as |x1,X2) versus |Xa, X1)
(which are actually the same physical state!), it is then useful to simply
agree on some convention for which coordinate we will always write first
— for example, maybe we always write the leftmost particle first*. For
simplicity, we can assume that x; #* Xs, i.e., the particles have hard
cores and cannot overlap®.

For these indistinguishable particles, the Hilbert space is then cut in
half compared to the care of two distinguishable particles where |x1, X2)
and |x2,x1) mean physically different things. To construct a path inte-
gral, we want to think about all possible paths through this configuration
space.

The key realization is that the space of all paths through the config-
uration space C divides up into topologically inequivalent pieces. I.e.,
certain paths cannot be deformed into other paths by a series of small de-
formations. To the mathematician we are looking at the group of paths
through C, known as the first homotopy group II;(C) or fundamental
group (See the discussion in section 3.3).

What do these topologically disconnected pieces of our space of paths
look like? For example, we might consider the two paths as shown in
Fig. 4.1. Here we mean that time runs vertically. It is not possible
to continuously deform the path on the left into the path on the right
assuming the end points are fixed.

We will call the non-exchange path TYPE 1 (left in Fig. 4.1), and the
exchange path TYPE -1 (right in Fig. 4.1). The two sets of paths cannot
be continuously deformed into each other assuming the end points are
fixed. Note that we may be able to further refine our classification of
paths — for example, we may distinguish over- and under-crossings,
but for now we will only be concerned with exchanges (TYPE -1) and
non-exchanges (TYPE 1).

Paths can be composed with each other. In other words, we can follow
one path, then follow the second. We can write a multiplication table
for such composition of paths (the path types form a group, see section
3.2)

TYPE 1 Followed by TYPE1 = TYPEI1
TYPE 1 Followed by TYPE-1 = TYPE-1
TYPE -1 Followed by TYPE1l = TYPE-1
TYPE -1 Followed by TYPE-1 = TYPE!1

So for example, an exchange path (which switches the two particle)
followed by another exchange path (which switches again) results in a
net path that does not switch the two particles.
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4This ordering scheme works in one
dimension. In two dimensions we
would perhaps say, the particle with the
smaller x coordinate wins, but in case
of a tie, the particle with smaller y co-
ordinate wins. etc.

51, - . .
It is sometimes even more convenient
to declare |x1 — x2| > €.

Exchange
TYPE -1

No Exchange
TYPE 1

Fig. 4.1 Two possible sets of paths
(paths in configuration space) from the
same two starting positions to the same
two ending positions (we are implying
that time runs vertically). We call the
non-exchange path TYPE 1, and the
exchange path TYPE -1. Here we mean
that time runs vertically. The two sets
of paths cannot be continuously de-
formed into each other assuming the
end points are fixed. Note that we
may be able to further refine our clas-
sification of paths — for example, we
may distinguish over and undercross-
ings, but for now we will only be con-
cerned with exchanges (TYPE -1) and
non-exchanges (TYPE 1)
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Now let us try to construct a path integral, or sum over all possible
paths. It is useful to think about breaking up the sum over paths into
separate sums over the two different classes of paths.

<X1fX2f|U(tf, t¢)|X11X2i> = N Z eiS[path]/h

paths
i—f
N Z eis[path] /R + Z ez‘S[path]/h
TYPE 1 paths TYPE -1 paths
i—f i—f

This second line is simply a rewriting of the first having broken the
sum into the two different classes of paths.

It turns out however, that it is completely consistent to try something
different. Let us instead write

(1 %0 |U (7, 1) [x152i) = (4.3)
N Z eiSpathl/n Z ciSipath]/n
TYPE 1 paths TYPE -1 paths
i f i f

Notice the change of sign for the TYPE -1 paths.

The reason this change is allowed is because it obeys the composition
law. To see this (and now using some shorthand), let us check to see if the
composition law is still obeyed. Again, we break the time propagation
at some intermediate time

X15Xof j frli)|X1iX2i) =
( Uty t:)l )

/dxldeQ’m <X1fx2f |U(tfa tm) |lex2m> <X17nx2m |U(tma tz) |X1ix2i>

N /dedsz Z _ Z Z _ Z ciS[path)/h
TYPE1 TYPE -1 TYPE 1 TYPE -1

Now, when we compose together subpaths from ¢ — m with those from
m — f to get the overall path, the sub-path types multiply according
to our above multiplication table. For the full path, there are two ways
to obtain a TYPE 1 path —when either both sub-paths are TYPE 1 or
both sub-paths are TYPE -1. In either case, note that the net prefactor
of the overall TYPE 1 path is +1. (the two minus prefactors of the
TYPE -1 multiply and cancel). Similarly, we can consider full paths
with overall TYPE -1. In this case, exactly one of the two sub-paths
must be of TYPE -1, in which case, the overall sign ends up being -1.



Thus, for the full path, we obtain exactly the intended form written
in Eq. 4.3. Le., under composition of paths, we preserve the rule that
TYPE 1 paths get a +1 sign and TYPE -1 paths get a -1 sign. Thus this
is consistent for quantum mechanics, and indeed, this is exactly what
happens in the case of fermions.

4.3 Many ldentical Particles

Generalizing this idea, to figure out what is consistent in quantum me-
chanics, we must do two things:

(a) Characterize the space of paths through configuration space
(b) Insist on consistency under composition.

Our configuration space for the set of N identical particles in D di-
mensions can then be written as

C=RNP —A)/Sx
Here RYP is a set of N coordinates in D dimensions, A is the space of
“coincidences” where more than one particle occupy the same position
(we are eliminating this possibility for simplicity). Here Sy is the group
of permutations, and we are “modding” out by this group. We said a
bit about the permutation group in the mathematical section (?7?) on
group theory, but this modding out by Sy is just a fancy way to say
that we specify N coordinates, but we do not order these points (or as
described above, we choose some convention for the order, like always
writing the left-most first). In the case of 2 particles above, this reduced
the Hilbert space by a factor of 2. More generally this should reduce the
Hilbert space by a factor of N!. This is the same indistinguishability
factor which is familiar from the Gibbs paradox of statistical mechanics.

We would now like to consider all possible paths through this con-
figuration space C. In other words we want to consider how these N
different points move in time. We can think of this as a set of coor-
dinates moving through time {x;(t),...xn(¢)} but we must be careful
that the particles are indistinguishable, so the order in which we write
the coordinates doesn’t matter. We can think of this as NV directed
curves moving in N D + 1 dimensional space®. Since we want to add up
all of these possible paths in a path integral it is useful to try to better
understand what the structure is of this space of paths.

Again, the key realization is that the space of all paths through the
configuration space C divides up into topologically inequivalent pieces.
Le., certain paths cannot be deformed into other paths by a series of
small deformations. To the mathematician we are looking at the group
of paths through C, known as the first homotopy group II; (C) or fun-
damental group (See section 3.3). The reason this is a group is that it
comes with a natural operation, or multiplication of elements — which
is the composition of paths: follow one path, then follow another path.
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6The curves are directed because we do
not allow them to double back in time
as shown in Fig. 4.2, that would rep-
resent particle-hole creation or annhi-
lation, which we do not yet consider.

)

Fig. 4.2 A doubleback in time is not
allowed in our considerations here (and
not allowed in the braid group) as it
corresponds to creation and annihila-
tion of particles.
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time
\/\

Fig. 4.3 A path through configuration
space for 3 Particles in 241 D is a braid
with three strands.

4.3.1 Paths in 2+1 D, the Braid Group

A path through this configuration space is known as a braid. An example
of a braid is shown in Fig.4.3.
Generally we can define multiplication of braids to be the stacking of
braids on top of each other—- i.e., do one braid and then do the other.
A few notes about braids:

(1) Fixing the endpoints, the braids can be deformed continuously, and
so long as we do cut one string through another, it still represents
the same topological class.

(2) We cannot allow the strings to double back in time. This would
be pair creation or annihilation, which we will consider later, but
not now.

The set of braids have mathematical group structure (See section 3.2):
multiplication of two braids is defined by stacking the two braids on top
of each other — first do one then do another. It is easy to see that braids
can be decomposed into elementary pieces which involve either clockwise
or counterclockwise exchange of one strand with its neighbor. These
elementary pices involving single exchanges are known as generators.

The braid group on N strands is typically notated as By. The gen-
erators of the braid group on 4 strands are shown in Fig. 4.4 Any braid

CHIE AR I
SRIE AR I

Fig. 4.4 The three generating elements o1, 02,03 of the braid group on 4 strands,
«—1

By, and their inverses o1 702—1703—1' Any braid on four strands (any element of
By) can be written as a product of the braid generators and their inverses by simply
stacking these generators together (See Fig. 4.5 for example).

can be written as a product of the braid generators and their inverses.
The “multiplication” of the generators is achieved simply by stacking
the generators on top of each other. An expression representing a braid,
such as 010205 Loy is known as a “braid word.” Typically we read the
braid word from right to left (do the operation on the right-most first),
although sometimes people use the opposite convention! The important
thing is to fix a convention and stick with it!

Note that many different braid words can represent the same braid.
An example of this is shown for By in Fig. 4.5. Although a braid can be
written in many different ways, it is possible to define invariants of the
braid which do not change under deformation of the braid — so long as
the braid is topologically unchanged. One very useful braid invariant is
given by the so-called winding number

W = Winding Number
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Fig. 4.5 Two braid words in By that represent the same braid. The braidwords
are read from right to left indicating stacking the generators from bottom to top.
The observant reader will see the similarity here to Reidermeister moves of type-I11
discussed above in section 3.4. Similarly Uiai_l =1 is a type-II move.

= (# of overcrossings) — (# of undercrossings)

where an overcrossing is a ¢ and an undercrossing is a o~'. As can be
checked in Fig.4.5, the winding number is independent of the particular
way we represent the braid. As long as we do not cut one strand through
another or move the endpoints (or double back strands) the winding
number, a braid invariant, remains the same.

4.3.2 Paths in 3+1 D, the Permutation Group

We now turn to consider physics in 3+1 dimensions. A key fact is that it
is not possible to knot a one-dimensional world-line that lives in a four-
dimensional space. If this is not obvious consider the following lower
dimensional analogue” As shown in Fig.4.6, in one dimension, two points
cannot cross through each other without hitting each other. But if we
allow the points to move in 2D they can move around each other without
touching each other. Analogously we can consider strings forming knots
or braids in 3D space. When we try to push these strings through each
other, they bump into each other and get entangled. However, if we
allow the strings to move into the fourth dimension, we can move one
string a bit off into the fourth dimension so that it can move past the
other string, and we see that the strings can get by each other without
ever touching each other!

Given that in 341D world-lines cannot form knots, the only thing that
is important in determining the topological classes of paths is where the
strings start and where they end. In other words, we can drraw things
that look a bit like braid-diagrams but now there is no meaning to an over
or under-crossing. If the world line lives in 3+1 dimensions, everything
can be unentangled without cutting any of the world lines until the
diagram looks only like Fig. 4.7. The only thing that is important is
who starts where and who ends where. This is precisely the permutation
group, or symmetric group Sy (see section ?7).  Note that in the
symmetric group an exchange squared does give the identity. However,
in the braid group this is not so — the braid ¢ is not the identity since
it creates a nontrivial braid!

"It would be very convenient to be able to draw a diagram in four dimensions!
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In 1 dimension:
Two objects cannot cannot cross

L X ®

In 2 dimensions:

Two objects can go around each other

Fig. 4.6 In one dimension, two points
cannot cross through each other with-
out hitting each other. But if we allow
the points to move in two dimensions
they can get around each other with-
out touching. This is supposed to show
you that one-dimensional world-lines
cannot form knots in four-dimensional
space.

1 2 3 4
[ ] (4 [ ] [ ]
® o [ [
1 2 3 4

Fig. 4.7 Paths in 3+1 D are elements
of the permutation group (or symmet-
ric group) Sy (See section ?7). Shown
here is an element of Sy.
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4.3.3 Building a Path Integral

We now return to the issue of building a path integral. We will follow
the intuition we gained in the two particle case, but now we will include
the information we have discovered about the group of paths through
configuration space.

Using the notation {x} to denote all of the N particle coordinates, we
construct the path integral as

Il Up t)l{xy) =N D plg) Y eSPathln g )

geG paths € g
i—f

Here G is the group of paths (the fundamental group — or the set of
classes of topologically different paths). This is the symmetric group Sy
for 341 dimensions and is the braid group By for 241 dimension . Here
we have split the sum over paths into the different classes. We have also
introduced a factor of p(g) out front where p is a unitary representation
of the group G. (See section 3.2.4 on group theory).

To show that this is allowed by the laws of quantum mechanics, we
need only check that it obeys the composition law — we should be able
to construct all paths from ¢ to f in terms of all paths from ¢ to m and
all paths from m to f.

(x3 10t} =
= [ b R0t () (DOt ) 1)

~ / dxtm | D plgr) Y ST onlg) > | espathin

g el paths € g1 g2 €G paths € g2

So we have constructed all possible paths from ¢ to f and split them
into class go in the region ¢ to m and then class g; in the region m
to f. When we compose these paths we will get a path of type g1 ¢o.
The prefactors of the paths p(g;) and p(g2) then multiply and we get
p(g1)p(g2) = p(g1g2) since p is a representation (the preservation of
multiplication is the definition of being a representation! See section
3.2.4). So the prefactor of a given path from ¢ to f is correcly given by
p(g) where g is the topological class of the path. In other words, the
form shown in Eq. 4.4 is properly preserved under composition, which
is what is required in quantum mechanics!

4.4 Abelian Examples

Let us consider the case where the representation p of our group G of
paths through configuration space is one dimensional — in other words



it is a mapping from g to a complex phase.

This case seems to be most applicable in the quantum mechanics
we know, because this representation is acting on the wavefunction of
our system — and we are quite familiar with the idea of wavefunctions
accumulating a complex phase.

44.1 3+1 Dimensions

In 3+1D, the group G of paths through configuration space is the sym-
metric group Sy. It turns out that there are only two possible one-
dimensional representations of Sy:

e Trivial rep: In this case p(g) = 1 for all g. This corresponds to
bosons, The path integral is just a simple sum over all possible
paths with no factors inserted.

e Alternating (or sign) rep: In this case p(g) = 41 or —1 depend-
ing on whether g represents an even or odd number of exchanges.
In this case the sum over all paths gets a positive sign for an even
number of exchanges and a negative sign for an odd number. This
is obviously fermions and is the generalization of the two particle
example we considered above in section 4.2 where the exchange
was assigned a —1.

4.4.2 241 Dimensions

The group G of paths through configuration space is the braid group
Bpx. We can describe the possible one-dimensional representations by a
single parameter . We write the representation

plg) = WO
where W is the winding number of the braid g. In otherwords, a clock-

wise exchange accumulates a phase of e’ whereas a counterclockwise
exchange accumulates a phase of e~ %.

e For = 0 there is no phase, and we simply recover bosons.

e For 6 = 7 we accumulate a phase of —1 for each exchange no
matter the direction of the exchange (since e'™ = e¢~*"). This is
fermions.

e Any other value of # is also allowed. This is known as Anyons, or
fractional statistics. They are also known as Abelian Anyons
in contrast with the Non-Abelian case which we will discuss in a
moment.

The fact that this fractional statistics is consistent in quantum me-
chanics was first point out by Leinaas and Myrheim [1977]%, and pop-
ularized by Wilczek [1982]°. Soon thereafter, Halperin [1984] and then
Arovas, Schrieffer, and Wilczek [1984] showed theoretically that anyons
really occur in fractional quantum Hall systems.

4.4  Abelian Examples 37

8 There is no reason why this should not
have been discovered in the 1930s, but
no one bothered to think about it. It
is a lucky coincidence that an exper-
imental system of anyons was discov-
ered so soon after the theoretical pro-
posal (fractional quantum Hall effect,
discovered by Tsui, Stormer, and Gos-
sard [1982]), since the original theoreti-
cal work was entirely abstract, and they
were not thinking about any particular
experiment.

gAmong other things, Wilczek coined
the term anyon. (He also won a Nobel
prize for asymptotic freedom.)
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107t we want |) normalized then there
is a normalization condition on the
Ay coefficients. For example, if the
[n)’s are orthonormal then we need
>, [4n|? = 1 in order that |3} is nor-
malized.

' The idea of nonabelian anyons was
explored first in the 1980s and early 90s
by several authors in different contexts.
Bais [1980] in the context of gauge theo-
ries; Frohlich and Gabbiani [1990] and
Fredenhagen et al. [1989] in very ab-
stract sense; Witten [1989]; Chen et al.
[1989] in the language of topological
quantum field theories; and Moore and
Read [1991] in the context of quantum
Hall effect.

12 And initialization and measurement

4.5 Non-Abelian Case

Can we do something more interesting and exotic by using a higher di-
mensional representation of the group G = By of paths in configuration
space? Generally in quantum mechanics, higher dimensional represen-
tations correpsond to degeneracies, and indeed this is what is necessary.

Suppose we have a system with N particles at a set of positions {x}.
Even once we fix the positions (as well as the values of any local quantum
numbers, like any “color” or “flavor” degree of freedom associated with
the particle), suppose there still remains an M-fold degeneracy of the
state of the system. We might describe the M states as |n; {x}) for n =
1...M. An arbitary wavefunction of the system can then be expressed
as

M
) = 3 Aulns {x}) (4.5)
n=1
with the A,,’s being some complex coefficients.!® Given the N positions
{x}, a general wavefunction should be thought of as a vector in M
dimensional complex space. Now that we have a vector, we can use an
M-dimensional representation of the braid group in our path integrall
We thus write

p(9) = [U(9)]n,n’

where U is an M by M matrix, and is assumed to be a representation
of G and it must also be unitary so as to assure that probability is
conserved. The propagator in Eq. 4.4 should now be thought of as a
propoagator between the initial ket |n’; {x},;) and the final bra (n; {x}¢|.
The unitary matrix p(g) will act on the coefficients A4,, (which is a vector)
in Eq. 4.5. Thus, if an initial state is given as a vector A,,, when we braid
particles around each other in some braid g, the vector gets transformed
by multiplying it by the matrix U(g) to give the final state vector.

A particle that obeys this type of braiding statistics is known as a
non-Abelian anyon, or nonabelion.!! The word “non-abelian” means
non-commutative, and the term is used since generically matrices (in this
case the U matrices) don’t commute.

In general the Hilbert space dimension M will be exponentially large
in the number of particles N. We define a quantity d, know as the
quantum dimension such that

M ~aN (4.6)

where the ~ means that it scales this way in the limit of large N. We
will see a lot more of this quantity d later. It is not coincidence that we
used the symbol d previously in the context of Kauffman anyons! (See
Eq. 2.1.)

Some Quick Comments on Quantum Computing:

Quantum Computing is nothing more than the controlled application
of unitary operations to a Hilbert space!?. Unitary operations is exa-



clty what we can do by braiding nonabelions around each other! I.e.,
we are multiplying a vector by a unitary matrix. Thus we see how
braiding of particles, as discussed in chapter 2 can implement quantum
computation.'?

4.5.1 Parastatistics in 3+1 Dimensions

Is it possible to have exotic statistics in 3+1 dimensions? Indeed, there
do exist higher dimensional representations of the symmetric group. And
one can consider particles that obey more complicated statistics even in
three plus one dimensions. However, it turns out that, subject to some
“additional constraints”, it is essentially not possible to get anything
fundamentally new. All we get is bosons and fermions and possibly some
internal additional degrees of freedom. The proof of this statement is
due to Doplicher et al. [1971, 1974] and took some 200 pages when it
was first proven.

However, we should realize that in proving statements like this, the
fine print is important. I mentioned in the previous paragraph that we
want to add some “additional constraints” and these are what really limit
us to just bosons and fermions. What are these additional constraints?
There are two key things:

(1) We want to be able to pair create and annihilate. This means
we are not just considering the braid group, but rather a more
complicate structure that allows not just braiding particles around
each other, but also creating and annhiliating. This structure is
given by category theory, which we will encounter later.

(2) We also want some degree of locality. If we do an experiment on
earth, and off on jupiter someone creates a particle-antiparticle
pair, we would not want this to effect the result of our experiment
on earth at all.

These two restrictions are crucial to reducing the 3+1 D case to only
bosons and fermions. We will not go through the details of how this
happens. However, once we see the full structure of particles in 2+1
dimensions, it ends up being fairly clear why the same structure does
not work in 3+1 dimensions, except in the case of bosons and fermions.
We return to this issue in section *** where a fairly convincing version
of this proof can be done rather swiftly.

We should note that despite this important result, 3+1D is certainly
not boring — but in order to get “interesting” examples, we have to
relax some of our constraints. For example, if we relax the condition
that “particles” are pointlike, but consider string-like objects instead,
then we can have exotic statistics that describe what happens when
one loop of string moves through another (or when a point-like particle
moves through a loop of string). We would then need to consider the
topology of the world-sheets describin loops moving through time.
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13 The observant reader will notice that
for quantum computation we are no
longer summing over all possible braids,
but we are specifying a particular braid
that the particles should take in order
to implement a particular unitary op-
eration. To do this we must control
the paths of the particles, by say, hold-
ing them in traps that we move. In
principle all paths are still included in
the path integral, but only the ones we
specify contribute significantly.
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Chapter Summary

e The path integral formulation of quantum mechanics requires us
to add up all possible paths in space time.

e We can add all of these paths in any way that preserves the com-
position law and the different possibilities allow for different types
of particle statistics.

e The topologically different paths of IV particles in space-time form
a group structure (the fundamental group of the configuration
space) which is the permutation group Sy in 3+1 dimensions, but
is the braid group By in 241 dimensions.

e Particle braiding statistics must be a representation of this group.

e In 341 dimensions we can only have bosons and fermions, but in
2+1 dimensions we can have nontrivial braiding statistics which
may be abelian (or “fractional”) or non-abelian.

e Quantum computation can be performed by braiding with certain
non-abelian representations.

Further Reading

For information on particle statistics see:
e F. Wilczek, ed. Fractional Statistics and Anyon Superconductivity,
World Scientific, (1990).

e Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman,
Sankar Das Sarma, Non Abelian Anyons and Topological Quantum
Computation, Rev. Mod. Phys. 80, 1083 (2008). Also available
online at https://arxiv.org/abs/0707.1889

For a basic primer on path integrals see

e F. Essler, Lecture Notes for the C6 theory option,
http://www-thphys.physics.ox.ac.uk/people/FabianEssler/
C6web2012/lecturenotes2015.pdf

o R. MacKenzie, Path Integral Methods and Applications,
https://arxiv.org/abs/quant-ph/0004090

Exercises

Exercise 4.1 About the Braid Group
(a) Convince yourself geometrically that the defining relations of the braid
group are:
0; 0441 04 = Oi4+10; 0441 1 SZ S M —2 (47)
005 = 0;0; for |’I;—j|>].7 1<4,j<M-1 (48)



(b) Instead of thinking about particles on a plane, let us think about par-
ticles on the surface of a sphere. In this case, the braid group of M strands
on the sphere is written as Bas(S?). To think about braids on a sphere, it
is useful to think of time as being the radial direction of the sphere, so that
braids are drawn as in Fig. 4.8. The braid generators on the sphere still obey
Eqns. 4.7 and 4.8, but they also obey one additional identity

0102 ...0M—20M-10M—-10M—2...0201 = I (4.9)

where [ is the identity (or trivial) braid. What does this additional identity
mean geometrically?

[In fact, for understanding the properties of anyons on a sphere, Eq. 4.9 is
not quite enough. We will try to figure out below why this is so by using Ising
Anyons as an example.]

Exercise 4.2 Ising Anyons and Majorana Fermions

The most commonly discussed type of non-Abelian anyon is the Ising anyon
(we will discuss this in more depth later). Ising anyons occurs in the Moore-
Read quantum Hall state (v = 5/2), as well as in any chiral p-wave supercon-
ductor and in recently experimentally relevant so called “Majorana” systems.

The non-Abelian statistics of these anyons may be described in terms of
Majorana fermions by attaching a Majorana operator to each anyon. The
Hamiltonian for these Majoranas is zero — they are completely noninteracting.

In case you haven’t seen them before, Majorana Fermions ; satisfy the
anticommutation relation

{7,735} = vivs + v = 205 (4.10)

as well as being self conjugate 'yj = Y.

(a) Show that the ground state degeneracy of a system with 2N Majoranas
is 2V if the Hamiltonian is zero. Thus conclude that each pair of Ising anyons
is a two-state system. Hint: Construct a regular (Dirac) fermion operator
from two Majorana fermion operators. For example,

1 .
' = 5(71 + i72)

will then satisfy the usual fermion anti-commutation {c,c'} = cc' + c¢fe = 1.
(If you haven’t run into fermion creation operators yet, you might want to
read up on this first!) There is more discussion of this transformation in a
later problem *** (Ising F matrix)

(b) When anyon i is exchanged clockwise with anyon j, the unitary trans-
formation that occurs on the ground state is

eia

V2

for some real value of . Show that these unitary operators form a represen-
tation of the braid group. (Refer back to the previous problem, “About the
Braid Group”). In other words we must show that replacing o; with U; ;41
in Eqns. 4.7 and 4.8 yields equalities. This representation is 2% dimensional
since the ground state degeneracy is 2.

(c) Consider the operator

Ui =

Y = ()Y 2 yen (4.12)

Exercises 41

Fig. 4.8 An element of the braid

group B3(S?).

is o105

The braid shown here
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(the notation rive is in analogy with the ~® of the Dirac gamma matrices).
Show that the eigenvalues of 4""V* are 1. Further show that this eigenvalue
remains unchanged under any braid operation. Conclude that we actually have
two 2V 71 dimensional representations of the braid group. We will assume that
any particular system of Ising anyons is in one of these two representations.

(d) Thus, 4 Ising anyons on a sphere comprise a single 2-state system, or a
qubit. Show that by only braiding these four Ising anyons one cannot obtain
all possible unitary operation on this qubit. Indeed, braiding Ising anyons is
not sufficient to build a quantum computer. [Part (d) is not required to solve
parts (e) and (f)]

(e) [bit harder] Now consider 2N Ising anyons on a sphere (See above prob-
lem ”About the braid group” for information about the braid group on a
sphere). Show that in order for either one of the 2¥=1 dimensional represen-
tations of the braid group to satisfy the sphere relation, Eqn. 4.9, one must
choose the right abelian phase « in Eq. 4.11. Determine this phase.

(f) [a bit harder] The value you just determined is not quite right. It should
look a bit unnatural as the abelian phase associated with a braid depends
on the number of anyons in the system. Go back to Eqn. 4.9 and insert an
additional abelian phase on the right hand side which will make the final result
of part (e) independent of the number of anyons in the system. In fact, there
should be such an additional factor — to figure out where it comes from, go
back and look again at the geometric “proof” of Eqn. 4.9. Note that the proof
involves a self-twist of one of the anyon world lines. The additional phase
you added is associated with one particle twisting around itself. The relation
between self-rotation of a single particle and exchange of two particles is a
generalized spin-statistics theorem.

Exercise 4.3 Small Numbers of Anyons on a Sphere

On the plane, the braid group of two particles is an infinite group (the group
of integers describing the number of twists!). However, this is not true on a
sphere

First review the problem “About the Braid Group” about braiding on a
sphere.

(a) Now consider the case of two particles on a sphere. Determine the full
structure of the braid group. Show it is a well known finite discrete group.
What group is it?

(b) [Harder] Now consider three particles on a sphere. Determine the full
structure of the braid group. Show that it is a finite discrete group. [Even
Harder] What group is it? It is “well known” only to people who know a lot
of group theory. But you can google to find information about it on the web
with some work. It may be useful to list all the subgroups of the group and
the multiplication table of the group elements.

(c) Suppose we have two (or three) anyons on a sphere. Suppose the ground
state is two-fold degenerate. If the braid group is discrete, conclude that no
possible type of anyon statistics will allow us to do arbitrary SU(2) rotations
on this degenerate ground state by braiding.



Aharanov-Bohm, Charge-Flux
Composites, and Introducing
Chern-Simons Theory

This chapter introduces a simple model of how fractional statistics anyons
can arise. After reviewing Aharanov-Bohm effect, we describe these ex-
otic particles as charge-flux composites and explore some of their prop-
erties. Finally we see how this fits into the framework of abelian Chern-
Simons theory and briefly discuss its non-abelian generalization.

5.1 Review of Aharanov-Bohm Effect

Let us consider the two slit interference experiment shown in Fig. 5.1.
We all know the result of the two slit experiment but let us rewrite the
calculation in the language of a path integral. We can write

> ey >

paths paths, slit 1 paths, slit 2

eiS/h iS/h

kL 4 gikLa

where L1 and Lo are the path lengths through the two respective slits
to whichever point is being measured on the output screen, and k is the
wavevector of the incoming wave. In other words, we get the usual two
slit calculation.

Now let us change the experiment to that shown in Fig. 5.2. Here
we assume the particle being sent into the interferometer is a charged
particle, such as an electron. In this case a magnetic field is added in-
side the middle box between the two paths. No magnetic field is allowed
to leak out of the box, so the particle never experiences magnetic field.
Further the magnetic field is kept constant so the particle does not feel
a Faraday effect either. The surprising result is that the presence of
the magnetic field nonetheless changes the interference pattern obtained
on the observation screen! This effect, named the Aharanov-Bohm ef-
fect, was predicted by Ehrenberg and Siday [1949], then re-predicted by
Aharonov and Bohm [1959].

1Possibly the reason it is named after the later authors is that they realized the
importance of the effect, whereas the earlier authors pointed it out, but did not
emphasize how strange it is! The first experimental observation of the effect was by
Chambers [1960], although many more careful experiments have been done since.

\

a

—

Q

)

R

%, g

particle o
= &
beam o
)

—~

)

=

=

Fig. 5.1 The Young two slit experi-
ment (not to scale).
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Fig. 5.2 Adding a magnetic field in-
side the middle box in the Young two
slit experiment. Here the circular re-
gion includes a constant magnetic field.
No magnetic field leaks out of the box.
Nonetheless, if the particle being sent
into the interferometer is charged, the
interference pattern is changed com-
pared to the above figure.
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2Here are the steps: Start with the

Fuler-Lagrange equations
d 0L 0L
dt 0y, B oxy, .
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So why does this strange effect occur? There are several ways to
understand it, butfor our purpose it will be best to stay with the idea
of path integrals and consider the Lagrangian description of particle
motion.

We must recall how a charged particle couples to an electromagnetic
field in the Lagrangian description of mechanics. We write the magnetic
field and electric field in terms of a vector potential

B = VxA
E = —-VAy—dA/dt

where Ag is the electrostatic potential. We can then write the particle
Lagrangian as )
. 9 .

L= X +q(A(x)-x— Ap) (5.1)
where g is the particle charge. It is an easy exercise to check that the
Euler-Lagrange equations of motion that result from this Lagrangian
correctly gives motion under the Lorentz force as we should expect for
a charged particle in an electromagnetic field.?

We are interested in a situation where we add a static magnetic field
to the system. Thus, we need only include ¢A(x) - X in the Lagrangian.
The action then gets changed by

S*)So+q\/dt)'(~A:SQ+q/dl~A (5.2)

where Sy is the action in the absence of the magnetic field and the
integral on the far write is a line integral along the path taken by the
particle.

Returning now to the two slit experiment. The amplitude of the
process in the presence of the vector potential can be now rewritten as

Z ¢iSo/htia/h [ dLA Z iSo/h+iq/h [ dl-A
paths, slit 1 paths, slit 2
Where S is the action of the path in the absence of the vector potential.

The physically important quantity is the difference in accumulated
phases between the two paths. This is given by

1q iq iq
exp —/ dl~A——/ dl~A]—eXp{j{dl~A]
{ﬁ slit 1 I Jslit 2 h

where the integral on the right is around a loop that goes forward
through slit 1 and then backwards through slit 2.
Using Stokes’ theorem, we have

iq iq iq
- dl- A = E/ dS-(VxA)= E(I)enclosed

enclosed

where @) ogeq 18 the flux enclosed in the loop. Thus there is a mea-
surable relative phase shift between the two paths given by “1®, 1osed-
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This results in a shift of the interference pattern measured on the ob-
servation screen. Note that although the orginal Lagrangian Eq. 5.1 did
not look particularly gauge invariant, the end result (once we integrate
around the full path) is indeed gauge independent.

A few notes about this effect:

(1) If @ is an integer multiple of the elementary flux quantum
(I)O = 271'71/(],

then the phase shift is an integer multipe of 27 and is hence equiv-
alent to no phase shift.

(2) We would get the same phase shift if we were to move flux around
a charge.

(3) More generally for particles moving in space-time one wants to
calculate the relativistically invariant quantity

iq
- dl, A"

5.2 Anyons as Flux-Charge Composites

We will now consider a simple model of Abelian anyons as charge-flux
composites. Imagine we have a two dimensional system with charges
q in them, where each charge is bound to an infinitely thin flux tube
through the plane, with each tube having flux ® as shown in Fig. 5.3. If
we drag one particle around another, we then accumulate a phase due to
the Aharnov-Bohm effect. The phase from the charge of particle 1 going
around the flux of particle 2 is €%/ whereas the phase for dragging
the flux of 1 around the charge of 2 is also €4®/", thus the total phase
for dragging 1 around 2 is given by

(Phase of flux-charge composite 1 encircling 2) = ea®/h

Thus we have (as shown in Fig. 5.4)

(Phase for exhange of two flux-charge compisites) = ela®/h
and we correspondingly call these particles §-anyons, with § = ¢®/h.
Obviously 8 = 0 is bosons, 8 = 7 is fermions, but other values of 8 are
also allowed, giving us anyons as disucssed in chapter 4.

Note that the same type of calculation would show us that taking
a composite particle with charge ¢; and flux ®; all the way around a
composite particle with charge ¢o and flux ®5 would accumulate a phase
of €w with Y = (Q1‘I’2 + QQ(bl)/h

Spin of an anyon

Let us see if we can determine the spin of these anyons. Spin refers to
properties of the rotation operator, so we need to physically rotate the

Fig. 5.3 Abelian anyons represented
as charges bound to flux tubes through
the plane. The charge of each particle
is g, the flux of each tube is ®. Drag-
ging one particle around another incurs
a phase both because charge is moving
around a flux, but also because flux is
moving around a charge.

P

q —
-

Fig. 5.4 An exchange.



46  Aharanov-Bohm, Charge-Fluz Composites, and Introducing Chern-Simons Theory

3We can try to put them at the same
position, but it becomes very hard to
not get infinities if we do this!

Fig. 5.5 Tying flux to charge. We put
the flux and the charge at slightly dif-
ferent positions. As a result, when we
rotate the particle around its own axis
a phase is accumulated as the charge
and flux go around each other.

(g1 + g2, @1 + P2)

(q1,%®1) (g2, ®2)

Fig. 5.6 Fusing two anyons to get any
anyon of a different type which has the
sum of fluxes and the sum of charges.

I=(0,0)
(q,®) (=q,—®) (g, ®)

Fig. 5.7 Fusing an anyon and an an-
tianyon to get the vacuum (I) drawn
as dotted line. Note that the antianyon
moving forward in time is drawn as a
downpointing arrow — which looks like
an anyon moving backwards in time.

4The vacuum or identity particle can
be denoted e, or I or 0 or 1 depend-
ing on the context. This nominclatural
problem stems from a similar problem
in group theory, see section 3.2.

anyon on its axis. To do this we must think about how the flux is tied
to the charge — we must have some microscopic description of exactly
where the flux is and where the charge is. It is easiest to put them at
very slightly different positions as shown in Fig. 5.5%. In this case, when
we rotate the anyon around its axis we move the charge and flux around
each other and we obtain a new phase of

eiq@/h — ei@
This fits very nicely with the spin statistics theorem — the phase ob-
tained by exchanging two identical particles should be the same as the

phase obtained by rotating one around its own axis. (See the discussion
by Fig. 2.7).

5.2.1 Fusion of Anyons

We can consider pushing two anyons together to try to form a new par-
ticle. We expect that the fluxes will add and the charges will add. This
makes some sense as the total charge and total flux in a region should
be conserved (this is an important principle that we will encounter fre-
quently!). We sometimes will draw a “fusion diagram” as in Fig. 5.6 to
show that two anyons have come together to form a composite particle.

A simple example of this is pushing together two particles both having
the same charge and flux (¢, ®). In this case we will obtain a single
particle with charge and flux (2¢, 2®). Note that the phase of exchanging
two such double particles is now 8 = 4¢®/h (since the factor of 2 in
charge multiplies the factor of 2 in flux!).

5.2.2 Anti-Anyons and the Vacuum Particle

We now introduce the concept of an anti-anyon. This is a charge-flux
composite which instead of having charge and flux (¢, ®) has charge
and flux (—¢, —®). Fusing an anyon with its anti-anyon results in pair
annihilation — the two particles come together to form the vacuum
(which we sometimes? refer to as the identity I) which has zero total
charge and zero total flux, as shown in Fig. 5.7. It may seem a bit odd
to call the absence of any charge or any flux a “particle”. However, this
is often convenient since it allows us to think of pair annihilation (as in
the left of Fig. 5.7) in the language of fusion.

In the right of that figure we also show that it is sometimes convenient
not to indicate the vacuum particle. In this case, we have written the
anti-anyon moving forward in time as an anyon moving backwards in
time.

If the phase of dragging an anyon clockwise around an anyon is 26,
then the phase of dragging an anti-anyon clockwise around an anti-anyon
is also 26. (The two minus signs on the two anyons cancel — negative
flux multiplies negative charge!). However, the phase of dragging an
anyon clockwise around an anti-anyon is —26.
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5.3 Anyon Vacuum on a Torus and Quantum
Memory

A rather remarkable feature of topological models is that the ground
state somehow “knows” what kind of anyons exist in the model (i.e,
those that could be created), even when they are not actually present.
To see this, consider the ground state of an anyon model on torus (the
surface of a doughnut®.

We can draw the torus as a square will opposite edges identified as
shown in Fig. 5.8. The two cycles around the torus are marked as C;
and Cs.

Let us now construct operators that do the following complicated
operations:

T, is the operator that creates a particle-hole pair, moves the
two in opposite directions around the C cycle of the torus until
they meet on the opposite side of the torus and reannihilate.

Ts is the operator that creates a particle-hole pair, moves the
two in opposite directions around the C cycle of the torus until
they meet on the opposite side of the torus and reannihilate.

Both of these operators are unitary because they can be implemented
(in principle) with some time-dependent Hamiltonian®. However, the
two operators do not commute. To see this let us consider the operator
T 2*1Tf YT,y where we read time from right to left. This can be inter-
preted as as two particles being created, braiding around each other,
and then reannihilating. This is shown in Fig. 5.9.

So what we have now is two operators 77 and T5 which do not commute
with each other. Indeed, we have”

T2T1 = 6_2i0T1T2

But both T3 and T5 commute with the Hamiltonian (since they start
and end with states of exactly the same energy®). Whenever you have
two operators that don’t commute with each other but do commute with
the Hamiltonian, it means you have degenerate eigenstates. Let us see
how this happens.

Since T} is unitary, its eigenvalues must have unit modulus (i.e., they
are just a complex phase). Considering the space of possible ground
states, let us write a ground state eigenstate of 77 as

Tila) = €"a).

Now we will generate a new eigenstate with a different eigenvalue of T7.
Consider the state Th|c). This must also be in the ground state space
since T5 commutes with the Hamiltonian. But now

T1(Th|a)) = 0T, T o) = €26 (Ty|a))

5See note 1 in chapter 3.

C1

Y = Ca2

Fig. 5.8 Drawing a torus as a rectan-
gle with opposite edges identified. The
two noncontractable cycles around the
torus can be considered to be the edges
of the square, labeled C7 and C3 here.

SFor example, we could insert charges
+Q and -Q near to each other which
are strong enough to pull a particle-hole
pair out of the vacuum, the -Q trapping
the +(g, ®) and the +Q trapping the
(—¢,—®). Then we can drag the + Q
charges around the handle of the torus,
dragging the anyons with them.

7At least this relation should be true
acting on the ground state space. If
some particles are already present, then
we have to consider the braiding of the
the particles we create with those al-
ready present, which will be more com-
plicated.

8Strictly speaking this means they
commute with the Hamiltonian within
the ground state space, or equivalently
the commutators [T1, H] and [T, H]
both annihilate the ground state space.
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time

9There could be even more degeneracy
which would be non generic. What we
have proven is there must be a degen-
eracy which is m times some integeer,
where one generally expects that inte-
ger to be 1 but there could be additional
accidental degeneracy.

10By this time I'm sick of writing /& and
I’'m going to set it equal to 1.

Fig. 5.9 The torus is drawn as a horizontal rectangle with opposite ends identified.
Time runs vertically. First create a particle hole pair at the center of the rectangle
and move them in opposite directions until they meet at the edges of the rectangle to
reannhiliate. Note that a particle moving to the right or an antiparticle moving to the
left are both drawn as a rightpointed arrow. Similarly, next a particle antiparticle
pair are made in the center of the torus and moved to the front and back walls
(which are the same point) to reannihilate. Then the two processes are reversed to
give Ty~ 1T1_ 1T2T1. This procedure can be reduced to one particle wrapping around
another which gives a phase of e=2%. Note that in the figure on the left we do not
quite annihilate the particles at the end of the first and second step. This is allowed
since bringing two particles close looks like they have fused together if we view them
from far away.

This new ground state has eigenvalue e’*+2* under application of Tj.
We thus call this new ground state |« + 20) = Ts|a). We have now
generated a new ground state and we can continue the procedure to
generate more!
Let us suppose we have a system where the anyons have statistical
phase angle
0 =mp/m

where p and m are relatively prime integers (i.e., p/m is an irreducible
fraction). Now we have a series of ground states

la),  |a+2mp/m), |a+4wp/m), ey Jat2r(m=1)/m)

When we try to generate yet another state, we get the phase o+ 27 = «
so we are back to the original state. So we now have m independent
ground states.”

Now let us consider the anyons in the system. Since we are consider-
ing anyons of statistical angle # = 7p/m we can describe this'® with a
charge-flux composite (¢, ®) = (7p/m,1). Fusion of n of these elemen-
tary anyons will have charge and flux given by

Fusion of n elementary anyons = |“n”) = (¢ = nwp/m,® = n)

= (nmp/m,n)
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Something special happens when we have a cluster of m of these ele-
mentary anyons:

“m”) = (np,m)

If we braid an arbitrary cluster |“n”) = (nmp/m,n) around one of these

“m”) = (mp,m) clusters, we obtain a net phase'! of 2nmp which is
equivalent to no phase at alll Thus we conclude that the cluster of
m elementary anyons is equivalent to the vacuum in the sense that all
particles get trivial phase if they braid all the way around |“m”).

We might be tempted to conclude that there are exactly m different
anyon species in the system. Indeed, this conclusion is often true. How-
ever, there is an exception. If both p and m are odd, one obtains a
nontrivial sign for exchanging (half braiding) a |“m”) = (wp, m) with
another |“m”) = (7p, m) particle (you get a phase mpm since exchange
should give half of the 2rpm phase for wrapping one particle all the way
around the other). This means the |“m”) particle is a fermion. In fact,
this case of p and m both odd is a bit of an anomolous case and in some
sense is a poorly behaved theory'2.

Neglecting this more complicated case with fermions, we are correct
to conclude that we have exactly m different species of anyons — and
also m different ground states on the torus. This connection will occur
in any well behaved topological theory — the number of ground states
on the torus will match the number of different species of particles.

5.3.1 Quantum Memory and Higher Genus

The degenerate ground state on the torus can be thought of as a quan-
tum memory. If there are m different ground states, the most general
wavefunction we can have is some linear superposition of the multiple

ground states
m—1

|0) = Z Apla + 2mnp/m)

n=0

where the coefficients A4,, form an arbitrary (but normalized) complex
vector. We can initialize the system in some particular superposition
(i.e, some vector A,) and we can expect that the system remains in this
superposition. The only way that this superposition can change is if a
Ty or Ty operation is performed (or some combination thereof)— i.e,
if a pair of anyons appears from the vacuum moves around the handle
of the torus and then reannihilates. Such a process can be extremely
unlikey when the energy gap for creating excitations is large'. Hence
the quantum superposition is “topologically protected”.

In fact, one does not even need to have a system on a torus in order to
have a degenerate ground state. It is often sufficeint to have an annulus
geometry (a disk with a big hole in the middle as shown in Fig. 5.10).
In this case, T1 could correspond to moving an anyon around loop of the
annulus and T, could correspond to moving an anyon from the inside to
the outside edge.'*

Hg1®2 4 g2®1 = (nwp/m)m + (wp)n.

121 ater on we will call this kind of the-
ory “non-modular.” See section ***

1?’Strictly speaking, at any finite tem-
perature for any size system there is a
finite time for this process to occur, al-
though it might be very long.

M1In this case it is often not precisely
true that the ground states are entirely
degenerate (since there is a non-zero
net result of having moved a particle
from inside to outside, and therefore
one is not necessarily in the precise
ground state) but under certain condi-
tions it can be extremely close to degen-
erate nonetheless. A classic example of
this is discussed by Gefen and Thouless
[1993].

Fig. 5.10 An annulus.
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155, 'S, Chern was one of the most
important mathematicians of the 20th
century. Jim Simons was a promi-
nent mathematician who wrote the key
first paper on what became known as
Chern-Simons theory in 1974. Simons
was the head of the math department
at Stonybrook university at the time.
In 1982, he decided to change careers
and start a hedge fund. His fund, Re-
naissance Technologies, became one of
the most successful hedge funds in the
world. Simons’ wealth is now estimated
at over 20 billion dollars (as of 2018).
More recently he has become a promi-
nent philanthropist, and has donated
huge amounts of money to physics and
mathematics — now being one of the
major sources of funds for the best sci-
entists in the world.

16Again not the real physical charge,
but rather the fake charge that couples
to the fake Chern-Simons vector poten-
tial aq. Later in this chapter we will set
q = 1 along with h = 1 for simplicity of
notation.

7 he antisymmetric tensor is given by
012 _ 120 _ 201 210 _
€102 _ (021 _ _q

= 1 and €

One can consider more complicated geometries, such as a torus with
multiple handles, or a disk with multiple holes cut in the middle. For a
theory of abelian anyons (fractional statistics) the ground state degen-
eracy for a surface with genus g (meaning g handles, or g holes) is m?
(See Exercise 5.1). Thus by using high genus one can obtain very very
large Hilbert spaces in which to store quantum information.

5.4 Abelian Chern-Simons Theory

It is useful to see how charge-flux binding occurs in a microscopic field
theory description of a physical system. The type of field theory we will
study is known as a Chern-Simons field theory!® and is the paradigm
for topological quantum field theories.

In the current section we will consider the simplest type of Chern-
Simons theory which is the Abelian type (i.e., it generates Abelian
anyouns, or simple fractional statistics particles). We start by imagining
a gauge field a,, known as the Chern-Simons vector potential, analo-
gous to the vector potential A, we have discussed already when we were
discussing flux above. Here we should realize that a,, is not the real elec-
tromagnetic vector potential because it lives only in our 2-dimensional
plane. We should think of it instead as some emergent effective quantity
for whatever two dimensional system we are working with.

Let us write the Lagrangian of our system

L:LO+/d2xA£

Here we have written Ly to be the Lagrangian of our particles without
considering the coupling to the vector potential. This could be nothing
more than the Lagrangian for free particles — although we could put
other things into this part too, such as inter-particle interaction, if we
like.

The second term is the integral of a Lagrangian density — and this
will be the term that is relevant for the flux-binding and the exchange
statistics of the particles. The form of the Lagrangian density is

AL = gewﬁvaaaﬁa7 — g% (5.3)

Here ¢ is the particle charge', j is the particle current, p is some
coupling constant, and e is the antisymmetric tensor'”. The indices
a, 3,7 take values 0, 1,2 where 0 indicates the time direction and 1, 2
are the space directions (and ;¥ is the particle density).

The first term in Eq. 5.3 is the Lagrangian density of the Chern-
Simons vector potential itself. (It is sometimes known as the “Chern-
Simons Term”). The second term in Eq. 5.3 couples the Chern-Simons
vector potential to the particles in the system. Its form, j%a,, is actually
something we have already seen. If we have IV particles then the current
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P = 360 x)

0 = % e(x—x,)

The j° component, the density, is just a delta function peak at the
position of each particle. The 1 and 2 component, j is a delta function
at the position of each particle with prefactor given by the velocity of
the particle. Now when —qj%a,, is integrated over all of space we get

Z qla(xn) - x5, — ao(xn)] (5.4)

exactly as in Eq. 5.1. So this is nothing more than the regular coupling
of a system of charged particles to a vector potential.

As is usual for a gauge theory, the coupling of the particles to the
gauge field is gauge invariant once one integrates the particle motion
over some closed path. The Chern-Simons term (first term in Eq. 5.3)
is gauge invariant on a closed manifold if we can integrate by parts. To
see this, make an arbitrary gauge transformation

ap = ap + Oux (5.5)

for any function y. Then integating the Chern-Simons term (by parts
if necessary) all terms can be brought to the form e*#7xd,9za., which
vanishes by antisymmtry. Note that this this gauge invariance holds
for any closed manifold, although for a manifold with boundaries, we
have to be careful when we integrate by parts as we can get a physically
important boundary term. (We will discuss these later in section ***
but for now, let us just think about closed space-time manifolds).

To determine what the Chern-Simons term does we need to look at
the Euler-Lagrange equations of motion. We have

which generates the equations of motion'®

qj* = pe*”da, (5.7)

This equation of motion demonstrates flux binding. To see this, let us
look at the Oth component of this equation. We have

N
0" =43 6(x = x,) = p(V x &) = b

n=1

where we have defined a “Cherns-Simons” magnetic field b to be the curl
of the the Chern-Simons vector potential. In other words this equation

1814 may look like the right result would
have p/2 on the right hand side, given
that it is /2 in Eq. 5.3. However, note
that when we differentiate with respect
to aq on the left hand side of Eq. 5.6,
we also generate an identical factor of
1/2 and these two add up.



52 Aharanov-Bohm, Charge-Fluz Composites, and Introducing Chern-Simons Theory

19Making strict mathematical sense of
this type of integral is not always so
easy!

attaches a delta function flux tube with flux ¢/ at the position of each
charge ¢q. So we have achieved charge-flux binding!

We might expect that the phase obtained by exchanging two charges
in this theory would be the charge times the flux or § = ¢%/p. Actually,
this is not right! The correct answer is that the statistical phase is

0 =q*/(2u).

To see why this is the right answer, we can multiply our equation of
motion Eq. 5.7 by a,, and then plug it back into the Lagrangian 5.3. We
then end up with

AL = —g %t

In other words, the dynamics of the Chern-Simons vector potential itself
cancels exactly half of the Lagrangian density, and hence will cancel half
of the accumulated phase when we exchange two particles with each
other!

If we are interested in calculating a propagator for our particles we

can write
Z Z ei(50+5cs+5coupzing)/h (58)
paths {x(t)} alla,(x,t)

Here the first sum is the usual sum over particle paths that we have
discussed before. The second sum is the sum over all possible configu-
rations of the field a,(x,t). Note that this means we should sum over
all configurations in space and time so it is effectively a path integral
for a field. (This is potentially everything you ever need to know about
field theory!). Often the sum over field configurations is written as a

functional integral
Z — / Day,(x)

alla, (x,t)

Formally when we write a functional integral we mean'? that we should
divide space and time into little boxes and within each box integrate
over all possible values of a,. Fortunately, we will not need to do this
procedure explicitly.

At least formally we can thus rewrite Eq. 5.8 as

>, esn / Day(z) e50s/M /M Lparns W00 (5.9
paths {x(t)}

where Sy is the action of the particles following the path but not in-
teracting with the gauge field, Scg is the action of the Chern-Simons
gauge field alone (from the first term in Eq. 5.3). The final exponential
in Eq. 5.9 represents the coupling (from the second term of Eq. 5.3) of
the gauge field to the path of the particles — it is an integral that fol-
lows the path of the particles and integrates the vector potential along
the path (see also Eq. 5.4). This is precisely the phase accumulated
by a particle in the vector potential. It is an example of a Wilson-line
operator, which we will see again shortly in section 5.5.
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Once the integration over the Chern-Simons field is done, we obtain

Z 6iSo/h+i49W(path)
paths {x}

where W is the winding number of the path and 6 is the anyon statistical
angle. In other words, integrating out the Chern-Simons gauge field
implements fractional statistics for the particles in the system, inserting
a phase eT* for each exchange!

Vacuum Abelian Chern-Simons Theory

Something we have pointed out above in section 5.3 is that the vacuum
of an anyon theory knows about the statistics of the particles, even
when the particles are not present (i..e, the ground state degeneracy on
a torus matches the number of particle species). Thus, in the absence
of particles, we will be interested in

Z(M) = /M Day,(z) e'Scs/h

where M is the space-time manifold we are considering?’. In fact this
integral is exactly the ground state degeneracy of the system if we are
considering a three dimensional manifold of the form M = ¥ x S! for
a 2D manifold X and S! represents time (compactified®!). As we might
expect, this quantity will be a topological invariant of the space-time
manifold. That is, smooth deformations of M do not change its value.
(See chapter appendix, particularly section 5.6.3). This quantity Z (M),
often known as the partition function of the theory for the manifold M,
will be of crucial importance as we learn more about topological theories
in general in Chapter 7 below.

5.5 NonAbelian Chern-Simons theory: The
paradigm of TQFT

Among 241 dimensional topological quantum systems, pretty much ev-
erything of interest is somehow related to Chern-Simon theory — how-
ever, we don’t generally have the luxury of working with Abelian theory
as we have been doing so far.

We can generalize the Abelian Chern-Simons theory we discussed
above by promoting the gauge field a,, to be not just a vector of num-
bers, but rather a vector of matrices.22 More precisely, to construct a
non-Abelian Chern-Simons theory, we consider a vector potential that
takes values in a Lie algebra?3. For example, if we choose to work
with the Lie algebra of SU(2) in the fundamental representation we can
write a general element of this algebra as a sum of the three generators
i04,10y,10, so that our Lie algebra value gauge field is then2*

au(x) = af(x)ow g

2030me space time manifolds we might
consider, such as any 2D manifold %
cross time (such that M = ¥ x R),
seem very natural. However, as we
will see in much detail in chapter 7,
we will want to be much more gen-
eral about the types of manifolds we
consider. We should even allow three
dimensional manifolds where the two-
dimensional topology of a fixed time
slice changes as time evolves! See also
the discussion in 6 and Fig. 6.1.

21C0mpactiﬁcation of time from R to
S is something that might be famil-
iar from statistical physics where this
procedure is used for representing finite
temperatures.

221f you have studied Yang-Mills the-
ory, you already know about non-
abelian vector potentials.

233ee the introduction to Lie groups
and Lie algebras in section 3.2.3. In
brief: A Lie Group is a group which is
also a manifold. A Lie algebra is the
algebra of infinitesimal changes in this
group.

24he factors of 2 and i are a useful
convention, although other conventions
exist
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25These are named for Ken Wilson,
who won a Nobel Prize for his work
on the renormalization group and crit-
ical phenomena. There is a legend that
Wilson had very very few publications
when he came up for tenure as a profes-
sor at Cornell. Only due to the strong
recommendation of his senior colleague
Hans Bethe (already an Nobel Laure-
ate at the time) did he manage to keep
his job. Bethe knew what Wilson had
been working on, and vouched that it
would be extremely important. His
ground-breaking work on renormaliza-
tion group was published the next year.
Everything worked out for him in the
end, but the strategy of not publish-
ing is not recommended for young aca-
demics trying to get tenure.

26 In the case of the gauge group being
SU(2), as mentioned in section 3.2.3,
the gauge group is isomorphic to the
manifold S3. So if the manifold hap-
pens to be S3 then we are looking at
mappings from S3 back into S3. The
mapping of Eq. 5.14 corresponds to zero
winding number (can be continuously
deformed to U = 1 everywhere). How-
ever, we also can consider the identity
mapping that S% maps into S3 in the
obvious way (every point goes to itself)
which gives an n = 1 mapping (a 1-to-1
mapping). One can also construct 2-to-
1 mappings which have winding n = 2
etc. A mathematician would say that
[3(S3) = Z, meaning one can wrap S3
around S2 any integer number of times.

where o}, are the Pauli matrices. Now that a,, is matrix valued it becomes
noncommutative and we have to be very careful about the order in which
we write factors of a,,.

The fundamental quantity that we need to think about is the Wilson?®

loop operators
Wp =Tr [Pexp <ij{ dl“a#)]
hJr

where here the integral follows some path L. (The trace can be taken
in any representation of the group giving a physically different meaning.
See footnote 28 below.) Here, the P symbol indicates path ordering
— analogous to the usual time ordering of quantum mechanics. The
complication here is that a,(z) is a matrix, so when we try to do the
integral and exponentiate, we have a problem that a,(z) and a,(z’) do
not commute. The proper interpretation of the path orderered integral
is then to divide the path into tiny pieces of length dl. We then have
(setting ¢ = h = 1 for simplicity of notation)

(5.10)

Pexp(i% dli*a,) = (5.11)
L

1 +ia,(z1)dl*(x1)] [1+dau(x2)dl*(x2)] [1+ tay,(zs)dl*(z3)] ...

where x1, 9,23, ... are the small steps along the path. Since the expo-
nent is an integral of a vector potential around a loop, we can think of
this path ordered integral as giving us e*?®/" where ® is now some sort
of matrix valued flux. L.e., this is a non-Abelian analogue of Aharonov-
Bohm effect!

The proper gauge transformation in the case of a nonabelian gauge
field is given by

a, — Ua, U™t —iU0, U™ (5.12)

Where U(x) is a matrix (which is a function of position and time) which
acts on the matrix part of a,. Note that this is just the nonabelian
analogue of the gauge transformation in Eq. 5.5 (take U = e~*X). To
see that this gauge transformation leaves the Wilson loop operators in-
variant (and hence is the right way to define a gauge transformation!)
see Appendix section 5.6.1.

With a, a matrix valued quantity, the Chern-Simons action is now
written as

(5.13)

k 2
Scg = yo /M dx P Tr [aaag% — éaaaﬁay

Note that the second term in the brackets would be zero if the a, were
commutative. (In the Abelian case above, we have no such term! See
Eq. 5.3).

The Chern-Simons action is actually not quite gauge invariant. If in
Eq. 5.12 we use unitary matrices U(z) which are “close” to the identity
(i.e., the whole set of matrices can be continuously deformed to the
identity everywhere) then we will find the action is gauge invariant up
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to a surface term (which vanishes for a closed manifold). To see this we
can simply use

U(x) =exp(ieH(z)) = 1+ icH(x) (5.14)
for a hermitian matrix H (x) (which again is a function of space and time)
where we can assume € is very small. Substituting this in to Eq. 5.12
and then into the Chern-Simons action, we find that (to lowest order in
€) the action is indeed gauge invariant (See appendix 5.6.2). However,
it turns out that the unitary function of space and time U(z) has topo-
logically disconnected components — that is, we cannot continuously
reach some functions U(z) starting from the identity and making small
deformations. This is not immediately obvious, but it turns out that
under such “large” gauge transformations, we have

SCS — SCS + 27kn

for some integer n which is some sort of winding number?® of the function
U(z). This may look problematic, but we note that the only thing
entering our functional integral is €*°¢s, not the Chern-Simons action
itself. Thus, so long as we choose k, the so-called “level”, as an integer,
then we have a well defined functional integral of the form

Z(M) = /M Da,,(x) e5cs

where the result Z(M) turns out to be a manifold invariant (see chapter
appendix, section 5.6.3), meaning that smooth deformations of space and
time do not change its value.

The insertion of the Wilson loop operator into the path integral gives
a knot invariant of the link L that the Wilson loop follows2”. Often we
will think about our link as being embedded in a simple manifold like
the three sphere, which we denote as S* (see section 3.1.1 for definition
of $3).

So for example, to find the link invariant corresponding to the two
linked strings in Fig. 5.11, we have®®

Z(S%,L1,Ls)  [g Dap(x) WraWpy e'Ses
Z(83) o fs3 Da,,(z) eiScs

Knot Invariant =

with W, being the Wilson loop operators as in Eq. 5.10. Indeed, if we
choose to work with the gauge group SU(2) at level k& we obtain the
Kauffman invariant of the knot with A = —(—4)(k+1/(k+1),

M3

Fig. 5.11 A cartoon of a 3 manifold
with a link made of two strands embed-
ded in it.

2"The observant reader will note that
we have not specified the “framing” of
the knot — i.e, if we are to think of
the world-line as being a ribbon not
a line, we have not specified how the
ribbon twists around itself. (See sec-
tion 3.4.) In field theory language this
enters the calculation by how a point-
splitting regularization is implemented.

28 As mentioned by Eq. 5.10 we can
choose to evaluate the trace of the Wil-
son loop operator in any representa-
tion of the gauge group. Choose dif-
ferent representations corresponds to
world lines of different “particle types”
in the theory!
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29 check consistency of signs

kokk

5.6 Appendix: Odds and Ends about Chern
Simons Theory

5.6.1 Gauge Transforms with Nonabelian Gauge
Fields

Let us define a Wilson-line operator, similar to the Wilson loop but not
forming a closed loop, i.e., going along a curve C from space-time point

 to point y.
Wel(z,y) = Tr [Pexp (z/ dl“a#)]
c

Under a gauge transformation function U(z) we intend that the Wilson
line operator transform as

We(x,y) = Ux) We(z,y) U(y)~" (5.15)

Clearly this obeys composition of paths, and will correctly give a gauge
invariant result for a closed Wilson loop. Now let us see what is required
for the gauge field a, such that Eq. 5.15 holds. We consider

Wel(z,z + dz) =1+ ia,dzt (5.16)
and its transformation should be
Wel(z,z +dr) — U(x)Weo(z,z + de)U(x + dz) ™
= U(2)[l +ia,dx"]U(z + dz) ™"
= U@L+ iauda®|[U ()" + dat0,U(2)")
= 1+i[Ua, U™ —iU0,U "da" (5.17)

By comparing Eq. 5.16 and Eq. 5.17 we see that the gauge transform
rule Eq. 5.12 correctly gives a gauge invariant Wilson loop operator.

5.6.2 Gauge Invariance of Chern-Simons action
under small transforms

We want to use the small gauge transform Eq. 5.14 and expand every-
thing to lowest order in e. First, we plut this into Eq. 5.12 to obtain
(setting g =h =1)

a, = ay, +€(i[H(z),a,] — 0, H)
Plugging this into Eq. 5.13 and keeping terms linear in € only one finds

that all terms linear in e vanish.??

5.6.3 Chern Simons Action is Metric Independent

You will often see books state that you don’t see the metric g, written
anywhere in Eq. 5.13, therefore it must be metric independent. But that
kind of misses the point!
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A differential geometer would see that one can write the Chern-Simons
action in differential form notation

k 2
SCS:E/(a/\daJrga/\a/\a)

which then makes it “obvious” that this is metric independent.

In more detail however, we must first declare how the gauge field
transforms under changes of metric. It is a “1-form” meaning it is meant
to be integrated along a line to give a reparameterization invariant result,
such as in the Wilson loops

/da = /dx“au(x) = /dm’”gfm a,(z")

This means that under reparameterization z’(z) we have

ox?
au(x) = ma,,(x’)

such that the line integral remains invariant under a reparameterization
of the space.

Now, if we make this change on all of the a’s in the the Chern-Simons
action we obtain

21
PV Tr |andpa, — 3aaa5a7} —

(B ox™ 9zf Ox7

9;
—— = 7~ 1T |an0ga, — —Zaaaga
Oz’ 9xz'B Oz T3 K

But notice that the prefactor, including the e, is precisely the Jacobian
determinant and can be rewritten as

' det[dz )02

Thus the three-dimensional Chern-Simons action integral can be changed
to the da’ variables and the form of the integral is completely unchanged
and thus depends only on the topological properties of the manifold.

In fact, this feature of the Chern-Simons Lagrangian is fairly unique.
Given that we have a single gauge field a,(x) this is the only (3-form)
gauge invariant Lagrangian density we can write down which will give a
topological invariant!

5.6.4 Framing of the Manifold — or doubling the
theory

There is a bit of a glitch in Chern-Simons theory. We want the Chern-
Simons functional Z(M) to be a function of the topology of M only.
This is almost true — it is true up to a phase. In order to get the
phase, you need to specify one more piece of information which can
be provided in several ways (often called a 2-framing). This additional
piece of information is most easily described by saying that you need
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30This is precisely what happens on the
surface of materials known as “Topo-
logical Insulators” (or TIs) in three di-
mensions. The bulk of the system is a
gapped insulator, but the surface of the
system has a single Dirac fermion (or an
odd number of Dirac fermions) and this
is impossible to have in a purely two-
dimensional system. See chapter ***.

to specify a bit of information about the topology of the 4-manifold N/
that M bounds M = ON. It is a fact that all closed 3-manifolds are the
boundary of some 4-manifold — in fact, of many possible 4-manifolds.
The phase of Z(M) is sensitive only to the so-called “signature” of
the 4-manifold A. (Consult a book on 4 manifold topology if you are
interested!)

The fact that the Chern-Simons theory should depend on some infor-
mation about the 4-manifold that M bounds may sound a bit strange.
It is in fact a sign that the Chern-Simons theory is “anomolous”. That
is, it is not really well defined in 3-dimensions. If you try to make sense
of the functional integral f Da,,, you discover that there is no well de-
fined limit by which you can break up space-time into little boxes and
integrate over a, in each of these boxes. However, if you extend the
theory into 4-dimensions, then the theory becomes well behaved. This
is not unusual. We are familiar with lots of cases of this sort. Perhaps
the most famous example is the fermion doubling problem. You cannot
write down a time reversal invariant theory for a single chirality fermion
in d dimensions without somehow getting the other chirality. However,
you can think of a system extended into d + 1 dimensions where one
chirality ends up on one of the d-dimensioanl boundaries and the other
chirality ends up on the other d dimensional boundary3®. So to make
Chern-Simons theory well defined, you must either extend into 4d, or
you can “cancel” the anomoly in 3d by, for example, considering two, op-
posite chirality Chern-Simons theories coupled together (so-called “dou-
bled” Chern-Simons theory). The corresponding manifold invariant of
a doubled theory gets Z(M) from the righthanded theory and its com-
plex conjugate from the left handed theory, thus giving an end result of
|Z(M)|? which obvioulsy won’t care about the phase anyway!

5.6.5 Chern Simons Canonical Quantization for the
Abelian Case

One can consider the Chern-Simons theory as a quantum mechanical
theory with wavefunctions and operators (i.e., not in path integral lan-
guage). To do this, we need to find the commutation relations. Note
in the Chern-Simons Lagrangian terms like dya, multiply a, and vice
versa. This means that a,(z) is the momentum conjugate to a,(z) and
vice versa. We thus have the commutation relations
00 (2), a0y () = L3 - &)
1

The arguments & here live in 2 dimensions. Consider now the Wilson
loop operators around the two different handles of a torus

W, = explita/t) § -

where here j indicates we have a loop around either cycle 1 (L1) or cycle
2 (Lg) of our torus. The two paths must intersect at one point and
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therefore, due to the above commutations, do not commute with each
other. We can use the indentity that

eAeB — oBoAlAB]

which holds when [A, B] is a number not an operator. This the gives us
W1W2 = 6iq2/th2W1 = 6i9W2W1

where 6 is the statistical angle of the theory. Thus the Wilson loop
operators act just like operators 77 and 75 in section 5.3 which created
particle-hole pairs and moved them around the handle then reannihi-
lated. So even without discussing particles, the ground state wavefunc-
tion of the Chern-Simons theory is degenerate!

Chapter Summary

e The Charge-Flux composite model describes abelian anyons —
with the braiding phase coming from Aharonov-Bohm effect.

e We introduced idea of fusion, anitparticles and spin

e The vacuum for a system of anyons is nontrivial and can be a
quantum memory.

e The Charge-Flux model can be realized in an abelian Chern-
Simons theory.

e We introduced some ideas of general non-Abelian Chern-Simons
theory, including manifold invariants and turning Wilson loop op-
erators into knot invariants.

Further Reading

A good reference for the charge-flux composite model is John Preskill’s
lecture notes

e John Preskill, Lecture Notes on Topological Quantum Computa-
tion, http:/ /www.theory.caltech.edu/preskill/ph219/topological.pdf

A good reference for Abelian Chern-Simons theory is

e F. Wilczek, ed. Fractional Statistics and Anyon Superconductivity,
World Scientific, (1990).

Some good references on Chern-Simons theory are

e Current Algebras and Anomolies, by S. Treiman, R. Jackiw, B. Zu-
mino, and E. Witten (World Scientific) 1985. See particularly the
chapters by R. Jackiw.

e E. Witten, Quantum Field Theory and the Jones Polynomial Comm.
Math. Phys. Volume 121, Number 3 (1989), 351-399; available on-
line here https://projecteuclid.org/euclid.cmp/1104178138. This
is the paper that won a Fields’ medal!
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e Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman,
Sankar Das Sarma, Non Abelian Anyons and Topological Quan-
tum Computation, Rev. Mod. Phys. 80, 1083 (2008). Also avail-
able online at https://arxiv.org/abs/0707.1889. This has a short
discussion of Chern-Simons theory meant to be easily digested.

e Louis Kauffman, Knots and Physics, World Scientific, (2001), 3ed.
The section on Chern-Simons theory is heuristic, but very useful.

Exercises

Exercise 5.1 Abelian Anyon Vacuum on a Two-Handle Torus

Using similar technique as in section 5.3, show that the ground state vacuum
degeneracy on a two handle torus is m? for a system of abelian anyons with
statistical angle is & = wp/m for integers p and m relatively prime. Hint:
Conside what the independent cycles are on a two-handled torus and determine
the commutation relations are for operators T; that take anyon-antianyon pairs
around these cycles.

Exercise 5.2 Polyakov Representation of the Linking Number
Consider a link made of two strands, L1 and L2. Consider the double line

integral
®(Ly, Lo) E””“% da:i?{dmj ot —y"
1,4L2) — T =
dr Jp, [x —y[?

(a) Show that @ is equal to the phase accumulated by letting a unit of flux
run along one strand, and moving a unit charged particle along the path of
the other strand.

(b) Show that the resulting phase is the topological invariant known as the
linking number — the number of times one strand wraps around the other.

This integral representation of linking was known to Gauss.




Short Digression on Quantum
Gravity

6.0.1 Why this is hard

Little is known about quantum gravity with any certainty at all. What
we do know for sure is the value of some of the fundamental constants
that must come into play: the gravitational constant G, the speed of light
c and of course Planck’s constant /. From these we can put together an
energy scale, known as the Planck Scale

h5
E:,/ézm?gev

The temperature of the world around us is about 0.03 eV. Chemistry,
visible light, and biology occur on the scale of 1 eV. The LHC accelera-
tor probes physics on the scale of roughly 10 eV. This means trying to
guess anything about the Planck scale is trying to guess physics on an
energy scale 15 orders of magnitude beyond what any accelerator! exper-
iment has ever probed! We must surely accept the possibility that any
physical principle we hold dear from all of our experiments on low energy
scales could no longer hold true at the Planck scale! The only thing that
is really required is that the effective low energy theory matches that
which we can see at the low energies in the world around us!

6.0.2 Which Approach?

There are several approaches to quantum gravity. While I will not
make any statement about which approaches is promising, and which
approaches are crazy and overpublicized?, I am comfortable stating that
many of these investigations have led to increadibly interesting and im-
portant things being discovered. While in some cases (maybe in most
cases) the discoveries may be more about math than about physics, they
are nonetheless worthwhile investigations that I am enthusiastic about.

6.1 Some general principles?

We have to choose general principles that we want to believe will always
hold, despite the fact that we are considering scales of energy and length
15 orders of magnitude away from anything we have ever observed or
measured. Much of the community feels that the most fundamental
thing to hold onto is the Feynman picture of quantum mechanics —

L Cosmic ray observations have been
made at several orders of magnitude
higher still — but very little can be de-
duced from these extremely rare and
uncontrolled events. A famous event
known as the “Oh my God particle”
was apparently 1020 eV, still 8 orders of
magnitude away from the Planck scale.

2For information on the wars between
some of the different approaches to
quantum gravity, see the books “The
Trouble With Physics” by Lee Smolin
or “Not Even Wrong” by Peter Woit.
Or see responses to these, such as the
article by J. Polchinski in the American
Scientist, or (with appropriate warning
that it a bit of a rant) the online re-
sponse by Lubos Motl.
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3Written down first by Hilbert in 1915.

40Observation of gravity waves by the
LIGO experiment won the 2017 Nobel
prize.

that all space-time histories must be allowed. We might write a quantum
partition function of the form

Z= Y €St (6.1)

All universes

where the sum is now over everything that could happen — it is the
ultimate sum over all histories! Obviously such a thing is hard to even
contemplate. Several key simplifications will make contemplation easier:

(1) Let us ignore matter. Let us (at least to begin with) try to model
only universes which are completely devoid of substance and only
contain vacuum.

Thus the universe contains only the space-time metric. Doing this, the
Einstein-Hilbert action? for gravity takes the form

SEinstein ~ / dx R\/ )
M

where the integration is over the entire space-time manifold M, where
here g is the space-time metric and R is the Ricci scalar. One might
imagine that we could construct a theory of quantum gravity by plugging
the Einstein-Hilbert action into the path integral form of Eq.6.1. We
obtain

Z = /'Dg S minstein(9)/h

Even without matter in the universe, the model is very nontrivial be-
cause the space-time metric can fluctuate — these fluctuations are just
gravity waves?. Even in this limit no one has fully made sense of this
type of path integral without many additional assumptions.

(2) Let us simplify even more by considering a 241 dimensional uni-
verse.

We are used to the idea that many things simplify when we go to lower
dimension. Indeed, that is what happens here. In 2+1 dimension, there
is an enormous simplification that there are no gravity waves! Why
not? In short, there are just not enough degrees of freedom in a 2+1
dimensional metric to allow for gravity waves. (For more information
on this fact see the appendix to the chapter, section 6.2.) As a result,
the only classical solution of the Einstein equations in the vacuum is
that R = 0 and that is all! I.e., the universe is flat and there are no
fluctuations. (One can also have a cosmological constant A in which case
R = 2Ag is the solution).

One might think that this means that gravity in 2+1 D is completely
trivial. However, it is not. The space-time manifold, although every-
where curvature free, still has the possibility of having a nontrivial topol-
ogy. Thus what we are interested in is actually the different topologies
that our space-time manifold might have!
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We thus rewrite Eq. 6.1 as

z = % /M Dy i@/

manifolds M

> ZMm)

manifolds M

where S(g) is the Einstein-Hilbert action for a flat universe with metric
g, the sum is over all different topologies of manifolds the universe might
have, and the integration Dg is an integration over all metrics subject
to the condition that the manifold’s topology is fixed to be M.

Why would we be interested in such a quantity? In short, suppose
we know what the topology is of our (d-dimensional universe) at a fixed
time t. We want to know the amplitudes that the topology changes as
t develops. l.e., is the space-time manifold of our universe of the form
M = ¥ x time or does the space-time manifold split? For example, see
the diagram shown in Fig. 6.1.

Here is the surprise: the function Z(M) is precisely the Chern-Simons
partition function discussed above in section 5.5 for an appropriately
chosen gauge group!®

6.2 Appendix: No Gravity Waves in 241 D

Why are there no gravity waves in 241 dimension? The short argument
for this is as follows (taken from Carlip [2005])

In n dimensions, the phase space of general relativity is
parametrized by a spatial metric at constant time, which has
n(n —1)/2 components, and its conjugate momentum, which adds
another n(n — 1)/2 components. But n of the Einstein field equa-
tions are constraints rather than dynamical equations, and n more
degrees of freedom can be eliminated by coordinate choices. We
are thus left with n(n — 1) — 2n = n(n — 3) physical degrees of
freedom per spacetime point. In four dimensions, this gives the
usual four phase space degrees of freedom, two gravitational wave
polarizations and their conjugate momenta. If n = 3, there are no
local degrees of freedom.

Let us put a bit more detail on this argument. If we write the flat
metric as 7,, = diag[-1,1,1,...] in any dimension, and we consider
small deviations from a flat universe we have g = 4+ h, we can construct
the trace-reversed

- 1
o = g = 5" g
In any dimension, gravitational waves in vacuum take the form
B, =0

and

time

Fig. 6.1 A manifold where the topol-
ogy of a time-like slice changes as time
progresses. Time runs vertically in this
picture

5 This was first noted by Achicarro
and Townsend [1986] and then was de-
veloped further by Witten [1988] and
many others.
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where the comma notation indicates derivatives, and indices are raised
and lowered with 7.
In any dimension we will have the gravitational wave of the form

ikPx
Ry = €ue™ *r

where the polarization ¢, is orthogonal to the lightlike propagation
wavevector, k*k, = 0 meaning

ek’ = 0. (6.2)

However, one must also worry about gauge freedoms. We can redefine
our coordinates and change the form of the metric without changing any
of the spatial curvatures. In particular, making a coordinate transform
z — ' — £, we have

P = Ty — o — € + M €%

Now here is the key: In 2+1 D for any matrix € you choose, you can
always find a
§u = A#eik%P

such that

B,U,V = ijeik"% = 51’,!1« - SH,V + nl’«:l’g(,xa
This means that the wave is pure gauge, and the system remains per-
fectly flat! ILe., if you calculate the curvature with this form of h, you
will find zero curvature.

To be more precise, we find

€uy = Auky — Avky + 1, A%k,

and any € that satisfies Eq. 6.2 can be represented with some vector
A. Tt is easy to check this by counting degrees of freedom. € has 6
degrees of freedom in 2+1D, but Eq. 6.2 is 3 constraints, and A has
three parameters, so we should always be able to solve the equation for
A given e.

Further Reading

e For a huge amount of information on 241 dimensional quantum
gravity, see Carlip [2005].

e The relationship of 2+1 D gravity to Chern-Simons theory was first
developed by Ana Achicarro and Paul Townsend ([Achtcarro and
Townsend, 1986])

e The relationship was further developed by Edward Witten (Witten
[1988])

e Years later, the question was revisited by Witten in arXiv:0706.3359,

where doubt is raised as to whether Chern-Simons theory is suffi-
cient to fully describe gravity in 241 dimensions.



Topological Quantum Field
Theory

We already have a rough picture of a Topological Quantum Field Theory
(TQFT) as a quantum theory that depends on topological properties not
on geometric properties. For example, it matters that particle 1 traveled
around particle 2, but it doesn’t matter how far apart they are.

We can formalize these ideas by saying that the theory should be
independent of small deformations of the space-time metric. We might
say that

5o (any correlator) = 0
This is a completely valid way to define a TQFT, but is often not very
useful.

Another way to define a (2+1 dimensional) TQFT is that it is a set of
rules that takes an input of a labeled link embedded in a three-manifold
and gives an output of a complex number in a way that is invariant under
smooth deformations. This definition is quite analogous to our definition
of a knot invariant, with two key differences. First, we allow for the lines
to be labeled with a “particle type” (and our rules for evaluating the end
result will depend on the particular particle type labels). Secondly, the
link can be embedded in some arbitrarily complicated three-manifold®.
This type of mapping (see Fig. 7.1) is precisely the sort of thing that one
gets as an output of Chern-Simons theory which we called Z(M, links) as
we discussed in section 5.5. The advantage of thinking in this language
is that strictly speaking, the functional integrals of Chern-Simons theory

./\/l3

— Z(M?3,a,b)

Fig. 7.1 A (2+1) dimensional TQFT takes an input of a labeled link in a manifold
and produces an output of a complex number in a manner which is topologically
invariant.

Iwe may also allow world lines of
anyons to fuse into other species as dis-
cussed in section 5.2.
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2Sir Michael Atiyah, a Fields medal-
ist, was one of the foremost mathemati-
cians of the 20th century. He special-
ized in geometry and topology — par-
ticularly at the interface between math-
ematics and physics.

3While it is possible to define certain
TQFTSs on non-orientable manifolds it
is much easier to assume that all man-
ifolds will be orientable — excluding
things like M&bius strips and Klein bot-
tles. See section 3.1.

4The phrases “depends only on the
topology...” is something that physi-
cists would say, but mathematicians
would not. To a mathematician, topol-
ogy describes things like whether sets
are closed or open, whether points are
infinitely dense and so forth. Perhaps
it would be better to just say that
V(%) does not change under continuous
deformation of ¥. This is something
mathematicians and physicists would
bother agree on, and this is what we
actually mean here!

5This may sound a bit abstract, but
it is exactly how the Hilbert spaces
of any two systems must combine to-
gether. For example, in the case of two
spins, the Hilbert spcae of the union of
the two spins is the tensor product of
the two Hilbert spaces.

are often not well defined mathematically. Instead, here we bypass the
Chern-Simons field altogether and define a TQFT simply as a mapping
from a manifold with a link to an output.

A closely related but more formal definition of TQFTs is given by a
set of Axioms by Atiyah [1988]? which are in some sense much more
informative.

7.1 Paraphrasing of Atiyah’s Axioms

Here I'm going to give a rough interpretation of Aityah’s axioms of
TQFT, suitable for physicists. To begin with, we will consider space-
time manifolds with no particles in them. As we have found above,
TQFTSs are nontrivial even in the absence of any particles. Later on in
section 7.2 we will discuss adding particles and moving them around in
space-time too.

We will consider a d + 1 dimensional space-time manifold® which we
call M, and d dimensional oriented slice ¥ — we can often think of this
slice as being the d-dimensional space at a fixed time. Almost always
we will be thinking of d = 2, although the axioms are quite general and
can be applied to any d.

AXIOM 1: A d-dimensional space X is associated with a Hilbert
space V(X) which depends only on the topology* of ¥.

We call the space V', which stands for vector space, although some-
times people call it H for Hilbert space.

As an example of what we mean, we have seen that if ¥ is a torus, there
is a nontrivial Hilbert space coming from the ground state degeneracy.
This degenerate space is the space V' (X). The space V(2) will depend on
the particular anyon theory we are considering. For example in the case
of Abelian anyons in section 5.3 we found the degeneracy for a system
with statistical angle 8 = wp/m is m).

Note that when we add particles to the system (we will do this in
section 7.2), if the particles are non-abelian, then there will also be a
Hilbert space associated with the degeneracy that comes with such non-
abelian particles.

AXIOM 2: the disjoint union of two d-dimensional spaces ¥; and
3o will be associated with a Hilbert space which is the tensor product
of the Hilbert spaces associated with each space®. Le.,

V(Zl U 22) = V(El) X V(Zg)

In particular this means that the vector space associated with the null
or empty space () must be just the complex numbers. Let us state this
mathematically.

Axiom 2 Implies:

V(@)=C
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The reason this must be true is because fUYX = ¥ and C® V(X) =
V(X) so the result followsS.

AXIOM 3: If M is a (d+1)-dimensional manifold with d-dimensional
boundary” ¥ = dM, then we associate a particular element of the vector
space V(X) with this manifold. We write

Z(M) € V(OM)

where the association (i.e., which particular state in the vector space is
chosen) again depends only on the topology of M.

Here we should think of 0M as being the space-like slice of the system
at a fixed time, and V(9M) as being the possible Hilbert space of ground
states. The rest of M (the interior, not the boundary) is the space-time
history of the system, and Z (M) is the particular wavefunction that is
picked out by this given space-time history (See Fig. 7.2).

oM
oM

or

time

Fig. 7.2 Two depictions of a space-time manifold M with boundary OM. The left
depiction is problematic because the only boundary of the manifold is supposed to
be the top surface M (the black outline really should not be there, but we can’t
draw a closed three manifold!). The right depiction is more accurate in this sense,
although it depicts a 2D M and 1D oM.

The point of this axiom is to state that the particular wavefunction of
a system Z (M) which is chosen from the available vector space depends
on the space-time history of the system. We have seen this principle
before several times. For example, we know that if a particle-antiparticle
pair is taken around a handle, this changes which wavefunction we are
looking at — this process would be part of the space-time history.

Axiom 3 Implies: For M closed, we have OM = (), the empty space,
SO

Z(M)eC

i.e., the TQFT must assign a manifold a topological invariant which is
a complex number. This is exactly what we found from Chern-Simons
theory.

61f this sounds confusing, remember the
space C is just the space of length 1
complex vectors, and tensoring a length
n vector with a length m vector gives
a size n by m matrix, so tensoring a
vector of length n with a length 1 vector
gives back a vector of length n.

"We use the d to denote boundary. See
section 3.1.4.
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8The notation M Us; M’ means the
union of M and M’ glued together
along the common boundary Us.

time

time
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Z(M') = @' e V(E7)

oM =%+

Fig. 7.3 In this picture M and M’ are meant to fit together since they have a
common boundary but with opposite orientation ¥ = OM = OM’*. Here (¢'| =
Z(M'’) € V(£*) lives in the dual space of |[¢) = Z(M) € V(X). Note that the
normals are oppositely directed

AXIOM 4: Reversing Orientation
V(EH) =V

where by ¥* we mean the same surface with reversed orientation, whereas
by V* we mean the dual space — i.e., we turn kets into bras. It is a
useful convention to keep in mind that the orientiation of the normal of
OM should be pointing out of M. See Fig. 7.3.

GLUING: If we have two manifolds M and M’ which have a com-
mon boundary M = (OM')* we can glue these two manifolds together
by taking inner products of the corresponding states as shown in Fig. 7.4.
Here we have ¥ = OM = (OM’)* so we can glue together the two man-
ifolds along their common boundary to give®

Z(Mug M) =(Z(M')|Z(M))
COBORDISM: Two manifolds >; and Y5 are called “cobordant” if
their disjoint union is the boundary of a manifold M.
OM=X,UX,

We say that M is a cobordism between ¥; and 5. See Fig. 7.5 for an
example.



E*

Z(MUg M') = (Z(M)|Z(M)) = ('[¢)

Fig. 7.4 Gluing two manifolds together by taking the inner product of the wave-

functions on their common, but oppositely oriented, boundaries.

We thus have Z(M) € V(£7) ® V(X3), so that we can write

Z(M) = U s, a) @ (s, ]

af

where |t)x, o) is the basis of states for V(X2) and (15, g| is the basis of
states for V(X7). We can thus think of the cobordism M as being the

evolution?

Z

1

we have reversed orientation of X1 here.

IDENTITY COBORDISM: If we have M = ¥ x I where [ is the
one dimensional interval (We could call it the 1-disk, D! also) then the

Fig. 7.5 M is the cobordism between ¥} and X3. Le., OM = X7 U X2. Note that

OM = X5 U,
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9This evolution may or may not be
unitary — indeed, the dimensions of
V(21) and V(X2) may not even match
if ¥1 # X¥3. For example, if a one-
dimensional manifold ¥ contains a cir-
cle traveling through time to form a
2-dimensional cylinder, we can cap off
this cylinder with a half-sphere, and
this must act as a projection to a sin-
gle possible state of the Hilbert space
of the circle.
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M=XxIT
OM=XUX*

Fig. 7.6 A cobordism that can be
topologically contracted to nonthing
acts as the identity on the Hilbert space
V().

M=% x 8!

Fig. 7.7 Gluing the top of ¥ x I to
the bottom we obtain M = X x S1. An
important fact is that Z(X x S1) is just
the ground state degeneracy of 3 as a
2-manifold.

Gzla-TO°

Fig. 7.8 A 2-manifold with particles
in it, which are marked and labeled
points. We now call the combination
(the manifold and the marked points)
> for brevity.

boundaries are ¥ and X* (See Fig. 7.6), and the cobordism implements
a map between V(X) and V(2). Since the interval can be topologically
contracted to nothing, we can take this map to be the identity.

Z(ExI) =) |ts.a) @ (¥nal = identity.

We can now consider taking the top of the interval I and gluing it
to the bottom to construct a closed manifold M = ¥ x S!, where S*
means the circle (or 1-sphere), as shown in Fig. 7.7. We then have

Z(Ex S =Tr | |[sa) @ (Vs

(e

=Dm[V(®).  (7.1)

Thus we obtain the dimension of the Hilbert space V(X), or in other
words, the ground state degeneracy of the 2-manifold 3.
As we have discussed above in section 5.3, for the torus 72 we have

Dim V(T?) = number of particle species (7.2)

which we argued based on non-commutativity of taking anyons around
the handles of the torus. On the other hand, for a 2-sphere S?, we have

DimV(5?%) =1 (7.3)

since there are no noncontractable loops. (We will further justify these
statments more later! See ***)

7.2 Adding Particles

We now consider extending the ideas of TQFT to space-time manifolds
with particle world-lines in them. This is sometimes called a “relative”
TQFT, as compared to the case with no particles, which is sometimes
called an “absolute” TQFT.

Let us imagine that there are different particle types which we can
label as a, b, ¢, and so forth. The corresponding antianyons are labeled
with overbar @, b and so forth as in section 5.2.2. We now imagine a
2-manifold with some marked and labeled points as shown in Fig. 7.8.
We call the combination of the 2-manifold with the marked points ¥ for
brevity. As with the case without particles (AXIOM 1, in section 7.1), &
is associated with a Hilbert space V(X). The dimension of this Hilbert
space depends on the number and type of particles in the manifold (We
expect for non-abelian particles, the dimension will grow exponentially
with the number of particles). We can span the space V(X) with some
basis states |1,) which will get rotated into each other if we move the
marked points around within the manifold (i.e., if we braid the particles
around each other).

Similarly a 3-manifold M is now supplemented with labeled links
indicating the world lines of the particles. The world-lines should be



Fig. 7.9 Left: 3-manifold M with particles in it, which are marked and labeled lines
(the lines should be directed unless the particle is its own antiparticle). These world
lines may end on the boundary ¥ = OM. The wavefunction on the boundary oM is
determined by the spacetime history given by M. Right: M’ evolves the positions
of the particles in time. Note that by M’ we mean not just the manifold, but the
manifold along with the world-lines in it.

directed unless the particles are their own antiparticles. The world lines
are allowed to end on the boundary of the manifold OM. See left of
Fig. 7.9. Analogously we may sometimes call the combination of the
manifold with its world lines M, although sometimes we will write this
as M; L where L indicates the “link” (or knot) of the world lines.

As in the above discussion, the spacetime history specifies exactly
which wavefunction

[¥) = Z(M) e V(OIM)

is realized on the boundary ¥ = OM.

We can now think about how we would braid particles around each
other. To do this we glue another manifold M’ to OM to continue the
time evolution, as shown in the right of Fig. 7.9.

The final wavefunction is written as

[¢) = Z(MUM) e V(Z)

If we put the positions of the particles in ¥’ at the same positions as
the particles in X, then the Hilbert spaces, V(¥') is the same as V (%),
and we can think of Z(M'’) as giving us a unitary transformation on
this Hilbert space — which is exactly what we think of as nonabelian

7.2 Adding Particles 71
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statistics. We can write explicitly the unitary transformation

ZM') = U s a) @ (s
af

Note that if the particles stay fixed in their positions (or move in topo-
logically trivial ways) then M’ can be contracted to nothing and we can
think of the unitary transformation as being the identity. As with the
identity cobordism discussed in section 7.1, we can take such an identity
transformation, glue the top to the bottom and obtain

Z(¥ x SY) = Dim[V(2)] (7.4)

Le., the partition function Z is just the dimension of the Hilbert space
of the wavefunction. This holds true even when ¥ has marked points,
or particles, in it.

7.2.1 Particles or No-Particles

In the same way that the ground state of a topological system “knows”
about the types of anyons that can exist in the system, it is also the
case that the TQFT in the absence of particles actually carries the same
information as in the presence of particles. To see this consider a man-
ifold M with labeled and directed world-lines L; in them, as shown in
Fig. 7.10. Now consider removing the world lines along with a hollow
tube surrounding the paths that the world-lines follow as shown in the
figure. We now have a manifold with a solid torus removed for each

M M

=

Fig. 7.10 Removing the world-lines on the left along with a thickened tube. Imagine
a worm burrowing along the path of the world lines and leaving a hollow hole (colored
red).

world-line loop. (Think of a big worm having eaten a path out of the
manifold.) In this configuration, the boundary dM of the manifold M
now contains the surface of these empty tubes — i.e, the surface of a
torus T? for each world-line loop. Note that the empty tube is topolog-
ically a solid torus D? x S' even if the world-line forms some knot. The
statement that it forms a knot is some statement about the embedding
of the S* loop in the manifold.



Note that the Hilbert space of the torus surface T2 is in one-to-one
correspondence with the particle types that can be put around the han-
dle of the torus. Indeed, each possible state [¢,) of the torus surface
corresponds to a picture like that of Fig. 7.11, where a particle of type a
goes around the handle. Obviously, gluing such a solid torus back into
the empty solid-torus-shaped tube recovers the original picture of la-
beled world lines following these paths. We can think of this solid torus

Fig. 7.11 The possible wavefunctions |[i¢,) that we can have on the
surface of the torus can be realized by having a world-line of a parti-
cle of type a going around the handle of the torus. We can call these
Z(solid torus with a running around handle) = |¢g)

manifold as being a space-time history where ¢ = —oo is the central core
of the solid torus (the circle that traces the central line of the jelly fill-
ing of the donut) and the torus surface is the present time. Somewhere
between t = —oo and the time on the surface of the torus, a particle of
type a has been dragged around the handle.

The partition function of the manifold with the tori excised from it
(the right of Fig. 7.10) contains all of the information necessary to de-
termine the partition function for the left of Fig. 7.10 for any particle
types that we choose to follow the given world lines. For the manifold
on the right there are two surfaces (the two surfaces on the inside of the
holes left where we excised the two tori), so we have

Z(M) =Y Z(M;i,5) (rail @ (Yra,]

4,3

where Z(M;1, j) is the partition function for the torus with two particle
types i,j following the two world line loops L; and Lo, and the two
wavefunctions are the corresponding boundary condition. Thus, if we
want to extract Z(M;a,b), where the particle lines are labeled with a,b
we simply glue in the wavefunction |tp1,4) ® |tr2) representing the
boundary condition on the two surfaces.

7.3 Building Simple 3-Manifolds

7.3.1 S? and the modular S-matrix

We will now consider building up 3-manifolds from pieces by gluing
objects together using the gluing axiom from section 7.1. The simplest

7.3 Building Simple 3-Manifolds
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10g¢ you are rusty on these elementary
topology manipulations, see the review
in section 3.1

11Topologically it is easiest to think
about the n-dimensional ball, B", as
being the interval I = B! raised to
the nt" power. I.e., the disk (or 2-
ball), is topologically a filled-in square
D? = B2 =] x I. The usual 3-ball is
topologically a cube B3 = I'xIxI. The
4-ball is topologically a 4-cube B* =
IxIxIxI=D?xD?.

<>

Fig. 7.12 Assembling two solid toruses
to make S3. The obviously drawn torus
D? x S! (red) can be thought of as the
red disk D? crossed with the blue circle
S1. The remainder of space outside of
this red torus, including the point at in-
finity is the other solid torus S* x D2.
For this “outside” solid torus, the S!
can be thought of as the vertical green
line. This line becomes S by connect-
ing up with itself at the point at inifin-
ity. The shown grey disk is an exam-
ple of a contractable D2 which is con-
tained entirely within the outside solid
torus. Note that the entire outside solid
torus is S1 x D2, the vertical green line
cross disks equivalent to this one. The
green loop off to the side (also con-
tained within the outside torus), like
the vertical green S loop is not con-
tractable within the outside solid torus,
but can be deformed continuously to
the vertical green loop.

3-manifold to assemble is the three sphere S3. Remember that S can be
thought of as R compactified with a single point at infinity (the same
way that S? is a plane, closed up at infinity — think of stereographic
projection. See the discussion in section 3.1). Recall also that a solid
torus should be thought of as a disk crossed with a circle D? x S'. I
claim that we can assemble S® from two solid tori'°

S% = (S' x D?) U2 (D? x Sh)

The notation here is that the two pieces S* x D? and D? x S are joined
together on their common boundary which is 7 (the torus surface).

There is a very elegant proof of this decomposition. Consider the
4-ball B*. Topologically we have!!

B*=D? x D?

Now applying the boundary operator 0 and using the fact that the
boundary operator obeys the Leibniz rule (i.e., it distributes like a
derivative), we have

5% = 9B* = 9(D? x D?) = (S' x D?*) Ur2 (D? x S1)

where we have used the fact that the boundary of a disk is a circle,
0D? = S'. Note that the two solid tori differ in that they have the
opposite D? filled in. Note that the two solid tori here are glued together
along a common T2 = S x S! boundary. To see this note that

d(S' x D?) = S' x S' =9(D? x 1)

The two tori are glued together meridian-to-longitude and longitude-to-
meridian. (I.e., the contractable direction of one torus is glued to the
non-contractable direction of the other, and vice versa) A sketch of how
the two solid tori are assembled together to make S is given in Fig. 7.12.

Let us think about the partition function of these two solid tori which
are glued together on their boundaries to make up S3. We write the
partition function as the overlap between wavefunctions on the outside
and inside tori.

Z(SS) = <Z(D2 X Sl)‘Z(Sl X D2)> = <winsid6‘¢outside>

where the 1’s are the wavefunctions on the surface of the torus.

We can further consider including world lines around the noncon-
tractable loops of the solid torus, as in Fig. 7.11. There is a different
state on the surface of the torus for each particle type we have run-
ning around the handle. We then assemble S2 with these new solid tori
and get an S3 with two particle world lines linked together as shown in
Fig. 7.13. Gluing the two tori together we get

Z(S3; a loop linking b loop) = (Z(D? x S*;a)|Z(S* x D?;b)) = Sa



— = Z(83,alinkb) = S,

Embedded in S3

Fig. 7.13 Here we assemble a partition function for S3 with world lines of a linking
b embedded in the S3. To do this we glue together two solid tori each with a world
line running around the handle. (The green line marked b runs around the handle
of the “outside” torus.) The end result is known as the modular S-matrix, and it
gives a basis transform converting between the two bases which both span the hilbert
space of the torus surface where the two solid tori are glued together.

This quantity S, is known as the modular S-matrix, and it is a very
important quantity in topological theories as we shall soon see.!?

Note that the S-matrix is unitary, since it is simply a basis trans-
formation between the two sets of wavefunction which both span the
vector space V(T?) of the torus surface T2 where the two solid toruses
are glued together.

Note that the element Sy, corresponding the element of the S-matrix
where the vacuum particle (no particle at all!) is put around both han-
dles. (Here we are using 0 to mean the vacuum.) This tells us that

Z(S%) = Spo < 1

and in fact, should be strictly less than one unless there are no nontrivial
particle types.

Another way of viewing the S matrix is as a simple link between two
strands, as shown in Fig. 7.13. As with the Kauffman invariant, we can
construct a set of diagrammatic rules to give a value to knots. Soon, in
sections *** and *** we will construct a set of diagramatic rules to help
us “evaluate” knots like this. These rules will be somewhat similar to
the rules for the Kauffman invariant, only now we need to keep track of
labels on world lines as well.

732 S?x St

There is another way we can put two solid tori together to make a closed
manifold. Instead of attaching longitude-to-meridian and meridian-to-
longitude, we instead attach meridian-to-meridian and longitude-to- lon-
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1280me comments on the S-matrix: (1)
since a linking b is topologically the
same as b linking a we should have
Sab = Sba- (2) Reversing the direction
of the world line takes a particle to its
anti-particle. This is topologically the
same as taking the mirror image of the
linking diagram in Fig. 7.13, thus we
have Szp = [Sap]* where a is the an-
tiparticle of a.
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130ne should be warned that S2 x S!
cannot be embedded in usual three di-
mensional space, so visualizing it is very
hard!

1414 is also worth noting that in the
case of @ = b the world line through
one torus enters the sphere through one
hemisphere and the world line through
the other torus exits the sphere through
the other hemisphere. This fits with
our later principle that a nonzero am-
plitude of two particles on the surface
of a sphere must can only be a particle
and its antiparticle. See section ***

. . B . 2
Sew these disks together along their boundaries to make 5=

Fig. 7.14 Assembling two solid tori to make S? x S'. Here the two contractable
disks D? are sewed together along their boundaries to make S2.

gitude. (This is perhaps a simpler way to put together two solid tori!)
See Figure 7.14. Here we claim that!?

5% x §' = (D? x SY) Up= (D?* x SY)

The sewing together is again done along the common boundary T? =
St x St The S! factors in both solid tori are the same, and both of the
D? have the same S! boundary. Thus we are sewing togther two disks
D? along their S* boundaries to make a 2-sphere S? (imagine cutting
a sphere in half along its equator and getting two disks which are the
north and south hemispheres).

As in the previous case, we can put world lines through the handles
of the solid tori if we want. If we do so we have'

(Z(D* x S';b) | Z(D* x S*;a)) = 6ap

The reason it is a delta function is that both the bra and ket are really
the same wavefunctions (we have not switched longitude to meridian).
So except for the conjugation we should expect that we are getting the
same basis of states for both toruses.

In particular, we have the case where we put no particle (the vacuum)
around both handles, we have (i.e., a =b=1)

(Z(D? x SYH|Z(D?* x S')) =60 =1

So we have the result
Z(S*x ShH =1

Note that this agrees with two of our prior statements. On the one hand
Eq. 7.4 says that Z for any two dimensional manifold crossed with S*
should be the dimension of the Hilbert space for that manifold; and on
the other hand Eq. 7.3 states that the dimension of the Hilbert space on
a sphere is 1.

Further Reading

For discussion on the Atiya Axioms



7.3 Building Simple 3-Manifolds 77

e M. F. Atiyah, Proceedings of 5th Gokova Geometry and Topology
Conference, Tr. J. Mathematics, 21, 1, (1997).
http://www.maths.ed.ac.uk/ aar/papers/atiyahinttqft.pdf

e M. F. Atiyah, Topological quantum field theory. Publications
Mathmatiques de I'THS, 68 (1988), p. 175-186
http://www.numdam.org/item?id=PMIHES_1988_68__175_0






Surgery and More Complicated
3-Manifolds

In the previous chapter we saw two examples of assembling manifolds by
gluing together pieces. We found that we could assemble together two
solid tori (D? x S') into either S or S? x S depending on how we glue
together the St x S surfaces. (In fact, one can consider gluing together
the surfaces in yet other ways to get even more interesting results, but
we will not need that here.!). We would like to use this sort of trick to
be able to study much more complicated three dimensional manifolds.

The understanding of three dimensional manifolds is a very rich and
beautiful problem?. In order to describe complicated manifolds it is
useful to think in terms of so-called surgery. Similar to what we were
just discussing in section 7.3 — assembling a manifold by gluing pieces
together — the idea of surgery is that we remove a part of a manifold and
we glue back in something different. Imagine replacing someone’s foot
with a hand!* By using successive surgeries we will be able to construct
any orientable three-dimensional manifold.

The general scheme of surgery is to first write a manifold as the union
of two manifolds-with-boundary sewed along their common boundaries.
If we have a closed manifold M that we would like to alter, we first split
it into two pieces M7 and My such that they are sewed together along
their common boundary OM; = OM3. So we have

M = My U, Mo

We then find another manifold with boundary MY whose boundary
matches Mo, i.e,
OMy = OM,

We can then replace My with M}, to construct a new closed manifold
M’ as

M = Mi Ug M, M/Q
We say that we have performed surgery on M to obtain M’. In other
words, we have simply thrown out the My part of the manifold and
replaced it with M.

2Many important results on three dimensional manifolds have been discovered re-
cently. Perelman’s® proof of the Poincaré Conjecture, along with the methods he
used are apparently extremely revolutionary and powerful. But this is way outside
the scope of our book!

3Grigori Perelman is a brilliant, but startlingly puzzling character. He famously
declined the million dollar Millenium prize offered to him for proving the Poincaré
conjecture in three dimensions. He turned down the Fields Medal as well.

1 . L .
See however, the discussion in section
*** as well as ref *** for example.

4Prehensile toes could be useful T sup-
pose!
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8.1 Simple example of surgery on a 2-manifold

To give an example of surgery consider the sphere M = S$? as shown
in Fig. 8.1. Here we write the sphere as the union of two disks My =
D?U D? and the remainder of the sphere M; = S% — (D? U D?). These
are glued along their common boundary S* U S?.

g 0 (00 )

= — (D* U D?)] (D? U D?)
51 U Sl
Fig. 8.1 Writing a sphere M = S? as the union of two manifolds glued along their

boundaries. My is the union of two disks D2 U D2. My = S? — (D? U D?) is the
remainder. The two manifolds are glued along their common boundary S* U S*.

Now we ask the question of what other 2-manifolds have the same
boundary S' U S'. There is a very obvious one, the cylinder surface!
Let us choose the cylinder surface M/ = S x I where I is the interval (or
D?'). Tt also has boundary OM) = S*US? as shown in Fig. 8.2. Thus we

o l=0@u@)=0UO0

oSt x I)=9(D*uD?) =Stust

Fig. 8.2 The boundaries of the cylinder surface is the same as the boundary of the
two disks. Both boundaries are two circles. This means that we can remove two
disks from a manifold and sew in the cylinder.

can sew the cylinder surface in place where we removed My = D? U D?,
as shown in Fig. 8.3. The resulting manifold M’ is the torus 72

T? = (S? — (D* U D?)) Ugixst (S' x I)

Thus we have surgered a sphere and turned it into a torus. Note
that there is another way to think of this procedure. If M = ON then
surgery on M is the same as attaching a handle to N. In the case we
just considered we would take N = B? the 3-ball (sometimes denoted
D?), and we attach a handle D? x I, the solid cylinder. We obtain the



U _

Stust

$2—(DPUD?)] U [S'x 1] =T

Stust
Fig. 8.3 Gluing the cylinder surface M/, = S! x I to the manifold M; = S§2 —
(D? U D?) along their common boundary S' U S gives the torus T2.

new manifold A which is the solid torus, whose boundary is T? the
torus surface. This is written out in the diagram Fig. 8.4

N =53 ON =M =52
\L Add Handle \L Surgery
Solid Torus 9(Solid Torus) = T?

Fig. 8.4 Handle attaching on the manifold A is the same as surgery on a manifold

M =0ON.

8.2 Surgery on 3-manifolds

We can also perform surgery on three-dimensional manifolds.® Start with
a 3-manifold M, such as perhaps the R? space around us, or maybe S3.
Now consider a solid torus

My =D?x St

embedded in this manifold. The surface OMy = St x ST = T2 is a torus
surface. Now, there is another torus with exactly the same surface. It is

h=S5'xD?

These two solid tori differ in that they have opposite circles filled in.
Both have the same S! x S' surface, but My has the first S filled in
whereas MY has the second S filled in.

The idea of surgery is to remove My and replace it with M} to gen-
erate a new manifold M’ with no boundary.® The reason this is difficult
to visualize is because the new structure is not embeddable within the
original R®. This is torus surgery on a 3-manifold, and it is called Dehn
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5This is the part that is guaranteed to
make your head explode.

6Stop here, think about what we have
done. Collect the pieces of your ex-
ploded head.
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"In Witten’s groundbreaking paper on
the Jones polynomial (Witten [1989]),
he states the theorem without citation
and just says “It is a not too deep re-
sult..”. Hal

81f one does not start with the knot em-
bedded in S3, one may need a third
move known as “circumcision”. This
says that if any string loops only once
around another string (without twist-
ing around itself and without loop-
ing around anything else), both strings
may be removed. l.e., in Fig. 8.5, both
strings may be removed (independent
of how the string going off to the left
forms any knot). See exercise 8.1.

Fig. 8.5 A circumcision. Both strings
can be removed. This is a third Kirby
move which is implied by the first two
only if you start with a knot embedded
in S$3. Otherwise it is an independent
move that is required. See ***

surgery. Another way to describe what we have done is that we have
removed a solid torus, switched the meridian and longitude (switched
the filled-contractable and the unfilled-uncontractable) and then glued
it back in. In fact, one can make more complicated transformations on
the torus before gluing it back in (and it is still called Dehn surgery)
but we will not need this.

It is worth noting that the solid torus we removed could be embedded
in a very complicated way within the original manifold — i.e, it could
follow a complicated, even knotted, path, as in the figure on the right of
Fig. 7.10.

8.2.1 Lickorish-Wallace Theorem

An important theorem” of topology is due to Lickorish [1962] and Wal-
lace [1960].

Theorem: Starting with S® one can obtain any closed orientable 3-
manifold by performing successive torus surgeries, where the initial torus
may be nontrivially embedded in the manifold (i.e., it may folllow some
knotted path).

One has the following procedure. We start with a link (some knot
possibly of several strands), embedded in S®. Thicken each line to a
solid torus. Excise each of these solid tori, and replace them by tori
with longitude and meridian switched. Any possible 3-manifold can be
obtained in this way by surgering an appropriately chosen link. We
summarize with

surger
&

Link in $° Some M*

We can thus represent any three dimensional manifold in terms of a
link. If we think of a topological quantum field theory as being a way to
assign a complex number to a three dimensional manifold, i.e., Z(M) we
realize that what we are now looking for is essentially a knot invariant
— a way to assign a number to a knot. We explore this connection
further when we discuss Witten-Reshitikhin-Turaev invariant below in

this section.

8.2.2 Kirby Calculus

It is not the case that all topologically different links, when surgered, give
topologically different manifolds. Fortunately, the rules for which knots
give the same manifolds have been worked out. These rules, known
as Kirby calculus, are stated as a set of transformation moves on a
link which change the link, but leave the resulting manifold unchanged.
There are several different sets of moves that can be taken as “elemen-
tary” moves which can be combined together to make more complicated
transformations. Perhaps the simplest set of two elementary basic moves
are known as Kirby moves:®



(1) Blow up/ Blow Down:’ One can add or remove an unlinked
loop with a single twist, as shown in Fig. 8.6.

Addition or Removal of 6 or @

Fig. 8.6 Blow up/ Blow down. Addition or removal of an unlinked loop with a
single twist leaves the 3-manifold represented by surgery on the knot unchanged.

(2) Handle-Slide:'° A string can be broken open and pulled along
the full path of another string, and then reconnected. See Fig. 8.7.

7/
Fig. 8.7 A handle-slide move. (See Fig. 8.9 for another example.) Both left and

right sides of this pictures represent the same 3-manifold after surgery. Note that the

knot that is slid over (the right of the two pieces on the left) is O-framed, meaning
that it has self-twisting of zero. If this were not the case the strand that slides over
it would also twist around it. See *** for details.

Two links in S? describe the same 3-manifold if and only if one link
can be turned into the other by a sequence of these Kirby moves. While
these moves may seem strange, it is possible to develop some geometric
intuition for what these mean. This is addressed roughly in the appendix
to this chapter.

8.2.3 Witten-Reshitikhin-Turaev Invariant

Here we are interested in constructing what is known as a manifold
invariant. Similar to a knot invariant, this is a mapping from a manifold
to some output that depends only on the topological properties of the
input manifold.

Our strategy of building a manifold invarient is to describe the man-
ifold by using surgery on a link. Given knowledge of the rules of Kirby
calculus, to construct a manifold invariant for three manifolds, we need
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9The nomenclature is obscure when
discussing 3-manifolds, but makes sense
when one discusses 4-manifolds. See
any of the books on 4-manifold topol-
ogy listed at the end of the chapter.

10The nomenclature “handle slide”
comes from an interpretation of this
move as sliding handles around on a
manifold. Consider the example used
in section 8.1 where we attached a han-
dle to a ball and obtained a solid torus.
We could also attach two handles and
get a two-handled solid torus. Here it
doesn’t matter where the handles are
attached to the sphere — they can be
slid around. Indeed, they can even be
slid over each other, which is what the
handle-slide represents.
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only construct a knot invariant that is invariant under Kirby moves. Be-
ing that the Chern-Simons path integral is not really well defined as a
path integral, it turns out that this scheme is a way to make the manifold
invariants of Chern-Simons theory mathematically rigorous [Reshetikhin
and Turaev, 1991; Lickorish, 1993].

Without ever saying the words “path integral” or “Chern-Simons ac-
tion” we can think of an anyon theory as simply a way to turn a link
of labeled world lines into a number (like evaluating a knot invariant,
but with rules for labeled links). Thus each anyon theory gives us a way
(many ways, actually) to construct knot invariants. It turns out that
for any well behaved anyon theory one can put together a combination
of world-line types that will obey the Kirby calculus and therefore allow
one to construct a manifold invariant.

The first Kirby move (The blow up/blow down) does not sound so
hard to finagle just by using some normalization factor for each twist
and loop (We will show details of this later in ***). The second Kirby
move seems harder to achieve, but can be achieved if one uses the so-
called Kirby color combination (sometimes known as an ) string)

) = 3" Soala)

where here we mean that we are summing over particle types a, and S
is the modular S-matrix, and the subscript 0 refers to the vacuum or
identity particle. Diagrammatically we have Fig. 8.8. It turns out (See

=Y. 504 ja

Fig. 8.8 A String of Kirby color is a weighted superposition of all anyon string
types. Note that the Kirby color string does not have an arrow on it since it is an
equal sum over all pairs of particles and their antiparticles.

exercise 13.2) that the corresponding knot invariant that comes from
evaluating a knot of Kirby color is invariant under handle-slides. The
manifold invariant that results from evaluating the corresponding knot
invariant of the Kirby-color string is known as the Witten-Reshitikhin-
Turaev invariant and it gives a rigorous re-definition of the Chern-Simons
manifold invariants defined by Witten. (See chapter *** for more de-
tails).

8.3 Appendix: Meaning of Kirby Moves

The point of this appendix is to give some geometric intuition for why
Kirby moves on a link leave the resulting manifold described by the link
unchanged.

Blow Up / Blow Down: Consider the twisted loop in Fig. 8.6
embedded in S2. We would like to perform surgery on this loop and we
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claim we still obtain S®.

As described in Fig. 2.7 a string with a small twist loop as in Fig. 8.6
can be thought of as a ribbon with a twist (but no loop) in it. Let us
use this description instead. When we thicken this ribbon to a torus,
the torus develops a twist in it as well. Thus what we have is a torus
where a straight line drawn on the surface around the longitude (the
blue line direction in Fig. 7.11) is now instead twisted around the torus,
shown as the blue line in Fig. 8.9. After surgery, it is now this blue line
which must be attached to the longitude of the “outer” torus (i.e., the
longitude of the hole that was left behind when we excised the torus).

We now consider this reassembly of the manifold compared to the
assembly of S2 from two solid tori as described in Fig. 7.12. The re-
assembly here is entirely analogous except that now the outer (vertical)
torus must also be twisted around its own axis (the vertical green line in
Fig. 7.12 so as to accomodate the fact that the blue line shown in Fig. 8.9
twists around both directions. Nonetheless, the resulting manifold is still
precisely S3, covering all of space and the point at infinity.

Fig. 8.10 An example of a simple handle-slide move.

Handle-Slide: It is fairly easy to describe why the handle-slide is an
allowed move. Consider the simple handle-slide shown in Fig. 8.9. Let
us think about what happens when we surger the horizontal loop. First
we thicken the horizontal loop into a torus (as shown), then we exchange
the contractable and non-contractable directions. In this procedure, the
longitudinal direction (The long direction) of the torus is made into
something contractable. This means (after surgery) we can pull the far
left vertical line through this torus without touching the three verti-
cal blue lines. This remains true even if the torus is embedded in the
manifold in a complicated way, as in Fig. 8.7.

Further Reading

For more detailed discussion of Surgery and Kirby Calculus, as well as
a nice discussion of manifold invariants, see

e V. V. Prasolov and A. B. Sossinsky, Knots, Links, Braids and 3-

Fig. 8.9 A line that wraps both the
longitude and meridian of the torus. If
we thicken the knot shown in Fig. 8.6
to a torus and draw a line around
the longitude of the torus, then try to
straighten the torus out to remove the
twist, the straight line ends up looking
like this.

Manifolds: An introduction to the New Invariants in Low-Dimensional

Topology, Translations of Mathematical Monographs, v 154, Amer-
ican Mathematical Society, Providence RI, (1996).
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The following references are standards for Surgery and Kirby Calculus,
although they emphasize four dimensional topology.

e Robert E. Gompf and Andras I. Stipsicz, 4-Manifolds and Kirby
Calculus, American Mathematical Society, Graduate Studies in
Mathematics Volume: 20 (1999).

e Robion Kirby, The Topology of 4-Manifolds, Springer (1989).

e Selman Akbulut, 4 manifolds, Oxford Graduate Texts in Mathe-
matics (2016).

Exercises

Fig. 8.11 Hopf Link

A/

Fig. 8.12 Borromean Rings. Cutting
any one strand disconnects the other
two.

I The rings are named for the crest of
the royal Borromeo family of Italy, who
rose to fame in the fourteenth century.
However the knot (in the form of three
linking triangles) was popular among
Scandinavian runestones five hundred
years earlier and were known as “Wal-
knot”, or “the knot of the slain.”

Exercise 8.1 Surgery

(a) Beginning with the three-sphere S, consider the so-called “unknot”
(a simple unknotted circle S* with no twists) embedded in this S*. Thicken
the circle into a solid torus (S* x D?) which has boundary S' x S'. Now
perform surgery on this torus by excising the solid torus from the manifold S3
and replacing it with another solid torus that has the longitude and meridian
switched. Le., replace S* x D? with D? x S!. Note that both of the two solid
tori have the same boundary S* x S* so that the new torus can be smoothly
sewed back in where the old one was removed. What is the new manifold you
obtain? (This should be easy because it is in the book!)

(b) [Not hard if you think about it right!] Consider two linked rings, known
as the Hopf link (See Fig. 8.11). Consider starting with S® and embedding
the Hopf link within the S* with “blackboard framing” (i.e., don’t introduce
any additional twists when you embed it). Thicken both strands into solid
tori and perform surgery on each of the two links exactly as we did above.
Argue that the resulting manifold is S2.

(c¢) [Hard] Consider the link shown in Fig. 8.12 known as the Borromean
rings' This is an interesting link because no two strands are actually linked
with each other, but the three links are still tied together. If you remove any
one strand the remaining two come apart.

Consider starting with S* and embedding the Borromean rings within the
S3 with “blackboard framing”. Thicken all three strands into solid tori and
perform surgery on each of the three links exactly as we did above. What
manifold do you obtain? Hint 1: Think about the group of topologically
different loops through the manifold starting and ending at the same point,
the so-called “fundamental group” or first homotopy group. (See section 3.3).
Hint 2: If we say a path around the meridian of one of the three Borromean
rings (i.e., threading though the loop) is called a and the path around the
meridian of the second ring is called b, then notice that the third ring is
topologiclly equivalent to aba~'b~!. Hint 3: In some cases the fundamental
group completely defines the manifold! (Don’t try to prove this, just accept
this as true in this particular case.)



Fusion and Structure of Hilbert
Space

As discussed in section 7.1, each two-dimensional surface (a slice of a
three-dimensional space-time manifold) has an associated Hilbert space.
In the case where there are particles in this surface, the dimension of
the Hilbert space will reflect the nature of the particles. We now seek
to understand the structure of this Hilbert space and how it depends on
the particles. We bagan introducing graphical notation in

Basics of Particles and Fusion — The
Abelian Case

9.1

Particle types:

There should be a finite set of labels which we call particle types. For
now, let us call them a, b, c, etc.

Fusion

World lines can merge which we call fusion, or do the reverse, which
we call splitting. If an a particle merges with b to give ¢, we write
a X b=">bx a=c. This is shown diagrammatically in Fig. 9.1.

It should be noted that we can think of two particles as fusing together
even if they are not close together. We need only draw a circle around
both particles and think about the “total” particle type inside the circle.
For example, we sometimes draw pictures like shown in Fig. 9.2.

For example, in our abelian anyon model of charges and fluxes (see
section 5.2), if the statistical angle is § = wp/m (p and m relatively
prime and not both odd) then we have m species a = (ag,a®) for a =
0...m — 1, where ¢® = mp/m. The fusion rules are simply addition
modulo m. That is a x b = (a + b)mod m.

Identity

Exactly one of the particles should be called the identity or vacuum. We
write this' as 1 or 0 or I or e. The identity fuses trivially

axI=a

for any particle type a. In the flux-charge model (section 5.2) we should
think of the identity as being no charge and no flux. Fusion with the

a b c

Fig. 9.1 Fusion and splitting diagrams
can be thought of as part of a space-
time history of the particles. If we
are describing two separated particles
a and b whose overall quantum number
is ¢, we would describe the ket for this
state using the right hand picture —
which we can think of as a space-time
description of how the current situation
(a on the left b on the right) came about
(with time going up). Conversely, the
left picture can be thought of as the
corresponding bra. More details of the
relationship of the diagrammatic alge-
bra to kets are given in chapter 10.

Fig. 9.2 Another notation to describe
th fusion of two particle types to make
a third a Xx b = ¢. The two particles
need not be close to each other.

Mt is admittedly annoying that we have
so many different ways to express the
identity, but in different contexts dif-
ferent notations seem natural. For ex-
ample, if our group of particles is fus-
ing by addition (as we discussed in the
charge-flux model) the identity should
be 0. But if our group fuses by multi-
plication, identity is more naturally 1.
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Fig. 9.3 Two depictions of fusion of a
particle with the identity a X I = a. On
the right, the empty space with a light
dotted circle is supposed to indicate the
identity. The circle surrounding a and
the identity, has particle type a.

a
Py
Fig. 9.4 A particle going forward

should be equivalent to an antiparticle
going backwards.

Fig. 9.5 Fusion of an anyon with its
anti-anyon to form the identity can be
thought of as a particle turning around
in space-time.

Q o - Y
- L R

Fig. 9.6 Multiple possible fusion chan-
nels

identity is depicted schematically in Fig. 9.3

Antiparticles

Each particle a should have a unique antiparticle which we denote as
a. The antiparticle is defined by a x @ = I. (There should only be
one particle which fuses with any a to give the identity!). A particle
going forward should be equivalent to an antiparticle going backwards
as shown in Fig. 9.4. Fusion to the identity can be thought of as particle
turning around in space-time as shown in Fig. 9.5.

A particle may be its own antiparticle, in which case we do not need
to draw arrows on its world lines. An example of this in our charge-flux
model would be the a = 2 particle with m = 4 for § = 7p/m.

9.2 Multiple Fusion Channels - the
Nonabelian Case

For the nonabelian theories as we have discussed above, the dimension
of the Hilbert space must increase with the number of particles present.
How does this occur? In nonabelian models we have multiple possible
fusion channels

axb=c+d+...

meaning that a and b can come together to form either a ¢ or a d or

See Fig. 9.6. A theory is nonabelian if any two particles fuse in
such a way that there are multiple possible fusion channels (i.e., there
is more than one particle listed on the right hand side). If there are s
possible fusion channels for a x b, then the two particles a and b have
an s dimensional Hilbert space (part of what we called V(X)).

What is this Hilbert space associated with multiple fusion channels?
A slightly imperfect analogy is that of angular momentum addition. We
know the rule for adding spin 1/2,

1 1

5 ® 5 = 01,
which tells us that two spin 1/2’s can fuse to form a singlet or a triplet.
As with the case of spins, we can think about the two particles being
in a wavefunction such that they fuse in one particular fusion channel
or the other — even if the two particles are not close together. The
singlet or J = 0 state of angular momentum is the identity here, it has
no spin at all. The analogy with spins is not exact though — unlike the
case of spins, the individual particles have no internal degrees of freedom
(analogous to the 2-states of the spin 1/2), nor do any results of fusion
have an m, degree of freedom (like a triplet would).

Locality

The principle of locality is an predominant theme of anyon physics (if
not of physics altogether).
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The quantum number (or “charge”) of a particle is locally conserved
in space. Consider, for example, Fig. 9.7. On the left, a particle a
propagates along and suddenly something complicated happens locally.
If only a single particle comes out of this region it must also be a particle
of type a. (If two particles come out of this region, we could have a split
into two other species as in the right of Fig. 9.1). We sometimes call
this the no transmutation principle. It allows us to conclude that
the complicated picture on the left of Fig. 9.7 must be equal to some
constant times the simple propagation of an a particle as shown on the
right.

If two particles (maybe far away from each other) fuse together to some
particle type (in a case where multiple fusion channels are available) it
is not possible to determine this fusion channel by measuring only one of
the initial particles. In order to determine the fusion channel of the two
particles, you have to do an experiment that involves both of the initial
particles. For example, one can perform an interference measurement
that surrounds both of these particles. The fusion channel is local to the
pair.

Similarly, if we have some particles, b and ¢ and they fuse to d (See
Fig. 9.8), no amount of braiding b around ¢ will change this overall fusion
channel. The fusion channel is local to the pair. If these two then fuse
with a to give an overall fusion channel f, no amount of braiding a,
b and ¢ will change the overall fusion channel f. However, if a braids
with b and ¢, then the fusion of b and ¢ might change, subject to the
constraint that the overall channel of all three particles remains f.

Antiparticles in the Case of Multiple Fusion Channels

When we have multiple fusion channels we define antiparticles via the
principle that a particle can fuse with it antiparticle to give the identity,
although other fusion channels may be possible.

a X a = I + Other Fusion Channels

It should be the case that for each particle a there is a unique a that
can fuse to the identity.

9.2.1 Example: Fibonacci Anyons

Perhaps the simplest nonabelian example is the anyon system known as
Fibonacci? Anyons. Something very close to this is thought to occur in
the so-called v = 12/5 quantum Hall state. It is closely related to the
SU(2)3 Chern-Simons theory?.

3Fibonacci anyons can be described exactly by the Gg level 1 Chern-Simons theory.
This involves a messy Lie algebra called G2. The SU(2)3 Chern-Simons theory
contains some additional particles besides the Fibonacci particles, but ignoring these,
it is the same as Fibonacci.

=  ComsTAMNT X

Fig. 9.7 If a particle a goes into
a spacetime region, then a net par-
ticle charge a must come out. This
is also sometimes called the “no-
transmutation” principle.  From far
away, one can ignore any local processes
(up to an overall constant).

Fig. 9.8 In this picture b and c fuse to
d. Then this d fuses with a to give an
overall fusion channel of f. No amount
of braiding b around ¢ will change the
fact that the two of them fuse to d.
However, if we braid a with b and ¢,
this can change the fusion of b with ¢
subject to the constraint that the fusion
of all three particles will give f.

2Fibonacci’s was born in Pisa around
1175 AD. Perhaps his most impor-
tant contribution to mathematics is
that brought Arabic numerals (or
Hindu-Arabic numerals) to the west-
ern world. The Fibonacci sequence
1,1,2,3,5,8,13, ... is named after him,
although it was known in India hun-
dreds of years earlier!
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7 z
e
Fig. 9.9 Two different notations for

the two different fusion channels of two
Fibonacci anyons

In this system the particle set includes only two particles, the identity
I and a nontrivial particle which is often called 7.

Particle types = {I, 7}

The fusion rules are

IxI = 1
Ixt = 71
TXT = I4+7T

The first two of these rules hardly need to be written down (they are
implied by the required properties of the identity). It is the final rule
that is very nontrivial. Note that this rule implies that 7 is its own
antiparticle 7 = 7 which means we do not need to put arrows on world
lines.

With two Fibonacci anyons the Hilbert space is two dimensional (since
the two particles can fuse to I or 7. See Fig. 9.9.

With three fibonacci anyons the Hilbert space is 3 dimensional, as
shown in Fig. 9.10. The key thing to notice is that if the first two
particles fuse to 7, then this combination acts as being a single particle
of overall charge 7 — it can fuse with the third 7 in two ways.

>// - (e > = N
I

hd T z

T~

o

T = z
N

7 — ( @z '5>t — f,>

Fig. 9.10 Notations for the three different fusion channels of three Fibonacci anyons.
The notation |[N),|0) and |1) are common notations for those interested in topological
quantum computing with Fibonacci anyons! Note that fusion trees have branches
pointing upwards here which is the conventional notation for a ket (bras have branches
pointing down. See chapter 10)

There are two states in the Hilbert space of three anyons (labeled |0)
and |1) in Fig. 9.10) which both have an overall fusion channel of 7. As
mentioned above in section 9.6, due to locality, no amount of braiding
amongst the three particles will change this overall fusion channel. Fur-
ther, since in these two basis states the first two particles furthest left
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are in an eigenstate (either I in state |0) or 7 in state |1)) no amount
of braiding of the first two particles will change that eigenstate. How-
ever, as we will see below in section ***  if we braid the second particle
with the third, we can then change the quantum number of the first two
particles and rotate between |0) and |1).

For our Fibonacci system, with 2 particles the Hilbert space is 2 di-
mensional. With 3 particles the Hilbert space is 3 dimensional. It is an
easy exercise to see that with 4 particles the Hilbert space is 5 dimen-
sional, and with 5 particles, 8 dimensional and so forth. This pattern
continues following the Fibonacci sequence (Try to show this!).

Since the N** element of the Fibonacci sequence for large N is ap-
proximately

(9.1)

14++5 "
2

Dim of N Anyons = Fiby ~ (

we say that the quantum dimension of this particle is d = (1 + v/5)/2,
the golden mean (See Eq. 4.6).

9.2.2 Example: Ising Anyons

The Ising anyon system is extremely closely related to SU(2)s Chern-
Simons theory?, and this general class of anyon is believed to be realized
in the v = 5/2 quantum Hall state, topological superconductors, and
other so-called Majorana systems.

The Ising theory has three particle types®:

Particle types = {I,0,v}

The nontrivial fusion rules are

Yvxy = T
YXo = o
oxo = I+

where we have not written the outcome of any fusion with the identity,
since the outcome is obvious. Again, each particle is its own antiparticle
1 =1) and 0 = & so we need not put arrows on any world-lines.

Fusion of many v particles is fairly trivial, since each pair fuses to
the identity in only one way (we might say that ¢ is an abelian particle,
although the theory is nonabelian. Another word for this is that ¢ is a
simple current. See section *** below).

Fusion of many ¢ particles is nontrivial . The first two ¢’s can either
fuse to I or v, but then when the third is included the overall fusion
channel must be o (since fusing o with either ¢ or I gives o). Then
adding a fourth o to this cluster whose overall quantum number is o
again gives two possible outcomes. See the fusion tree in Fig 9.11.

4The fusion rules are the same, but
there are some spin factors which dif-
fer.

5 Another common notation is to use e
instead of 9 in the Ising theory.
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Fig. 9.11 The Ising Fusion Tree.

The total number of different fusion channels for N o-particles is 2V/2.
To see this in another way, we can group o particles together in pairs
where each pair gives either v or I, so two o particles comprises a qubit.
Then the I’s and v’s fuse together in a unique way. Since the Hilbert
space dimension is (v/2)" the quantum dimension of the o particle is
d =2 (See Eq. 4.6).

9.3 Fusion and the N matrices

We are well on our way to fully defining an anyon theory. A theory
must have a finite set of particles, including a unique identity I, with
each particle having a unique inverse or antiparticle.

The general fusion rules can be written as

axb:ZN(‘,fbc

where the N’s are known as the fusion multiplicities. N¢, is zero if a
and b cannot fuse to c. N¢, is one if we have a xb=...4+c+ ..., and
c only occurs once on the right hand side. If ¢ occurs more than once
on the right hand side, then NJ, simply counts the number of times it
occurs.

What does it mean that a particle type can occur more than once
in the list of fusion outcomes? It simply means that the fusion result
can occur in multiple orthogonal ways® in which case a diagram with
a vertex showing a and b fusing to ¢ should also contain an index at
the vertex indicating which of the possible ¢ fusion channels occurs. For

SWhile this does not occur for angular momentum addition of SU(2) (and also will
not occur in Chern-Simons theory SU(2); correspondingly) it is well known among
high energy theorists who consider the combination of representations of SU(3).
Recall that

8R8=1®8@8®10® 10® 27

and the 8 occurs twice on the right.
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most simple anyon theories INJ, is either 0 or 1, and indeed, we will not
consider the more complicated case in any examples below.

Elementary properties of the fusion multiplicity matrices
e Commutativity of fusion a x b =b X a.
ab = Nig
e time reversal
o =Ng
e Trivial fusion with the identity

N, = 6ap (9.2)

a

e Uniqueness of inverse
NI = 6pa (9.3)

It is sometimes convenient to define

a

Ny = N&, (9.4) AV N

which is the number of different ways that a, b, and ¢ can fuse to the
identity. This equivalence is shown graphically in Fig. 9.12. The ad- pjg. 9.12
vantage of this representation is that Ngp. is fully symmetric in all of  Ngpe.
its indices. For example, using this notation Eq. 9.2 and Eq. 9.3 are
actually the same.
In a nonabelian theory, there coudl ***

Equivalence of NS, with

Fusing Multiple Anyons

If we are to fuse, say, five particles of type a together, we can do so via a
tree as shown in Fig. 9.13. To find the dimension of the Hilbert space,
we write

Dimension of fusing five a particles = Z WNENE NS,
bede

= :E:: ]\[b Z\ZC a gd
bede

and we identify each factor of N as being one of the vertices in the figure.

We recall (See Eq. 4.6) that the quantum dimension d, of the particle
a is defined via the fact that the Hilbert space dimension should scale
as dY where N is the number of a particles fused together. To find this
quantum dimension we should think of Vg, as a matrix N, with indices
b and c, i.e, we write [IV,];. We then have that

Fig. 9.13 Fusing five a particles to-
gether

d, = largest eigenvalue of [N,]
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e

Fig. 9.14 Fusing (a x b) x ¢ should be
equivalent to a X (b X ¢)

"To see this note that by time reversal
we should have [No]§ = [Na]¢. But us-
ing Eq. 9.4, we have [N,]§ = [Na]% or
N, = NI. But we know that all the
N’s commute, so N commutes with its
own transpose.

Example of Fibonacci

The fusion matrix for the 7 particle in the Fibonacci theory is

01
(1)

where here the first row and first column represent the identity and the
second row and second column represent 7. The first row of this matrix
says that fusing 7 with identity gives back 7 and the second row says
that fusing 7 with 7 gives I and 7. It is an easy exercise to check that the
largest eigenvalue of this matrix is indeed d, = (1++/5)/2, in agreement
with Eq. 9.1.

Example of Ising

The fusion matrix for the o particle in the Fibonacci theory is

01 0
N,=| 1 0 1
01 0

where the first row and column represent the identity, the second row
and column represent ¢ and the third row and column represent . So,
for example, the second row here indicates that o x 0 = I + 1. Again,
it is an easy exercise to check that the largest eigenvalue of this matrix
is d, = v/2 as described in section 9.2.2.

9.3.1 Associativity

It should be noted that the fusion multiplicity matrices N are pretty
special matrices since the outcome of a fusion should not depend on the
order of fusion. I.e., (a x b) x ¢ = a x (b x ¢). For example, let us try
to calculate how many ways a x b X ¢ can give an outcome of e. We can
either try fusing a x b first as on the left of Fig. 9.14 or we can try fusing
b and c first as on the right. Correspondingly to these two possibilities
we have the equality

ZNgb d = Z N/, Ng; (9.5)
d f

Again, thinking of N¢, as a matrix labeled IV, with indices b and ¢, this
tells us that

[Na, Ne] =0 (9.6)
Therefore all of the N matrices commute with each other. In addition
the N’s are normal matrices, meaning that they commute with their
own transpose’. A set of normal matrices that all commute are simul-
taneously diagonalizable, thus

[UtN,Ul4y = 2y A (9.7)

and all N,’s get diagonalized with the same matrix U. Surprisingly (as
we will see below in section ***) the matrix U is precisely the modular
S-matrix we discussed above in Eq. 7.5 !



9.4 Fusion and Hilbert Space

The structure of fusion rules can be used to calculate the ground state
degeneracy of wavefunctions on 2-dimensional manifolds®.

Let us start by considering the sphere S?, and assume that there
are no anyons on the surface of the sphere. As mentioned previously
there is a unique ground state in this situation because there are no
non-contractable loops. The dimension of the Hilbert space is just 1

Dim V(5%) =1

This will be the starting point for our understanding. All other config-
urations (change of topology, adding particles etc) will be related back
to this reference configuration.

Now let us consider the possibility of having a single anyon on the
sphere. In fact such a thing is not possible because you can only pair cre-
ate particle-antiparticle pairs (the total anyon charge must be conserved
— i.e., everything on the sphere must fuse together to total quantum
number of the identity). Thus, we have

Dim V(S? with one anyon) = 0

Another way to explain this is to realize that, since particle-antiparticles
are made in pairs, there is no space-time history that could prepare the
state with just a single particle on the sphere!

We can however consider the possibility of two anyons on a sphere. We
can create an a particle with an a particle, and since these two particles
must fuse back to the identity in a unique way we have

Dim V(S? with one a and one a) = 1

The two particles must be antiparticles of each other, otherwise no state
is allowed and the dimension of the Hilbert space is zero. This is a
general principle, we must require that the fusion of all the particles on
the sphere must be the vacuum, since these particles must be (at some
point) pulled from the vacuum.

Now we could also imagine puncturing the sphere to make a hole
where the particles were. (Note that the twice punctured sphere, without
labeling the particle type looks like punctured sphere in Fig.8.1.). In the
spirit of what we did in section 7.2.1 we could re-fill the hole with any
particle type. However, if we refill one hole with a particular particle
type a, then the other hole can only get filled in with the anti-particle
type a. Nonetheless, we can conclude that

Dim V(5% with two unlabled punctures) = Number of particle types

Now consider the procedure shown in Fig. 9.15. We start with the
twice punctured sphere. The two punctures can be labeled with any
particle-antiparticle pair labels. We can then deform the sphere to sew
the two punctures together in a procedure that is identical to the surgery
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8We are again assuming manifolds are
always orientable — so this excludes ob-
jects like the Klein bottle or the Mobius
strip.
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Fig. 9.16 Three particles that fuse to
the identity

described in Fig. 8.3. The result of this surgery is to give the torus
surface T2 and we conclude that we should have

~ o

e}
=0

Fig. 9.15 Surgering the twice punctured sphere into a torus. This is the gluing
axiom in action.

Z(T? x S*) = Dim V(T?) = Number of particle types

as we have already discussed. The general rule of surgery is that two
punctures can be sewed together when they have opposing particle types
(i.e., a particle and its antiparticle). This is exactly the gluing axiom
of the TQFT. Although we are doing this surgery on a 2-dimensional
surface, we should realize that there is also a time direcction, which we
have implicitly assumed is compactified into S'. Thus we are sewing
together the 2-surface (S'-puncture x S'-time) with another 2-surface
(S'-puncture x S'-time), and the inner product between the two wave-
functions on these two-surfaces assures that the quantum number on
these two punctures are conjugate to each other.

We can continue on to consider a sphere with three particles. Similarly
we should expect that the three particle should fuse to the identity as
shown in Fig. 9.16. We can then think of the sphere with three particles
similarly as being a sphere with three labeled punctures which is known
as a “pants”, for reasons that are obvious in Figure. 9.17. It turns
out that any orientable 2-dimensional manifold (except S? or T2 which
we have already considered) can be constructed by sewing together the
punctures of pants diagrams. For example, in Fig. 9.18 we sew together
two pants to obtain a two handled torus.

Fig. 9.17 A three-times punctured sphere is known as a “pants” diagram.
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Fig. 9.18 Sewing together two pants diagrams to form a two-handled torus.

To find the ground state degeneracy of the two handled torus,
Dim V(Two handled Torus) = Z(Two handled Torus x S*),

we simply need to figure out the number of possible fusion channels
where we could satisfy a x b x ¢ — I and @ x b x & — I. This is precisely

¢, (which is also the same as N or Nape). Essentially we are just
looking at the number of ways we can assign labels to the punctures
when we glue the objects together®. Looking at the fusion diagram 9.16
we then have

Dim V(Two handled Torus) = > N{,N{ => Nz,

abe abe

Example: Fibonacci Anyons on The Two-Handled Torus

With the Fibonacci fusion rules, there the five ways we can fuse three
particles and get the identity.

IxIxI — 1T
IxTx1t — 1T
TXxIxTt — 1T
TXxTxI — 1T
TXTXT — 1

Here there are several things to note about the notation. First, the order
of the three elements being multiplied together does matter, since the
first element represents the first hole etc. Secondly, I use the — notation
to indicate that it is a particular fusion channel out of many that could
be possible. For example, if 7 x 7 = I 4+ 7 then to indicate that we mean
the two 7’s fuse in the 7 channel only, I will write 7 x 7 — 7.

At any rate, there are five possible labelings of the punctures that
allow overall fusion to the identity. These are matched together on both
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9t NE =2 then we need to count this
configuration twice!
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101y cases where there are fusion mul-
tiplicities are greater than one, each
vertex gets an additional index which
ranges from 1 to its multiplicity. Most
generally this means in Fig.! 9.19 on the
left there is an additional index u €
1...Ngb and v € 1...N§, whereas on
the right, there is an additional index
€€ 1..NJ andn € 1...1...Ng.
The F' matrix will then be a matrix con-
necting the space (d, u, v) with (f,&,n).

T 1

Fig. 9.20 There is only one state in
the Hilbert space of three Fibonacci
anyons fusing to the identity. Thus it
does not matter if you fuse the left two
first or the right two first, you are de-
scribing the same state. In fact it is
possible to define these two states to
differ by a phase. However, this is a
gauge choice and it is convenient to
make gauge choices to get rid of such
phases!

top and bottom of the diagram on the left of Fig. 9.18 and we conclude
that in the Fibonacci theory we have

Z(Two Handled Torus x S') = DimV (Two handled Torus) = 5.

9.5 Change of Basis and F-symbols

As mentioned in Fig. 9.14, one can describe the same space in two dif-
ferent ways. If we are considering the space spanned by the fusion of
a X b x c as in the figure, we can describe the space by how a fuses with
b (the value of d on the left of the figure), or by how b fuses with ¢ (the
value of f in the figure). Either of these two descriptions should be able
to describe the space, but in different bases. We define the change of
basis as a set of matrices'® called F. See figure 9.19.

o L .
o~ ‘o C
be \
—_— - \\
A
X £ i
o e

Fig. 9.19 The F-matrix makes a change of basis between the two differnt ways of
describing the space spanned by the fusion of three anyon charges a, b, and ¢ when
they all fuse to e. For fixed a,b,c and e, the matrix F' is unitary in its subscripts
d, f. Note: The pictures here are transformations on kets (branches of fusion trees
pointing upwards). An F-transformation on bras (reflecting diagrams around the
horizontal axis) would require complex complex conjugatation of F.

This idea of change of basis is familiar from angular momentum addi-
tion where the F-matrix is known as a 65 symbol (note it has 6 indices).
One can combine three objects with L? angular momenta values a, b
and c in order to get L? angular momentum e, and quite similarly you
can descibe this space in terms of a combined with b to get d or in terms
of b combined with ¢ to get f. (In fact, even when studying TQFTs,
sometimes people refer to F-matrices as 65 symbols.)

Example: Fibonacci Anyons

Again we turn to the example of Fibonacci anyons for clarification. We
imagine fusing together three 7 particles. As shown in Fig. 9.10, there
is a single state |N) in which the three fuse to the identity I. It should
not matter if we choose to fuse the leftmost two anyons first, or the
rightmost two. In either case there is only one possible state for the
outcome. We can thus draw the simple identity shown in Fig. 9.20 The
more interesting situation is the case where the three Fibonacci anyons
fuse to 7. In this case, there is a two dimensional space of states, and
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this two dimensional space can be described in two ways. We can fuse
the left two particles first to get either I (yielding overall state |0)) or to
get 7 (yielding overall state |1)). See the top of Fig. 9.21. On the other
hand, we could fuse the right two particles first to get either I (yielding
overall state |0')) or to get 7 (yielding overall state |1)). See the bottom
of Fig. 9.21.

;\//tbi CEeoa>, =9y

\//T/ . (e, =1y

Fusing The Two Particles on the Left First

Y - = <

z T <
N
T

Fusing The Two Particles on the Right First

Fig. 9.21 Two ways to describe the same two dimensional space. The basis {|0), |1)}
fuses the left two particles first, whereas the basis {|0'),|1’)} fuses the right two
particles first. Again note that we are considering kets so the tree branches point
upwards.

The space of states spanned by the three anyons is the same in either
description. Thus, there must be a unitary basis transform given by

() =(r #) () oo

Here F' is a two by two matrix, and in the notaion of the F' matrix
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11Agabin we can redefine kets with dif-
ferent gauge choices and this will insert
some phases into this matrix, but the
simplest gauge choice gives the matrix
as shown.

defined in Fig. 9.19, this two by two matrix is [F7 ] and the indices
a, b should take the values I and 7 instead of 0 and 1, but it is perhaps
easier to use the notation shown here for more clarity.

For the Fibonacci theory the F' matrix is given explicitly by'!
¢—1 ¢—1/2
F= < o~V g1 (9.9)

where ¢! = (v/5—1)/2 (so ¢ is the golden mean). As one should expect
for a change of basis, this matrix is unitary. Below in the next section
we will discuss how this matrix is derived.

It is important to emphasize that the F-matrix is the same even if
one of the anyons charges being fused is actually a cluster of several
anyons. For example, in Fig. 9.22, this is precisely the same transfor-
mation as in Eq. 9.8, but we must view the cluster of two anyons on the
left (underlined), which fuse to 7 as being a single 7 particle.

Fig. 9.22 The F-matrices are the same even if one of the anyon charges is made
up of a cluster of other anyons. In this particular picture, the cluster of two anyons
on the left (underlined in red) has charge 7 (double underlined in red). If one were
to replace this cluster of two with just a single 7, this would be precisely the same
transformation as in Eq. 9.8.

9.5.1 Pentagon

It is possible to describe the same Hilbert space in many ways. For
example, with three anyons, as in Fig. 9.14, one can describe the state
in terms of the fusion channel of the two anyons on the left, or in terms
of the two on the right. Te., we can describe (a x b) x ¢ or a X (b x ¢), and
as in Fig. 9.19, these two descriptions can be related via an F-matrix.
When there are four anyons, there are still more options of how we
group particles to describe the states of the Hilbert space, and these
can also be related to each other via F' matrices similarly, as shown in
Fig. 9.22. The fact that we can should be able change the connectivity of
these tree diagrams then allows one to make multiple changes in the trees
as shown in Fig. 9.23 (the step in the furthest upper left is equilvalent
to that shown in Fig. 9.22). Indeed, in this figure one sees that one can



go from the far left to the far right of the diagram via two completely
different paths (the top and the bottom path) and the end result on the
far right should be the same either way.

a bcd

Further reading 101
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Fig. 9.23 Pentagon Diagram. Figure Stolen from Bonderson’s thesis. Each step in
the diagram is a new description of the same basis of states via and F-matrix.

This diagram, known as the pentagon diagram, puts a very strong
contraint on the F-matrices, which written out algebraically would be

FL N lFe g = 3 _IFG I n [P Bl (9.10)
h

where the left hand side represents the top route of the figure and he
right hand side represents the bottom route.'?

For very simple theories, such as the Fibonacci anyon theory, the
Pentagon diagram is sufficient to completely define the F-matrices (up
to some gauge convention choices). See exercise ***,

One might think that one could write down more complicated trees
and more complicated paths through the trees and somehow derive ad-
ditional constraints on the F-matrices. A theorem by MacLane, guar-
antees that no more complicated trees generate new identities beyond
the pentagon diagram.

214 45 very worth working through this
to make sure you understand how this
equation matches up with the figure!

Further reading

This is some reading.
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Exercises

Exercise 9.1 Fibonacci Pentagon
In a TQFT (indeed, in any tensor category), a change of basis is described

by the F-matrix as shown in the figure®®.

a b c a b c

€ = Z [Ff?bp ef ‘ {i

f

Fig. 9.24 F-matrix

Consistency of F-matrices is enforced by the pentagon equation (Fig. 9.23
and Eq. 9.10).

In the Fibonacci anyon model, there are two particle types which are usually
called I and 7. The only nontrivial fusion rule is 7 x 7 = [ + 7. With
these fusion rules, the F' matrix is completely fixed up to a gauge freedom
(corresponding to adding a phase to some of the kets). If we choose all elements
of the F' matrix to be real, then the F' matrix is completely determined by
the pentagon. Using the pentagon equation determine the F-matrix. (To get
you started, note that the variables a,b,c,d,e,f, g,h can only take values I and
7. You only need to consider the cases where a,b,c,d are all 7).

If you are stuck as to how to start, part of the calculation is given in the
Nayak, et al, Rev Mod Phys article (see the reference list)

Exercise 9.2 Fusion and Ground State Degeneracy To determine the
ground state degeracy of a 2-manifold in a 24+1 dimensional TQFT one can
cut the manifold into pieces and sew back together. One can think of the open
“edges” or connecting tube-ends as each having a label given by one of the
particle types (i.e., one of the anyons) of the theory. Really we are labeling
each edge with a basis element of a possible Hilbert space. The labels on two
tubes that have been connected together must match (label a on one tube fits
into label @ on another tube.) To calculate the ground state degeneracy we
must keep track of all possible ways that these assembled tubes could have
been labeled. For example, when we assemble a torus as in Fig. 9.25, we
must match the quantum number on one open end to the (opposite) quantum
number on the opposite end. The ground state degeneracy is then just the
number of different possible labels, or equivalently the number of different
particle types.

For more complicated 2-d manifolds, we can decompose the manifold into
so-called pants diagrams that look like Fig. 9.26. when we sew together pants
diagrams, we should include a factor of the fusions multiplicity N, for each
pants which has its three tube edges labeled with a, b and ¢.

(a) Write a general formula for the ground state degeneracy of an M-handled
torus in terms of the IV matrices.

13Strictly speaking when there are fusion multiplicities, Nt > 1, then one also needs
an additional index at each vertex.



Fig. 9.25 Gluing together a torus

Fig. 9.26 A pants diagram

(b) For the fibonacci anyon model, find the ground state degeneracy of a
4-handled torus.

Exercise 9.3 Quantum Dimension
Let Ng, be the fusion multiplicity matrices of a TQFT

axszNacbc

meaning that Ng, is the number of distinct ways that a and b can fuse to c.
(In many, or even most, theories of interest all N’s are either 0 or 1).

The quantum dimension d,, of a particle a is defined as the largest eigenvalue
of the matrix [Ng]; where this is now thought of as a two dimensional matrix
with a fixed and b, ¢ the indices.

Show that

dady =) Nayde

Try to prove this without invoking the Verlinde formula which we run into
later in chapter ***,

Exercise 9.4 Ising F-matrix

[Hard] As discussed in the earlier problem, “Ising Anyons and Majorana
Fermions”, one can express Ising anyons in terms of Majorana fermions. As
discussed there we can choose any two majoranas and construct a fermion
operator )
CJ{Q = 5(71 +1iv2)
then the corresponding fermion orbital can be either filled or empty. We
might write this as |012) = ci2]|l12) and |112) = ci2|012>. The subscript 12
here meaning that we have made the orbital out of majoranas number 1 and
2. Note however, that we have to be careful that |012) = 6i¢‘121> where ¢ is a
gauge choice which is arbitrary (think about this if it is not obvious already).

FExercises 103
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Let us consider a system of 4 majoranas, 71, Y2, s, V4. Consider the basis
of states

la) = [0120s4)
b) = [0121s34)
le) = [|1120s4)
|d) = [li2ls4)

rewrite these states in terms of basis of states

7

la’) = 1041023)

o) = |0s112s)

) = [14102s)

|d) = |lailes)
Hence determine the F-matrix for Ising anyons. Be cautious about fermionic
anticommutations: clc), = —clcl so if we define |1,1,) = clc}|0,0,) with the
convention that [0,0,) = |0,0,) then we will have |1,1,) = —|1,1,). Note

also that you have to make a gauge choice of some phases (analogous to the
mentioned gauge choice above). You can choose F' to be always real.



Planar Diagrams

As we discussed in chapter 7, one of our objectives is to come up with
some diagrammatic rules (somewhat analogous to those of the Kauffman
invariant) which will allow us to evaluate any diagram of world-lines (i.e,
a labeled link) and get an output which is a complex number. Having
described the idea of the F-matrix we can begin to construct these rules.
In this chapter we will focus only on planar diagrams — i.e., we do not
allow lines to cross over each other forming braids. We can think of this
as being a definition of a TQFT in 2+1 dimensions — particles mov-
ing in 141 dimension. Since there are no over and under-crossings the
only nontrivial possibility is that particles come together to fuse, or split
apart. An example of a planar fusion diagram is shown in Fig. 10.1. It is
convenient to draw diagrams so that no lines are drawn exactly horizon-
tally. The reader should be cautioned that there are several different
normalizations of diagrams (two in particular). These are convenient
in different contexts and one should be warned not to confuse them.
We will start with a more “physics” oriented normalization in section
10.1, but the we switch to a more topologically oriented normalization
in section ***,

10.1 Physics Normalization

To make sense of these diagrams we should think in terms of the anyon
Hilbert spaces defined in the chapter 9. Each fusion tree we write (start-
ing with the vacuum at the bottom) corresponds to a particular state
vector of the Hilbert space. Two fusions trees with the same branching
structure are orthogonal if any of their labels differ. For example, we
have the orthogonormality shown in Fig. 10.2*

Fig. 10.2 Orthogonormality of trees with the same branching structure but different
indices. Note that the normalization of diagrams will be changed in section ** below

Note that the normalization of these diagrams will be changed in
section *** below. Typically, we draw a bra by turning over the diagram

Fig. 10.1 A planar fusion diagram

1o be precise, in cases where there are
fusion multiplicities greater than one,
each vertex get an adiditional index
(See margin note 10 from chapter 9).
In this case, the diagrams are also or-
thonormal in these indices as well. For
simplicity of notation we will not write
these vertex indices.
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Fig. 10.3 Expressing the inner prod-
uct of Fig. 10.2 as a single diagram.

o = \m><0¥(

Fig. 10.4 A labeled straight line is
just an identity operator for the par-

Fig. 10.5 Insertion of a complete set
of states.

Fig. 10.6 This identity is implied by
the orthogonality of trees with the same
branching structure, but it is also a re-
sult of the locality principle.

(reflecting it around a horizontal axis) so the diagram in Fig. 10.2 could
be re-expressed as the diagram shown in Fig. 10.3.

Our convention is that when we draw a diagram with world-lines that
end pointing upwards (like the right ket of Fig. 10.2), we mean that these
particles are kets. If world lines end pointing downwards, we mean them
to be bras (We have used this convention in the upper half of Fig. 10.3,
but in the left of Fig. 10.2 we do not use this convention). Many diagrams
will have lines that point both up and down (like in Fig. 10.8 below or
Fig. 9.19 above). We can think of these pictures as being just a piece
of a larger diagram. Equivalently we mean that the diagram has some
particles that live in the vector space of kets and some in the dual (bra)
space. Such diagrams can be interpreted as operators that take as input
the lines coming in from the bottom and give as output the lines going
out the top.

A particularly important diagram is given by a simple labeled straight
line, which should be interpreted as the identity operator for the particle
label type as shown in Fig. 10.4. One can insert a complete set set of
states into straight lines to obtain the result shown in Fig. 10.5. We
should see this as a ket on top of a bra ) |z)(z| which is our usual idea
of a complete set. Another very useful diagram is given by Fig. 10.6.
This is implied by the orthogonality of tree states, but it also is a man-
ifestation of the locality principle shown in Fig. 9.7.

A few simple principles are worth noting.

(1) one is free to add or remove lines from a diagram if they are labeled
with the identity or vacuum (I). So for example, we can write the
diagram on the left of Fig. 10.8 as a tree as shown on the right of
the figure.

(2) Starting from the vacuum, a particle can only be pair created with
its antiparticle, and similarly two particles can only pair annihilate
to the vacuum if they are antiparticles. So, for example, this tells
us that the diagram in Fig. 10.3 can only be nonzero if a = f and
a = f'.

(3) A line must maintain its quantum number unless it fuses with

another line, or splits. So for example, this tells us immediately in
Fig. 10.3 that d=d and c=c¢ and b=b" and f = f'.

(4) One can use F-moves to change the structure of fusion trees in
order to determine their values. For example, in Fig. 10.7, the
diagram on the left is turned into the one on the right using an F-
move, and then the diagram on the right is easily evaluated since
both the upper and lower halfs have the same tree structure, as in
Fig. 10.2 and Fig. 10.3.

In fact, with these principles (and given an F-matrix as input informa-
tion) it is possible to fully evaluate any planar diagram into a complex
number. It should be emphasized, however, that with these rules dia-
grams are not invariant under all smooth deformations, as we shall now
see.
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Fig. 10.7 The diagram on the left is evaluated by applying an F-move to the upper
half of the diagram. If the diagram is cut in half along the dotted line and the upper
half is flipped over, it is transformed exactly as shown in Fig. 9.19. The flipping
over of this part of the diagram turns the ket into a bra, and correspondingly the F'
matrix has been complex conjugated. The diagram on the right is evaluated to delta
functions as in Figs. 10.2 and 10.3

10.2 Switching to Planar Isotopy Invariant
Normalization
We would like to have a diagrammatic planar calculus for our evaluation

of diagrams. We would like to have rules such that we can “straighten”
out lines as suggested in Fig. 10.9.

T

Fig. 10.9 We would like to build diagrammatic rule so that lines that have up-down
wiggles can be straightened out.

Fig. 10.10 Removing a wiggle from a diagram incurs a factor of [F2%%]gg.

However, we can straighten a wiggle using an F-move, as shown in
Fig. 10.10 and we discover that it incurs a factor of [F***]oq where the

Fig. 10.8 Lines labeled with the iden-
tity, or vacuum, can always be added
or removed from diagrams.
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2For some theories with nontrivial
Frobenius-Schur indicator, it is conve-
nient to define d, to be negative. How-
ever, most generally we want to de-
fine it positive. See section *** on
Frobenius-Schur below.

Fig. 10.12 The vertex |aa) (shown on
the left) and the vertex |aa) (on right)
can be assigned different phases as a
gauge choice. In Fig. 10.10 the leftmost
figure includes |a@) and (@a|, Whereas
the phases cancel in the loop formed in
the middle picture of Fig. 10.10. Thus
choosing gauge correctly we can gen-
erally make [F¢%*]go real and positive,
with the exception of cases where a =

a.

3Note that the creation kets in
Fig. 10.12 are the same if a = a so one
cannot insert a phase on one but not
the other!

subscript 0 means the identity particle. It is conventional to define?

1

da =
|[[Fgae]oo]

(10.1)

which will end up being the quantum dimension of the particle (See
chapter 13).

We would like to have diagrammatic rules such that we can straighten
wiggles like those in Fig. 10.9 freely. To arrange this, let us define some
new diagrammatic rules, which attaches a factor of d, to each loop.

Fig. 10.11 Isotopy invariant diagrammatic rule 1

Assigning a closed loop “world-line” a factor of d, is familiar from our
exploration of the Kauffman invariant in chapter 2. Similar as what we
saw in section 2.3 this means that bras and kets will not have conven-
tional normalization (z|x) = 1. However, paying this price allows us to
have diagrams where wiggly lines can be straightened as in Fig. 10.9.
Attempting the calculation shown in Fig. 10.10 with the new normaliza-
tion, we see that the factor of d, for obtaining the closed loop cancels the
factor of [F%*]yy. One might be worried that d, is actually defined (in
Eq. 10.1) as the inverse of the absolute value of this F' factor. However,
it turns out that in most cases, one can absorb any phase into the def-
inition of the creation or annihilation vertex as explained in Fig. 10.12.
As such, one usually chooses these phases so that [F%3%]y is real and
positive. We will assume that we always make this gauge choice, so that
wiggles like that in Fig. 10.9 can always be straightened freely.

There is, however, one possibile situation that ruins this entire argu-
ment! In the case where a particle is its own antiparticle, a = a, then
there is not enough gauge freedom to remove the phase that one can
incur when straightening out the wiggle®. In this case our straightening
rule is as shown in Fig. 10.13: removing a wiggle incurs a factor of x,, the
so called Frobenius-Schur indicator. This quantity is a (gauge-invariant)
fundamental property of the particle in the theory and must always be
either +1 or —1. Particles with x, = +1 have full isotopy invariance
— and deformation of a curve is acceptable. Particles with k, = —1 do
not have full isotopy invariance and one must keep track of how many
wiggles are introduced! This may seem strange, but, as we point out in
the appendix of this chapter, this physics is essentially already present
with angular momentum addition.
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Fig. 10.13 Removing a wiggle from a self-dual particle a = a incurs a factor of the
Frobenius-Schur indicator, k. This is a gauge invariant quantity, but must be either
+1 or —1 for any self-dual particle. This is a fundamental property of the particular
particle type. For any non-self-dual particle we can always choose a gauge so that
straightening a wiggle does not incur any phase.

We note that in some theories one may be able to remove the non-
trivial Frobenius-Schur indicator (and obtain diagrams with full isotopy
invariance) by choosing a definition of d, to be negative rather than
positive. We have seen examples of this when we considered the Kauff-
man invariant — it is often allowable to have d < 0. However, having a
negative value for d is inconvenient in other ways. If we want to think
of a single loop as being d = O = (U|U) (Le., a pair creation ket on the
lower half joined with its conjugate pair annhiliation bra on the upper
half) we have the unusual problem that the state has a negative norm.






Braiding and Twisting ]. ].

11.1 Twists

In an Anyon theory (or topological quantum field theory in general) each )
particle a is endowed with a topological spin, or conformal scaling a ﬂ
dimension, usually called h, related to the twist factor 6, (/

9(1 _ 627Tiha (

In our diagrammatic notation, we have twists factors defined by Fig. 11.1.

We note that in many cases, quantities of interest will depend only on the

twist factor, i.e., the fractional part of the topological spin, h, mod 1. Fig. 11.2 Pulling a ribbon straight
It is often hard to pin down the value of the topological spin itself.

The
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Fig. 11.1 Definition of Twist Factor

Recall we should treat particle world-lines as ribbons, so that a loop

can be pulled straight as in Fig. 11.2 to represent a particle twisting 1L

. . . P c
around its own axis, as well as giving the phase of exchange for two o
identical particles (See also Fig. 2.7). Two cases are well known to us: if f Sl

the spin h, is an integer, then e?™* is the identity, and this particle is a

boson. If h, is a half-odd-integer, then the phase is —1 and the particle
is a fermion. The vacuum, or identity particle, should have zero scaling

dimension, hy = 0. . b
]_]_2 R_matrix Fig. 11.83 Two particles fusing to a
third. For this anyon system a X b =
. [ . . . . ¢+ ..., and c is the particular fusion
Consider the possibility of two particles fusing to a third as shown in .. that has occured in this dia-

Fig. 11.3.  We have a x b = ¢+ .... Le., ¢ is among the possibile gram.
fusion channels that can occur and we assumes in the diagram that c
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is the particular fusion channel that has occured. Now let us consider
braiding a and b around each other before fusing them as in Fig. 11.4.
This diagram defines the so-called R-matrix. Here we have dropped the
“E / x arrows and we show the particle world lines as ribbons to show that
/ there are no additional self-twists. Note that braiding anything with
the identity particle should be trivial, R, = R%; = 1.
Taken together with the F-matrices, the R-matrix allows us to calcu-
Fig. 11.4 Definition of R-matrix. Here late the physical result of any braid, as we shall see below.

we drop the arrows for convenience of To see the relationship between braiding and twisting, consider ap-

notation and we draw the particle world . . K . . .
plying the R matrix twice to make a double twist as in Fig. 11.5. By

lines as ribbons to show that no ad- ;
ditional self-twists are incurred by the pulling tight the double twist, the diagram can be reduced to twist fac-

particles. tors previously defined, and this fixes RS, up to a possible minus sign.
- c
. cC J
c
RCA K - 9 =
AN
o A
o b

Fig. 11.5 Relation of R-matrix to twist factors.

We can generally write this relationship as

[ 2})}2 _ 627Ti(hc*ha7hb) — 00/(9a0b) (11_1)

Example: Fibonacci Anyons

In the Fibonacci theory, two 7 particles can fuse to either 7 or I. Ap-
plying the above relationship, Eq. 11.1, we have

. [RL]? = @2milhr—he=he) — o= 2mihs (11.2)
[RL,]? = emithi=her=he) _ g=dmihs (11.3)

Using the F' and R matrices for a general anyon theory we can evaluate
the unitary transform associated with any braid. Recall the two possible

Fig. 11.6 The two states of three T states of three 7 particles fusing to 7 as shown in Fig. 11.6. Now consider

particles fusing to 7. Unmarked dots
are T particles.
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braiding the two leftmost particles around each other.

, T
D, . lo> — K oD

* \\3)2[&17;[17

Fig. 11.7 Braiding the two left particles in this basis gives a phase dependent on
the fusion channel of the two particles.

The result of this braiding gives a phase, either RL_ if the fusion
channel of the two particles is I or R7_ if the fusion channel of the two
particles is 7.

Note that the braiding operator is a linear quantum mechanical oper-
ator, so it acts on superpositions.

R (al0) + BIL) = aBL,[0) + ARL,1) \
This is what is known as a controlled phase gate in quantum information _ -
processing — the phase accumulated depends on the state of the qubit. C)
Now how can we evaluate the braid shown in Fig. 11.87 The trick T z

here is to use the F-matrix to change the basis such that we know the

fusion channel of the right two particles, and then once we know the

fusion channel we can use the R-matrix. If we want, we can then use )

the F-matrix to transform back to the original basis. To see how this glgf 11.8 How does one evaluate this
R . raid? One applies F-first, then R as

works, Recall that we can use the F' matrix to write (See Eq. 9.8) shown in the next two figures!

|0) = Foor[0") + Four|1")

or in diagrams (see Fig. 11.9).

A

Fig. 11.9 The F-matrix relation in diagram form. See Eq. 9.8

On the right hand side of Fig. 11.9 (i.e., in the prime basis) we know
the fusion channel of the rightmost two particles, so we can braid them
around each other and use the R-matrix to accumulate the corresponding
phase.
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LFor this particular case (using Eq. 9.9
for the F-matrix) the matrix F and
F~1 happen to be the same matrix
(however we write out the inverse ex-
plicitly for clarity!)

<A§X\1 = F <"‘J€Z\>;f -5 C

oc -

I 9. I ™
S P SR PR =S

Fig. 11.10 To braid particles, switch basis using F' until we know the fusion channel
of the two particles we want to braid, and then we can apply the R-matrix.

To describe this in equations, we can write the operator that braids
the rightmost two particles as Ra3 and then we have

R23|0) = Ras(Foor|0') + For|1'))
= Foo Ra3|0") + Fo1 Rog|1")
= FyoRL|0') + For RI|1") (11.4)
= Foo Ry ([Fo0l0) + [F~on[1)) (11.5)

+ Fou RZ. ([F~Y10[0) + [F~114(1))
= (Foo RL[F oo + For R, [F~"]10) [0)
+ (Foo RL[F~ o1 + For RL[F~ ') 1)

Where between Eq. 11.4 and 11.5 we have used the inverse F' transform
to put the result back in the original |0) and |1) basis..

This general principle allows us to evaluate any braiding of particles.
We can always convert to a basis where the fusion channel of the two
particles to be braided is known, then we apply the R matrix directly.
At the end we can transform back to the original basis if we so desire.

11.3 The Hexagon

As with the case of the F-matrix, there are strong consistency con-
straints on the R-matrices given a set of F-matrices (indeed, it is pos-
sible that for a given set of F-matrices that satisfy the pentagon, there
may not even exist a set of consistent R-matrices!). The consistency
equations are known as the hexagon equations and are shown diagram-
matically in Fig. 11.11. In equations this can be expressed as



a b ¢ a b ¢ a b ¢

K\

J

3 A

2
d F a b ¢ a b e F d d F a b ¢
N é j
&
R R
f — \f</ ﬁ —_—
d d d

Fig. 11.11 The hexagon equations in graphical form. (nice picture stolen from
Bonderson thesis)

R egRY = Y [F™les R [F§™] s
f
(RO THEG?], R = Y IE s R F s
f

The top equation is the left diagram whereas the lower equation is the
right diagram in Fig. 11.11. The left hand side of the equation corre-
sponds to the upper path, whereas the right hand side of the equation
corresponds to the lower path.

In simple theories such as the Fibonacci theory, knowing the F' ma-
trices, the Hexagon equation almost uniquely defines the R-matrices. In
fact there are two consistent solutions to the Hexagon equations for the
Fibonacci theory (See exercise 11.1).

T _ +3mi/5
R, = e

I _  F4xi/5
Rl = T4/

These two solutions correspond to left and right handed versions of the
Fibonacci theory corresponding to twist factors for the elementary Fi-

bonacci anyon of
0 6:|:47\'i/5
T .

11.4 Ocneanu Rigidity

Given a set of fusion rules, the pentagon and hexagon equation are very
very strong constraints on the possible F' and R matrices that can result.
(For example, as mentioned above, with Fibonacci fusion rules, there is

F F
—_— —_—
e g e
R R RL
a b e d d a b ¢ a b e d

11.4  Ocneanu Rigidity

a b ¢
J
g R
d a b ¢

4
ubc/ d
—1
!
d
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2But not published by him! See for ex-
ample, “On fusion categories”, Annals
of Mathematics, Pages 581-642 from
Volume 162 (2005), by Pavel Etingof,
Dmitri Nikshych, Viktor Ostrik.

3See for example E. Rowell, R. Stong,
and Z. Wang, On Classification of
Modular Tensor Categories, Comm.
Math. Phys. 292 (2009),p343.
arXiv:0712.1377

41t is often useful to impose one more
condition, that the theory is “modu-
lar” which we will discuss below in sec-
tion ***. Most well behaved theories
are modular, although the presence of
a fermion makes a theory non-modular
— indicating how difficult it is to prop-
erly treat fermions! As far as we can tell
from the known periodic table, all mod-
ular theories can be described in terms
of some sort of Chern-Simons theory or
closely related construction!

only one solution of the pentagon up to a gauge freedom and then only
two solutions the hexagon). In fact, it is a general principle that the
pentagon and hexagon for any set of fusion rules for a finite set of parti-
cles will have a finite set of solutions. In particular, once we have a set
of solutions, in no sense is there a way that we can deform the values
of F and R by a small amount and have another solution. This is a
principle known as rigidity of the solutions, and it was first pointed out
by Ocneanu?. This principle makes it possible to contemplate putting
together a sort of “periodic table” of possible anyon theories, starting
with those having very few particle types. In fact, such periodic tables
have been compiled up to about five or six different particle types®*.
There is nothing in principle that prevents one from listing all the pos-
sible anyon theories even for more particle types although the search for
all solutions becomes extremely difficult for greater numbers of particles.

Further reading

This is some reading

Exercises

Exercise 11.1 Fibonacci Hexagon In any TQFT or ”braided” (including
modular) tensor category (think of all of these as just anyon theories! don’t
worry about the fine distinctions), a braiding is defined by an R-matrix as
shown in the figure 11.4. Once F matrices are defined for a TQFT, consistency
of the R-matrix is enforced by the so-called hexagon equations as shown in
the figure diagramatically by Fig. 11.11.

For the Fibonacci anyon theory, once the F matrix is fixed as in Eq. 9.9,
the R matrices are defined up to complex conjugation (i.e., there is a right
and left handed Fibonacci anyon theory — both are consistent). Derive these
R matrices.



Kauffman Anyons

To give a definite example of an anyon theory, let us back up to the
Kauffman invariant. What was missing in that picture was the idea of
multiple particle types and fusion. Here we try to construct fusion rules
based on the Kauffman rules of Fig. 2.3. In fact, to begin with we don’t
even want to consider braiding, just fusion. So for now we can neglect
the braiding rule and focus only on the loop rule shown in Fig. 12.1. If
we consider an algebra of loops (using the loop rule that one loop gets
a value d) — but no braiding allowed — this algebra is known as the
Temperly-Lieb algebra.

Now we would like to ask whether we can fuse two of these strings
together to make another particle. Since we are going to construct mul-
tiple particle types, let us call the basic string! the particle type “1” and
the vacuum will be denoted by the particle type “0”.

One possibility is to fuse the two particles to the vacuum as shown in
Fig. 12.2 The fact that two 1-particles can fuse to the vacuum tells us
immediately that 1 is its own antiparticle.

1=1

We might also consider the possibility that two of these 1-particles
can fuse to something besides the vacuum, in a way similar to that
shown in Fig. 12.3. This is a good idea, but it isn’t yet quite right.
We need to assure that if we have two different particle types they are
appropriately “orthogonal” to each other. This orthogonality must be
in the sense of the locality, or no-transmutation rule (see section 9.6).
A particle type must not be able to spontaneously turn into another
particle type (without fusing with some other particle or splitting). To
help us construct particles which will obey this rule, we must construct
projection operators.

12.1 Jones-Wenzl Projectors

The definition of a projector is an operator P such that P? = P, so it
has eigenvalues 0 and 1. We would like to construct projectors out of
strings.

To begin with, we will construct projectors out of two incoming 1-
particles (two elementary strings). We can construct the projector P
that forces the two incoming particles to fuse to the vacuum as shown
in Fig. 12.4.  We now need to check that P2 = P,. To apply the P
operator twice we connect the strings coming out the top of the first

12

Fig. 12.1 The loop rule for the Kauff-
man invariant and the Temperly-Lieb
algebra.

I1 realize here this is confusing to have
1 not be the identity, but this is the
usual notation! It is (not coinciden-
tally!) similar to spins where spin 0
is the identity (no spin), and spin 1 is

\/ALL/L’M
-z o0

Fig. 12.2 Fnsino two 1-narticles to the
vacuum

Fig. 12.3 Attempting to Fuse two
1-particles to something different from
the vacuum

P; [ (
0 — —*CQ

Fig. 12.4 The projector of two strings
to the vacuum Pp.
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Fig. 12.6 The projector of two strings
to the nontrivial particle P> = I — Py.

Ps o’

Fig. 12.7 Drawing the two possible
fusion channels of two strings as a box
labeled Py or P»

=l = )= X

d=-| = d=-X

Fig. 12.8 Two cases where the Kauff-
man invariant rules become very sim-
ple. If you have not convinced yourself
of these rules, try to do so! (See exer-
cise 2.2). Note that d = 1 occurs for
bosons or fermions and d = —1 occurs
for semions.

operator to two strings coming in the bottom of the second operator.
As shown in Fig. 12.5, using the fact that a loop gets value d we see that
Pg = Py meaning that P, is indeed a projector.

\

=

D C
\
o

_
O l
/r\

=\ TV
DISEDIAN

Fig. 12.5 Checking that Pg =F.

We now consider the possibility that two strings near each other can
fuse to something else (not the identity). Let a projector onto this
particle type be called P, i.e., we define P, = [ — Py where [ is the
identity operator, or just two parallel strings. Diagrammatically we
have Fig. 12.6 We can then algebraically check that this is indeed a
projector

P}=(I—-P)I—-P)=1-2P+P:=1I-Py=P,
and also we can check that it is orthogonal to Fy, by
PoPy=Py(I —Py)) =Py — P; =0

and similarly show P, Py = 0.

Often it is convenient to draw these projection operators as a labeled
box, as shown in Fig. 12.7. Sometimes we simply draw a single line
with a label, 0 or 2 respectively.

Abelian Case

In the case where d = %1 it is easy to prove (see Exercise 2.2) that two
horizontal lines equals £1 times two vertical lines as shown in Fig. 12.8.
In this case, notice that the projector P, = 0 (the two terms in the
projector in Fig. 12.6 are equal with opposite signs). The theories in
queston here are bosons or fermions for d = 1 and semions for d = —1.
All of these theories are abelian, so it is not surprising that two particles
that can fuse to the identity cannot fuse to another species as well. We
have only the fusion to the vacuum shown in Fig. 12.2. Thus the entire
fusion rules of these theories are

1x1=0

where again 0 is the identity or vacuum.



Two Strands in the General Case

For other values of d, however, two strands (each labeled 1) can fuse
either to 0 or to 2 as shown in Fig. 12.9. We can write the fusion rule
as

I1x1=0+2

We might ask whether it is possible to assemble a third type of particle
with two strands. It is obvious this is not possible since Py + P, = I,
which means these two particle types form a complete set.

Three Strands in the General Case

We can move on and ask what kind of particles we can make if we are
allowed to fuse three strands together. We want to try to construct a
three leg projector of the form in Fig. 12.10.

General Form:

Pel] +2Z+el5 ~oAS ~ 5%

2

Fig. 12.10 A three-leg Jones-Wenzl projector. The most general possible form of
Ps is written in the lower line.

We should certainly enforce that P? = P3 so that this acts as a projector.
However, there are other things we want to enforce as well. We want 0 x
1 = 1 which means we should not be able to fuse Py with a single strand
to get P3. Diagrammatically this means we must insist on relations like

Fig. 12.11.
1] [ L1
.‘ P, = O = g
(
%, " \

Equivalently
T [— i Z = | P ,' = | & f
O = | & - E‘ J ! lj T v

Fig. 12.11 Insisting that 0 X 1 does not give 3

12.1 Jones- Wenzl Projectors 119

e
/N

Fig. 12.9
strands

o ot 2
: A

Possible fusions of two
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Fig. 12.12 We allow 1 x2=3

Fig. 12.14 2x2=0.

Fig. 12.15 2 x 1 = 1. We recog-
nize this as the fusion 1 x 1 = 2 from
Fig. 12.9 just turned on its sid.e

However, we should alllow fusions of the form 1 x 2 = 3 as shown in
Fig. 12.12 Enforcing the condition in Fig. 12.11, along with P? = P
gives the form of P3 shown in Fig. 12.13. (See Exercise 12.1).

A (e L(5-)

o
Fig. 12.13 Form of the P3 projector in terms of the parameter d.

Ising Anyons

Consider the case where d = /2. Here it is possible to show that
P5 vanishes when evaluated in any diagram (See exercise 12.1). It is
similarly possible to show that P, = 0 and so forth. Thus, in this theory
there are only three particle types Py, P; and P». We have 2 x 2 =0 as
shown in Fig. 12.14 and 2 x 1 = 1 as shown in Fig. 12.15. (Note that
showing 2 ¢ 2 x 2 requires another explicit calculation, not shown here!
See exercise 12.1) We thus have the full set of nontrivial fusion rules

1x1 = 0+2
2x2 =0
1x2 =1

which we recognize as Ising fusion rules (see 9.2.2) where 1 = ¢ and
2 = 1.

Note: It is not coincidence that the quantum dimension of the non-
abelian particle (the 1-particle, or o) is v/2 (see section 9.2.2), and that
d = /2 as well. Tt is a general principle that the value of a loop will be
the same as the quantum dimension of the corresponding particle, as we
will see below.

12.2 F-matrices

We can determine the F-matrices directly from the graphical algebra.
Let us consider the case of 3 single strands coming in the bottom and
fusing to a single strand going out the top. I.e, we are looking at the
matrix Fy;. The F matrix is nontrivial since there is more than one
fusion channel when we fuse the 1’s together: 1 x1 = 0+2. Let us write

the F-matrix as
_ ([« B
F= ( v 6 )

where the columns and rows of this matrix represent quantum numbers
0 and 2. By this F-matrix we mean the diagram Fig. 12.16



2N ,foz/éi,{,@/&
PO % SRR

Fig. 12.16 An F-move. The boxes are either Py or P> projectors. Unmarked lines
are all single lines or “17.

We now recall that graphically a Py projector is 1/d times a simple
turnaround (see Fig. 12.4), whereas a P, projector (Fig. 12.6) is the
sum of two terms, the first being just two strands going parallel (i.e,,
the identity) and the second being —FPy. We can then write graphically
Fig. 12.17

1

(
AN

1}

/<\_i/\<}

Fig. 12.17 Plugging in the form of the projectors into Fig. 12.16.

We then match up terms on the right and left of these graphical equa-
tions. In the first line we see the the diagram on the left is topologically
like the first term in the brackets on the right, so we have 8 = 1/d.
Similarly the first term on the right is the same as the second term in
the brackets, so « = 8 = 1/d. Then in the second line we have the
second term in brackets on the left the same as the first term in brackets
on the right, so we have 6 = —1/d. Then among the remaining terms,
the first term in brackets on the left, the first term on the right, and the
second term in brackets on the right, are all the same shape, so we have
1=~/d—46/dor v=d—1/d. Thus we obtaini the full form of the F'

matrix
b= ( di/f/d —11/7d )

*i//\ - f />< - fr//\j

2(i//\ - S{GQ N fc//\j

12.2  F-matrices 121
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12.3 Twisting and Braiding

So far we have not yet used the braiding rules of the Kauffman invariant,
we have only used the loop rule. We finally can reintroduce the braiding
rules for the Kauffman invariant for evaluating crossings as in Fig. 2.3.
As shown in Fig. 2.6, comparing to Fig. 11.1 we see that the twist factor
of the single strand is #; = —A~3. It is a reasonably straightforward
exercise to use these crossing rules to evaluate the twist factors for other
particles in the theory, as well as the R-matrices. Just to do a simple
example, let us evaluate R?; shown in Fig. 12.18

SL ~ P 4# - 'L
Q\I_ 55\ R T ﬂ/\[

|

Fig. 12.18 Evaluation of R%l = A1,

Here the term with the coefficient A vanishes because of the orthogo-
nality of P, and P.

Further Reading

e Louis Kauffman, Knots and Physics, World Scientific, (2001), 3ed.

e L. H. Kauffman and S. L. Lins, Temperley-Lieb Recoupling Theory
and Invariants of 3-Manifolds, Annals of Mathematics Studies, no
134, Princeton University Press (1994).

Exercises

Exercise 12.1 Jones-Wenzl projectors The Temperly-Lieb algebra is the
| W/ algebra of strings in two dimension that are not allowed to cross. As with the
Kauffman invariant, a closed loop gets a value d. As in the lecture, we can
N “cable” together two strings to make two types of “particles”. Projectors onto
these two particles types are given by the so-called Jones-Wenzl projectors
shown in Fig. 12.19

| / (a) Show that the projectors satisfy P? = P, so their eigenvalues are 0 and
P _ \ —_ 1. Further show that the two projectors are orthogonal PoP> = PPy = 0.

- & a (should be easy, we did this in lecture)
(b) Show that for d = £1 we have P> = 0 in the evaluation of any diagram.
The result means that in these models there is no new particle which can be
described as the fusion of two elementary anyons. Why should this be obvious?

Fig. 12.19 Jones-Wentzl projectors . .
Hint: Look back at the the problem called ” Abelian Kauffman Anyons”.

for two strands



(¢) Using the Jones-Wenzl projectors with the Kauffman braiding rules, and
choosing A = %/4 (which corresponds to the anyons of the v = 5/2 fractional
quantum Hall state), show that the P, particle is a fermion, (The Py particle
is a boson, but this should be triviall). Hint: Show this by calculating the
twist factor of the P> particle — it is easier, but equivalent to, calculating
exchange of two particles.

(d) The three strand Jones-Wenzl projector must be of the form shown in
the figure 12.20.

Pl = LY Bl ey N5 2

Fig. 12.20 Jones-Wentzl projector for three strands

The coefficients o, 3,7, are defined by the projector condition Pf = P
and also by the condition that Ps is orthogonal to Py which is shown in the
figure 12.21.

. ,? ;‘:fPJ:EEJ
O._, E’ - Eg; ll)' o

Fig. 12.21 Condition on Jones-Wentzl projector for three strands

Calculate the coefficients «, 8,7, in Ps.

(e) Choosing A = i*/* again, show that Ps = 0 in the evaluation of any
diagram. We can then conclude that in this model there is no new particle
that is the fusion of three elementary strands. Hint: think about how the
“Abelian Kauffman Anyon” problem was solved.

FExercises 123






Diagrammatic Algebra, the
S-matrix and the Verlinde
Relation

We have built up our anyon theories and now, using F' and R matrices we
can generally figure out how the degenerate Hilbert space V(%) evolves
(where by 3 we mean a surface with particle in it) as the particles move
around in the manifold.

We are almost at the point where we have a full diagramatic calculus
— which would produce a number as an output given any world-line
diagram as input

Z(Manifold with particle world lines in it) — C

where here the world lines should be allowed to fuse and split, and as
discussed in section?? one can always choose the manifold to be S® or
some other simple reference manifold if one is willing represent other
manioflds via Kirby calculus.

Note that while the diagrammatic calculus for the Kauffman case is
often quite simple, there can be some nasty bookkeeping glitches for
other anyon theories. For careful details of how all of the details, see
Kitaev 2005 or Bonderson’s thesis (*** See also chapter *** to be added).

First, we should be careful about our normalization when we evaluate
some knot or link of world lines!. We choose our evaluation of a world
line link to be of the form

Z(S3 with embedded Link)
Z(S3)
= Z(5? x S* with embedded Link) (13.2)

(Link) = (13.1)

where in the case of 52 x S we require that the Link not go around the
nontrivial handle of the S'. This normalization is chosen so that the
evaluation of the empty link will give unity (as discussed in chapter 7).

0y =1 (13.3)

By using F’s and R’s we hope to reduce diagrams to a collection of
non-linking labeled loops (labeled with their particle type), similar to
what we did in evaluating the Kauffman invariant. We then need to
know what value to give a particular loop.

'We allow branching world lines which
correspond to fusion or splitting
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2 The reason we should assume that
this is a positive quantity is because,
cutting the loop half-way up, it can be
thought of as an inner product between
two identical states O = (U|U) = dq
(most directly we can see that the two
halfs are identical when they are em-
bedded in S? x S! since the manifold
is assembled by gluing two identical
pieces as well.). While the value of this
states is not normalized to unity in our
convention, we will insist that we have
postive-normed states.

3In some cases it is convenient to define
the value of a loop to be negative, as in
the case of the semion Kauffman theory
discussed above. However, by redefin-
ing some F-matrix elements, one can
always work with the convention that
dg is positive, although this comes at
the expense of having troublesome mi-
nus signs pop up in other places! These
minus signs are known as Frobenius-
Schur indicators and will be discussed
in section ***,

D=4

Fig. 13.1 A loop of particle type a
is given value d, > 0. This will turn
out to be the quantum dimension of the
particle.

4t turns out that any fermion will
make a theory non-modular! This is
why fermions are a bit difficult to han-
dle!

53ee footnote 12 in chapter 7 for why
Soo must be real.

Fig. 13.2 The quantum dimensions
satisfy the fusion algebra. See rigorous
derivation in chapter appendix ***

13.1 Normalizations and Loops

Let us define d, > 0 to be the value associate with the a loop of particle
of type a as shown in Fig. 13.1%3. Note that we have dy = 1 for the
identity particle (due to Eq. 13.3).

These quantities will turn out to be the quantum dimensions of the
particles, but we have not shown this yet! We have not yet decided
what value this loop should get. However, we can look back to 7.5 to
note that we have

Z(S3; a loop linking b loop) = Sup = Sha

where S, is the unitary matrix known as the modular S-matrix. Recall
that S should be unitary because it can be interpretated as a change of
basis. (Theories where the S matrix comes out non-unitary are consid-
ered badly behaved, or “non-modular”. We will ignore this harder case
for now?).

We can then think of the single loop d, as particle @ linking the
vacuum, so we write

Z(8% a loop) = Sao = Soa

and further we can write the normalizing factor Z(S3) as vacuum linking
vacuum, so we have the value of a single loop as

da = Sao/Soo

The fact that S is unitary gives us a useful identity
1= Z |Sa0l? = [Sool® ng
a a

where the sum is over all particle types in the theory. We can then
write®
Z(8%) = Sp0 = 1/D

where D is known as the total quantum dimension and is given by
D*=>"d2
a

Note that, as of this point we still have not shown that the d,’s, i.e., the
values of the loops, are related to the quantum dimensions.

13.2 Quantum Dimensions

Now, we claim that these loop quantites d, should satisfy the fusion
algebra
dody = N, de. (13.4)
C

Diagrammatically we have Fig. 13.2 This rule seems rather natural,



that a and b can fuse together to form c¢ in all possible ways (See also
Exercise 9.3). However, to prove it is a bit more complicated than this
argument, and is given in the appendix to this chapter.

Now, given Eq. 13.4, if we think of the fusion multiplicity for particle
a, as a matrix N, with indices b and ¢, and we think of d. as a vector d
we can write

dod = [No)d

I.e, the vector d is an eigenvector of N, with eigenvalue d,.

Note that the matrix N, has only non-negative elements and d has
only positive elements. This allows us to apply the Perron-Frobenius
theorem which says that for matrices with only non-negative elements®
there is a unique eigenvector with all positive entries, and it corresponds
to the largest eigenvalue. Thus we conclude that d, is actually the
largest eigenvalue of the matrix N, and it has eigenvector d.

Recall that our previous definition of the quantum dimension d, is
that it is the largest eigenvalue of the fusion multiplicity matrix N,.
Thus we have rigorously shown that the value d, of the loop in the
graphical algebra is precisely the quantum dimension!

13.3 Verlinde Algebra

Using the locality principle (or no-transmutation) principle (See Fig. 9.7)
we can show that a closed loop of type a around a world line of type
z gives some constant which we call S,, as shown in Fig. 13.3. by
bending the top of x and forming a closed loop with the bottom of x,
we construct linked rings on the left of this equation which we relate to
the modular S-matrix, but on the right we form just a single z-loop.

S.e = Z(S?, aloop links z loop) = SqZ(S?, z-loop) = S,z Sow

from which we conclude g
Spp = 222 13.5
So. (13.5)

On the other hand, if we have two loops a and b around z, we can fuse
the two loops to all possible loops ¢ as shown in Fig.13.4. This identity
is entirely analogous to that of Fig. 13.2, and the rigorous derivation is
given in the appendix. On the other hand, we could also evaluate the
left hand side of Fig. 13.4 by applying the identity of Fig. 13.3 twice in
a row, and similarly we can evaluate the right hand side of Fig. 13.4 by
applying Fig. 13.3 once. Thus we obtain the identity

gamgbw = Z N;bgcz

This important result can be re-presented in two important ways. First,
inverting this matrix equation gives

;b = Z gaa:gba: [S_l]wc
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6Actually the simplest version of
Perron-Frobenius requires all positive
elements. Using the theorem for non-
negative matrices allows there to be
a second eigenvalue with same magni-
tude but opposite sign — this does not
change the conclusion.

Cj)w = %Zw N

Fig. 13.3 The locality principle tells
us that the value of a loop around a
world line is some number which we call

Sa:v

Fig. 13.4 Similar reasoning as in
Fig. 13.2 allows us to write this dia-
grammatic relationship. See rigorous
derivation in chapter appendix ***
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Plugging in the value of S from Eq. 13.5, and using the fact that the
modular S matrix is unitary, we obtain the famous Verlinde formula

A (Y
Z SOac

ab —

x
which tells us that all the information about the fusion algebra is con-
tained entirely within the modular S matrix!
A second way to present this important results is to write it in the

form
[STNuS]ey = SayOuy

where N, here is the matrix NS, with indices b and c. Thus the result
tells us that the modular S matrix is precisely the unitary diagonalizing
matrix we were looking for in Eq. 9.7!

13.4 Return of Kirby Color

As mentioned in section 8.2.3, one can assemble a string called the
“Kirby Color” (or Q string) that is the sum of all strings weighted by

the S-matrix. )
) = Stala) = 5 D dala) (13.6)

This string has some remarkable properties. Suppose we loop this string
around a string x similar to that of Fig. 13.3. The result then looks like

Z SOaSagc|J7> = D5x0‘0>

where we have used the fact that S is unitary, that Sy, = Su0 is real,
and that Spg = 1/D. This is shown explicityly in fig. 13.5

‘LCB = 5. M= = Dh.
|

Fig. 13.5 The killing property. A loop of the Kirby color string projects to the
vacuum going through it.

Thus, a loop of Kirby color string projects to zero (or vacuum) flux
going through it! This is sometimes known as the ”killing property”, as
a loop of € string kills any non-trivial particle that tries to go through
it. This principle is extremely useful in later attempts to construct
topological models.



Further, the Kirby color string can be used, as mentioned in section
8.2.3 to build up a manifold invariant from anyon braiding rules. Indeed
we can check this. The evaluation of the empty knot is defined to be
1= Z(5%)/Z(8%). Starting with S, surgery on a single loop takes S®
to §% x S'. We thus expect that

Z(S% x SY) 1

<Single QLOOp> = W = Sioo =D

where we have used that Z (5% x S') =1 and Z(S3) = Spo = 1/D. Now,
let us evalulate the -loop using our diagrammatic rules as shown in
Fig. 13.6.

< o A7
(o= 7O = 22=0

Fig. 13.6 The value of an 2 loop is D.

Indeed, this gives D in agreement with our surgery prediction. So this
appears to be working! One should be a bit careful with this because
one needs to properly account for twists in loops which we have not done
here. See the more detailed discussion in section ***.

13.5 S and 6 and that is all?

In building up an anyon theory, we now have compiled a large amount
of data. Say there are M particle types, then we have F' matrices, which
have 6 indices”, each running from 1 to M, we have N matrices with
three indices, we have R matrices with three indices, we have S matrices
with two indices, and d’s and 6 both with one index each. This seems
like a huge amount of data needed to keep track of (and in some sense
it is a huge amount of data). However, due to the idea of Rigidity (see
section 11.4), it is believed that you need only specify the matrix Sg; and
the values of the twists 6, and you completely pin down the rest of the
theory! This statement is not proven, but there are no counter-examples
known.

13.6 Appendix: Quantum Dimensions Satisfy
the Fusion Algebra
We would like to show the identity shown in Fig. 13.2. We need a few

useful pieces. First note that we can use an F-move on parallel lines to
show the identity shown in Fig. 13.7.

13.5 S and 6 and that is all? 129

"Here we assume no fusion multiplicity
greater than 1. If we have such mul-
tiplicities, we would add additional in-
dices to the F-matrices.
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C
fal A \’XL

Fig. 13.7 An F-move. If a and b do not fuse to ¢, then the coefficient x{, must be
zero. And if a and b do fuse to c then x¢, is not zero. Note that the constant ¢,
shown here is typically notated as Fgfg. This is quite similar to [ngg}oc except that
some lines pointing up have been turned down. This incurs certain normalization
factors that one needs to keep track of. See section ***

Further we can use the locality principle (See Fig. 9.7) to give us
Fig. 13.8

Fig. 13.8 Removal of a bubble gives a factor, which we call A, # 0.

We can then use these two identities to directly fuse the loop of a with
the loop of b incurring a factor of k5, AS, as shown in Fig. 13.9

N c <
@ ) = Z\(:\g n A — L K:‘; o &= Z K“‘” Dot
= c

c

Fig. 13.9 We have applied first the result of Fig. 13.7 then Fig. 13.8. Note that if
a and b cannot fuse to ¢ then that term is zero in the sum.

However, we can also apply the same reasoning to split the loops into
multiple bubbles as shown in Fig. 13.10.
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-

=7 (Kls\l C A (K; A;) @

(f

Fig. 13.10 Applying the result of Fig. 13.7 twice then Fig. 13.8 twice.

From these two results we can immediately conclude that k5, AS, =
or 1. Since both of these factors are nonzero when a and b can fuse to c,
and are zero when they cannot, we can write k5, AS, = N¢, (assuming
no N¢ > 1)%. This then proves our Lemma.

Once it is established that the factor xi, A%, = N, then this can be

a

also used to directly prove the identity in Fig. 13.4.

13.7 Appendix: Purely Algebraic Proof of
Verlinde Relation

In this section we assume only that we have a set of symmetric fusion
matrices [N,]% which represent the fusion algebra®. Nowhere do we need
to know anything about the braiding properties of the particle types
(indeed, a braiding need not even be defined!). The fusion matrices
must be commutative as in Eq. 9.5 so that they are all simultaneously
diagonalizable by a unitary matrix which we will call U for now (See Eq.
9.7) which we write as

N, = UX@yt (13.7)

where (@ is a diagonal matrix for each a. Thus the columns of U are
eigenvectors of the N matrices which we write as

Z[Na]chd = Upa\
c
and no sum on d implied. Note, at this point, the columns of U may
be multiplied by an arbitrary phase (i.e., a phase redefinition of the
eigenvectors).
Since there is a particle type labeled the vacuum 0 (or identity) which
fuses trivially with all other particles, we have [N,]§ = 05 so we have

Usa = 3_[NaJ§Uca = Uoa\y"
so that
)\Ela) = Uad/Uoa
substituting back into Eq. 13.7 we get
Us

NJE =S Upp 222U 13.8
[ ]b ; b UOz cx- ( )

81n cases where N¢, > 1 we would have
had to keep track of an additional in-
dex p at the a,b,c vertex. However,
this index is also conserved around the
loop meaning that the sum eventually
becomes 3. which will then generate
a factor of NS, as desired.

9The argument of this section is repro-
duced from Bonderson,Patel, Shtengel,
and Simon, to be published.



132 FExercises

Using Eq. 9.4, we immediately obtain that
Uew = Uz,

In particular this implies Uy, is real. Using Eq. 13.4 (also the result of
exercise 9.3)

dady =Y N&yde

we see that the vector d must be an eigenvector of N, for all a, and hence
is a column of the matrix U. We choose this to be Uy, and indeed this
must be the eigenvector with the largest eigenvalue for each N,.

Further reading

This is some reading

Exercises

Exercise 13.1 Kirby Color

From any anyon theory (i.e., TQFT or modular tensor category) we can
construct a type of string (a sum of particle types) called an Q (sometimes w)
string, or sometimes called a Kirby-color string as given in Eq. 13.6.

(a) Evaluating a knot diagram with the evaluation rules of the TQFT gives

Z(8with link)/Z(S%)

So the empty diagram is give value 1.

Consider a simple ring (an “unknot” or unknotted loop of string), black-
board framed (meaning no twists) of Kirby color string. Evaluate this diagram.

(b) A knot (or link) of Kirby-colored string is meant to be equivalent to
doing surgury on a the knot thickened into a torus. Considering the result of
part (a) above as well as part (a) of the above exercise 8.1 on Surgery. Are
these results consistent?

(c) Show that the Q string made into a loop has the so-called “killing prop-
erty” shown in Fig. 13.5. In other words, any diagram gives zero unless the
particle type going through the €2 loop is the trivial or vacuum particle. Hint:
Use the fact that the quantum dimension is part of the modular S matrix,
and various properties of the S matrix to prove this identity.

(d) Evaluate a Hopf Link of Kirby color string (See Fig. 8.11). Does this
match the result of part (b) of the exercise 8.1 above?

(e) [Harder| Evaluate the Borromean rings of Kirby color string (See Fig. 8.12).
Compare your result to that of part (c) of exercise 8.1 above, and also the dis-
cussion in the problem on ”Ground State Degeneracy” above.

Hints: Consider the F-move shown in figure 13.11. By closing up the top
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Fig. 13.11 An F-move. The far left diagram can be thought of as having a vacuum
particle go between the two strings (middle). Then we can use an F-move to obtain
the diagram on the right

and bottom, show that F% = 1/d, with d, the quantum dimension of the
particle a. You will need the locality law (also known as the ”no-tadpole”
law), which says that diagrams of the type shown in Fig. 13.12 must be zero
unless the incoming particle is the vacuum, p = 0.

Fig. 13.12 A tadpole diagram must be zero unless p = 0, by locality

Exercise 13.2 Handle Slide As discussed in section ??, one can describe a
3-manifold by giving a knot (or link) diagram which should be thickened into
a tube and surgered. A handle-slide of a link diagram (which corresponds to
sliding a handle of the manifold over another handle, but leaving the manifold
topologically unchanged) involves splitting one strand, having it trace the path
of a second strand and then reconnecting. An example is shown Fig. 8.7. In
TQFT, one uses a string of Kirby color to represent the knot or link to be
surgered. In fact, the evaluation of the link in the diagramatic calculus is
unchanged by handle-slides. While it takes a bit more diagramatic calculus
rules to derive the handle-slide invariance in general, a simple case of the
handle-slide is fairly easy to derive. Consider instead a handle-slide over an
untwisted loop as shown in the figure 13.13. Use the killing property. You
will have to think about fusion, but you should not need to do any detailed
calculations with F' matrices.

Exercise 13.3 Fusion and Ground State Degeneracy In exercise 9.2 above,
we have calculated the ground state degeneracy for a TQFT on an arbitrary
oriented 2d manifold ¥. Using the Verlinde relation, show that the ground
state degeneracy can be written as

dim = Z(2 x ") = " [Sos]¥
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ANV & oF STRAVDS
~

I

Fig. 13.13 A handle-slide over an untwisted loop. In this figure all strings are
meant to be € strings or Kirby color (a weighted sum of all particle types).

where xy = 2—2g is the Euler characteristic where g is the genus of the manifold
(the number of handles).



Quantum Error Correction and
The Toric Code

We now change subjects a bit towards quantum error correction and the
toric code. While initially the ideas may seem somewhat different from
what we have been discussing, we will see that it is extremely closely
related and brings us to an extremely important application of many of
the ideas we have been discussing.

14.1 Classical Versus Quantum Information

14.1.1 Memories'

Classical Memory

The unit of classical information is a bit — a classical two state system
which can take the values 0 or 1. A memory with N bits can be in any
one of 2V states — each state corresponding to a particular bit-string,
such as 011100111.

Quantum Memory

The unit of quantum information is the quantum bit or qubit? which is
a quantum two state system — i.e. a two-dimensional complex Hilbert
space spanned by vectors which we usually call |0) and |1). A qubit can
be in any state

[¥) = al0) + BI1)

with arbitary complex prefactor a, 8 (where we normalize wavefunctions
so |af? + 18> = 1).

A quantum memory with N qubits is a vector within the 2V dimen-
sional complex Hilbert space. So for example, with 2 qubits the general
state of a system is specified by four complex parameters

1) = ]00) + 8101} +~[10) + 8]11) (14.1)

with the normalization condition |a|? + |B]* + |v]|? + [6]> = 1. So to
specify the state of a quantum memory with 2 bits, you have to specify
four complex parameters, rather than, in the classical case just stating
which of the four states the system is in!

1All alone in the moonlight!

2Sometimes g-bit, but never cubit.
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14.1.2 FErrors

An error is some process which accidentally changes the state of the
memory away from the intended state. Often we take as an error model
the case where only one bit or one qubit is effected at a time (a “minimal”
error) although more complicated errors can occur.

Classical Error Correction

There is a simple way to correct small errors for a classical memory.
Instead of storing a single bit 0 or 1, instead store multiple copies of the
bit (say, three copies). Here we use three “physical” bits to store one
“logical” bit of information.

logical bit ‘ physical bits

0 000
1 111

Table 14.1 Three bit repetition code. Stores a single logical bit of information
using three physical bits.

Our memory should either be in the state 000 or 111 — we call these
two possibilities the code space. If we detect the system being in any
other state of the three bits (i.e., not in the code space) we know an
error has occured. If an error does occurs on one of the physical bits
(i.e,, if one of the bits is accidentally fliped) we can easily find it, because
it would leave our memory with not all of the physical bits being the
same. For example, if our system starts as 000, an error introduced on
the second bit would leave it in the form 010. But then, by just using a
majority-rule correction system, it is easy to figure out what happened
and flip the mistaken bit back. So our error correction protocol would be
to continuously compare all three bits, if they don’t match, switch the
one back which would bring them back to matching. Assuming errors
are rare enough (and only occur on one bit at a time) this scheme is an
effective way to prevent errors. For added protection one can use more
redundant physical bits, such as 5 physical bits or 7 physical bits for a
single logical bit.

One might think the same sort of approach would work in the quantum
world: make several copies of the qubit you want to protect, and then
compare them to see if one has changed. Unfortunately, there are two
big problems with this. The first is the so-called no-cloning theorem —
it is not possible to make a perfect clone of a qubit. The second reason
is that measuring a state inevitably changes it.

Quantum No Cloning Theorem

(Zurek et al 1982). The result is such a straightforward result of quantum
mechanics some people have argued whether it deserves to be called a



theorem. The statement of the “theorem” is as follows:
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Theorem: Given a qubit in an arbitrary unknown state |¢1) and another qubit in
an initial state |¢2), there does not exist any unitary operator U (i.e., any quantum

mecahnical evolution) such that

U(l¢1) © |¢2)) = eX[p1) @ |1)

for all possible input |¢1).

The point here is that we do not have a way to copy |¢1) into the
auxiliary qubit |@2).

Proof of Theorem: Suppose we have two states |0) and [1) which
are properly copied (we allow some arbitrary phase x in the copying
process).
e'|0) ® |0)
eX|1) @ |1)

U(|0) @ |¢2))
U(l) @12)) =

Quantum mechanical operators are linear so we can try applying this
operator to the linear superposition a|0) 4+ 3|1) and we must get

U([al0) + BI1)] @ |¢2)) = €™ (a]0) @ |0) + BI1) @ |1))

but this is now not what a putative cloning device must give. Instead a
clone of the bit should have given the outcome

eX[al0) + B|1)] @ [a]0) + B[1)]

which is not generally the same result. Thus no cloning device is con-
sistent with the linearity inherent in quantum mechanical evolution.

14.2 The Toric Code

Perhaps the most surprising thing about quantum error correction is
that it is possible at all! This was discovered by Peter Shor in 1995 (and
shortly thereafter by Andrew Steane). We will describe the Toric code
approach to error correction which is potentially the conceptually most
simple error correction scheme, as well as being very possibly the most
practical to implement in real systems?!

As with so many great ideas in this field, the Toric code was invented
by Kitaev (Kitaev 1997).

14.2.1 Toric Code Hilbert Space

We imagine an N, by IV, square lattice with spins on each edge, where
the edges of the lattice are made periodic hence forming a torus (hence
the name “toric”). The total number of spins is N = 2N, N, and corre-
spondingly the dimension of the Hilbert space is 2%.

3The statement that it is the most
practical is based on the fact that the
so-called surface codes (which is es-
sentially the toric code) has the high-
est known error threshold — meaning
you can successfully correct even highly
faulty qubits with this technique com-
pared to other techniques which require
your qubits to be much closer to perfect
to begin with. To evaluate the quality
of a code one must make reasonable as-
sumptions about how likely a physical
qubit is to fail and compare this to how
quickly one can test for errors and cor-
rect them. NEED CITATION HERE?
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4Caution: In the literature about half
of the world uses the up-down or o,
eigenstates as a basis, and half of the
world uses the o eigenstates as a basis.

Fig. 14.1 The Hilbert space of the toric code — an N, by NN, square lattice with
spins (dots) on each edge wrapped up to make it periodic in both directions — i.e.,
a torus. Hence the name. There are 32 spins in this picture so the Hilbert space has
dimension 232,

We will work with a basis in our Hilbert space of up and down spins?.
A convenient notation is then to color in the edges containing down spins
but leave uncolored the edges with up spins. See Fig. 14.2.

= = spin down = |1)

— =spinup =10)

Fig. 14.2 A particular basis state of the Hilbert space, working in the up-dpwn
basis (z-eigenstates). Here we denote down spins by thick (red) lines. And up spins
are denoted by not coloring in the edges.

Note that it is not crucial that we are working with a square lattice,
or that we are even working on a torus (although it is crucial that the
surface has noncontractable loops). We could work with other types
of lattices — the honeycomb will be useful later. In fact even irregular
lattices (which are not really lattices, since they are irregular, and should
be called ‘graphs’) can be used. However it is a lot easier to continue
the discussion on this simple square-lattice-torus geometry.

14.2.2 Vertex and Plaquette Operators

Let us now define some simple operators on this Hilbert space.
First, given a vertex a which consists of four incident edges i € a, we



14.2

define the vertex operator

V, = H of

i€verter o

This operator simply counts the parity of the number of down spins
(number of colored edges) incident on the vertex. It returns +1 if there
are an even number of incident down spins at that vertex and returns —1
if there are an odd number. (And in either case, as is obvious, V2 = 1).
This is depicted graphically in Fig. 14.3. Note that there are a total of
NN, vertex operators.

= Vertex operator

1 V, = H of

i€vertexr o

+1 if an even # of down spins
-1 if an odd # of down spins

Fig. 14.3 The vertex operator returns +1 if there are an even number of incident
down spins at that vertex and returns —1 if there are an odd number.

Note that it is possible (and useful) to define a corresponding projec-
tion operator

Vo = %(1 — V) (14.2)

which has eigenvalues 0 for an even number of incident down spins or 1
for an odd number. This is a projection operator because V, = f/(f

We now define a slightly more complicated operator known as the
plaquette operator. Given a plaquette S which contains four edges in a
square i € 8 we define

Pﬁ = H O'Z»c

i€plaquette 3

which flips the state of the spins on all of the edges of the plaquette as
depicted in Fig. 14.4. There are a total of N, N, plaquette operators.

The Toric Code 139
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Fig. 14.5 A linear superposition of
a flipped and unflipped plaquette is a
+1 eigenstate of Pg or equivalently a 0
eigenstate of ]55. The -1 eigenstate is
given by the orthogonal superposition,
i..e, the superposition with a - sign be-
tween the two terms.

—

= Plaguette operator

Pﬁ = H O’f

i€plaquette 3

= flip spins around a plaguette

Fig. 14.4 The plaquette operator flips the state of the spin on the four edges of a
plaquette.

As with the vertex operator, Pg = 1 meaning Ps has eigenvalues +1
and —1. We can similarly define a projector

Ps = %(1 — Pg) (14.3)

which satisfies Pg = Pg.

It is a bit more difficult to describe what the eigenstates of the pla-
quette operators are. In the basis we are using, the spin-up/spin-down
basis corresponding to uncolored and colored edges, the Pg operator is
off-diagonal — it flips spins around a plquette. As such, the 0 eigenstate
of 155 operator (i.e, the 1 eigenstate of Pg) is obtained by adding the
state of a plaquette to the flipped state of the plaquette as shown in Fig.
14.5. The orthogonal superposition (adding the two states with a - sign)
will give the other eigenstate.

Operators Commute

I claim all of the plaquette operators and all of the vertex operators
commute with each other. It is obvious that

Vo, Vo] =0

since V,,’s are only made of o, operators and all of these commute with
each other. Similarly
[P, Pyr] =0

since Pg’s are made only of o, operators and all of these commute with
each other.



The nontrivial statement is that
Vo, Pl =0

for all &« and . The obvious case is when V,, and Pg do not share any
edges — then the two operators obviously commute. When they do
share edges, geometrically they must share exactly two edges, in which
case the commutation between each shared o and o7 accumulates a
minus sign, and there are exactly two shared edges so that the net sign
accumulated is +1 meaning that the two operators commute.

Is the set of operators complete?

We have NN, vertex operators and N, NN, plaquette operators — all of
these operators commute, and each of these operators has 2 eigenvalues.
This appears to match the fact that there are 2V, N, spins in the system.
So is our set of V' and P operators a complete set of operators on this
Hilbert space? (I.e., is it true that describing the eigenvalue of each of
these operators must determine a unique state of the Hilbert space?)

It turns out that the V and P operators do not quite form a complete
set of operators on the Hilbert space. The reason for this is that there
are two constraints on these operators

[[ve =1
«
117
B
To see that these are true, note that each edge occurs in exactly two
operators V,. Thus when we multiply all the V,’s together, each o7
oceurs exactly twice, and (07)? = 1. Thus the product of all the V,,’s is
the identity. The argument is precisely the same for multiplying together
all of the Pjs’s.

Thus we can freely specify the eigenvalues of (NN, —1) operators V,
but then the value of the one remaining V,, is then fixed by the values
chosen for the other (NN, — 1) of them. Similarly with the Pg’s. So
specifying the eigenvalues of these commuting operators specifies only
2(Nz N, —1) degrees of freedom, and since we started with 2N, N,, spins,
we still have 2 degrees of freedom remaining. These two degrees of
freedom are going to be two error protected qubits in this scheme for
building a quantum error correcting code.

Note that this result, of having two degrees of freedom that remain
unspecified by the plaquette and vertex opertaors, is not unique to hav-
ing used a square lattice (we can use triangular lattice, honeycomb, or
even irregular grids), but depends only on having used a torus. If we use
a g-handled torus we will have 2g degrees of freedom (i.e., 29 qubits)
remaining. To see this we use the famous Euler characteristic. For
any decompositon of an orientable 2-manifold into a grid, we have the
formula

Il
—_

2—2g = (Number of Vertices) —(Number of Edges)+ (Number of Faces)
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Fig. 14.6 A loop configuration consis-
tent with the constraint that V, = 1 on
every vertex. There must be an even
number of red lines incident on every
vertex.

where g is the number of handles on the manifold. Since there is one
spin on each edge we have

Number of Vertex Ops + Number of Plaquette Ops — 2 + 2¢g
= Number of Spins

We can read this as follows. The right hand side is the total number of
degrees of freedom. On the left we can specify all the eigenvalues of the
vertex and plaquette operators, then there are 2 constraints, so subtract
two, and this leaves us with 2¢g unspecified degrees of freedom.

14.2.3 Building the code space

We are going to state two rules for constructing our code. We are imag-
ining here that we have a great deal of control over the spins (the mi-
croscopic qubits) making up our system and we can impose these rules
by fiat.

Rule 1: Specify that V, = 1 for every vertex (or equivalently V, =
0.).

This assures that there are an even number of down spins (red lines)
incident on every vertex. It is easy to see that this can be interpreted
as a constraint that one must consider only loop configurations of these
red lines. There can be no ends of lines, and no branching of lines. See,
for example, fig. 14.6

The idea of an error correcting code is that once we construct our
code, we will have some way to check that this Rule 1 is satisfied and if
it is not satisfied we should have some way to fix it without destroying
our encoded quantum information.

_Rule 2: Specify that Ps = 1 for every plaquette (or equivalently
Pz =0.).

As mentioned above in Fig. 14.5 this assures that every plaquette is
in an equal superpositon of flipped and unflipped states with a plus sign
between the two pieces. Note in particular that, because the Pg and V,
operators commute, the action of flipping a plaquette will not ruin the
fact that Rule 1 is satisfied (that is, that we are in a loop configuration).

The quantities V,, and Pg are known as the stabiizers of the code —
they are meant to stay constant and are checked for any errors which
are indicated by the fact that their value has changed.

We thus have the following prescription for constructing a wavefucn-
tion that satisfies both Rule 1 and Rule 2: First start in any state of
spins up and spins down which satisfies rule 1, i.e., is a loop configura-
tion. Then add to this in a superposition every configuration that can



be obtained by flipping plaquettes. We thus have
[¢) = Z [loop config) (14.4)

all loop configs that can
be obtained by flipping pla-
quettes from a reference
loop config

By adding up all such configurations, we assure that every plaquette is
in the correct superpositon of flipped and upflipped and we satisfy Rule
2.

The key queston is whether one can obtain all loop configurations
by starting in a referecnce configuratation and flipping plaquettes. The
answer is that you cannot: Flipping plaquettes never changes the parity
of the number of loops running around the handle. To see this, try
making a cut around a handle of the torus, as shown in Fig. 14.7. If one
flips a plaquette (blue in the fig) along this cut (green inn the fig), it
does not change the parity of the number of red bonds that the cut goes
through. Thus there are four independent wavefunctions of the form
of Eq. 14.4, which are different in whether the reference configuration
has an even or an odd number of red bonds going around each handle.
All of these states satisfy the constraints rules that all V, = 1 and all
P3 =1 . We will call these states

|w€€> ‘weo> |¢oe> |woo>

where e and o stand for an even or an odd number of red lines going
around a given handle. So for example, we have

[Yee) = Z [loop config)

all loop configs that have
an even number of red
bonds around both handles

Or graphically, we have Fig. 14.8

|thee)

|7peo> —

Fig. 14.8 Graphical depiction of |1)ee) which has an even number of strings running
around each handle, and |¢eo) which is even around the first handle odd around the
second.
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Fig. 14.7 Making a cut around one of
the handles of torus, one can see that
flipping a plaqutte, such as the blue
one, does not change the parity of the
number of red bonds cutting the green
line. Further, it does not matter where
(at which y-coordinate) the green cut is
made, the number of red bonds it cuts
is always even.
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Fig. 14.9 A o” operator applied to the
bond creates two vertices in the V, =
—1 eigenstate.

The most general wavefunction we can write that satisfies the two
above rules, that all V,, =1 and all Pg =1 is thus of the form

|1/]> = Aee|"/}ee> + Aeo|weo> + Aoe|woe> + Aoo|"/}oo> (145)

for arbitrary coefficients Acc, Aco, Ave, Avo- It is these coeflicients which
are the two qubits of quantum information that we are trying to protect
with this coding scheme (exactly like Eq. 14.1). We will refer to wave-
functions of the form of Eq. 14.5 as the “code-space”. We refer to these
two bits as being the ”logical” qubits — the information we are trying to
protect. The underlying spins on the lattice that make up the code are
sometimes called the ”physical” qubits.

Note that in order to turn the |1)..) wavefunction into the [ie,) we
need to insert a single loop around a handle — this involves flipping
an entire row of spins at once. If one were to try to flip only some
of these spins, we would have an incomplete loop — or an endpoint —
which violates the rule that V,, = 1 for all vertex sites — i.e, not in the
code-space. It is this fact that allows us to test for errors and correct
them efficiently, as we shall see.

14.3 Errors and Error Correction

Let us now turn to study possible errors in more detail. What does an er-
ror look like in this system? Imagine a demon arrives and, unbeknownst
to us, applies an operator to one of the spins in the system.

14.3.1 o, errors

Let us first consider the case where that operator happens to be a o”
on bond ¢. This operator commutes with all the plaquette operators
Ps but anticommutes with the vertex operators V,, which intersect that
bond. This means, if we start in the code space (all V, = +1), and
apply this error operator o7, we then end up in a situation where the
the two vertices attached to the bond i are now in the wrong eigenstate
Vo = —1. To see this more clearly starting in the original state |¢)) we
have

Val$) = [¢)

meaning we start in the +1 eigenstate, now apply the error operator o7
to both sides

Uf|¢> =0, Valth) = _Vao'?|¢>
or
Valo? )] = =07 [¥)]

showing we end up in the —1 eigenstate of the vertex operator.

To show these errors graphically we will no longer draw the up and
down spins (the red bonds) but instead we just draw the o, operator as
a blue line, and the vertices which are in the —1 eigenstate as a red X
as shown in Fig. 14.9.
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So it is clear what our error correction protocol must do. It must
frequently measure the state of the V,, operators, and if it finds a pair
in the V = —1 state, we know that a ¢® has been applied on the inter-
vening bond. Once we have identified the error it is easy to correct it by
applying o, on the same bond, thus returning the system to its original
state and to the code space.

Now suppose that the demon is very fast and manages to make several
such errors very quickly. If these errors are well separated from each
other, we will easily find multiple pairs of vertices in the V' = —1 state,
with the pair separated from each other by one bond distance. These
can similarly be caught by our correction scheme and repaired, returing
us to the code space again.

However, it could be the case that two errors are on bonds that share
a vertex , as shown on the left of Fig. 14.10, the vertex that is shared
gets hit by o” twice and is thus in the V = +1 state. Only the two
vertices at the end of the "string” are in the V = —1 state and are then
detectable as errors.

X X

3 *

Fig. 14.10 Left: When two ¢” errors are made on bonds that share a vertex, the
shared vertex is hit with o7 twice, and thus becomes V' = +1 again. Only the two
vertices at the end of the ”string” are in the V' = —1 state. Middle: A longer string
of errors. Note that we can only measure the endpoints of the string, not where the
errors were made, so we cannot tell if the error string goes down two steps then two
steps to the right, or if goes two steps to the right then down two steps. Right
If we detect the errors as in the middle panel and we try to correct it by dragging
the errors back together, but we choose the incorrect path for the string, we end up
making a closed loop of o, operators — which acts as the identity on the code space,
so we still successfully correct the error!

Nonetheless, the error correction scheme is still fairly straightforward.
One frequently checks the state of all the vertices and when V = —1
is found, one tries to find the closest other error to pair it with — and
then apply o, operators to correct these errors (you can think of this
as dragging the errors back together and annihilating them with each
other again).

It is important to realize that we cannot see the error operators (which
we have drawn as a blue string) themselves by making measurements on
the system — we can only detect the endpoints of string, the vertices
where V' = —1. For example, in the middle panel of figure 14.10 we
cannot tell if the error string goes down two step and then to the right,
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or if it goes to the right one step and then down two steps. We only
know where the endpoints of the string are.

Now if we detect the two errors in the middle panel of Fig. 14.10,
we may try to correct these errors by guessing where the blue string is
and applying o, along this path to bring the endpoints back together
and reannihilate them. However, it is possible we guess incorrectly as
shown in the right panel of Fig. 14.10. In this case we will have ended
up producing a closed loop of ¢, operators applied to the original state.
However, a product of ¢” operators around a closed loop is precisely
equal to the product of the plaquette operators Pg enclosed in the loop.
Since the code space is defined such that all of hte plaquettes operators
are in the +1 eigenstate, this loop of o® acts as the identity on the code
space, and we still successfully correct the error.

On the other hand, if a loop of errors occurs which extends around
a handle , and the V = —1 errors annihilate again (think of this as
dragging the error all the way around the handle and re-annihilating it
again) then, although we return to the code-space (there are no V.= —1
vertices) we have changed the parity of the number of down spins around
a handle thus scrambling the quantum information and make an error
in the logical bits. In fact what we get in this case is the transform that
switches the even and odd sectors around one handle :

Aeel"/’ee> + Aeo|1/)eo> + Aoe|woe> + Aoolwoo> —
Aoe‘wee> + Aoo‘weo> + Aee|woe> + Aeo|woo>

However, the general idea of the toric code is that by having a very
large torus, it requires a very large number of errors to make this loop
around the handle and actually scramble the quantum information (the
logical qubits). If we are continuously checking for V' = —1 errors we
can presumably correct these errors before a logical error can arise.

14.3.2 o, errors

We can also consider what happens if the error is not a o” operator
applied to the system, but rather a ¢* operator. Much of the argument
in this case is similar to that above.

Since the o* operator on an edge anticommutes with the two neigh-
boring plaquettes Pg which share that edge, the resulting state will have
Pg = —1 for these two plaquettes as shown on the left of Fig. 14.11. Re-
call that this eigenstate of the plaquette operator is a superposition of
the flipped and unflipped plquettes similar to that shown in Fig. 14.5
but with a minus sign between the two terms.
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Fig. 14.11 Left: When a o7 error is applied to a bond, the plaquettes on either side
end up in the P = —1 state Middle: A string of several o* errors. Right A closed
loop of ¢* errors. This is equal to the product of all of the enclosed V,, operators.
In the code space, this is equal to +1.

Analogous to the above discussion, our % error correction proto-
col should frequently check for pairs of neighboring plaquettes where
Pz = —1 and if these are found the protocol should correct the error by
applying o% to the intervening edge. As above, if several % errors are
created, they can form a string, as shown as blue bonds in the middle of
Fig. 14.11. As above, one is not able to actually detect the string, but
can only see the endpoints as plaquettes where P = —1. Analogous to
the above case, if from errors, or from an attempt to correct errors, the
o” error string forms a closed loop as in the right of Fig. 14.11, this loop
of o* operators is equal to the product of the enclosed V,, operators.
Since within the code space, V, = 1, a closed loop returns the system
its original state. Another way of seeing this is to think in terms of the
red loops of down spins discussed above. The o, operators register —1
each time they intersect a red loop. On the other hand the red loops
must be closed so the number of intersections between a red loop and a
dlow3e loop of the blue o error string in the figure must be even (since
a red loop going into the region surrounded by the string must also come
out), thus forcing the product of the blue o* operators to have a value
of 1.

On the other hand, if the loop of o* operators goes all the way around
the handle, it then scrambles the logical qubits. In particular, one can
see that if there is a string of o, going all the way around a handle as
shown as the blue bonds in Fig. 14.12, this operator then counts the
parity of the number of red bonds going around the dual handle, as
shown in the figure. Thus, applying the string of ¢* operators around
the handle makes the transformation

Aee|1/)ee> + Aeo|¢eo> + Aoe|¢oe> + Aoo|1/)oo> —
Aee|1/)ee> + Aeolweo> - Aoelwoe> - Aoo|1/)oo>

14.3.3 oY errors

A basis for a complete set of operators applied to a single spin is given
by 0%, o¥, and o* (as well as the identity). We have discussed errors

Fig. 14.12 If a string of o* goes
around a handle, it measures the par-
ity of the number of red strings going
around the dual handle.
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created by o® and ¢o#, but what about ¢¥. Here we simply use the fact
that

oY =io%0*
So if we have an error correction protocol that removes both ¢” and o
errors, being that the two procedures don’t interfere with each other, we
will automatically correct o¥ errors in the process!

14.3.4 More Comments on Errors

(1) A key point to take away here is that the only process which can
cause logical erorrs is if an error string goes all the way around one of the
handles. Further (and this is a related statement) the only operator that
can distinguish the different elements of the code space from each other
are string operators that go all the way around the handles. The latter
(related) statement is qutie necessary, since being able to distinguish the
different wavefunctions from each other is equivalent to causing an error
since it amounts to a measurement of the logical bits.

(2) As mentioned above, the toric code as a method of storing quantum
information is considered the “best” quantum error correcting code. We
define the quality of a code as follows: We define a time unit as the
amount of time it takes us to make a measurement of a quantity such as
Vo or Pg. Then we assume there is some rate of errors being introduced
to the underlying physical bits (the spins) per time unit. Given these
parameters, the toric code is able to reliably correct the largest possible
error rate per time unit of any known quantum error correcting code.
(CITE)

(3) While we have introduced the toric code on a torus (hence the name)
so that it stores 2 logical qubits of information, as mentioned above, if
we go to a higher genus surface (either a closed manifold with handles,
or a surface with holes cut in it) we can store 2g qubits where g is the
genus of the surface.

14.4 Toric Code as Topological Matter

We have introduced the toric code as a way to store quantum infor-
mation — being stabilized by an error correction protocol that actively
checks the value of the vertex and plaquette operators. However, it is
quite easy to convert this story to a a realization of topologically or-
dered quantum matter — a physical system that is described at low
temperature and long wavelength by a topological quantum field theory.
In this case the physical system will be stabilized by the existence of an
energy gap to excitations and the fact that our system will be kept at
low temperature.

To recast the toric code as topologically ordered matter, we simply
write a Hamiltonian which is a sum of commuting operators

H=- > Va— > P (14.6)

vertices o plaquettes 3
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Here we have set the energy unit to unity. The Hamiltonian is made
of a sum of commuting projectors with eigenvalues +1 so the ground
state space is described by simply setting all of the V,, =1 and Pg = 1.
Le., the ground state space is exactly the code space. There will be a
four-fold degenerate ground state corresponding to the four orthogonal
wavefunctions in the code space. If V,, = —1 or Pg = —1 this corresponds
to a particle excited out of the ground state.

It is sometimes more convenient to work with the projectors V,, and
ﬁﬁ defined by Egs. 14.2 and 14.3. Writing

H= > Vat+ > B (14.7)

vertices plaquettes 3

which differs from Eq. 14.6 only be a factor of 2 and an overall constant.
The advantage of H is that it is a sum of commuting projection oper-
ators. This is often convenient because it means that the ground state
has energy 0 and each excitatation has unit energy.

14.4.1 Excitations

The types of particle-excitations we can have are given as follows:

(1) We can have a vertex where V,, = —1 instead of V, = +1. We call
this an “electric particle” which we write as e.

(2) We can have a plaquette where Pg = —1 instead of Pg = +1. We
call this a “magnetic particle” which we write as m.

The nomenclature for these particles due to a relationship with lattice
gauge theories which we will discuss below.

Since vertex defects e’s are produced in pairs, and can be brought
back together and annihilted in pairs, we know we must have

exe=1

Similarly since plaquette defects m are produced in pairs, and can be
brought back together and annihilated in pairs we must also have

mxm=1

We might then wonder what happens if we bring together a vertex and a
plaquette defect. They certainly do not annihilate, so we define another
particle type, called f, which is the fusion of the two

exm=Ff

We then have
xf=1I
which we can see by associativity and commutativity
fxf=(exm)x(exm)=(exe)x (mxm)=IxI=1

These are the only particle types there are. Note that they form a closed
set under the fusion rules. There are no non-abelian fusions here so we
assume we have an abelian model of some sort.
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X 1 e m f
I I e m f
e e 1 f m
m | m f I e
f f m e 1

Fig. 14.13 Fusion Table for the Toric
Code

Note that there are exactly four particle types (including the identity),
and there are exactly four ground states!
The full fusion relations are given by the table in Fig. 77.

14.4.2 Braiding Properties
e is a boson

Let us first consider the e particles. These are both created and moved
around by applying o, operators. All of the o, operators commute with
each other, so there should be no difference in what order we create,
move, and annihilate the e particles. This necessarily implies that the
e particles are bosons. There are several ”experiments” we can do to
sow this fact. For example, we can create a pair of e’s move one around
in a circle and reannihilate, then compare this to what happens if we
put another e inside the loop before the experiment. We see that the
presence of another e inside the loop does not alter the phase of moving
the e around in a circle®.

5The experiment just described, while quite clear only tells us that e is either a boson
or a fermion (since a fermion taken in a loop all the way around another fermion also
accumulates no phase since it is equivalent to two exchanges).

To determine the phase of an exchange, we are going to attempt to do a twist in a
world line as in Fig. 2.6 or 11.1. Considering Fig. 14.14

mn-F1:|
g6 1o
4 4
athb2¢3d

Fig. 14.14 Vertices are labeled with letters and bonds are labeled with numbers.

Now suppose there is initially an e particle at position a. One experiment we can
do is to apply (reading right to left) ofofofotoio5o30]. This just moves the
particle starting at a around in a loop (reading right to left abgfedcba) and brings
it back to the original position. We can compare this to the following operations
ofojof{oiofofojof. This instead creates a pair of e particles at positons c and d,
moves the particle at d in a loop (bgfe) around c and anihilates it with the particle
at a, then finally moves the particle from e to replace the particle initially at a. This
process is precisely the twist factor process from Fig. 2.6 or 11.1. However, since the
o, operators all commute, it must also be equal to the previously described process
which just moves one particle around in a loop without introducing any twist. Hence
we conclude that the e particle is a boson.
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m is a boson

Entirely analogously we can argue that m is also a boson. m is both
created and moved by the o* operator and all of these operators com-
mute with each other. The exact same argument (here without detail)
shows us that m must be a boson.

Braiding ¢ and m

Here is where it gets interesting. Suppose we create an e particle and
move it around in a circle then reannihilate. This is exactly the process
shown in the right panel of Fig. 14.10 and is the product of a string of
o” operators. Recall that the reason this process does not accumulate a
phase is because the string of o® operators around the loop is equivalent
to the product of the Pg plaquette operators enclosed — and in the
ground state, the Pg operators are in the +1 state. However, if there is
one m particle inside the loop, this means that one of the P operators
is actually in the —1 state. In this case the phase of taking the e particle
around in a loop is actually —1. So there is a phase of -1 for taking e
around m.

We can check that it is precisely equivalent if we take an m particle
around an e. Taking an m around in a loop is the process shown on the
right of Fig. 14.11 and is the product of a string of o* operators. Recall
that the reason this process does not accumulate a phase is because the
string of o operators around the loop is equivalent to the product of
the V, vertex operators enclosed — and in the ground state, the V,
operators are in the +1 state. However, if there is one e particle inside
the loop, this means that one of the V,, operators is actually in the —1
state. In this case the phase of taking the m particle around in a loop
is actually —1. So there is a phase of -1 for taking m around e.

Properties of f, the fermion

Since f is made up of an m bound to an e, it is easy to see that taking
e around f accumulates a phase of -1 and taking m around f also accu-
mulates a phsae of -1. More interesting is the properties of a single f.
We claim that f is a fermion. The easiest way to see this is to check its
phase under a twist as shown in Fig. 14.15

Fig. 14.15 The f = e X m particle is a fermion, since e braiding around m gives a
-1 sign.
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Note that taking f all the way around f will result in a net + sign.

14.4.3 Modular S-matrix

We can summarize these findings with a modular S;; matrix, which lists
the braiding result obtained by taking particle ¢ around particle j as
shown in Fig.7.13. Listing the particles in the order I,e,m, f we can

write S as in
1 1 1 1

11 1 -1 -1
Dl1 -1 1 -1
1 -1 -1 1

S:

where unitarity fixes the total quantum dimension D = 2.

14.4.4 Flux Binding Description

We can describe the physics of the toric code phase in a flux binding
description somewhat analogous to Chern-Simons theory. Here let us
define

electric particle = e = particle bound to 1 unit of electric charge
magnetic particle = m = particle bound to 7 units of magnetic flux

fermion = f = particle bound to 1 unit of electric charge and 7 units
of magnetic flux

It is easy to see that this charge and flux will correctly give the +1
and -1 phases accumulated from braiding particles.

14.5 Robustness of the Toric Code Phase of

Matter — Example of Topologically
Ordered Matter

The excitation gap in of the toric code “protects” it from small pertur-
bations and changes in the Hamiltonian. Indeed, the phase is “robust”
against any small variations in the details of the Hamiltonian. To see
this, let us suppose we have

H = Hioriccode + AOH

where H is the toric code Hamiltonian defined above, and 0 H is some
arbitrary Hamiltonian (with local terms only) and X is some small pa-
rameter. The claim is that for small enough A, the topological properties
of the phase of matter (such as the 4-fold degenerate ground state, and
the exitations with their braiding statistics) will remain unchanged.
The easiest fact that we can test is that the four ground states remain
robust and unmixed by the perturbation. To see this, let us pick some
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particular form for the d H such as a sum of o® on all edges
SH=Y of

(we will realize that the actual form we choose won’t matter for the
argument we make here). Now let us treat 6H in perturbation the-
ory. In the absence of the perturbation, we have four ground states
[Yee), [Veo)s [Voe), |oo). Then if we add the perturbation order by or-
der to one of these ground states, qualitatively we obtain®

[0) = [) + (GSH) ) + (GOH)* ) + ...
and the energy modified by the perturbing Hamiltonian is then
E= <1/~}|Htoric + 5H|1Z)>

where here GG is the greens function, which includes an energy denomi-
nator at least as big as the excitation gap A, so that successive terms in
the expansion are smaller by order A\/A. The point here is that at A"
order in perturbation theory, we can only generate wavefunctions that
differ from the original ground state by M applications of §H. Now re-
call that one cannot even distinguish the ground state sectors from each
other unless one has a string operator that wraps all the way around the
torus. Thus, the result of this calculation is identical for the four ground
states out to very high order of perturbation theory, and any splitting
of the four ground state sectors (or any mixing of the sectors) will be
suppressed exponentially as (A\/A)* which can be made arbitrarily small
for a big system. It is clear that this general argument is not specific to
the particular form of § H we have chosen.

One can go further and ask what happens to the excited particles
when a perturbation is applied to the system. Similarly, we can per-
form a perturbation series. Here what happens is that the particles —
which started as point defects — develop a nonzero length scale. As
one moves a distance x further away from the particle, the influence of
the presence of that particle decays as (A/A)*. Again, if A is small,
then from a sufficiently far distance away, the particle again looks like a
point. In particular, if one particle is braided around another at a suf-
ficient distance away, it accumulates the expected phase that the pure
toric code would have predicted. There are several strong arguments for
this. First, we can explicitly write an expression for the braiding phase
and show that the corrections do indeed drop exponentially by exactly
the same arguments. Secondly, we recall the idea of rigidity presented
in section 11.4 — it is not possible that the braiding phases in a theory
change an arbitrarily small amount.

14.6 The Notion of Topological Order

The type of protection from small perturbations that we have just dis-
covered is the basis for a very useful definition of topological order. A

6This is a Brillouin-Wigner perturba-
tion theory, where successive terms are
rigorously A\/A smaller.
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topologically ordered system will have multiple degenerate ground states
when put on a surface with nonzero genus (i.e., a a torus, or a system
with a hole cut in it) which we call |¢),). To have topological order we
should expect

(¢;]any local operator|y;) = Cd;;

where C' depends on the particular operator and there may be corrections
that are only exponentially small in the size of the system. In other
words, the multiple ground states locally look just like each other, but
are mutually orthogonal.



Kitaev’'s Generalized Toric Code:
The Quantum Double of a
Group — Lattice Gauge Theory

Kitaev constructed an ingenious way to build a topological model from
an arbitrary group G on a lattice. This is very much the generalization
of the toric code, except that instead of using simple spins on edges,
we give the edges values of elements of the group. The construction is
based on lattice gauge theory, and will include the toric code as a simple
example, where the group is Zs, the group with two elements!.

We begin by defining a graph (which could be a regular lattice, or
could be disordered). We define an orientation to each edge as an arrow
as given in Fig. 15.1

We choose a group G with group elements g € G. The Hilbert space
is defined by labeling edges with the group elements g. Inverting the
arrow on an edge has the effect of inverting the group element g — ¢!
as shown in Fig. 15.2.

We now define a vertex operator V, for a vertex a with all arrows
pointed in as a projector which enforces that the product of group el-
ements around the vertex to be the identity e, as shown in Fig. 15.3.
This is the string-net vertex fusion rule.

Fig. 15.3 Definition of Vi, when all arrows are directed into the vertex (if a vertex
is directed out, one can invert the arrow and invert the group element). The vertex
operator gives zero unless the product of group elements around the plaquette gives
the identity element e

We can then define a plaquette operator Pg(h) to premultiply the
(clockwise orientied) group elements around a plaquette 5 by the group
element h, as shown in Fig. 15.4.

I present this model on the “dual”
graph compared to Kitaev’s presenta-
tion.

.

Fig. 15.1 Part of a directed graph.

s - 7

Fig. 15.2 Inverting the direction on
an edge inverts the group element.
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2Two elements g and h of a group are
called conjugate if g = uhu~! for some
u in the group. A conjugacy class is
a set of elements of a group that are
all conjugate to each other. A group is
naturally partitioned into nonintersect-
ing conjugacy classes. A centralizer of
an element g is the set of all elements
of the group u that commute with it
ug = gu.

73 "5
It 7 — hj"r g

Js hjf "

f;(h\

Fig. 15.4 The plaquette operator Pg(h) premultiplies all of the clockwise oriented
bonds by the element h.

The total plaquette operator (the one that will enter the Hamiltonian)

is then defined to be
Py =Y Psg)
geG

It is easy to see that the plaquette operator and the vertex operator
commute.

Relation to toric code

How does this related to the toric code? Consider the group Zs of two
elements where we write the two elements as {1, —1}. We can think of
these as being spin up and spin down on the lattice. Since g = ¢! for
every element we don’t need to put arrows on the lattice.

Ps(1) = identity operator
Ps(—1) = multiply all edges by -1. (i.e. flip all edges)

and we have
Pg = Ps(1) + Pg(—1)

whereas the vertex operator is given by

V. — 1 if an even number of edges are spin down
* 71 0if an odd number

we see that (up to the constants being added which are not interesting)
these are simply the toric code vertex and plaquette operators.

The generalization of the toric code to theories built on the group Z,
(group of integers under addition modulo n) is rather straightforward,
and also results in an abelian TQFT. The electric and magentic particles
then have Z,, fusion rules instead of Z as in the toric code. We can think
of this still as being a string net — with the new string net fusion rules
at the vertex being now given by the structure of the group G.

The generalization to nonabelian groups is more nontrivial, and re-
quires some amount of group theory to understand. The resulting TQFT
is known as the quantum double (or Drinfeld double) of the group. The
particles types of the TQFT are given by (C, x) where C' is a conjugacy
class and y is an irreducible representation of the centralizer of the con-
jugacy class?. Generically one will have nonabelian anyons. I will not



go through this argument in detail. See Kitaev for more.

This model by Kitaev is essentially a lattice gauge theory. Essen-
tially the wavefunction is given by a unique state plus everything that
is “gauge equivalent” (meaning can be obtained by plaquette flips). Let
us think in terms of the dual lattice for a moment (so plaquettes become
dual-vertices and vertices become dual-plaquettes). The sum over group
elements of Pg(h) enforces gauge invariance of the theory at the dual
vertices. The vertex operator V,, then assures there is no magnetic flux
penetrating the dual plaquette.
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More Generalizing The Toric
Code: Loop Gases and String
Nets

The general ideas presented with the toric code can be further gener-
alized topologically ordered phases of matter. They key generalizations
were made by Levin and Wen. Also we will discuss in some of the lan-
guage of the work of Freedman et al. And for the doubled fibonacci
model, Fidkowski et al.

A key idea is that the underlying lattice is not very crucial to the
details of the toric code. Indeed, we can write the toric code on any
lattice structure and even on an irregular lattice, so it is often useful to
dispense with the lattice altogether. This simplifies a lot of the thinking
and allows us to generalize the model fairly simply. In fact it will allow us
to manipulate our loop gas using the same sort of diagrammatic algebra
we have been using all along! If we want to put the model back on a
lattice at the end of the day, we can do this (we show an example in the
double semion model) although it can start to look a bit more ugly.

16.1 Toric Code Loop Gas

We start by abstracting the toric code to simply a gas of fluctuating
non-intersecting loops — no longer paying attention to a lattice. An
example of a loop gas configuration is shown in Fig. 16.1 Note, since
this is in 2d, there are no over and under crossings — we can think about
this picture as being some sort of world-lines for particles in 1+1d.

We can write the toric code wavefunction in the form of

[y = Z [loop config) (16.1)

all loop configs that can be
obtained from a reference
loop config

Where the types of “moves” one can make are similar to the diagram-
matic moves we have been discussing for world lines in 241 d previously.

&6
(NP

Fig. 16.1 A loop gas in 2d. We can
think of this as particle world-lines in
1+1 d.
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Move 1: "Isotopy” = smooth deformation of a loop. As shown in
Fig. 16.2. We have always allowed smooth deformations in our diagram-
mmatic algebras.

& |

Fig. 16.2 Isotopy (Top) Off the lattice this is just deformation of a line. (Bottom)
on the lattice, this is implemented by flipping over the blue plaquettes.

Move 2: ”Adding or removing a loop”. As shown in Fig. 16.3

I

Fig. 16.3 Adding or Removing a loop (Top) Off the lattice (Bottom) On the
lattice we flip the shown plaquettes.



Move 3: ”Surgery” or reconnection of loops. As shown in Fig. 16.4

=)

Fig. 16.4 Loop Surgery (Top) Off lattice surgery (Bottom) On lattice, flip the
shown plaquettes

We can summarize these rules with simple skein-like relations as shown
in Fig. 16.5

= [

=X

Fig. 16.5 ”Skein” relations for the toric-code loop gas. The unity on the right of the
top line means that the amplitude in the superposition that forms the wavefunciton
is unchanged (multiplied by unity) under removal or addition of a loop.

The ground state obviously decomposes into four sectors on a torus
depending on the parity of the number of loops going around the handles
of the torus.

16.1

Toric Code Loop Gas 161
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16.1.1 Excitations of the Loop Gas

An end of a string in a loop gas corresponds to some sort of excitation
(like a vertex excitation on the lattice). However, on the lattice, the
vertex excitation could be either e or f, so how do we distinguish these
off the lattice?

First we note that the string can end in many ways as shown in

Fig. 16.6.
o8 b c A e

Fig. 16.6 Ends of strings can be wrapped either way, and multiple times. a and b
are different, c is equivalent to b by surgery. Similarly d and e are both the equivalent
to a.

However, it turns out, due to the surgery rule, that there are actually
only two inequivalent endings, a, and b from this list. To see this

Fig. 16.7 Loop equivalences. Surgery is done inside the light green circles. The
final equality on the lower right is just pulling the string tight.

We now attempt to figure out the nature of these excitations by ap-
plying the twist operator 6 which rotates the excitation by 2mw. This



rotation wraps an untwisted particle’s string into a loop as shown in
Fig. 16.8

S>>

Fig. 16.8 Rotation

From these relations we can determine that the eigenvalues of the
rotation operator are +1, correpsonding to the e particle and —1 corre-
sponing to the f particle, as shown in Fig. 16.9.

Fig. 16.9 The eigenvectors of the rotation operator 6

Thus, the electric particle is the superposition of a straight line and a
twisted line. This may seem surprising, because on the lattice it seems
that we can make a pair of e particles flipping a single bond, which might
seem like just a straight line between the two endpoints. However, we
must also consider the possibility that the endpoint is surrounded by a
loop when the defect line is created!

The magnetic particle m can be constructed by fusing together e x f.
The result should be the same as our prior definition of the magnetic par-
ticle. Recall that the ground state should be a superposition of no-loop
and loop (with a positive sign). This is what we learned from considering
a plaquette operator to be a minimal loop. If we take a superposition
with a minus sign, we get something orthogonal to the ground state,
which should be the magnetic particle, as shown in Fig. 16.10.

16.1

Toric Code Loop Gas 163
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Fig. 16.10 The black disk is some region of our model. Forming a superposition
of this region, and this region with a loop around it, with a minus sign between the
two pieces, must be orthogonal to the ground state — it puts a magnetic excitation
m in the region.

16.2 The Double Semion Loop Gas

A rather minor modification of the skein rules for the loop gas results
in a somewhat different topological phase of matter. Consider changing
the rules so that each loop removal/addition, and each surgery, incurs
a minus sign. Note that these two minus signs are consistent with each
other because each surgery changes the parity of the number of loops in

the system.

(= ==

Fig. 16.11 ”Skein” relations for the double-semion loop gas. Each loop re-
moval/addition and each surgery incurs a minus sign. Note that these are the same
as the Kauffman rules when we considered semions.

Note that these rules were precisely the skein rules we used for the
Kauffman invariant when we considered semions!
From these rules we expect wavefunctions of the form

) = Z (_1)Number of LOOpS|loop config)

all loop configs that can be
obtained from a reference

loop config
(16.2)

We can think of the prefactor (—1) to the number of loops, as being the
wavefunction written in the basis of loop configurations.
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As with the toric code, there should be four ground states on the torus
corresponding to the different possible parities around the two handles.

16.2.1 Microscopic Model of Doubled Semions

We now turn to try to build a microscopic hamiltonian for the doubled
semion loop gas. First, however, we realize that there is a problem with
constructing this on a square lattice. When four red lines touch at a
corner we cannot tell if we have a single loop or two loops (See right of
Fig.16.12). To avoid this problem we switch to using a trivalent network
(the word ”lattice” is not really appropriate, despite the fact that most
people in condensd matter would call it a trivalent lattice). The simplest
trivalent network is the honeycomb.

Honeycomb’s Good

A rather trivial generalization is to change the lattice to a honeycomb
as shown in Fig. 16.12. The advantage of this structure is that loops
cannot intersect as they can (at the 4-fold corner) on the the square
lattice.

Fig. 16.12 Left: Toric code on a honeycomb, loops are nonintersecting. Right: On
the square lattice loops can intersect at corners and one cannot tell if this picture
represents one loop or two.

As in the previous square case, the vertex operator must assure that
an even number of red bonds intersect at each vertex, and the plaquette
operator now flips all six spins around a plaquette.

In fact, any trivalent network will be suitable. In all cases the vertex
operator enforces that we are considering only loop gases — now with
no self-intersections allowed. The plaquette operators will flip all of the
bonds around a plaquette, as in the toric code, but will now assign signs
such that creating or destroying a loop incurs a minus sign.

To see how this can be achieved consider Fig. 16.13. Depending on the
initial state, when the plaquette is flipped, one may or may not obtain
a minus sign.
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Fig. 16.14 Surgery incurs a minus
sign. Compare to fig. 16.7

O>
e

©>

Fig. 16.15 Surgery incurs a minus
sign. Compare to fig. 16.7

89
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Fig. 16.13 Some plaquette flips for the double semion model on the hexagon. The
top line obviously adds a loop, so should get a minus sign. The second line just
stretches a loop over a plaquette, so does not get a minus sign. The third line is a

surgery so gets a minus sign. The fourth line is a double surgery, so gets no minus
sign.

One way of determining if one should or should not get a minus sign
is to count the number of red bonds touching the outside of the hexagon
(sometimes called the outside "legs”). Because red bonds form closed
loops, the number of red legs of a hexagon must be even. If the number
of red legs is a multiple of four, then one gets a minus sign in the flip.

One can thus write a plaquette operator for the hexagon as

Pé = H o¥ (—1)i21ezegsom(‘7§+l)

i
i€ plaquette 8

The overall Hamiltonian for this model is then

> v ¥

vertices o plaquettes 3

This Hamiltonian was first written down by Levin and Wen.

16.2.2 Double Semion Excitations

The addition of the sign in the surgery rule changes the effect of ro-
tations. We now have the added sign in Fig. 16.14 Resulting in the
effect of rotation being Fig. 16.15 Again we can use these to give us the
eigenstates of the rotation operator as shown in Fig. 16.16

Thus we have two particle types with twist factors ¢ and —i. These
are right and left-handed semions. It is interesting that we used the



skein rules for a model of semions to build our loop gas, and we got out
two types of particles — Both right and left handed semions. This is
perhaps to be expected, since nowhere in our input rules did we ever
break “time-reversal” or say whether the original theory was right or
left handed — it comes out to be both!

Fig. 16.16 Eigenstates of the rotation operator for the doubles semion model.

As with the toric code, there is also a magnetic particle which can be
thought of as a fusion between the left and right handed particle — or
could just be considered as a superposition analagous to Fig. 16.10, ex-
cept now with a plus sign (since the ground state now is a superposition
with a minus sign, being that a loop addition now incurs a minus sign).
Thus the duouble semion model has four particles I, ¢, ¢*, m where ¢
and ¢* are the right and lefthanded semions. The full fusion rules are
given in Fig. 16.17.

Quantum Doubling: We emphasize again that we started with a
theory having the kauffman rules of a model of semions (but we did not
need to put in the braiding by hand) and we got out a theory that has
both right and left handed semions. This priniciple is very general. If
we start with any theory of anyons and build a quantum loop gas from it
(not putting in any of the braiding relations) we will get out the doubled
theory, meaning it has both right and left handed versions of the theory.

As mentioned above the ground state should be thought of a the
positive eigenstate of the operator shown in Fig. 16.10 (including the
minus sign). Note that this combination of identity minus the string
with a prefactor of 1/D = 1/4/2 is precisely the Q strand (or Kirby
color) of the original semion theory (which has only two particles, the
identity or vacuum, and the semion or single string)! If we think in three
dimensions, the ground state is defined as having no flux through any
loops.

16.3 General String Net

Given our success with the loop gases, we would like to generalize the
idea to more general so-called ”string-nets”. In the case of the double
semion model as discussed above, we can really think of the loops as
being particle world-lines living in the plane (but with no crossings al-
lowed). We would like to upgrade this idea to a set of world-lines, still
living in a plane, but where different types of particles are allowed, and
they can fuse and split (but again, we allow no braiding). This type
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Fig. 16.17 Fusion Table for Double
Semion Model

ITo check that this is indeed the
Kirby color, show that a loop of this
Kirby string will annihilate a flux go-
ing through the loop as in Section 13.4,
and gives D on the vacuum.
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Fig. 16.18 A general string net, that
allows branching, here with two colors.

of multi-valued loop gas should look familiar from Kitaev’s generalized
toric code, although the construction here is more general still since the
edge labels need not form a group.

Thus in these string net models, we allow branching of loops, and we
allow strings of different colors as shown in Fig. 16.18. We can think of
this as being similar to the fusion diagrams we have encountered before
— the allowed branchings being given by the allowed fusions of the string
types. (We do not allow strings to go over or under each other though!).

We would like to similarly define a wavefunction to be of the form

[v) = Z ®(net config) |net config)

string
nets

where the prefactors ®(net config) satisfy some graphical rules as shown
in Fig. 16.19.

ol 0 )=e(
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Fig. 16.19 Rules for a string net. The grey regions are meant to be the same on
both the left and the right of the diagram. Figure stolen from Levin and Wen.

The meaning of these rules are as follows: The first rule is simply
saying that we can deform one of the strings without chaning the value
of the prefactor ®. The second rule says that removal of a loop multiplies
the prefactor ® by a constant which we call the quantum dimension of
the loop d,. The third rule is just our ”locality” principle — if a quantum
number ¢ enters a region, that quantum number must also come out of
the region. This rule is irrelevant in the case of teh the toric code and
the double semion theory, because loops are not allowed to branch. The
final rule is a more complicated one which allows for the possibility of
making an “F-move” on a diagram — relating the prefector on the left to
a sum of prefactors of diagrams on the right. The analogue F' move in
the toric code and double semion model are the second lines of Fig. 16.5
and Fig. 16.11.



It is important to note that the F-matrix used to define define the
string net (last line of Fig. 16.19) must satisfy the pentagon equations
for consistency. It is crucial to note that one need not have define any
R matrices, since the string net model is defined entirely in 2d without
having any crossings of strings — so the F' matrices do not have to
correspond to an actual anyon theory. The theory that results is known
as a Drinfeld double or quantum double.

Note however, certain F-matrices do have corresponding R matrices
which solve the hexagon equations. In this case, it is possible to think of
the string net model as being built from an underlying anyon theory —
the resuling topological theory is the simple ”double” of the underlying
anyon theory (i.e, just a right handed and a left handed copy of the
theory). The ground state will then be the D eigenstate of the Kirby
color loop — which makes it fairly easy to write a Hamiltonian on a lattice
for this string net model.

16.4 Doubled Fibonacci Model

As an example, let us try to build a string net model from from the Fi-
bonacci anyon theory. Again we will not put in the braiding information,
we only put in the fusion algebra.

We will write the identity (or vacuum) particle as no-line and the
fibonacci particle 7 as a red line, Since 7 X 7 can fuse to 7 we expect
that this loop gas will allow our (red) loops to branch. We thus call this
version of a loop gas a “string net” (or a branching loop gas) as in Fig.
16.20.

Starting with Eq. 9.8, we consider the following F-moves as shown in
Fig. 16.21

——

) (=4 T
H=e X6 X

Fig. 16.21 Rules for building the doubled fibonacci model.

Where here ¢ = (14 +/5)/2 and (the values of these coefficients come
from the values of the F-matrix in Eq. 9.8.

We also expect to have rules of the form of Fig. 16.22 The first and
second rules? are results of locality. The final rule is the usual rule that a
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Fig. 16.20 A branching string net for
the doubled Fibonacci model.

O =d

Fig. 16.22 Rules for building the dou-
bled fibonacci model.

In fact we can prove that the tadpole
rule must be zero. This is a homework
problem!
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loop can be removed and replaced by a number. This final rule also tells
us that the ground state should be a D eigenstate of the Kirby string
operator — since the Kirby  string is a sum of 1/D times the identity
operator and d/D times a loop of 7, whose value is now d, adding a
Kirby string give 1/D + d?/D = D

We can then pin down the values of d and X in these equations. To do
this, we connect the strings on the right of Fig. 16.21 to give Fig. 16.23.

) A0 TN
O D ¢ D

Fig. 16.23 Starting with Fig. 16.21 and closing strings to the right hand. The black
strings should be imagined to be red — they are drawn black so one can see what is
added compared to Fig. 16.21

Using the laws above we these equations are translated to

d = (Zsfl +¢71/2X
0 = ¢—1/2 _ (b_lX

which we solve to obtain

X = ¢1/2
d = ¢ '+1=¢

The fact that d = ¢ is not surprising being that this is the expected
quantum dimension for a Fibonacci particle.

With the values we obtain for X and d, we now have a full set of rules
in Fig. 16.21 and 16.22. We can then write a ground state wavefunction
of the form

V) = Z ®(net config) |net config)

all string net configs that
can be obtained from a ref-
erence config

This looks quite similar to our above toric code loop gas, except now
we allow branching string nets instead of just loops, and also the kets
have a prefactor ®. These prefactors are chosen such that the algebraic
rules described above are satisfied. I.e., removing a loop increases ® by
a factor of d. Removing a bubble (as in the upper left of 16.22) increases
® by a factor of X. Then F tell us the relationship between three values
of ® where changes in the diagram are made as shown in Fig. 16.21.
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16.4.1 Excitations

As with the double-semion model we should be able to determine the
quasiparticle eigenstates by looking at how a single line can end in a

defect. We claim that all possible line endings can be reduced, by F- T
moves, to one of the three possible endings shown in Fig. 16.24 Just o~
as an example, consider the ending shown on the left of Fig. 16.25. By

using an F-move, it is reduced to a combination of the three presented
above. Fig. 16.24 Possible string endings in
the doubled fibonacci string net model.
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Fig. 16.25 An example of reducing a more complicated string ending into one fo
the three endings shown in Fig. 16.24.

As in the case of the toric code and the double semion model, we
can figure out the twist factors by rotating these diagrams as shown in
Fig. 16.26 and then using F-matrices to reduce the result back to linear
combinations of the same three possible endings.
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—
F

Fig. 16.26 The rotation operator e) applied to the possible string endings. Then
using F' matrices we reduce the results to linear combinations of the same endings.

We can write these diagrammatic equations more algebraically by

R a 0 (bfl ¢71/2 a
Ol b =110 0 b
0 ¢~ 4t c

The eigenvectors of this matrix are the particle types with definite twist
factrors given by their eigenvalues under rotation.

With a bit of algebra it can be shown that the eigenvalues of this
matrix are given by

0 = ei‘n’4/57 e—i7r4/5’ 1,

The first two correspond to the expected spin factors for a right-handed
fibonacci anyon 7 or left-handed fibonacci anyon 7* (recall that we
worked out the spin factor using the hexagon equation earlier. See 11.3.).
The final possibility represents the fusion of these two objects 7 x 7*. In-
deed, these are all of the possible particle types in the doubled-fibonacci
theory. Since the theory was based on a full anyon theory with braiding
fully defined, we expected to get both a right- and left-handed copy of
the Fibonacci model and indeed we did. (We never broke time rever-
sal in the definition of the model so we should get both hands of the
theory!).

16.4.2 Ground State Degeneracy

It is a bit tricky to figure out the ground state degeneracy here. Using
the above skein rules, any configuration can be reduced to a linear com-
bination of four simple configuation — corresponding to the possibilities
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of having a loop, or not having a loop, around each handle. An example
of reducing two loops around a handle to a linear combination of zero
and one loop is given in Fig. 16.27
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Fig. 16.27 Reducing two loops around a handle to a linear combination of one loops
and zero loops.

16.5 Add details of Levin Wen Model on the
lattice?

16.6 Appendix: S-matrix for Fibonacci Anyons

Without doing much work, we can figure out the S-matrix for Fibonacci
anyons. There are only 2 particles in the theory I and 7. Further we
know that the quantum dimension of 7 is ¢ = (1 4+ +/5)/2. Thus, the
total quantum dimension is D? = 14 ¢? = 2+ ¢ and the S matrix must
be of the form

where the constraint of unitarity immediately fixes y = —1.
We can check this by using F' and R matrices to determine the value
of two linked rings explicitly as shown in Fig. 16.28
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Fig. 16.28 Calculating the nontrivial element of the Fibonacci anyon S-matrix.

Exercises

Q = /] Exercise 16.1 Quasiparticles in Toric Code Loop Gas

As discussed in lecture, the toric code ground state can be considered to be

a loop gas with the rules given in Fig. 16.29
Certain quasiparticle excitations can be indicated as ends of strings in the
14 — ) (V loop gas.
(a) Show that the linear combinations of string ends shown in the figure
16.30 are eigenstates of the rotation operator — with the boson accumulating
no phase under rotation and the fermion accumulating a minus sign. (We did

. . this in lecture so it should be easy).
Fig. 16.29 Loop gas rules for the toric

code
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Fig. 16.30 Boson and Fermion quasiparticles as string ends in the toric code loop
gas

(b) Consider exchanging two such quasiparticles. To get a general idea of
how the calculation goes, you will have to evaluate diagrams of the form of



Fig. 16.31. Show that one obtains bosonic or fermionic exchange statistics
respectively for the two linear combinations shown above.

(¢) [Harder] Consider fusing the boson (the electric particle e) and the
fermion together. Show that this creates a magnetic defect which does not
have a trailing string. You will have to recall that the operator that creates a
magnetic particle is sum of the identity operator and minus an operator that
draws a loop all the way around the region. (This operator is a projector that
forces a magnetic defect into a region; the orthogonal projector assures that
there is no magnetic defect within the region).

Exercise 16.2 Quasiparticles in Double Semion Loop Gas

As discussed in lecture, the doubled semion model ground state can be
considered to be a loop gas with the rules given in Fig. 16.32. Note that these
rules are the same as the semion rules from the problem “Abelian Kauffman
Anyons” which we considered earlier (although in that model there is only one
chirality of semion particle!)

Again certain quasiparticle excitaitons can be indicated as ends of strings
in the loop gas.

(a) Show that the linear combinations of string ends shown in the figure
16.33 are eigenstates of the rotation operator — with the two particles accu-
mulating a factor of ¢ or —i under rotation (We also did this in lecture so it
should be easy).

I T 1 - Semion
7

e U( WY - seruon

Fig. 16.33 Semion and anti-semion string ends in the doubled semion loop gas

(b) Consider exchanging two such quasiparticles. Show that under exchange
one obtains factor of 7 or —i as expected for semions and anti-semions. Note:
The anti-semion is not the antiparticle of the semion (I know it is bad nomen-
clature!) — The antisemion is the opposite handed particle. The semion is its
own antiparticle.

(c) [Harder] Consider fusing the semion and anti-semion together. Show
that this creates a “magnetic defect.” What is the projector that produces a
magnetic defect in a region?

Exercise 16.3 Double Fibonacci String Net

(a) As discussed in lecture, the double Fibonacci model ground state can
be viewed as a branching string net with graphical rules given by Fig. 16.34
(Compare to the problem on Fibonacci pentagon relation) where ¢! = (v/5—
1)/2. In the ground state no endpoints of strings are allowed, but branching
is allowed.

To complete the graphical rules we must also use the rules shown in Fig. 16.35
for some values of the variables, d, X and T'.

FExercises 175

)

o NS

Fig. 16.31 Braiding defects

Fig. 16.32 Loop gas rules for the dou-
bled semion model
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Fig. 16.34 String net rules for the doubled Fibonacci model

Fig. 16.35 Additionnal string net rules for the doubled Fibonacci model

(a) Show that the consistent solutions is d = ¢ with X = ¢'/? and T = 0.
We did much of this in lecture. What was left out is proving that any 7' # 0
solution is not self-consistent. Hint: Try evaluating a circle with three legs
coming out of it. That should enable you to derive a useful identity. Then see
if you can use this identity to derive a contradiction when 7' # 0.

(b) Consider quasiparticles which are the ends of strings. The general form
of a quasiparticle is as shown in Fig 16.36 with coefficients a, b, ¢ that need
to be determined. Find the eigenvalues/eigenvectors of the rotation operator
to determine the quasiparticle types and their spins. (We did most of this in
lecture except the explicit evaluation of the eigenvalue problem!) Compare
your result to the result of the problem “Fibonacci Hexagon Equation”.
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Fig. 16.36 Combination of defect types for the doubled Fibonacci model






Introduction to Quantum Hall
— The Integer Effect

The fractional quantum Hall effect is the best studied of all topologically
ordered states of matter. In fact it is the only system which is extremely
convincingly observed to be topologically ordered in experiment!. We
will thus spend quite a bit of time discussing quantum Hall effects in
detail. Before we can discuss fractional quantum Hall effect we need to
discuss the basics, i.e., the integer quantum Hall effect.

17.1 Classical Hall Effect

In 1879 Edwin Hall discovered that when a current is run perpendicular
to a magenetic field, a voltage is generated perpendicular to both field
and current, and proportional to both (See Fig. 17.1). This voltage is
now known as the Hall voltage. Drude theory, treating a metal as a gas
of electrons, explains the Hall voltage as being a simple result of the
Lorentz force on electrons.

1

B

Fig. 17.1 Hall voltage Vg perpendicular to both magnetic field and current, and
proportional to both. Also one measures a longitudinal voltage in the same direction
as the current, roughly independent of magnetic field.

17.2 Two-Dimensional Electrons

In the late 1960s and early 70s semiconductor technology made it possi-
ble to do experiments with electrons that live in two dimensions. First

I There are a good number of other
contenders now. Probably the most
convincing other case is HeA phase
2d films. Although very few experi-
ments have actually been done on this.
Other strong contenders include Majo-
rana wires, certain exotic superconduc-
tors, and a few frustrated quantum spin
systems.
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2Metal Oxide Semiconductor Field Ef-
fect Transistors

3More recently people have been able
to produce materials like graphene
which are literally one atom thick!

MOSFETs? and later quantum wells were used to provide a confining
potential for electrons in one direction?, leaving motion only in the two
remaining dimensions. As an example we will consider a quantum well
structure, which is layered in the 2 direction as shown in Fig. 17.2.

) |—
z
/_\/ Discrete "particle in a box" states

AL GanAs | Gahs I ALGarhs

Fig. 17.2 Top A quantum well structure is a quasi-two-dimensional layer of one
semiconductor sandwiched between two other semiconductors. Bottom The po-
tential felt by an electron is like a particle in a box. If the energy is low enough,
the electron is stuck in the lowest particle-in-box wavefunction ¢g(z) giving a total
wavefunction ¥ = ¢q(z)Y(z,y) and having strictly two dimensional motion.

The electron moving in the z-direction experiences a strong confine-
ment, such as the particle-in-box confinement shown in Fig. 17.2. The
wavefunction of the electron then takes the form ((z) in the z-direction.
If the energy (i.e. the temperature and coulomb interaction) is very
low compared to the gap between the particle-in-box states, then the
electron is frozen in the lowest particle-in-box state ¢o(z) and the total
wavefunction of the electron is ¥(z, y, 2) = ¢o(2)¥(z,y) leaving only the
x and y degrees of freedom. Thus we have a strictly two dimensional
electron.

More recently two dimensional electronic systems have also been ob-
served in single-layer atomic systems such as graphene. (Although even
then, the same argument needs to be used — that the motion of the
electron is “frozen” in the z-direction and only has freedom to move in
x and y).
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17.3 Phenomenology of Integer Quantum Hall
Effect

In 1980 Klaus von Klitzing, having just left a postdoctoral position at
Oxford, went to a new job at Grenoble carrying some new high mobility*
two dimensional electron samples grown by (now Sir) Michael Pepper at
Cambridge. He put them in high magnetic field and cooled them down
to a few degrees Kelvin temperature where he discovered something very
different from what Hall had seen a hundred years earlier. An example
of this type of experiment is shown in Fig. 17.3.
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Fig. 17.3 An example of an Integer Quantum Hall experiment. The plateaus in
Vi are such that Vi = (1/i)(h/€2)I with i the integer displayed over the plateau
— where h is Planck’s constant and e is the electron charge. At the same magnetic
field where a plateau occurs in Vy the longitudinal voltage drops to zero. Note
that at very low field, the Hall voltage is linear in B and the longitudinal voltage is
independent of B, as would be predicted by Drude theory.

At low magnetic field, the longitudinal voltage is relatively constant
whereas the Hall voltage is linear in magnetic field — both of these are
precisely what would be predicted by Drude theory. However, at high
magnetic field, plateaus form in the Hall voltage with concomitant zeros
of the longitudinal voltages. The plateaus have precisely the value

4Meaning very clean



182 Introduction to Quantum Hall — The Integer Effect

5These are 2 by 2 matrices because they
relate the vector electric field E to the
vector current j

6The referee (who we now know was
Steve Girvin) mentioned that at the
time they already had resistance stan-
dards which were better than his ini-
tial measurement of one part in 10,
but proposed would be a uniquely good
measurement of the ratio h/e2. The pa-
per was resubmitted proposing to use
the effect as a precise measurement of
the fine structure constant. The paper
was accepted and the Nobel prize for
von Klitzing followed in 1985.

"The quantum Hall effect is used as a
metrological resistance standard, and it
is proposed that the Ohm will soon be
defined in terms of the result of quan-
tum Hall experiments.

where [ is the current, A is Planck’s constant and e is the electron charge.
Here i is an integer as shown in the figure. Or equivalently we have
_1h

Ryp=-—==1/G 17.1
=t =1/Cy (r.1)
with Ry the Hall resistance where G the Hall conductance. Where
we have plateaus in the Hall voltage, we have zeros in the longitudinal
voltage and resitstance

R, =0

which implies we have a dissipationless state — similar to a superfluid.
These statements become increasingly precise as the temperature is low-
ered.

We should remember that conductivity and resistivities are both 2
by 2 matrices and are inverses of each other®. In this quantum Hall
state, these matrices are both purely off-diagonal. Thus we have the
interesting situation that both the diagonal part of the conductivity (the
longtidinal conductivity) is zero, and the diagonal part of the resistivity
(the longitudinal resistivity) is also zero.

The plateau Ry = (1/i)(h/e?) occurs near the magnetic field such
that the so-called filling fraction ratio

néo
B

is roughly the integer 7. Here n is the 2d electron density and ¢ is the
quantum of magnetic flux

¢0=h/€

When von Klitzing discovered this effect he noticed mainly that the
plateaus in the Hall resistance are extremely precisely given by Eq. 17.1
and the plateaus are extremely flat. He submitted his manuscript to
PRL claiming that this would be a useful way to make a new resis-
tance standard®”. In fact the result has been shown to be precise and
reproducible to better than a part in 10'°. This is like measuring the
distance from London to Los Angeles to within a fraction of a millimeter.
This accuracy should be extremely surprising. The samples are dirty,
the electrical contacts are soldered on with big blobs of metal, and the
shape of the sample is not very precisely defined.

17.4 Transport in Zero Disorder

In strictly zero disorder it is easy to show that the longitudinal resistance
is zero and the Hall resistance is precisely linear in the magnetic field.
This is a simple result of Galilean/Lorentz invariance. Suppose we have
a two dimensional disorder-free system of electrons in the x, y plane and
a magnetic field B = Bz in the 2-direction perpendicular to the plane.
The Lorentz force on an electron will be

F=--c¢(E+vxB)
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If we then boost into a moving frame where

Ex2z
vV=—
|B|
in this new frame we obtain F = 0, so the ground state must be station-

ary in this frame.
Then we boost back into the lab frame, and we obtain a current

. ~ —enE x z
j=—env = T
thus giving us
Ry, = 0
Ry = 2
ne

which is exactly the prediction that Drude would have made for a dis-
order free system.

While this calculation is rigorous even with the effects of quantum
mechanics and interactions, it relies on having strictly zero disorder.

17.5 The Landau Problem

In order to understand quantum Hall effect, we should start by under-
standing the physics of a charge particle in a Magnetic field — a prob-
lem first studied by Landau. For simplicity we assume our electrons are
spinless (indeed, the spins tend to be polarized by the magnetic field
anyway.) We will consider an electron in the z, y plane, with a magnetic
field of magnitude B in the z direction. We will assume the system is
periodic in the y direction with length L,,, but opern in the z direction,
with length L, (i.e., we are working on a cylinder actually). We will
eventually consider a small amount of disorder (as we showed above this
is crucial!), but for now let us assume the system has no disorder.
The Hamiltonian is
(p+eA)’

2m
where e and m are the electron charge and mass, and A is the vector po-
tential. We then have to choose a particular gauge to work in. Later on
we will want to work in symmetric gauge (there is a homework problem
on this!) For now we will work in the so-called “Landau” gauge

Hy =

A = By
which does indeed satisfy
B=VxA=0B:2

as desired. The Hamiltonian is thus

1
Hy = m ((p2 + (py + eBx)?)

The Landau Problem 183
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where p; = —ih0;.
The Hamiltonian is then translationally invarient in the ¢ direction,
so we can write the wavefunction as

b(@,y) = P, (x)e™?

and due to the periodicity in the y-direction, we have

2mn
k, = —
y I,
for some integer n. Plugging in this form gives a familiar Schroedinger
equation
p2 1
(272 + §mw3(kyé2 + .7;)2> b, (x) = E¢y, () (17.2)

where / is the so-called magentic length
L= +/h/(eB)
and w, is the cyclotron frequency
w. =eB/m.

We recognize this Schroedinger equation as being just a harmonic oscil-
lator where the center of the harmonic potential is shifted to z = —kzyfz.
Thus the eigenenergies are of the usual harmonic oscillator form

E, = hw, (p + ;) (17.3)

where p is an integer. These quantized energy states are known as Lan-
dau levels. The form of the wavefunction will be harmonic oscillator on
the x direction and plane-wave in the y-direction as shown in Fig. 17.4.

T
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Fig. 17.4 The shape of the wavefunction of an electron in a magnetic field using
Landau gauge. The form of the wavefunction will be harmonic oscillator on the z
direction and plane-wave in the y-direction



Fixing the energy by fixing p in Eq. 17.3, the value of k, is quantized
in units of 27/L,. Further, the position x ranges over L,, meaning that
k, ranges over L,/¢?. Thus the total number of possible values of k,, is

L.L, Area B
27T€2 o ¢0

Number of states in a Landau level =

where
¢0 = h/e

is the magnetic flux quantum. Thus, the number of states in a Landau
level is equal to the number of magnetic flux quanta of magnetic field
incident on the plane.

We can plot the density of states for electrons in a magnetic field, as
shown in Fig. 17.5

When there are multiple electrons present, we define the filling frac-
tion to be the number of these Landau levels which are completely filled
with electrons.

,_ o
B

where n is the density of electrons. Or equivalently we can write a
relationship between the number of electrons in the system, N, and the
number of magnetic flux Ny

Ne = Z/N¢

Incompressility of Integer Number of Filled Landau Levels:

When some integer number of Landau levels is filled, the chemical poten-
tial lies in the middle of the gap between the filled and unfilled states —
analogous to a band insulator. In this case the the system is incompress-
tble. This means there is a finite energy gap to creating any excitations
— i.e., all excitations must involve removing an electron from a filled
Landau level, promoting it above the energy gap to place it in an empty
state. In particular excitations which change the density (compressions)
are gapped. Further, at this precise integer filling fraction, the longi-
tudinal conductivity is zero, and the Hall conductivity is precisely the
quantized value Ry = ne/B = (1/i)(h/e?).

If we were to control the chemical potential in the experiment, we
would have our answer as to why the Hall conductivity shows plateaus
— for any value of the chemical potential, except for the special values
p = (hwe)(p + 1/2) with integer p, the electron number is pinned to
N = N,/i where i is an integer, precisely ¢ Landau levels are filled,
there is a gap to excitations, and the Hall conductivity would be precisely
quantized. However, in real experiments, it is actually the density that
is fixed — which means that generically the chemical potential does
sit in the degenerate band p = (hw.)(p + 1/2) for some integer p and
generically the filling fraction is tuned continuously and is not quantized.

Thus the incompressible state is very fine tuned. It occurs only for a
very precise (integer) value of the filling fraction —for all other values

17.5 The Landau Problem 185
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Fig. 17.5 The density of states for
spin-polarized (or spinless) electrons in
a magnetic field. At energies equal
to half-odd integer multiples of the
cyclotron frequency, there is a spike
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Localized Delocalized
States States
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Fig. 17.6 The density of states for
spin-polarized (or spinless) electrons in
a magnetic field with disoder. The
Landau bands are spread out, with lo-
calized eigenstates in the tails and ex-
tended eigenstates near the middle.

8Laughlin would later go on to win a
Nobel prize for his explanation of frac-
tional quantum Hall effect, which we
will start discussing in chapter ***.

of the filling fraction, some Landau level is partially filled and (at least
neglecting interactions) the system would be extremely compressible, as
there are many zero energy excitations corresponding to rearrangements
of the electrons (which orbitals are filled and which are empty) within
the partially filled Landau level.

While the system does have a gap under fine tuning, we will need
something that will preserve the special properties of the fine tuned state
even when we move away from the filling fraction which is precisely an
integer. What does this is actually disorder — it will provide a reservoir
for excess electrons (or holes) added (or subtracted) from the integer
filled state. With disorder, the special properties of the quantized state
are made robust.

What Does Disorder Do?

As mentioned above, we will need to add disorder to the system in order
to achieved quantized Hall effect. What is the effect of this disorder?
Disorder will spread out the energies in the band by having some regions
where the potential is higher than average and some regions where the
potential is lower than average. This spreads the sharp peak in the
density of states into a broader band, as shown in Fig. 17.6.

Since current tends to flow perpendicular to potential gradients (i.e., it
is hall current), eigenstates tend to follow contours of constant potential.
Thus many of the eigenstates at high and low energy will be trapped in
local minima or maxima — isolated in a hill or valley and circling the
peak or bottom. The result is that the eigenstates in the edge of the
band experience localization, whereas (at least some) eigenstates near
the center of the band as shown in Fig. 17.6.

When the chemical potential is anywhere in the localized states, then
at low enough temperature, the electrons cannot move at all. Although
there are states at this energy, they are all localized and electrons cannot
jump between them. Hence we expect in this case that the DC dissipi-
tave conductance goes to zero. (For dissipitive conductance to occur, an
electron has to be excited up to the next delocalized band.) The state
remains incompressible for filling fractions even away from the precise
integer value of v.

What is not obvious is (a) that the Hall conductance should be pre-
cisely quantized, and (b) that we should have Hall conductance at all.

17.6 Laughlin’s Quantization Argument

In 1981, shortly after von Klitzing’s discovery of quantum Hall effect,
Bob Laughlin® presented an argument as to why the Hall conductance
must be precisely quantized. The argument relies on gauge invariance.
We first need to present a key theorem which comes from gauge invari-
ance.
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17.6.1 Byers and Yang Theorem

Consider any system (made of electrons and protons and neutrons) with
a hole cut in it, as in Fig. 17.7. Now put some magnetic flux ® through
the hole in such a way that the flux does not touch any piece of the
system, but just goes through the hole. By the Aharanov-Bohm effect,
the charged particles in the system cannot detect the flux if it is an
integer multiple of the flux quantum ¢q. In fact the statement can be
made stronger: The eigenspectrum of the system is precisely the same
when an integer number of flux is inserted through the hole. This result
is known as the Byers?-Yang!? theorem (1961).

To prove this theorem we use gauge invariance. One is always free to
make a gauge transformation

A'(r) = A(r)+ (h/e)Vx(r)
N
U(ry,...ry) = HeiX(rj) U(ry,...rN)

which leave the physical electromagentic field completely unchanged and
changes the gauge of the wavefunction. The meaning of gauge invariance
is that if we have a solution to the Schroedinger equation for ¥ and A
at energy F, then we also have a solution at the same energy E for ¥’
and A’

When the physical geometry we are concerned with is non-simply
connected, we can make gauge transforms which are non-single-valued,
such as

x(r) = mo(r)
wnere 6 is the angle around the center. Making this gauge transform
leaves the eigenspectrum of the system unchanged. However, the flux
enclosed

@':%A“dl:%A-dl—F%rmh/ez<I>—|—m¢)0

has changed by an integer number of flux quanta.

17.6.2 Quantization of Hall Conductance

Laughlin’s argument applys the Byers-Yang theorem to the Quantum
Hall case. Consider a two dimensional electron system cut in an annulus'!
as shown in Fig. 17.8. Here we put the entire system in a uniform mag-
netic field (so that we have Landau levels) and we arrange such that the
chemical potential is in the localized part of the band so that at low
enough temperature the longitudinal (dissipitive) conductivity is zero.

We then adiabatically insert an additional flux ®(¢) through the center
of the annulus and turn it on slowly from zero to one flux quantum. Due
to the Faraday’s law, an EMF is generated around the annulus
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Fig. 17.7 The Byers-Yang theorem
states that threading any integer num-
ber of flux quanta through a hole in
a system leaves the eigenspectrum un-
changed.

9Nina Byers was just starting as an
assistant professor at UCLA when she
proved this theorem. In the late 60s
and early 70s she oscillated between
Oxford (Somerville college) and UCLA,
but eventually converged to UCLA. She
told me personally that she regretted
leaving Oxford. She passed away in
2014.

10Yang is C.N.Yang, who won a No-
bel prize in 1957 along with T. D.
Lee for his prediction of parity non-
conservation of the weak interaction.

Hpor studying current flow in mag-
netic fields, the annulus is knowni
as ”"Corbino” geometry, after O. M.
Corbino, who studied this in 1911.
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Fig. 17.8 Insertion of Flux ®(¢)
through the center of an annulus of
two-dimensional electrons in a uniform
magnetic field. Adiabatically increas-
ing the flux creates an electric field in
the annular direction which then, by
the Hall conductivity, creates current in
the radial direction.

2 here is a subtlely here. With disor-
der, there are actually low energy ex-
citations, but they require very long
range hops of localized electrons which
cannot be made. So the system is “lo-
cally” gapped.
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Fig. 17.9 A deformation of the edge
is a low energy edge excitation which
moves along the edge due to E'x B drift.

If there is a Hall conductance, Gy then this generates a radial current

J =GrE

As we slowly increase the flux by an amount A® we have a total
charge AQ moved from the inside to the outside of the annulus given by

AQ = /dtJ(t) = GH/dtS(t) = fGH/dt%Et) = —GuAd

Now the key to the argument is the Byers-Yang theorem. If we choose
Ad = ¢y a single flux quantum, then the final eigenstates of the sys-
tem must be precisely the same as the initial eigenstates of the system.
Since we have changed the system adiabatically (and there is a gap to
excitations when the states at the chemical potential are localized due
to disorder) the system must stay in the ground state'? and the inser-
tion of the flux quantum must take us from the ground state back to
the very same ground state. The only thing that might have changed
during this process is that an integer number p of electrons may have
been transferred from the inside of the annulus to the outside. Thus we
have

—pe =AQ = —-GugAd = —-Gpupy = —Gg(h/e)

Thus we obtain the quantized Hall conductance
G =p(e’/h)

with p an integer!

Thus we see that the Hall conductance experiment is really some sort
of "spectroscopy” to measure the charge on the electron! (hence the
precision of the effect).

Although we have shown the the Hall conductance must be quantized,
what we have not shown is that it must be nonzero! Afterall, since the
chemical potential is in a localized band, it looks like electrons simply
can’t move at all. We will return to this issue in section 17.8 below.

17.7 Edge States

The bulk of a quantum Hall system is gapped, but on a finite system
there are always low energy modes on the edges. (This is always true
for any chiral topological system. Although achiral systems can have
fully gapped edges). Even though the bulk is incompressible, the shape
of the edge can be deformed as suggested in Fig. 17.9. Now let us
think about the dynamics of a bump on the edge. On the edge of the
system we always have an electric field (this is the potential that holds
the electrons in the system — otherwise they would just leak out!). Since
we have E x B, we expect a drift velocity for all the electrons on the
edge. Thus we expect edge dynamics to be basically just movement of
charge along the edge.
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17.7.1 Landau Gauge Edge Picture for Integer
Quantum Hall

Recall in Landau gauge (See section 17.5) the wavefunctions are plane
waves in the y direction, but are harmonic oscillator states in the x
direction. We now impose an additional confining potential in the =
direction near the edges of the system as shown in Fig. 17.10.
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Fig. 17.10 Low energy edge excitations

The addition of the confining potential V' (x) simply adds this poten-
tial to the 1-d schroedinger equation 17.2. If the confining potential
is fairly smooth, it simply increases the energy of the eigenstates when
the position z = —kyEQ gets near the edge of the system as shown in
Fig. 17.10.

In the case of the integer quantum Hall effect, all of the eigenstates of
some particular Landau level (the lowest Landau level in the figure) are
filled within the bulk. At some point near the edge, the Landau level
crosses through the chemical potential and this defines the position of
the edge. Since the eigenstates are labeled by the quantum number k,
it is possible to create a low energy excitation by moving an electron
from a filled state near the edge just below the chemical potential to
an emtpy state near the edge just above the chemical potential. The
excitation will have momentum hAE,. 13 We thus have a 1-d system

13The change in energy will be

ov oV
AE = —Az=—0Ak

9z =" bz Y
Thus the edge velocity is given by

10E 10V

V= = g2

h Ok h Ox
If the chemical potential along the one edge is raised by Ap, a range of k-states
Ap

Ak =
oV
e Ox

will be filled. Since the spacing between adjacent k states is 2w /L, this corresponds
to an increase in electrons per unit length along the edge of

2rAp

2 0V
¢ oz
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4 Just find the maximum of [thm |2

of fermions filled up to a chemical potential and they flow only in one
direction along each edge — i.e., they are chiral fermions.

17.8 The Halperin Refinement of Laughlin’s
Argument

A more careful version of Laughlin’s argument was made by Halperin
immediately after Laughlin’s initial work. The key here is to think of a
geometry where much of the system is free of disoder. In particular we
consider the geometry shown in Fig. 17.11.

DISORDERED

Fig. 17.11 The Halperin geometry. The same as the Laughlin annulus geometry,
except here we add disorder only in part of the annulus. We have also shown (dark
blue) a single particle eigenstate in the clean region, which forms a circle (with a
small gaussian cross-section).

Here, the disorder is confined to only part of the annulus, the inner-
most and outer-most regions of the annulus being disorder-free. Within
the clean regions we can solve for the eigenstates using symmetric gauge
(this is a homework problem, but we will also discuss further in the next
chapter). The eigenstates are indexed by their angular momentum m,
and in the Lowest Landau level, for example, they are given by

o o 2 1F12/(4E)

where z = x + iy is the complex representation of the position. A radial
cut of one of these eigenstates gives a gaussian wavepacket'4 at radius

These then carry a net 1d electron current density

10V ., 27Ap
= —evAnyg = —e( 02 = —(e/m)A
J EVAN1q e(h 9z ) 52% (e/ YA
which is precisely the expected quantized Hall current flowing along the edge. (Au =
—eAV).
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¢\/2m— very similar to what we had in Landau gauge, but now these
eigenstates are indexed by angular momenta instead of linear momenta,
and they go around in circle instead of going straight.

Let us imagine the chemical potential above the middle of a Landau
level (say above the middle of the lowest Landau level) until it sits in a
localized piece (at least within the disordered region the wavefunctions
are localized). Since this is above the middle of the Landau level, the
Landau level is completely filled in the clean region. The only low energy
excitations are the edge states!

Now, let us track what happens to the eigenstates as we change the
flux through the hole. If the flux through the hole is an integer (in
units of the flux quantum ¢g), then the angular momentum is also an
integer. However, if the flux through the hole is an integer plus some
fraction «, then the angular momentum quantum number must also be
an integer plus . Thus, as we adiabatically increase the flux by one
flux quantum, we adiabatically turn each m eigenstate to m + 1. Thus
we are continuously pushing out electrons to the next further out radial
wavefunction.

Now when we are in the disordered region of the annulus, we do not
know any details of the shape of the eigenstates. All we know is that
after insertion of a full flux quantum we must get back to the same many
body eigenstate that we started with. However, we also know that an
additional electron is being pushed into the disordered region from the
clean region on the inside, whereas an electron is also being extracted
into the clean region on the outside. Thus the disordered region must
also convey exactly one electron (per Landau level) when a flux quantum
is inserted adiabatically. An electron state is moved from one edge state
on the inside to an edge state on the outside.

This argument pins down that the Hall conductance is not zero, but
is h/e? times the number of Landau levels that are filled (in the clean
regions).

Exercises

Exercise 17.1 Quantum Hall Conductivity vs Conductance
Consider a two dimensional electron gas (2DEG) of arbitrary shape in the
plane with four contacts (1,2,3,4) attached at its perimeter in a clockwise order
as shown in Fig. 17.12. The conductivity tensor o;; relates the electric field
to the current via
ji =04 Ej (17.4)

where indices 7 and j take values & and § (and sum over j is implied). Assume
that this is a quantized hall system with quantized hall conductance s. In

other words, assume that
0 s
o= ( s 0 ) (17.5)

Show that the following two statements are true independent of the shape of
the sample.
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Fig. 17.12 A 2D electron gas of arbitrary shape with contacts 1,2,3,4 attached on
its perimeter in clockwise order

(a) Suppose current I is run from contact 1 to contact 2, show that the
voltage measured between contact 3 and 4 is zero.

(b) Suppose current I is run from contact 1 to contact 3, show that the
voltage measured between contact 2 and 4 is V = I/s.

Note: The physical measurements proposed here measure the conductance
of the sample, the microscopic quantity o is the conductivity.

Exercise 17.2 About the Lowest Landau Level

If you have never before actually solved the problem of an electron in two
dimensions in a magnetic field, it is worth doing. Even if you have done it
before, it is worth doing again.

Consider a two dimensional plane with a perpendicular magnetic field B.
Work in symmetric gauge A= %F x B.

(a) (This is the hard part, see below for hints if you need them.) Show that
the single electron Hamiltonian can be rewritten as

H=hooa’a + %) (17.6)

where w. = eB/m and

=2 <5 + éz) (17.7)

with z = 2 +iy and & = §/0% with the overbar meaning complex conjugation.
Here ¢ is the magnetic length £ = \/h/eB.
(b) Confirm that
[a,a'] =1 (17.8)

and therefore that the energy spectrum is that of the harmonic oscillator
By = huwo(n + %) (17.9)
(¢) Once you obtain Eq. 17.6, show that any wavefunction
) = fe)e”H1 /A (17.10)

with f any analytic function is an eigenstate with energy Fo = %hwc. Show
that an orthogonal basis of wavefunctions in the lowest Landau level (i.e., with
eigenenergy Ey) is given by

Ym = Npz™e™1717/46 (17.11)



where N,, is a normalization constant. Show that the maximum amplitude
of the wavefunction v¥,, is a ring of radius |z| = 0+/2m and calculate roughly
how the amplitude of the wavefunction decays as the radius is changed away
from this value.

(d) Defining further

1 _
b=V20 (6‘ + @z) (17.12)
with 0 = 9/0z, Show that the operator b also has canonical commutations
[b,b'] =1 (17.13)

but both b and b" commute with a and a'. Conclude that applying b or b’ to
a wavefunction does not change the energy of the wavefunction.

(e) show that the 2 component of angular momentum (angular momentum
perpendicular to the plane) is given by

L=% (Fxp)=hb'b —d'a) (17.14)

Conclude that applying b or b' to a wavefunction changes its angular momen-
tum, but not its energy.

(f) [Harder] Let us write an arbitrary wavefunction (not necessarily lowest
Landau level) as a polynomial in z and Z, times the usual gaussian factor.
Show that projection of this wavefunction to the lowest Landau level can be
performed by moving all of the Z factors all the way to the left and replacing
each z with 2£20,.

Hints to part a: First, define the antisymmetric tensor €;;, so that the vector
potential may be written as A; = £ Be;;r;. We have variables p; and r; that
have canonical commutations (four scalar variables total). It is useful to work
with a new basis of variables. Consider the coordinates

h

h
= e (17.16)

defined for a = £1. Here a = +1 gives the canonical momentum. Show that

2

[WEQ), 7rj(-6>] = iaéij(saﬁﬁ (17.17)
The Hamiltonian
1
H = %(pl + eAi)(pi + 6A1) (17,18)
can then be rewritten as
1

H= %nﬁ“)nﬁ*” (17.19)

with a sum on ¢ = 2, § implied. Finally use
a = (=x{™ 4ixlt) (17.20)

V2h

b o= (x7V +i7r§fl))é (17.21)

to confirm that a and b are given by Eqgs. 17.7 and 17.12 respectively. Finally
confirm Eq. 17.6 by rewriting Eq. 17.19 using Eqgs. 17.20 and 17.21.
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A typical Place to get confused is the definition of 0. Note that

0z = 0z=1 (17.22)
0z = 0z=0 (17.23)
Hints to part f: Rewrite the operators a,at, b, b! such that they operate on

polynomials, but not on the Gaussian factor. Construct Z in terms of these
operators. Then project.



Aside: A Rapid Introduction to
Topological Insulators

The integer quantum Hall effect is one of the simplest examples of what
is now called a “topological insulator”. To explain what this is, and why
it is interesting, let us review some basic facts about band structure and
non-interacting electrons.!

18.1 Topological Phases of Matter

We will consider systems of electrons in some periodic environment —
which is what an electron would experience in a real material crystal®.
We can thus describe our system as some single electron kinetic energy
and some periodic potential — or equivalently as some tight-binding
model. Bloch’s theorem tells us that the eigenstates of such a periodic
Hamiltonian can be written in the form

) = e ug)

where « is the band index, and uf (x) is a function periodic in the unit
cell.

The eigen-spectrum breaks up into bands of electron states. If a (va-
lence) band is completely filled and there is a gap to next (conduction)
band which is empty, we generally call the system a band insulator. The
conventional wisdom in most solid state physics books is that such band
insulators carry no current. This wisdom, however, is not correct. A
prime example of this is the integer quantum hall effect! As we have
just seen for the integer quantum Hall effect we have a filled band and
a gap in the single electron spectrum. And while such a system carries
no longitudinal current (and correspondingly has 0., = 0) it does carry
Hall current with o, = ne®/h.

One might object that the integer quantum Hall effect is not really a
valid example, because it does not have a periodic potential. However,
it is certainly possible to add a very weak periodic potential to the
quantum Hall system and maintain the gap.

It turns out that there is a topological distinction in the wavefunctions
for the quantum Hall effect versus what we think of as a traditional band
insulator. One way to describe this is to think of the band structure as
being a mapping from the Brillouin zone (inequivalent values of k) to
the space of possible wavefunctions

k — ug (x). (18.1)

Mn this chapter we are thinking about
non-interacting electrons in periodic
potentials!

2Some of the ideas discussed here do
not depend too much on the system be-
ing precisely periodic.
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Once we have such a mapping we can ask about whether there are topo-
logically different mappings, or whether one mapping can be continu-
ously deformed to another.

An analogy is to consider a mapping from a circle S* to a circle S,

ot _y oif(0)

Here, one can topologically classify the mapping by its winding number.
One such mapping cannot be continuously deformed into another if the
two mappings have different winding numbers.

Similarly we can define a “winding number” (known as a “Chern”
number) of the band structure map Eq. 18.1 for two dimensional systems.
This integer topological quantity turns out to be precisely the quantized
Hall conductance in units of e?/h. We give an explicit expression for
this quantity in section *** below. Similar topological definitions of
“winding numbers” of the map Eq. 18.1 can be given in any dimension.

If we imagine continously changing the physical Hamiltonian, this
Chern number, which must be an integer, cannot change continously.
It can only change by making it impossible to define a Chern number.
This happens when if the system becomes a metal — i.e, if the gap be-
tween the filled and empty state closes. Thus we cannot deform between
different topological classes without closing the gap.

Indeed, this general picture gives us a simple rule for topological clas-
sification:

Definition of Topological Phase: Two gapped states of matter
are in the same topological phase of matter if and only if you can
continuously deform the Hamiltonian to get from one state to the
other without closing the excitation gap.

Although in this chapter we are concerned with non-interacting electrons
only, this sort of definition can obviously be used much more generally
to distinguish different phases of matter. Further this definition fits with
our intuition about topology

Two objects are topologically equivalent if and only if you can con-
tinuously deform one to the other.

In the context of noninteracting electron band structure, one can de-
fine topologically “trivial” phases of matter to be those that can be
continuously deformed without closing the gap into individual atomic
sites with electrons that do not hop between sites. (A "trivial” band
structure). Phases of matter that cannot be continuously deformed to
this trivial band structure without closing a gap are known as topologi-
cally nontrivial.

18.1.1 Gapless Edges

The existence of gapless edge states on the edge of integer quantum Hall
samples is one of the fundamental properties of topologically nontrivial
phases of matter (at least when one is considering topological properties
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of noninteracting electron band structure). We can give a rough argu-
ment about why edge states always come with topologically nontrivial
phases.

Suppose we have a Hamiltonian that is almost periodic, but the poten-
tial is a very function of position, say in the z-direction. In other words
if we move very far in the x-direction the Hamiltonian changes smoothly
from H(z1) to H(z2), but locally both of these look like simple periodic
Hamiltonians. If H(x1) and H (x2) are not in the same topological phase
of matter, than for some x between x; and x5, we have H(z) describing
some gapless system — i.e., an edge state between the two phases.

For example, in the case of the integer quantum Hall effect, we can
think of H(z1) as being the Hamiltonian of the system in the bulk which
has nonzero Chern number, and H (z2) as being the Hamiltonian outside
of the system, or the vacuum, which is topologically trivial and has zero
Chern number. Somewhere between the two, the gap must close to give
a metal where the Chern number changes. This is the edge state.

18.2 Curvature and Chern Number

The Gauss-Bonnet theorem give an beautiful connection exists between
topology and geometry. The statement of the theorem is that for any
closed two dimensional orientable surface the integral of the Gaussian
curvature K over the surface gives 2m(2 — 2g) where g is the number of
handles of the surface. Or mathematically?

27r(2—29):/ KdS
M

One can check, for example, with a sphere of radius R we have K = 1/R?
and g = 0, so that both sides give 47 independent of R. The interesting
point here is that if you dent the sphere, you increase the curvature at
some points, but you decrease it at other points such that the integral
of the curvature over the surface remains the same. The only way to
change this quantity is to rip the surface and add a handle!

It turns out that we can define a similar curvature that describes the
topological index (the Chern-number) of the band structure. Let us
define what is known as the Berry curvature of the o*® band

The topological Chern-number of the a'” filled band is then given by
the integral of the Berry curvature over the Brillouin zone,
c* = i/ dk F*(k)
2 BZ

which is analogously quantized to be an integer.
In appendix *** we use the Kubo formula to calculate the Hall con-
ductivity and we find that it is related to the Chern number by*

3The definition of Gaussian curvature
K at a point is 1/K = +rmazTmin
where rmqr and 7, are the maximum
and minimum radii of curvatures of the
surface at that point. The sign of K
is taken to be negative if the surface
is saddle-like at that point rather than
dome-like.

4The realization that the Hall conduc-
tance is the topological Chern number
in 1982 was made in a famous paper
known as TKNN. This is one of key
contributions that earned a Nobel prize
for David Thouless in 2016.
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Opy = % Z ce

filled bands ¢

Considering Laughlin’s proof that the Hall conductance is quantized,
this might be considered a sufficient proof that the Chern number must
be quantized as well. To see how this occurs mathematically, see ap-
pendix *¥*,

18.3 Symmetry Protection

Symmetry is one of the most fundamental ideas in modern physics. We
often think about how physics changes when a symmetry is forced on a
system. Considering the above definition of topological phases of matter
in section 18.1, one may generalize this idea to systems with symmetry.

Definition of Symmetry Protected Topological Phase: Two
gapped states of matter are in the same symmetry protected topo-
logical phase of matter if and only if you can continuously deform
the Hamiltonian to get from one state to the other without closing
the excitation gap or breaking the given symmetry.

The most interesting example of this is time reversal symmetry. Sys-
tems without magnetism and without magnetic impurities are time-
reversal symmetric. In three dimensions, it turns out that there are no
band structures that satisfy the above definition of a nontrivial topolog-
ical phase of matter. In other words, all gapped periodic single-electron
Hamiltonians can be deformd to a trivial Hamiltonian without closing
the gap. However, if we enforce time reversal invariance, it turns out
that there are band structures that cannot be deformed into the trivial
band structure without closing the gap or breaking symmetry. These are
known as “topological insulators” and are formally symmetry protected
topological phases, where the symmetry is time reversal.

18.4 Appendix: Chern Number is Hall
Conductivity

Here we calculate the Hall conductivity by simple time dependent per-
turbation theory and demonstrate that it is the same as the Chern num-
ber.

The general rule of time dependent perturbation theory is that if a
system is exposed to a perturbation d H () the expectation of an operator
O at some later time is given by

o) =1 [ dow,.me)

If we consider an electric field at frequency w we write this in terms of
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the vector potential. Applying a perturbing vector potential we have
0H = /dxA(x,t) <j(x,t)

From perturbation theory we then have

oot = 3 [ at [ axljaGe ). uta’ ) A’ 1)






Introduction to Fractional
Quantum Hall Effect

Having determined that the quantum Hall effect is some sort of spec-
troscopy on the charge of the electron, it was particularly surprising
in 1982 when Dan Tsui and Horst Stormer! discovered quantum Hall
plateaus at fractional values of the filling fraction

v=p/q
with Hall resistance
h q
RH = 727
e p

with p and ¢ small integers. This effect is appropriately called the Frac-
tional quantum Hall effect.

The first plateau observed was the v = 1/3 plateau? , but soon there-
after many more plateaus were discovered®. The Nobel prize for this
discovery was awarded in 1998.

Given our prior gauge invariance argument that quantum Hall effect is
measuring the charge of the electron — and that this is enforced by the
principle of gauge invariance, it is hard to understand how the fractional
effect can get around our prior calculation.

Two things must be true in order to have quantized Hall effect

(a) Charge must fractionalize into quasiparticles with
charge e* = e/q, for example in the case of v = 1/q.

(b) The ground state on an annulus must be degenerate,
with ¢ different ground states (in the case of v = 1/q)
which cycle into each other by flux insertion through the
annulus.

We should not lose sight of the fact that these things are surprising
— even though the idea of degenerate ground states, and possibly even
fractionalized charges, is something we have perhaps gotten used to in
our studies of topological systems.

Given the Laughlin argument that inserting a flux though the annulus
pumps an integer number of electrons from one side to the other, it is
perhaps not surprising that fractional quantization of the Hall conduc-
tance must imply that a fractional charge has been pumped from one
side of the annulus to the other (hence point (a) above). The way we
get around the gauge invariance argument that implies the charge must
be an integer is by having multiple degenerate ground states. In our

IStormer had recently invented the
idea of “modulation doping” semicon-
ductors, which is a technique to obtain
extremely clean two dimensional elec-
tron systems — a prerequisite for ob-
serving fractional quantum Hall effect.

2The legend is that Tsui very pre-
sciently looked at the data the moment
it was taken and said “quarks!” realiz-
ing that the fractional plateau implied
charge fractionalization!

30ver 60 different fractional quantum
Hall plateaus have been discovered!
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argument for the Integer quantum hall effect we used adiabaticity, and
the existence of a gap, to argue that we must stay in the ground state.
However when there are multiple ground states (point (b) above) we
can only argue that we must always be in some ground state. Thus, for
example, in the case of ¥ = 1/3 where there are three ground states, the
cycle of inserting flux is

insﬂ)¢0 |GSl> insﬂ)¢o |GSQ> inse*rt}qbo |G53> insﬂ)¢0 |G51> insﬂ}¢0

where GS here means ground state. Each insertion of flux pumps
e* = e/3 charge from one side to the other. After three fractionally
charged particles move from one side to the other, this amounts to a
single electron being moved from one side to the other, and we return
to exactly the same ground state as we started with.

So now we need only figure out how it is that this unusual situation of
fractionalized charges, and multiple ground states (indeed, this situation
of a topological quantum field theory!) comes about.

Want an incompressible state: Ignore disorder for now

We need to understand how we have an incompressible state when a
Landau level is partially filled. As with the integer case, disorder will
be important in allowing us to have plateaus of finite width, but the
fundamental physics of the fracitonal quantum Hall effect comes from the
fact that we have a gapped incompressible systems at a particular filling
fraction. We can thus choose to consider a system free from disorder
with the understanding that localization of excitations will be crucial to
actually observe a plateau.

Why This is a Hard Problem: Massive Degeneracy

We restrict our attention to a clean system with a partially filled (say,
1/3 filled) Landau level. If there are N, electrons in the system, there
3N, available single electron orbitals in which to place these electrons.
Thus in the absence of disorder, and in the absence of interaction, there

are < 3]]\[\:6 ) ~ (27/4)N:

. multiparticle states to choose from — and all of these states have the
For example, if our SySterlnl of size 1 same energy! In the thermodynamic limit this is an insanely enormous
square em has a typically 1077 electrons — q06naracy4. This enormous degeneracy is broken by the interaction
in it, the number of degenerate states at . Rk .
v = 1/3 is roughly 10 to the 100 billion ~Petween the electrons, which will pick out a very small ground state
power! Way way way more than the manifold (in this case being just 3 degenerate ground states), and will

number of atoms in the universe. leave the rest of this enormous Hilbert space with higher energy.
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19.0.1 Our Model Hamiltonian

Since we are to neglect disorder, we can write the Hamiltonian for our
system of interacting electrons as

H— Z pz+6Arz ZV

1<J

where the first term is just the kinetic energy of the electrons in the
magnetic field, as discussed in Section 17.5, and the second term is
the interaction beween the electrons, which we might take to be of 1/r
Coulomb form, or perhaps a modified Coulomb form depending on the
physical situation we are concerned with?®.

Now we have already analyzed the first term in this Hamiltonian back
in Eq. 17.5, resulting in the structure of Landau levels. If we further
assume that the cyclotron energy 7w, (the energy gap between Landau
levels) is very large compared to the interacton energy scale V, then
we can assume that there is very little effect of higher Landau levels
— the interaction simply breaks the massive degeneracy of the par-
tially filled Landau level without mixing in the higher Landau levels (or
putting holes in any completely filled Landau levels below the chemical
potential). Another way to say this is that we are pursuing degenerate
perturbation theory. The kinetic energy is completely determined (we
just fill up Landau levels from the bottom up) and interaction only plays
a role to break the degeneracy of the partially filled level.

The effective Hamiltonian is then just

H=> V(r,—r)) (19.1)

i<j

where the Hilbert state is now restricted to a single partially filled Lan-
dau level. But here it might look like we are completely stuck. We
have an enormously degenerate Hilbert space — and we have no small
parameter for any sort of expansion.

Laughlin’s insight was to simply guess the correct wavefunction for
the system!®. In order to describe this wavefunction we need to have
a bit more elementary information about wavefunctions in a magnetic
field (some of this is a homework problem!).

19.1 Landau Level Wavefunctions in
Symmetric Gauge

We will now work in the symmetric gauge where the vector potential is
written as

A:}pr
2

where the magnetic field is perpendicular to the plane of the sample.
(We can check that this gives V x A = B.

5For example, we could have a screened
Coulomb potential if there are polariz-
able electrons nearby. The finite width
of the quantum well also alters the ef-
fective Coulomb interaction.

5Decades of experience doing compli-
cated perturbation theory led many
people off on the wrong path — towards
complicated calculations — when they
should have been looking for something
simple!
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TWe will ignore the spin degree of free-
dom as before.

8 The polynomial can also be chosen so
as to have all real coefficients. This
is becuase the Hamiltonian, once pro-
jected to a single Landau level, i.e.,
Eq. 19.1, is time reversal symmetric.

In this gauge, lowest Landau level wavefunctions (as mentioned before
in section 17.8) take the form”

Pm(2) = CzMe1#17/(46) (19.2)

where
0

2z =x+ iy =re’
is the complex representation of the particle coordinate, £ = \/h/eB is
the magnetic length, (), is a normaliztion constant and here m > 0 is
an integer. The most general lowest Landau level wavefunction for a
single particle would be f(z) times the gaussian factor for any analytic
function f.

Note that the higher Landau level wavefunctions can all be obtained
by application of a raising operator (which involve some prefactors of z*)
to the lowest Landau level wavefunctions. This algebra is discussed in a
homework problem, so we will not belabor it here. A key point is that
all Landau levels are effectively equivalent and any partially filled higher
Landau level is equivalent to a partially filled lowest Landau level with
an appropriately modified interaction. As such, we will focus exclusively
on the lowest Landau level from here on.

Let us take a close look at the structure of the wavefunctions in
Eq. 19.2. First we note that ,, is an eigenstate of the angular mo-
mentum operator L (centered around the point z = 0)

ﬂcpm:hmgom

Secondly we should examine the spatial structure of ¢,,. Writing |¢,,|* ~
r?™ exp(—r?/(2¢?)) and differentiating with respect to r we find that the
maximum of this function is at radius

r =/{v2m

Thus the function roughly forms a gaussian ring at this radius. The
area enclosed by this ring is 7r? = 27rml? = m¢y/B, which contains
precisely m quanta of magentic flux.

19.1.1 What We Want in a Trial Wavefunction

In building a trial wavefunction for fractional quantum Hall effect, sev-
eral rules will be important to follow

(1) Analytic Wavefunction: The wavefunction in the lowest Lan-
dau level should be comprised of single particle wavefunctions ¢, —
that is, it must be a polynomial in z (with no z*’s) times the gaussian
factors. In other words we should have®

N
U(ry,...,ry) = (Polynomial in z1,...2xN) H e~ l=il?/ (48
i=1



(2) Homogeneous in Degree: Since the Hamiltonian is rotationally
invariant, we can expect that the eigenstates will be angular momentum
eigenstates. Since the L operator counts powers of z, this means that
the (Polynomial in z1,...zy) part of the wavefunction must be homo-
geneous of degree.

(3) Maximum Power of z, is Ny = N./v: Since the radius of
the wavefunction is set by the exponent of z", the full radius of the
quantum Hall droplet is given by the largest power of any z that occurs
in the wavefunction. Since the area enclosed by the wavefunction should
correspond to Ny fluxes, this should be the maximum power.

(4) Symmetry: The wavefunction should be fully antisymmetric due
to Fermi statistics, assuming we are considering fractional quantum Hall
effect of electrons. It is actually very useful theoretically (and does
not seem out of the question experimentally!®) to consider fractional
quantum Hall effect of bosons as well — in which case the wavefunction
should be fully symmetric.

Even given these conditions we still have an enormous freedom in
what wavefunction we might write down. In principle this wavefunc-
tion should depend on the particular interaction V'(r) that we put in
our Hamiltonian. The miracle here is that, in fact, the details of the
interaction often do not matter that much!

19.2 Laughlin’s Ansatz

Laughlin simply guessed that a good wavefunction would be of the
form?!?

N
(m) _ —|zi|? /(402
\I/Laughlin - H(Zl - Zj)m H € =4/ (46

i<j i=1
The proposed wavefunction is properly analytic and homogeneous in
degree. The maximum power of the wavefunction is

N¢ = m(N — 1)
thus corresponding to a filling fraction
v=N/Ny —1/m inlarge N limit

And the wavefunction is properly antisymmetric for m odd, and is sym-
metric for m even.

It is worth noting that for m = 1 the Laughlin wavefunction corre-
sponds to a filled Landau level — that is, a single slater determinant
filling all of the orbitals from m = 0tom = Ny = N —1. (This is a
homework problem!)
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9While no one has yet produced frac-
tional quantum Hall effect of bosons in
the laboratory, proposals for how to do
this with cold atoms or interacting pho-
tons are plentiful, and it seems very
likely that this will be achieved in the
next few years.

ONote that this wavefunction is not
normalized in any sense. The issue of

normalization becomes important later
in ***.
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2 This was discovered by Haldane in
1983, then again by Trugman and
Kivelson and also Pokrovski and Ta-
lapov in 1985.

13Actually this is a very realistic inter-
action for cold atom bosonic quantum
Hall effect, should it be produced in the
future.

14Although with some thought this fact
seems obvious, proving it rigorously is
tricky.

It is also worth noting that the density of the Laughlin wavefunction
is completely constant in a disk up to its radius (and then the density
falls quickly to zero). This constancy of density is proven by plasma
analogy (which is another homework problem)!!.

Why should we think this wavefunction is particularly good? As two
particles approach each other, the wavefunction vanishes as m powers.
This means that the particles have low probability of coming close to
each other — thus keeping the interaction energy low.

Being that the polynomial in each variable is of fixed degree Ny, the
polynomial has a fixed number of analytic zeros. For the Laughlin wave-
function all of these zeros are on the positions of the other particles —
thus the wavefunction arranges that the particles stay as far away from
each other as possible in some sense.

19.2.1 Exact statements about Laughlin
Wavefunction

It turns out that the Laughlin wavefunciton is actually the exact ground

state of a special inter-particle interaction!?.

Bosons at v =1/2

Consider a system of bosons with the interparticle interaction given by'?

V= V() Z(S(I‘i — I‘j)
i<j
with Vi > 0. This is a non-negative definite interaction.

It is clear that the ¥ = 1/2 Laughlin state of bosons \Il(LrZ:f}zlm has
zero energy for this interaction, since there is zero amplitude of any two
particles coming to the same point. Further, however, the Laughlin state
is the highest density wavefunction (lowest degree polynomial) that has
this property'®. For example, the Laughlin state times any polynomial
is also a zero energy state of this interaction, but since it has been mul-
tiplied by a polynomial, the total degree of the wavefunction is higher,
meaning the wavefunction extends to higher radius, making the system
less dense. A schematic of the ground state energy as a function of filling
fraction for this case is shown in Fig. 19.1.

I Roughly the story is as follows. The probability |¥(z1, ..., zx)| of finding particles
at position z1,...,2zn can be phrased as a classical stat mech problem of a one-
component 2d coulomb plasma in a background charge, by writing

‘\11‘2 — ¢ BU(z1,-2N)
with 8 = 2/m and
m
U=-m*Y log(|zi — z]) + Y D lzil?
i<j i
where the first term is the coulomb interaction in 2d, and the second term is a
background charge — which happens to be the charge associated with a uniform

positve background (an easy thing to check using gauss’s law). Assuming this plasma
screens the background charge, it will be of uniform density up to a constant radius.
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Fig. 19.1 Schematic of the ground state energy as a function of filling fraction for
bosons with delta function interaction.

The key point is that the ground state energy has a cusp, which means
there is a jump in the chemical potential

_0E

- ON
This is precisely the same “incompressibility” as we have in the case of
noninteracting electrons — where the chemical potential jumps between
Landau levels! As in that case we presume that the presence of a cusp
in the free energy, in the absence of disorder, will be enough to give us
a plateau when disorder is added back in.

Now while we can easily show that there is a change of behavior at

v = 1/2 in this plot, it is somewhat more difficult to be convincing that
the slope coming from the right is finite — i.e., that the gap is actually
finite. In order to do that, we would need to think about the elementary
excitations, or resort to numerics.

Fermions at v =1/3

The arguments given for bosons at ¥ = 1/2 can be easily generalized to
the case of fermions (i..e, electrons) at v = 1/3 (and more generally to
any v = 1/m.) Obviously a d-function interaction will no longer do the
job, since for fermions Pauli exclusion prevents any two fermions from
coming to the same point already. However, consider an interaction of
the form

V= Vo ZV25(Ti — I‘j)

i<j
Given a wavefunction ¥(rq,...,ry) the interaction energy will be
E= Z/drl...drN 1> V25(r; — ;)

1<J
Writing

N
U(dry...dry) = d(z1 ... zy) [ 711/ (19.3)
=1
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15Generally one would expect deriva-
tives of the gaussian part as well when
we integrate by parts. However, be-
cause the polynomial is antisymmetric,
the derivitive must act on the poly-
nomial part to prevent the wavefunc-
tion from vanishing when particle coor-
dinates coincide.

6 Note that by antisymmetry the wave-
function must vanish as an odd number
of powers as two particle positions ap-
proach each other.

Ty higher Landau levels, although the
interaction is Coulomb, when the single
Landau level problem is mapped to a
single partly filled lowest Landau level
(See the comments after Eq. 19.2), the
interaction gets modified — this mainly
effects the short range behavior.

18The full Hilbert space is 45207 di-
mensional!

with ¢ meaing the analytic polynomial part, for fermionic wavefunctions
(that must vanish when r; = r;) the expression for the energy can be
integrated by parts!'® using V? = 40,0.- to give

N
E = Z/drl ...dry |8ziqb\2 §(r; — ;) He—lz@'IZ/(%?)
' i=1

1<j

Thus we have a non-negative definite interaction. Further, if the
wavefunction vanishes as a single power when two particles come to-
gether, then 0,¢ will be nonzero and we will get a postive result (Since
0,,(z; — z;j) is nonzero). However, if the wavefunction vanishes as three
powers 0,¢ will remain zero (since 9,,(z; — z;)® goes to zero when
Zi = Zj)16.

Thus, entirely analously to the above case of v = 1/2 with the J-
function interaction, the Laughlin m = 3 (v = 1/3) wavefunction is the
exact ground state (unique highest density zero energy wavefunction)
of the V26-function interaction. With similar ideas, one can construct
interactions for which any v = 1/m Laughlin wavefunction is exact.

19.2.2 Real Interactions

Obviously electrons do not interact via a V2§ interaction. They inter-
act via a Coulomb interaction'” What is perhaps surprising is that the
Laughlin wavefunction is an almost perfect representation of the actual
ground state. This statement comes from numerical tests. For exam-
ple, for 9 electrons (on a spherical geometry to remove edge effects) the
dimension of the fully symmetry reduced Hilbert space!® is 84, and yet
the Laughlin trial wavefunction has an overlap squared of .988 with the
exact ground state of the Coulomb interaction. This is absurdly accu-
rate! The energy of the Laughlin wavefunction differs from the energy of
the exact Coulomb ground state by less than a part in two thousand!®.

19.3 Quasiparticles

The Laughlin quantum hall ground state is a uniform density fluid (we
will actually show this as a homework problem). Density perturbations
are made in discrete units of charge known as quasiparticles. Positively
charged bumps of charge (opposite the charge of the electron) are known
as quasiholes and negatively charged bumps of charge (same charge of
the electron) are quasielectrons.

19.3.1 Quasiholes

For the quasiholes, it is fairly easy to guess their wavefunction (and
indeed this was done by Laughlin). We start by considering adding a

197 need to recheck this number***,
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quasihole at postion 0. This leaves the system rotationally invariant.
We guess the solution

N
\Ilqh(o) = lH Zz‘| \IjLaughlin

i=1

where 0 indicates we have put the quasihole at position 0. Here the
degree of the polynomial is increased by one for every variable, so each
filled orbital gets pushed out to the next orbital. This leaves precisly one
empty orbtial open at positon 0. Since our wavefunction has filling frac-
tion v, this means that on average a fraction v of the orbitals are filled.
Thus leaving the orbital at the center completely empty corresponds to
a positive charge of +v, and our quasihole has a positive charge

e’ = ve.

Another way to think about the same wavefunction is to imagine
adiabatically inserting a quantum of flux ¢¢ at positon 0. Analogous
to the Laughlin argument for integer quantum Hall effect, This creates
an azimuthal EMF. Since the system has quantized Hall conductance
Oy = 1/62/h7 the total charge created is ve = o.y¢9. Then once we
have inserted the flux, the flux quantum can be gauged away leaving
only the quasihole behind.

One can make quasiholes at any location w analogously,

N

Vg (w) = lH(Zi - w)

=1

\IJLaughlin

although this is no longer an angular momentum eigenstate. We can
similarly consider multiple quasiholes the same way

M N
Uons(wi, ..., war) = [H H(Zz — Wa)

a=14i=1

\IJLaughlin

Several interesting comments at this point:

(1) While the z’s are physical electron coordinates, the w parameters
are simply parameters of the wavefunction and can be chosen and fixed
to any value we like. The wavefunction W(wy,...war; 21,...25) is then
the wavefunction of electrons z in the presence of quasiholes at fixed w
positions.

(2) Note that the phase of the wavefunction wraps by 27 when any
electron moves around the position of a quasihole.

(3) For the special ultra-short-range wavefunctions for which the Laugh-
lin ground state is an exact zero energy eigenstate, then this Laughlin
quasihole is also an exact zero energy eigenstate (albeit one with lower
density than the ground state since a hole has been inserted). Take for
example the case of v = 1/2. With a §-function interaction, the energy is
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zero because no two particles come to the same point. Multiplying this
wavefunction by any polynomial (as we have done to insert quasiholes)
maintains this property and we still have a zero energy eigenstate. As
is the case for the Laughlin ground state, the quasihole is not exact for
the Coulomb interaction, but is extremely accurate numerically.

(4) At v = 1/m, if we insert m quasiholes at the same point w, then
the wavefunction is just the same as if we were to have an electron e at
the point w (although the electron is not there). Thus we expect that
“fusing” m quasiholes together should precisely make an anti-electron
(or a real hole).

19.3.2 Quasielectrons

The quasi-electron is a bump of negative charge (i.e, same charge as the
electron). Unlike the case of quasiholes, there are no exact wavefunctions
that we know of for quasi-electrons (not even for special short range
interactions).

Whereas the quasi-hole increases the total degree of the polynomial
wavefunction (thereby decreasing the density of the system) the quasi-
electron should decrease the total degree of the wavefunction. Again,
Laughlin made a very good guess of what the wavefunction for the quasi-
electron should be. Considering a quasi-electron at the origin, we can

write N N
T,.(0) = ([H ] ¢> He—\zm/(m

i=1 i=1

0
821'

where as in Eq. 19.3 we have written the Laughlin wavefunction as the
polynomial part ¢ times the gaussian factors. Obviously the derivative
correctly reduces the degree of the polynomial by one in each varaible z,
thus reducing the net angular momentum of each paricle by one. Each
particle moves to lower radius by one orbital, thus giving a pile-up of
charge of e* = —ev at the origin.

In analogy to (but opposite that of) the quasihole, we might have
looked for a quasi-electron where electrons accumulate a phase of —27
when an electron moves around the quasiparticle. One might think of
the operator z*, but this operator does not live in the lowest Landau
level. However, the projection of this operator to the lowet Landau level
is given by

P =202
LLrz =2t o
(This is a homework assignment!).

As mentioned above, the Laughlin quasi-electron is not exact for any
known system. However, it is a fairly good trial wavefunction numeri-
cally for the Coulomb interaction. Note however, that other forms for
the quasi-electron wavefunction have been found to be somewhat more
accurate.

One can move the quasielectron to any position in a similar way as
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for quasiholes giving a wavefunction of the form

N N
Vs (w) = ([H (%282 _w*ﬂ ¢> T/
¢ i=1

i=1

19.3.3 Fractional Charge and Statistics?

The quasiparticles of the Laughlin state thus have fractional charge.
One should not lose sight of how surprising this is — that particles can
emerge that are a fraction of the “elementary” particles of the system.
If we lived at very low energy, we would experience these quasiparticles
as the fundamental particles of the system and would not know of the
existence of the underlying electron.

Once one accepts fractionalized charge, it is perhaps not surprising
to discover that they also have fractional statistics. Proving this state-
ment is nontrivial, and we will do it in several ways. Note that since
the quasiparticles are charged, moving them around in a magentic field
incurs phases. We would like thus like to compare the phase of moving
a particle in a loop versus moving a particle in a loop when another
particle might be inside the loop, see fig. 19.2

Loof LooP

Fig. 19.2 To find the statistical phase, we compare moving a particle in a loop
versus moving it in the same loop when another particle is inside the loop.

We shall perform this comparison next after we introduce Berry’s
phase, which is the effect which produces the statistical phase we are
interested in.

19.4 Digression on Berry’s Phase

The Berry phase?” is one of the most fundamental ideas of modern
physics. We recall the adiabatic theorem. If you start in an eigenstate
and change a Hamiltonian sufficiently slowly, and there are no level
crossings, then the system will just track the eigenstate as it slowly
changes — i.e., it remains in the instantaneous eigenstate. However,
during this process it takes a bit of thought to figure out what happens
to the phase of the wavefunction.

To see how this correction arises, let us consider a Hamiltonian H(R)
which is a function of some general parameters which we will summarize
as the vector R. In our case these parameters are going to represent the

2OBerry’s work on Berry Phase in 1984
had a number of precursors, most no-
tably the work of Pancharatnam in
1956.
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21 Wilczek won a Nobel for his work on
assymptotic freedom. Schrieffer won a
Nobel for his work on BCS theory of
superconductivity. Arovas was a grad
student at the time.

quasiparticle position — we will insert this information into the Hamilto-
nian by having some trapping potential which induces the quasiparticle
at the point R and we can then move around the trapping potential in
order to move the particle. Let us write the instantaneous (here nor-
malized!) eigenstate as [¢)(R)). So we have

H(R)[¢(R)) = E(R)[H(R))

Now let us write the full, time dependent wavefucntion as

[W(t)) = e [p(R(1)))

so we are allowing for an additional phase out front of the instantaneous
eigenstate. The time dependent Schroedinger equation is

Zﬁ*l‘lf( ) = HR()[¥(E)
[717+zh ]|¢( ®)) = E®R(®))[PRQD))

Projecting this equation onto the bra (¢(R)| we obtain

= ~E(R(0) /0 i (VRS Hw D)

Integrating over some path R(¢) from some initial time ¢; to some final
time £ gives

1 [

Ry
i) =00 =~ [ EER@ i [ AR R) [l uR)

The first term is the expected dynamical phase — just accumulating a
phase with time proportional to the energy. The second term on the right
is the Berry phase contribution — a line integral along the particular
path that R(t) takes. Note that this term depends only on the geometry
of the path and not on how long one takes to move through this path.
In this sense is it s a geometric phase.

19.5 Arovas-Schrieffer-Wilczek Calculation of
Fractional Statistics
This section follows the approach of Arovas, Schrieffer and Wilczek?!.
Let us consider a v = 1/m wavefunction for a quasihole

N

U (w) = N(|w]) [H(z — w)

i=1

(m)
\I/Laughlin

and we will imagine moving around the position w in a circle of con-
stant radius as shown in the right of Fig. 19.2. Here we have inserted a
normalization constant out front, which can be shown to be a function
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of radius only. (This is argued by plasma analogy, which is part of the
homework). We will then parameterize?? the position of the particle by
the angle 6 and w = |w|e®.
The Berry phase from moving the particle in a loop will then be
2

Ay=—i ; df (U(0)0|W(0))

where we have written |¥(6)) to mean |¥(|w|e?)). We then have

99| W(0)) = ‘Z—Z (Z Zi__1w> W (9))

K2

Thus we have

(oo e ®) = 5 3 (wi6)

o)

Z;y —w

Thus from taking w around in a circle we obtain the Berry phase??
~i  do (w(6)0n]¥(6))
—i ¢ d v Y

if w3 (v | o)

Now the integral around the loop of 1/(z — w) accumulates 2mi if and
only if z; is inside the loop. Thus we obtain the phase

Ay

—1

Zi

A~y = 27 {(number of electrons in loop)
= 27(1/m)®/do = van

where @ is the flux enclosed by the loop and ¢y is the flux quantum (and
here we have used v = 1/m). This is precisely the expected Aharonov-
Bohm phase that we should expect for moving a charge e/m around a
flux ®.

Now we consider putting another quasiparticle in the center of the
loop as shown in the left of Fig. 19.2. Using a normalization factor that
is again a function of |w| only, the same calculation holds, but now the
number of electrons enclosed has changed by one quasiparticle charge
e/m. Thus the phase is now

AP)/ = YAB *+ 7Vstatistical

where the additional phase for having gone around another quasihole is
given by
Vstatistical = 27T/m

or in other words we have fractional statistics! For example, for the
Laughlin state at v = 1/2, we have semionic statistics.

23The way this is written it is obviously a bit nonsense. Please fix it. I wrote this
footnote, but now I don’t see what is wrong with what I have here! ***

220n can choose a more general path
for the particle but we will then need
the detailed form of A(w). See the dis-
cussion below in section ***
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A more detailed version of this calculation (we will do this below)
shows that the path of the particle does not matter —- the total phase
is always the Aharanov-Bohm phase for taking a particle around flux,
added to the statiscal phase of taking it around another quasiparticle.

Comment on the Fusion/Braiding Rules, and Chern-Simons
theory

For the v = 1/m Laughlin state thus we have a situation where the
elementary quasi-holes have statistics § = 2w/m. We can assume that
their antiparticles will have the same statistics (both opposite “charge”
and “flux” in a flux-charge model). We also have that the fusion of m
elementary quasi-electrons or quasi-holes forms an an electron or anti-
electron.

In the case where m is even, the underlying “electron” is a boson, in
which case we can think of this electron as being identical to the vacuum
— it has trivial braiding with all particles and it is essentially condensed
into the ground state as some sort of background superfluid. Thus we
have a simple anyon theory with m particle types.

On the other hand, when m is odd, we have the situation (discussed
in our “charge-flux composite” section ***) where the fusion of m ele-
mentary anyons forms a fermion — and so there are actually 2m par-
ticle types — the fermion full-braids trivially with everything, but has
fermionic statistics with itself. This situtation is “non-modular” — it
does not have as many ground states as it has particle types. There are
only m ground states, despite 2m particle types.

19.6 Gauge Choice and Monodromy

The Laughlin wavefunction with M quasiholes takes the form

U(Wyye ooy WAL 21wy ZN) = (19.4)
M N
N(wy,...,wN) [H H(zi—wa) \Il(gqughlm(zl,...,z]v)
a=1i=1

where N is a normalizing factor.
By using a plasma analogy (this is a homework assignment) we find
that the normalization must be of the form

M
N (w1, ...,wp)|=C H [we — wa|t™ H e~ lwal?/(467%)

a<f a=1

where C' is some constant and
h
e*B

is the effective magnetic length for a particle of charge e* = e/m. This
choice of normalization assures that

E*

(W(wy, ..., wp) | (wr, ..., war))
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independent of the position of the quasiholes.

Now, we can choose the phase of the factor A arbitrarily — this
is essentially a gauge choice. In the above Arovas, Schrieffer, Wilczek
calculation above, we chose the phase to be real. However, this is just a
convention. An intersting different convention is to choose

M
N(ws,...,uy)=C H (wo —wg)/™ H e~ lwal/(4€7%) (19.5)

a<f a=1

which is known as holomorphic or “fractional statistics” gauge — here
the fractional statistics of the quasiparticles are put explicitly into the
wavefunction! Note here that this function is not single valued in the
w-coordinates. In this gauge, we see that the wavefunction has branch
cuts and can be thought of as having Riemann sheets. This may look
problematic, but it is not. While a wavefunction must be single-valued
in the physical electron coordinates, the w’s are just parameters of the
wavefunction, and we are allowed to choose wavefunctions’ phase con-
ventions in any way we like — even in non-single-valued ways as we have
done here.

What we would want to confirm is that the physical phase accumu-
lated in moving one quasihole around another is independent of our
gauge choice. To this end we note that the total phase accumulated
can be decomposed into two pieces, the so-called monodromy and the
Berry phase. The monodromy is the phase explicitly accumulated by
the wavefunction when one coordinate is moved around another.

Total Phase = Monodromy + Berry Phase

In the above Arovas-Schrieffer-Wilczek calculation, we chose the phase
of the normalization to be everywhere real. So there is no monodromy
— no explicit phase as we move one particle around another. However,
in fractional statistics gauge we see a phase of 27/m for each particle
which travels counterclockwise around another. In both gauges the total
phase should be the same, so in the holomorphic gauge, the statistical
part of the phase should be absent. Let us see how this happens.

19.6.1 Fractional Statistics Calculation: Redux

Let us consider the case of two quasi-holes and repeat the argument
of Arovas-Schrieffer-Wilczek but in holomorphic gauge. Putting one
quasihole at postition w and another at position w’ the wavefunction is

VU(w) = Clw- w/)l/me*(‘w|2+|w/\2)/(42*2) «
H(ZZ - w)(z’ - wl) H(zz - Zj) H e_‘zi‘z/(‘w?)
‘ i<j i

with C' chosen so that U is normalized independent of the quasihole
coordinates.?* Let us parameterize the path of a quasiparticle as w(7).

Gauge Choice and Monodromy 215

24Strictly speaking the wavefunction is
normalized in this form only if w and
w’ are not too close together — keep-
ing them a few magnetic lengths apart
is sufficient. This all comes from the
plasma analogy calculation.
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25The complex version of Stokes is as
follows. Using w = x + iy

/ (Fdw — Gdw™)
A

= Qi/ (Ow* F + 0w G)dady
A

We can write the Berry phase as

A= fz'%d7<\11(7')|5'7-|‘1’(7')>

We write
0  Ow 9 ow* 0

9~ 9row | or ow
Now, because we are using holomorphic gauge of the wavefunction the
0/0w* only hits the gaussian factor, so we have

(19.6)

(W ()]0 ¥ (1)) = =75 (T @) ¥ (w)) = =

To evaluate the derivative 9/9,, we integrate by parts so that it acts
on the bra rather than the ket. Now since the bra is completely anti-
holomorphic in w except the gaussian, the derivative acts only on the
gaussian again to give

(W(w)[ 0| ¥ (w))

O [{ ()] (w))] = [0 (L ()] [¥(w))

w* w

—(V(w)|¥(w)) = —

e (P w) = 1

Note that the derivative on (¥|¥) here is zero because the wavefunction
is assumed normalized to unity for every value of w.

We then have the Berry phase given by

Ay = —i%dT(W(T)‘@T|@(T)> = —i4€1*2 j{(dww* — dw*w)

where we have used Eq. 19.6. We now use the complex version of Stokes
theorem?® to obtain

Area
A’y = 6*2

= 2m(1/m)®/do

which is the Aharanov-Bohm phase corresponding to the flux enclosed
in the path — without giving the fractional statistical phase which has
now been moved to the monodromy!

The key point here, which we emphasize, is that if we work with nor-
malized holomorphic wavefunctions (i.e., holomorphic gauge), then the
fractional statitics are fully explicit in the monodromy of the wavefunc-
tion — we can read the statistics off from the wavefunction without
doing any work!

19.7 Appendix: Building an Effective
(Chern-Simons) Field Theory

We can consider writing an effective field theory for this v = 1/m quan-
tum Hall system. First let us think about how it responds to an exter-
nally applied electromagnetic field. It should have its density locked to
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the magnetic field, so we should have a change of electron density (In
this section we set i = e = 1 for simplicity)
1
on=3"=_—0B
2mm
Similarly we should expect a quantized Hall conductance, here with j
being the current of electrons

g 1 ..
= 727rm€”Ej

Both of these can be summarized as the response to a perturbing vector
potential

1
gt = 29,6 Ay 19.7
m

We must, of course have charge conservation as well. This is easy to
enforce by writing the current in the form

1
J = -0, (19.)
7T

which then automatically satisfies
0uj" =0

In this language, the effective Lagrangian that produces Eq. 19.7 as an
equation of motion is then

m 1
L= —We‘“’)‘au@ya,\ + ge“”)‘AuayaA + Jg an

where j, is the quasiparticle current. Note that without the A, term,
this is the same Chern-Simons theory we used for describing fractional
statistics particles (now the quasiparticles).

To see the coupling to the external vector potential, note that the
general (Noether) current associcated with the local gauge symmetry
will be

oL

OAH

which matches the expression from Eq. 19.8. By differentiating the La-

grangian with respect to a,, we generate the equations of motion Eq. 19.7.
More here

"=

19.8 Appendix: Quantum Hall Hierarchy

Good reference is https://arxiv.org/abs/1601.01697

Shortly after the discovery of the Laughlin v = 1/3 state additional
fractional quantum Hall plateaus were discovered at filling fractions such
asv =2/3,2/5,3/7 and so forth. By now over 60 different plateaus have
been observed in experiment!
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The Laughlin theory only describes filling fractions v = 1/m but it
contains in it the right ideas to build possible theories for many of these
fractions.

There are several approaches to building a hierarchy of quantum Hall
states, however perhaps the most intuition comes from the original ap-
proaches by Haldane and Halperin in 1983.

The general idea is to begin with a Laughlin wavefunction for N elec-
trons with coordinates z; for v = 1/m then change the magnetic field to
add a large number M of quasiparticles (say in the form of 19.4, in the
case of quasiholes) at coordinates w,. Thus our wavefunction we write
as

U(wy, ... WAL} 21, -+ ZN)

as written in Eq. 19.4. We then write a pseudowavefunction to describe
some dynamics of the quasiholes which we write as

o(wy,...,war)

An electron wavefunction is generated by integrating out the quasihole
coordinates. Thus we have

U(z1,...28) = /dwl,...de O (w1, ..., wpr) Ul(wy, ... w521, .. 2N)

The general idea of this scheme is that the pseudo-wavefunction can itself
be of the form of a Laughlin wavefunction. In the original Laughlin
argument we wrote down wavefunctions for both boson and fermion
particles. Here, the particles w are anyons, so we need to write a slightly
different form of a wavefunction. We expect

¢(w1,--.,wM) = H(wa —wﬁ)%ﬂ’

a<f

with p an even integer. The fractional power accounts for the fact
that the anyon wavefunction must be multi-valued as one particle moves
around another. The factor p is to include a “Laughlin” factor repelling
these anyons from each other without further changing the statistics.

The condensation of these quasi-particles into a Laughlin state gener-
ates a wavefunction for the filling fraction

_ 1
 m=+1/p

with the £+ corresponding to whether we are condensing quasiparticles
or quasiholes. One can continue the argument starting with these new
fractions and generating further daughter states and so forth. At the
next level for example, we have

1

1
mipil

q

vV =

By repeating the procedure, any odd denominator fraction v = p/q can
be obtained.
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Exercises

Exercise 19.1 Filled Lowest Landau Level
Show that the filled Lowest Landau level of non-interacting electrons (a
single slater determinant) can be written as

m = Zi — Zj 1zl /e .
WO — N " —|zi% /48 19.9
1<i<j<N 1<i<N

with N some normalization constant. IL.e, this is the Laughlin wavefunction
with exponent m = 1.

Exercise 19.2 Laughlin Plasma Analogy
Consider the Laughlin wavefunction for N electrons at positions z;

Wo=N J] G-z [ 7 (19.10)
1<i<j<N 1<i<N

with N a normalization constant. The probability of finding particles at po-

sitions {z1,..., 2N} is given by | W, (21, ... 2n8)]%.
Consider now N classical particles at temperature § = ﬁ in a plane
interacting with logarithmic interactions v(7; — 7;) such that
Bu (7, — ) = —2m log(|7 — 7)) (19.11)

in the presence of a background potential u such that

Bu(|) = |7*/(26%) (19.12)

Note that this log interaction is “Coulombic” in 2d (i.e., V() o §(7)).

(a) Show that the probability that these classical particles will take po-
sitions {71,...,7nx} is given by |U0 (z1,...2x)|* where z; = x; + iy; is the
complex representation of position 7;. Argue that the mean particle density
is constant up to a radius of roughly /v/Nm. (Hint: Note that u is a neu-
tralizing background. What configuration of charge would fully screen this

background?)
(b) Now consider the same Laughlin wavefunction, but now with M quasi-
holes inserted at positions wi, ..., was.
U =N(wr,...,on) | [T ] (5 —wa)| ¥ (19.13)

1<i<N 1<a<M

where N is a normalization constant which may now depend on the positions
of the quasiholes. Using the plasma analogy, show that the w—z factor may be
obtained by adding additional logarithmically interacting charges at positions
w;,with 1/m of the charge of each of the z particles

(¢) Note that in this wavefunction the z’s are physical parameters (and the
wavefunction must be single-valued in z’s), but the w’s are just parameters of
the wavefunction — and so the function N could be arbitrary — and is only
fixed by normalization. Argue using the plasma analogy that in order for the
wavefunction to remain normalized (with respect to integration over the z’s)
as the w’s are varied, we must have

|N(w1,...,wM)|:IC H |wa7w’y‘1/m H e—\wQIZ/(4me2) (19.14)

1<a<y<M 1<a<M
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with K a constant so long as the w’s are not too close to each other. (Hint: a
plasma will screen a charge).



Fractional Quantum Hall Edges

20.1 Parabolic Confinement

For studying fractional quantum Hall edge states, it is perhaps most
useful to consider a parabolic confinement potential. Considering the
simple particle Hamiltonian, and adding this confining potential to the
kinetic energy we have

Hconfined = HO + ’YTQ

where Hj is the single particle Hamiltonian in the asence of the confine-
ment.

Since the confinement is rotationally symmetric, we can still classify
all eigenstates by their angular momemtum quantum numbers. Using
symmetric gauge we can still write the single particle eigenstates as!

N e |z?/(46%)
where m is the eigenvalue of the angular momentum? operator L. Since
the radius of these states is r ~ fv/2m it is not surprising that the
confinement energy 'yr2 of each eigenstate is proportional to m. We
thus have

Hconfined = Hy+ ol

for some constant a.

For integer filling, the edge excitations are very much like the edge
excitations we discussed above in Landau gauge. A round quantum Hall
droplet fills m states up to a chemical potential along the edge. One
can add a small amount of angular momentum to the edge by exciting
a filled state from an m just below the chemical potential to an empty
state just above the chemical potential.

20.2 Edges of The Laughlin State

We now consider adding an interaction term so as to produce a fractional
quantum Hall state. It is convenient to think about the limit where the
cyclotron energy is huge (so we are restricted to the lowest Landau level),
the interaction energy is large, so we have a very well formed quantum
Hall state, and finally, the edge confinement is weak.

In particular if we choose to consider the special ultra-short range
interaction potentials (such as ¢ function for bosons at v = 1/2) we still

INote that the parabolic confinement
modifies the magnetic length.

2We drop the h from the angular mo-
mentum operator so its eigenvalues are
just numbers.
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3In fact because the interaction Hamil-
tonian that we are studying is purely
real when written in the ¢y, basis, we
can take the coefficients in the polyno-
mials to be entirely real too. See foot-
note kookoskok

have the ground state given exactly by the Laughlin state

N
m m il )
\Ijiai)l.ghlin = | I(Zz — ZJ) He [2:]7/(4£7)
=1

i<j

such that it has zero interaction energy. The angular momentum of the
Laughlin ground state is just the total degree of the polynomial

N(N -1
Lground = mQ
2
with confinement energy
N(N —1)

Eground = am 2

While the Laughlin state has zero interaction energy it is also the case
that any polynomial times the Laughlin state also has zero interaction
energy since multipying by a polynomial does not ruin the fact that the
wavefunction vanishes as m or more powers as two particles approach
each other. Thus we can consider all possible wavefunctions of the form

U = (Any Symmetric Polynomial) \IJ(LTZLghlm

where we insist that the polynomial is symmetric such that the symmetry
of the wavefunction remains the same (i.e, antisymmetric for fermions
and symmetric for bosons).

If the degree of the symmetric polynomial is AL, then we have

L = Lground + AL
E = Eground +aAL

We can organize the possible excitations by their value of AL. We thus
only need to ennumerate all possible symmetric polynomials that we can
write in N variables of some given degree AL.

We thus need some facts from the theory of symmetric polynomials.
The symmetric polynomials on the N variables zi,...,zy5 form a so-
called “ring” (this means you can add and multiply them). A set of
generators for this ring is given by the functions

N
§ : m
Pm = Z;
=1

This means that any symmetric function on N variables can be written
as sums of products of these functions®. Thus it is extremely easy to
count symmetric functions. Of degree 1, we have only p;. At degree 2,
we have p? and also pe. Thus the vector space of symmetric polynomials
of degree two (with real coefficients) is two dimensional. We can build
a corresponding table as shown in Table 20.1.

Thus the number of edge excitations at a given angular momentum
follows a pattern, 1,2,3,5,7,... with energy increasing linearly with the
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L — Lyround | dimension basis functions ‘ Energy
1 1 D1 o
2 2 P2, P1P1 20
3 3 p3, Dp2p1, Pipip1 3o
4 5 D4, DP3p1,  P2piPi;  PiPiPiPi 4o
5 7 D5, P4P1, D3P2, P3P1P1, P2P2P1, D2P1P1P1, P1P1P1piP1 | da

Table 20.1 Table of Symmetric Polynomials

added angular momentum. Note that this result holds also for the v =1
Laughlin state (i.e., for the integer quantum Hall effect), and matches
the counting for excitations of a chiral fermion (try this exercise!* )

20.2.1 Edge Mode Field Theory: Chiral Boson

An equivalent description of the edge modes is given by the Hamiltonian

H = (am)b,bm

m>0

where the b are boson creation operators satisfying the usual commu-

tations

and we think of these boson creation operators bf, as creating an el-
emetary excitation of angular momentum m on the ground state which
we will call |0) for now. We can build a table describing all of the states
in fock space of this Hamiltonian, ordered by their angular momentum as
shown in Table 20.2. We see the fock space is precisely equivalent to the
above table of polynomials. In fact the analogy is extremely precise. In
the thermodynamic limit, up to a known normalization constant, appli-
cation of b! is precisely equivalent to multiplication of the wavefunction
by ppm.

These operators describe a chiral boson — chiral because they only have
positive angular momentum m > 0 not negative angular momentum.®

4To get you started, consider filled states in a line filled up to the chemical potential.
We can think of these as dots in a row. For example, let the ground state be

...0000000000...

where e means a filled single particle eigenstate and o means empty. Now if we add
one unit of (angular) momentum, we have the unique state

...0000000000...
adding two units can be done in two ways
...0000000000...

and
...0000000000...
thus starting the series 1,2,3,5,7....
5An achiral bose field on a circle requires both positive and negative angular mo-
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L — Lground | dimension ‘ basis fock states Energy
1 1 b110) o
2 2 bb0),  bIbT|0) 20
3 3 b5[0), BLb1|0),  blbibl|0) 3a
4 5 bij0), bipilo), vlvivijo),  olblolbll0) | 4a

Table 20.2 Fock Space for Chiral Bosons

20.3 Appendix: Edges and Chern-Simons
theory

The existence of the edge theory could have been predicted from the ef-
fective Chern-Simons Lagrangian of the bulk. As mentioned previously,
the Abelian Chern-Simons action is gauge invariant on a closed mani-
fold. However, for a manifold with boundary, the action is not gauge
invariant. This is what is known as an anomaly. The solution to this
problem is that the action becomes gauge invariant only once it is added
to an action for the low energy edge theory! We will not go through the
detailed argument for this here.

mentum modes).



Conformal Field Theory
Approach to Fractional
Quantum Hall Effect

In the last chapter we saw that we have an edge theory which is a chiral
boson — a 141 dimensional dynamical theory. We can think of this
theory as being a 2 dimensional cut out of a 3 dimensional space-time
manifold. Now in a well-behaved topological theory, it should not matter
too much how we cut our 3-dimensional space-time manifold. Thus we
expect that the same chiral bose theory should somehow also be able to
describe our 2+0 dimensional wavefunction. Since all chiral topological
theories have gapless edges, this approach can be quite general.

1+1 dimensional gapless theories can all be described by conformal
field theories (CFTs) possibly perturbed by irrelevant operators. And
conformal field theories in 1+1 dimension are particularly powerful in
that they are exactly solvable models, which can be used to describe
either the dynamics of 1+1 dimensional systems or classical statistical
mechanical models in 2 dimensions.

While we cannot provide a complete introduction to CFT here (see
Ginsparg’s lectures, Fendley’s notes, or for a much more complete dis-
cussion, see the Big Yellow Book), it turns out that we need very little of
the machinery to proceed. Furthermore, a large fraction of this machin-
ery will look extremely familiar from our prior study of TQFTs. Indeed,
there is an extremely intimite connection between CFTs and TQFTs —
and much of what we know about TQFTs has grown out of the study
of CFTs.

We will begin by seeing how this works for the chiral boson, which is
perhaps the simplest of all 1+1d CFTs. Below we will show how the
scheme works in more detail in the context of quantum Hall physics.
This approach, first described by Moore and Read, has been extremely
influential in the development of TQFTs and their relationship to the
quantum Hall effect.

21.1 The Chiral Boson and The Laughlin
State

An interesting feature of theories in 1+41d is that they can often be
decomposed (mostly!) cleanly into right moving and left moving pieces.
So for example, if we take the simplest possible 1+1 d system, a free

' There may be issues with the decom-
position, for example, in the case of
the boson, there is a complication as-
sociated with the so-called zero-mode,
which we will ignore for simplicity.
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2We have dropped the zero mode here.

3Pelrhaps the easiest way to see this is
to calculate directly from Eq. 21.1. See
exercise ***.  Another way to obtain
this is to aim for the achiral result

(®(z,2%)@ (2, 2")) = —log(|z — 2'|?)

To see where this comes from, it is eas-
iest to think about a 2d classical model
where the action is

S = (87r)_1/dasdy|V<I’|2
With a partition function

Z:/Dd) e~ 512

It is then quite easy to calculate the cor-
relator (2 ®y/) = 8p4pr|k|~2. Fourier
transforming this then gives the result.

4The usual understanding of normal or-
dering is that when we decompose a
field into creation and annihilation op-
erators, we can normal order by mov-
ing all the annihilation operators to the
right. Another way to understand it
is that when we expand the exponent
e 2?(?) = 1 4iag(z) + (ia)?¢(2)¢(2) +

There will be many terms where
¢(z) occurs to some high power and
that looks like a divergence because the
correlator of two ¢ fields at the same
position looks log divergent. Normal
ordering is the same as throwing out
these divergences.

boson, we can write an achiral Lagrangian density for a field ®(z,t) as
L x (0,9)(0"®)
This can be decomposed into right and left moving pieces as
®(z,t) = ¢p(x —vt) + d(x + vt)

where ¢ is right-moving and ¢ is left-moving and these are two different
fields. For simplicity we will set the velocity v = 1.

In the previous chapter we deduced that the edge theory of the Laugh-
lin state could be described by a chiral boson Hamiltonian

H= Z (am)al ay,

m>0

Quantizing the boson lagrangian we find that?

o(x) = Z \/L.me%immuajn + h.c. (21.1)

m>0

where L is the (periodic) length of the system.

We will often work in complex coordinates x and 7 = it, so we have
we write ®(z, z*) where z = © + i7 and 2* = x — i7 correspond to right
(holomorphic) and left-moving (antiholomorphic) coordinates.

As free bose fields, we can use Wick’s theorem on the fields ¢ and all
we need to know is the single two point correlator?

(8(2)(2)) = —log(z — 2')

Note that we think of this correlation function as a correlation in a 1+1d
theory even though we are working with complex z.
From this chiral ¢ operator we construct the so-called vertex operators

Va(z) = ) .

where : : means normal ordering? A straightforward exercise (assigned
as homework!) using Wick’s theorem then shows that

o~ Ticy @ia(6(zi)d(z;))

[IGzi =z~

i<j

(Va, (21)Vas (22) .- Van (2n)) =
(21.2)

so long as
(21.3)

Zaizo

(otherwise the correlator vanishes).
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21.1.1 Writing the Laughlin Wavefunction

We then define an “electron operator” to be

we(z) = Va(2)

where we will choose
a=+m

This then enables us to write the holomorphic part of the Laughlin
wavefunction as

W, tin = (We(20)¥e(22) - e(2n)Q) = [ (26 = 2)™
i<j
The index a must be chosen such that a? is an integer such that the
wavefucntion is single valued in the electron coordinates. Note that here
although the correlator means a 1+1d theory, we are constructing a
wavefunction for a 2d system at fixed time!

Here, the operator Q can be chosen in two different ways. One pos-
sibility is to choose Q = V_Na, i.€., a neutralizing charge at infinity
such that Eq. 21.3 is satisfied and the correlator does not vanish. This
approach is often used if one is only concerned with keeping track of the
holomorphic part of the wavefunction (which we often do). A more phys-
ical (but somewhat more complicated) approach is to smear this charge
uniformly over the system. In this case, the neutralizing charge, almost
magically, reproduces precisely the gaussian factors that we want!®.

21.1.2 Quasiholes

Let us now look for quasihole operators. We can define another vertex
operator
¢qh(w) = Vﬁ(w)

and now insert this into the correlator as well to obtain

Ton(w) = (Pn(w)he(z1)Pe(22) ... Ye(2n)Q) (21.4)
- H(Zz_w)ﬂ\/ﬁ \Ij(Lﬁighlin

i
Since we must insist that the wavefunction is single valued in the z
coordinates, we must choose

B=p/Vm

for some positive integer p, where the minimally charged quasiparticle
is then obviously p = 1. (Negative p is not allowed as it would create
poles in the wavefunction).

Further, using this value of the the charge (8, along with the smeared
out background charge, we correctly obtain the normalizing gaussian
factor for the quasiparticle

e~ lwl?/(ame?)

The Chiral Boson and The Laughlin State 227

5To see how this works, we divide
the background charge into very small
pieces (call them B) to obtain a corre-
lator of the form

em Zi<] log(zlfzj)fé\/m Zi,['l log(zifzg)

the term with €2 we throw away as we
will take the limit of small e. Now here
we realize that we are going to have a
problem with branch cuts around these
small charges — which we can handle
if we work in a funny gauge. Changing
gauge to get rid of the branch cuts we
then get only the real part of the second
term. The second term is then of the
form

Zlog(|zi —zg|) = /d2rlog(|z —r))
i,B

where we have taken the limit of in-
creasing number of smaller and smaller
charges. We define this integral to be
f(z). Tt is then easy to check that
f(2) ~ |2|?> which is most easily done
by taking V2 f(z) and noting that log is
the coulomb potential in 2d so Gauss’s
law just gives the total charge enclosed.
Thus we obtain e~ 12" as desired. A
more careful calculation gives the con-
stant correctly as well.
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6We will restrict our attention to uni-
tary CFTs so that these are well be-
haved 141 d theories. Although certain
2 dimensional stat mech models can be
related to non-unitary CFTs, these do
not correspond to well behaved TQFT's.

This is the correct gaussian factor, with an exponent 1/m times as big
because the charge V, s is 1 /m times as big as that of the electron
charge V. .

If we are now to add multiple quasiholes, we obtain the wavefunction

U(wy,...,wnr) = (Ygn(wi) . Ygn(war) Pe(21) - - Ye(2n) Q) (21.5)

M M N
= C H (we — wﬁ)l/m H e*|wa\2/(4f*2) [H H(zl — W)
a=1

a<f a=1i=1

(m)
\IjLaughlin

which is properly normalized

(U (wy,...wpr)|P(wr, ... wy)) = Constant

and is in holomorphic gauge. As discussed previously in chapter ***

with a normalized holomorphic wavefunction we can simply read off the
fractional statistics as the explicit monodromy.
Note that we can consider fusion of several quasiparticles

‘G/\/mxvl/\/ﬁ%‘/g/m (21.6)

Fusion of m of these elementary quasiholes produces precisely one elec-
tron operator V. Since the electrons are “condensed” into the ground
state, we view them as being essentially the identity operator, at least in
the case of m even, which means we are considering a Laughlin state of
bosons. Thus there are m species of particle in this theory. In the case
of m odd, we run into the situation mentioned in chapter *** where the
electron is a fermion, so really there are 2m species of particles in the
theory.

The idea is that by using conformal field theory vertex operators we
automatically obtain normalized holomorphic wavefunctions and we can
determine the statistics of quasiparticles straightforwarldy. This is a key
feature of the Moore-Read approach. While there is no general proof
that this will always be true (that the resulting wavefunctions will be
properly normalized) it appears to hold up in many important cases.

We hope now to generalize this construction by using more com-
plicated conformal field theories. This then generates more compli-
cated fractional quantum Hall wavefunctions corresponding to more
complcated TQFTs.

21.2 What We Need to Know About
Conformal Field Theory

I can’t possibly explain CFT in a few pages. (See the big yellow book.
Ginsparg’s lectures are nice for introduction. So are Fendley’s notes),
but given what we already know about TQFTs many of the rules are
going to seem very natural. Indeed, much of the math of TQFTs arose
via CFTs.

CFTs are quantum theories in 1+1 dimension®. They are generically
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highly interacting theories, and most often it is impossible to write an
explicit Lagrangian for the theory, but due to the special properties
of being in 141 and having conformal invariance (guaranteed by being
gapless in 1+1 d) these models are exactly solvable.

A particular CFT is defined by certain information known as con-
formal data, which basically mimics the defining features of a TQFT:

(1) There will be a finite set” of so-called primary fields, which we
might call ¢;(z) (or we may use other notation). These are analogous
to the particle types in a TQFT. Every CFT has an identity field often
called I (which isn’t really a function of position). Correlators of these
fields

<¢j1 (21) s quN (ZN)>

are always holomorphic functions of the z arguments, although there
may be branch cuts.

(2) Each primary field has a scaling dimension® or conformal

weight or conformal spin, which we call h;. The scaling dimension of
Iis hy = 0. We have see these quantities before when we discussed twists
in world lines. Often we will only be interested in A modulo 1, since the
twist factor is e?™*". Each primary field has descendant fields which are
like derivatives of the primary and they have scaling dimensions h; plus
an integer (we will typically not need these, but for example, 9,¢; has
scaling dimension h; + 1).

(3) Fusion relations exist for these fields, which are associative and
commutative

¢i X ¢; =Y NEoy
k
where fusion with the identity is trivial

Ix¢j=9;

As with TQFTs, each particle type has a unique antiparticle. We will
give a clearer meaning to these fusion relations in a moment when we
discuss operator product expansion.

The expectation of any correlator in the theory is zero unless all the
fields inside the correlator fuse to the identity. For example, if we have a
Z3 theory where it requires three 1 particles fuse to the identity, then we
would have (1(z)y(w)) = 0. We saw this law previously in the neutrality

8Tn CFT we have the powerful relation that if we make a coordinate transform w(z)
then any correlator of primary fields transforms as

(G (w1) .- iry () = [(8’“’1)_}”1 (8“”)_}””} Gy (21) - firy (21))

821 821\]

However, we will not need this relationship anywhere for our discussion!

"A nonrational CFT may have an infi-
nite number of particle types, but these
are badly behaved and do not appear to
correspond to nice TQFTs.
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condition for the chiral boson. The expectation of the identity I is unity.

The fundamental theorem we need, which is beyond the simple anal-
ogy with TQFT is the idea of an operator product expansion. The
idea is that if you take two field operators in a conformal field theory
and you put them close together, the product of the two fields can be
expanded as sum of resulting fields

lim i (w)g;(z) =Y Cf(w — 2)" M~ ig(z) + ...
k

w—rz

Here the ij are coefficients which crucially are zero when Ni’fj is zero.
In other words, when two fields are taken close together, the result looks
like a sum of all the possible fusion products of these field. On the right
hand side note that by looking at the scaling dimensions of the fields,
we obtain explicit factors of (w — z). The ... terms are terms that are
smaller (less singular) than the terms shown and are made of descendant
fields and higher powers of (w — z). Crucially, no new types of branch
cuts are introduced except those that differ by integers powers from (and
are less singlar than) those we write explicitly.
The convenient thing about the operator product expansion (or “OPE”)

is that it can be used inside expectation values of a correlator. So for
example

Jim - (e (W) (2) Ye(yr)Paly2) -+ Ynlym)) =
> Chy(w — 2)M e (g (2) Pe(y1)va(y2) - - - Y (ym)
k

21.2.1 Example: Chiral Boson

The free boson vertex V,, has scaling dimension

o
he =
2
The fusion rules are
VaVs = Vays

corresponding to the simple addition of “charges”. The resulting oper-
ator product expansion is then

Va(w)Vs(2) ~ (w — 2)*Varp(2)

where we have used the notation ~ to mean in the limit where w goes
to z, and where the exponent is here given as

hars —ha —hs = P 0 0 —ap

Note that this fusion law for the chiral boson gives more precise meaning
to the fusion law we wrote in Eq. 21.6. ***(clean this up)**
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21.2.2 Example: Ising CFT

The Ising CFT is actually the CFT corresponding to a 1+1 d free
fermion, so it is particularly simple. The theory has three fields, I, o,y
with scaling dimensions

hy = 0
he = 1/16
hw = 1/2

The fact that hy = 1/2 is an indication that it is a fermion. The
nontrivial fusion rules are (exactly as in the Ising TQFT *** previously)

Ppxp=1
YXo=o0
oxo=1+7Y

As in the case of TQFTs, it is the multiple terms on the right hand side
that make a theory nonabelian.
We can write the operator product expansion

P(w)p(z) ~ (w—z)eThe
1

w—z

~

The antisymmetry on the right hand side is precisely the behavior one
should expect from fermions. It is crucial to note that within the ... all
terms are similarly antisymmetric (and are less singular). Similarly, we
have

Y(w)o(z) ~ (w—z)tehe"he g(2)4 ...

~ (w=2)"Y20(2) +...

where again the ... indicates terms which have the same branch cut
structure but are less singular . In other words, wrapping w around z
should incur a minus sign for all terms on the right.

Finally we have the most interesing OPE?

o(w)o(z) ~ CL (w—2)"Y8I + C¥ (w— 2)%/5(z) + . .. (21.7)

where all terms in the ... must have branch cuts that match one of the
two leading terms.
Let us consider calculating a correlator,
i (o(w)a(2)
Since from rule (4) above, the two fields must fuse to the identity, we
must choose the identity fusion channel only from the OPE. We then

obtain
lim (o(w)o(2)) ~ (w — 2)~ Y8 (21.8)

w—rz

9Remember these exponents of 1/8 and
3/8 from the Ising anyon homework
problems? ***
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07psert footnote or appendix that de-
rives this. See Yellow Book for now!

11 Add footnote on wick’s theorem?***

On the other hand, calculating

lim (o(w)o(2)¥(y))

w—rz
in order to fuse to the identity, we must choose the v fusion of the two o
fields such that this ¢ can fuse with ¥ (y) to give the identity. We thus
have

lim (o/(w)o (=) () ~ (w — ) (20.9)

w—rz

Similarly one can see that fusion of two ¢’s in the presence of any even
number of v fields will be similar to Eq. 21.8, whereas in the presence
of any odd number of 1 fields it will be like Eq. 21.9.

Since the Ising CFT is actually a free fermion theory, we can use
Wick’s (fermionic) theorem for correlators of the ¢ fermi fields with the
added information that!0-!!

which is exactly true, not only in the OPE sense. However, we cannot
use Wick’s theorem on correlators of the o fields which are sometimes
known as “twist” fields — we can think of these as altering the boundary
conditions

21.3  Quantum Hall Wavefunction Based on
Ising CFT: The Moore-Read State

Let us try to build a quantum Hall wavefunction based on the Ising CFT.
We must first choose a field which will represent our electron. One might
guess that we should use the fermion field. However, when two v fields
come together the correlator (and hence our wavefunction) diverges, so
this cannot be acceptable. Instead, let us construct an electron field
which is a combination of the Ising v field and a chiral bose vertex V,

These two fields are from completely different 14+-1d theories and are
simply multiplied together.

We then look at the operator product expansion to see what happens
when two electrons approach each other

1

Z—w

ue)t) ~ | ] [ = 0 Vao)

where the first bracket is from the Ising part of the theory and the second
bracket is from the bose part of the theory. In order for this to not be
singular, we must have a? be a positive integer. If we choose

a” =m
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with m odd we have an overall bosonic operator (¢, (2)te(w) = e (w)e(z))

whereas if we choose m even we have an overall fermionic operator. How-
ever, we cannot choose m = 0 since that leaves a singularity. Thus we
have the electron operator of the form

d}e(z) = TZJ(Z)V\/E(Z)

with m > 1. Using this proposed electron operator we build the multi-
particle wavefunction

U = (1o (21)e(22) - . . e(2n) Q)

where @ is the background charge for the bose field. Since the Ising and
bose fields are completely seperate theories we can take the expectation
for the bose field to give

N
U= ((z)iz) . (en) [ [ (i = ) [T e /40
i<j i=1
where the correlator is now in the Ising theory alone.

Now the Ising correlator must be zero unless there are an even number
of 1 fields (since we need them to fuse to the identity). If the number
of fermi fields is indeed even, then we can use the fact that v is a free
fermi field and we can invoke Wick’s theorem to obtain

[ 1 1 1

21 T k2 R3 T 24 ZN—-1 — 2N

pf( ! )
Zi—Zj

Here A means antisymmetrize over all reordering of the z’s. Here we
have written the usual notation for this antisymmetrized sum Pf which
stands for “Pfaffian” 2. Thus we obtain the trial wavefunction based on
the Ising CFT

N

1 2 2

_ T )
\Il_Pf(Zi_Zj)H(Zz ) £[16

i<j

<¢(21)¢(22) R ¢(ZN)>

(21.10)

which is known as the Moore-Read wavefunction. For m odd this is a
wavefunction for bosons and for m even it is a wavefunction for fermions.
To figure out the filling fraction, we note that the Pfaffian prefactor
only removes a single power in each variable. Thus the filling fraction
is determined entirely by the power m, and is given (like Laughlin) by
v=1/m.

21.3.1 Some Exact Statements About the
Moore-Read Wavefunction

For simplicity, let us consider the m = 1 case v = 1 for bosons, which
is the easiest to think about analytically. The wavefunction does not

2geveral interesting facts about the
Pfaffian: A BCS wavefunction for a
spinless superconductor can be written
as Pfg(r; — r;)] where g is the wave-
function for a pair of particles. Any
antisymmetric matrix M;; has a Pfaf-
fian

Pf[M] = A[M1sMsy...].

Also it is wuseful to know that

(P£[M])2 = detM.
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1376 see this, note that taking the first
two particles to the same point gives

lim  te(21)e(22) ~ IVa(21)
22_>Zl
Then fusing the third particle
li 1 Ye(z3)Va(z1) ~ (23—21)%YV3(21)

z3—

MHere we have used a mapping be-
tween Landau levels, that any par-
tially filled higher Landau level can be
mapped to a partially filled lowest Lan-
dau level at the price of modifying the
inter-electron interaction. This map-
ping is exact to the extent that there is
no Landau level mixing. I.e., that the
spacing between Landau levels is very
large.

5 There is one slight glitch here. It
turns out that with a half-filled Landau
level, the wavefunction and its charge-
conjugate (replace electrons by holes in
the Landau level) are inequivalent! The
breaking of the particle-hole symmetry
is very weak and involves Landau-level
mixing. From numerics it appears that
the v = 5/2 state is actually in the
phase of matter defined by the conju-
gate of the Moore-Read state. *** add
refs

vanish when two particles come to the same point, since the zero of
the (21 — 22) can be canceled by the pole of the Pfaffian. However, it
is easy to see that the wavefunction must vanish (quadratically) when
three particles come to the same point (three factors from (z — z)! but
then one factor in the denominator of the Pfaffian).

Note that, even were we to not have an explicit expression for the
Moore-Read wavefunction we would still be able to use the operator
product expansion to demonstrate that the wavefunction (for m = 1)
must vanish quadratically when three particles come to the same point'3.

Analogous to the case of the Laughlin wavefunction, it turns out that
the Moore-Read wavefunction (for m = 1) is the exact (highest density)
zero energy ground state of a three-body delta function interacton

V=V Z 0(r; —r;)d(r; —rg)
i<j<k

Similarly one can construct a potential for fermions such that the
v = 1/2 Moore-Read state (m = 2) is the highest density zero energy
state. This is quite analogous to what we did for the Laughlin state:

V=V Y [V?(r; —1;)]d(r; — )

1<j<k
Non-Exact Statements

Although the Coulomb interaction looks nothing like the three body
interaction for which the Moore-Read Pfaffian is exact, it turns out that
v = 1/2 Moore-Read Pfaffian m = 2 is an extremely good trial state!4
for electrons at v = 5/2 interacting with the usual Coulomb interaction.
This is very suggestive that the v = 5/2 is topologically equivalent to
the Moore-Read Pfaffian wavefunction (i.e., they are in the same phase
of matter)'® Further, the most natural interaction for bosons, the simple
two-body delta function interaction has a ground state at v = 1 which
is extremely close to the Moore-Read m = 2 Pfaffian.

21.4 Quasiholes of the Moore-Read state

We now try to construct quasiholes for the Moore-Read Pfaffian wave-
function. As we did in Eq. 21.4, we want to write

Vg (w) = (Ygn(w)vpe(z1)e(22) . Ye(2n)Q)

but we need to figure out what the proper quasihole operator 1y, is.

Laughlin Quasihole

One obvious thing to try would be to write a simple vertex operator

an(w) = Va(w)
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Looking at the OPE we have (***include fields on the right? ***)

an(W)te(2) ~ (w = )7V (2)

In order to have the correlator be single valued in z (i.e., no branch cuts)
we must choose 8 = p/y/m for some integer p (the smallest quasihole of
this type corresponding to p = 1 then). This generates the wavefunction

Uh(w)y = @hw)ve(z1)pe(22) .. We(2n)Q)  (21.11)
N
lH(Zi—w)

which is just a regular Laughlin quasihole factor. By the same argu-
ments, the charge of this quasihole is e* = ev.

(m)
lIIMoomszead

Minimal quasihole

However, the Laughlin quasihole is not the minimal quasihole that can
be made. Let us try using an operator from the Ising theory as part of
the quasihole operator. Suppose

Ygn(w) = o(w)Vs(w)

We then have the operator product expansion

ban(w)te(2) ~ [o(w)d(2)] [Va(w)Vym(2)] ~ (w = 2)7 2 (w — 2)PV™

In order for the wavefunction not to have any branch cuts for the physical
electron z coordinates, we must choose 8 = (p + 1/2)//m for p > 0,
with the minimal quasihole corresponding to p = 0. Thus we have the
minimal quasihole operator of the form

bon(w) = o)V s_(w)
Note that when we consider correlators, by the general rule (4) from
section 21.2, the operators must fuse to the identity in order to give a
nonzero result. Thus, we must always have an even number of o fields'®.  '6Like the Sith, they come in pairs.
We thus consider the wavefunction of the form

Vo (w,w') = (Ygn(w)thgn (W) Ye(21)vpe(z2) - Pe(2n) Q) (21.12)

N
= (w—w)mm e~ (P +lw’1)/4e H(w — 2V (w' — %)Y (21.13)
- N 2 2
x (oo Y(z)v(ze) . glan)) [z —z)m [[e =/
i<j i=1

Several comments are in order here. First of all, from the first line
of Eq. 21.13 it looks like there are branch cuts with respect to the z
coordinates. However, these fractional powers are precisely canceled by
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17See work by Bonderson et al ***,

18Strictly speaking on the right hand
side we should also write the identity
operator I for the Ising theory and
V1, for the boson sector.

branch cuts in the correlator on the second line. Secondly the charge of
the quasihole is determined entirely by the power of the (z — w) factor,
since it tells us how much the electrons are pushed away from the hole.
(The correlator does not give an extensive number of zeros, similar to the
Pfaffian of Eq. 21.10). If the exponent of (z — w) were one, this would
be a regular Laughlin quasihole with charge ev, thus here we have a
quasihole charge of
e =ev/2.

Le., the Laughlin quasihole has fractionalized into two pieces! This
charge is reflected in the effective magnetic length ¢* = \/h/e* B.

Note that this wavefunction is still an exact zero energy state of the
special interaction discussed above for which the Moore-Read wavefunc-
tion is the exact highest density zero energy state (the wavefunction here
is higher degree and thus less dense, as we would expect given that we
have added quasiholes). We can demonstrate the current wavefunction
is still zero energy by bringing together three electrons to the same point
and examining how the wavefunction vanishes. Since this can be fully
determined by the operator product expansion, it does not matter if we
add quasiholes to the wavefunction, the vanishing property of the wave-
function remains the same, and thus this is an exact zero energy state
of the special interaction.

A Crucial Assumption

The wavefunction here is single valued in all electron coorrdinates (as it
should be) and is holomorphic in all coordinates (all z’s and w’s) except
for the gaussian exponential factors. In this holomorphic gauge, as dis-
cussed above, we can read off the fractional statistics of the quasiparticles
given the assumption that the wavefunction is properly normalized. This
is a crucial assumption and it is not a simple result of CFT, but always
requires an assumption about some sort of plasma being in a screen-
ing phase — and often the mapping to a plasma is highly nontrivial'?.
Nonetheless, from extensive numerical work, it appears that physics is
kind to us and that these wavefunctions do indeed come out to be prop-
erly normalized!

Fusion and Braiding of Two Quasiholes in Identity Channel
(even number of electrons)

Let us assume that the number of electrons is even. In this case the
two o’s of the quasiholes fuse to the identity as in Eq. 21.8. As the
two quasiholes approach each other we then have!'® (** insert also h-h-h
derivation of R? **)

_1

wqh(w)wqh(wl) ~ (’LU — w/) Im

where the ;- is written expliclty in the first line of Eq. 21.13 and the
_1

g 1s from the operator product expansion Eq. 21.8. Invoking now the
crucial assumption that the wavefunctions are normalized, since they

ool



21.5 Multiple Fusion Channels and Conformal Blocks 237

are obviously holomorphic, we simply read off the statistical phase (the
monodromy) we get for wrapping one quasihole around another!

One might object that the operator product expansion only tells us
the behavior of the correlator as w and w’ come close to each other.
However, we are guaranteed that there are no other branch cuts in the
system — the only branch cut in the wavefunction for w is when it
approaches w’. Thus, no matter how far w is from w’, when w circles
w’ it must always accumulate the same monodromy! In the notation
we defined in earlier chapters we have ***(move I downstairs here to fit

with our conventions?, change notation ”I” to 2qh-I7)***
‘792 _ 2mi(g—3
[thfqh] =€ am 8

Recall that if a x b — ¢ we should have [RS,]? = e2Ti(he=ha=ho)  Here,
the total scaling dimension of the quasihole is hg, = 1/16 4+ 1/(8m)
with the second piece from the bose vertex operator V; /o /. The fusion

product “I” =V;, s has quantum dimension h«p» = 1/2m.
Fusion and Braiding of Two Quasiholes in ¢» Channel (odd
number of electrons)

Let us now assume that the number of electrons is odd. In this case the
two o’s of the quasiholes fuse to ¥ as in Eq. 21.9. As the two quasiholes
approach each other we then have!?

Yah (W)hgn(w') ~ (w —w') 7+

ol

where the ﬁ is written expliclty in the first line of Eq. 21.13 and the
% is from the operator product expansion Eq. 21.9. Again we just read
off the monodromy from this OPE. Thus, one obtains a different phase
depending on the fusion channel of the two quasiholes. In the notation
we defined in earlier chapters we have

Ry )2 = it

21.5 Multiple Fusion Channels and Conformal
Blocks

We will next address the issue of what happens when we have more
than two quasiholes. It is clear what will happen here, we will obtain
a correlator (like that in Eq. 21.13) but now it will have more o fields.
We will thus have to figure out how to make sense of correlators with
many (nonabelian) o fields. As an example to show how this works, let
us get rid of the v fields for a moment and consider a correlator

G(wr, we, w3, wy) = {(o(w1)o(we)o(ws)o(wy)) (21.14)

Let us imagine that we will bring w; close to ws and w3 close to wy.
Now in order for the correlator to give a nonzero value, the four fields

1QStrictly speaking on the right hand
side we should also write the operator
1 for the Ising theory and Vi) m for
the boson sector.
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2011 fact due to conformal invariance,
knowing the correlator for any fixed
three points and one point z free, we
can determine the correlator for any
other four points, but this is beyond the
scope of the current discussion!

have to fuse to unity (rule (4) from section 21.2). There are two different
ways in which this can happen

S
g
&
2
S
&
1
~

OR we could have

o(wy)o(ws) — P
a(w3)a(w4) — Qﬁ

and the two ¢ fields could then fuse to the identity.

So which one is right? In fact both happen at the same time! To
understand this we should think back to what we know about a 2d
systems with nonabelian quasiparticles in them — they are described
by a vector space. In order to know which particular wavefunction we
have in a vector space we need some sort of initial condition or space-
time history. Nowhere in the correlator have we specified any space-
time history, so we should be getting a vector space rather than a single
wavefunction. The multiple wavefunctions in the vector space arise from
choosing different roots of the branch cuts of the holomorphic functions.
To see a detailed example of this let us write out the explict form of
the correlator in Eq. 21.14. We note that the calculation that leads to
this requires some substantial knowledge of conformal field theory and
will not be presented here. However many of these sorts of results have
simply been tabulated in books and can be looked up when necessary.
For simplicity we take the four coordinates of the z variables to be at
convenient points so that the correlator looks as simple as possible?.

lim (o(0)o(2)o(1)o(w)) = a1G4(2) + a—G_(z) (21.15)

w—r 00

where
Gy = (wz(1—2))"V8/1+ V1 -2 (21.16)

are known as conformal blocks and here a; and a_ are arbitrary com-
plex coefficients (usually with some normalization condition implied).
I.e, the correlator itself represents not a function, but a vector space
(with basis vectors being conformal blocks) with arbitrary coefficients
yet to be determined by the history of the system!

Let us analyze some limits to see which fusion channels we have here.
Taking the limit of z — 0 we find that

lim G~z (a(0)a(z) = 1)
lim G~ (a(0)o(2) = ¥)

Thus (comparing to Eqs. 21.8 and 21.9) we see that G has ¢(0) and
o(z) fusing to I whereas G_ has them fusing to ¢. Since the four o’s
must fuse to the identity, this tells us also the fusion channel for o(1)
and o(w).



21.5 Multiple Fusion Channels and Conformal Blocks 239

The most general wavefunction is some linear combination (a4 and
a_) of the two possible fusion channels. This is what we expect, the
state of a system can be any superposition within this degenerate space.

Now consider what happens as we adiabatically take the coordinate
z in a circle around the coordinate 1. Looking at Eq. 21.16 we see that
we accumulate a phase of e~27"/8 from the factor of (1 — z)~1/® outside
the square-root. In addition, however, the /1 — z inside the square root
comes back to minus itself when z wraps around 1, thus turning G, to
G _ and vice versa! The effect of monodromy (taking z around 1) is then

(=)= (2 )(2)

(This result should be somewhat familiar from the homework exercise
on Ising anyons!)

We thus see that in this language, the multiple fusion channels are
just different choices of which Riemann sheet we are considering, and
the fact that braiding (monodromy) changes the fusion channel is simply
the fact that moving coordinates around on a Riemann surface, you can
move from one Riemann sheet to another!

So long as we can assume that the conformal blocks are orthonormal
(see comment above on “crucial assumption” about normalization of
wavefunctions. Orthonormality, is now adding a further assumption?®!)
then we can continue to read off the result of physically braiding the
particles around each other by simply looking at the branch cuts in the
wavefunction.

F-matrix

We have seen how to describe the fusion of ¢(0) and o(z). What if
now we instead take z close to 1 such that we can perform an operator
product expansion of o(z)o(1). Taking this limit of Eq 21.16 it naively
looks like both

. N _N-1/8

ll_% Gy (1-2)

limG_ ~ (1—z)"Y8

z—1
But examining this a bit more closely we realize we can construct the
linear combinations

G, - %(Gpr@,)
G = i(c;-c:,)

V2

where Nhere we have inserted the prefactor of 1/ /2 such that the new
basis G4 is orthonormal given that the old basis G4 was. With this new
basis we now have the limits

lim G, ~ (1—2)71/8

z—1

2l As with the discussion above, this
assumption appears to be true, but
“proofs” of it always boil down to some
statement about some exotic plasma
being in a screening phase, which is
hard to prove. *** myabe move bon-
derson ref here?
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limG_ ~ (1-z)"'/® {\/H\/ﬁ\h\/ﬁ]

z—1
~ (T=2)"Y81 =) 2~ (1—2)38

Thus we see that in this twiddle basis (G'+) we have in this limit that
G is the fusion of o(z) and o(1) to identity and G_ is the fusion to .

The transformation between the two bases G4 and G is precisely
the F-matrix transformation.

Gy _ 1 (1 1 G+
G ) V21 -1 G_
which should look familiar to anyone who did the homework! (We

also got the same result from writing the ising theory in terms of ca-
bled Kauffman strings). Diagrammatically this transform is shown in

Fig. 21.1
)
o o) o (9) o (2)
I=6+ —
¢=6_ = G+\
[ )/\ . O"[w) =5 o (1)
0w o

Fig. 21.1 The F-matrix transforms between the two fusion channels depicted here.

21.6 More Comments on Moore-Read State
with Many Quasiholes

Although we have presented this discussion about multiple fusion chan-
nels and braiding in terms of o operators, the situation is extremely
similar once we use quasihole operators (o(z)V3(z)) and we put them
in a wavefunction as in Eq. 21.13 but possibly with more quasihole op-
erators. As we might expect just from looking at the fusion rules, the
number of fusion channels (the number of Riemann sheets!) is 2M/2-1
where M is the number of quasiholes, and the -1 arises because the
overall fusion channel must be the identity. Further, the F-matrices and
braiding properties all follow very much in a similar manner. The only
slightly problematic piece is that we must continue to assume that the
conformal blocks form an orthonormal basis — which is hard to prove,
but appears to be true.
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21.7 Generalizing to Other CFTs

The principles we used for buidling a quantum Hall state from the Ising
CFT can be generalized to build quantum Hall states from other CFTs
as well. The general principles are as follows:

(1) Construct an electron field which gives a ground state which is
single valued in the electron coordinates. This is done bystarting with
an abelian field from the CFT (one that does not have multiple fusion
channels) and combining it with a chiral bose vertex operator. The filling
fraction is determined entirely by the charge on the vertex operator.

(2) Identify all of the possible quasiholes by looking at all the fields in
the CFT and fusing them with a chiral bose vertex operator and enforc-
ing the condition that the electron coordinates must not have branch
cuts. The charge of the quasihole is determined by the charge on the
vertex operator (and the charge on the electron vertex operator).

(3) Some of the braiding properties can be determined immediately
from the operator product expansion while others require more detailed
information about the form of the CFT.

21.7.1 Zj; Parafermions (briefly)

As an example, let us consider the Z3 Parafermion CFT. Its primary
fields and fusion rules are given by

X |1 [ | o

02

1|l 2/3 | | 1 || ¥ | | | | |

Yo | 2/3 | |2 | I |4 | | [

o | 115 | or | € | oo | oot | | I

o2 || 1/15 | | oo || or | e | IT+e |o1+eo| |

€ 2/5 ‘ € 02‘01‘01+¢2‘02+1/11‘I+6H

These fusion rules might look very complicated, but in fact they can
be thought of as an abelian Z3 theory (with fields I, 1,12 = 11) fused
with a Fibonacci theory (with fields I and 7). We then have

o1 = Yot

o2 = U7

241
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22Note that the scaling dimensions h
also work out modulo 1. The 7 field has
hr = 2/5 If you add this to h = 2/3 for
the ¢ field you get h = 2/5 4+ 2/3 =
1+1/15.

€ = T

and using the Fibonacci fusions 7 x 7 = I 47 and the Z3 fusions v; x¢); =
Y(i+7)mods With ¥ being the identity, we recover the full fusion table?.
Let us propose an electron field

Ye(z) = m(@vﬁ(z)

where m is a nonnegative integer (even for bosons, odd for fermions). It
is easy to check from the OPE that

be(2)pe(w) ~ (2 —w)"Y2(2)V, /o (2)
The resulting wavefunction is then

U = (e(21)¥e(22) - Ye(2n) Q)

which is known as the Read-Rezayi Zs parafermion wavefunction.

The filling fraction of the wavefunction is determined by the vertex
operator and is given by )
m+ %

For the m = 0 case this is v = 3/2 bosons, while for the m = 1 case this
is v = 3/5 fermions.

For the case of m = 0 it is easy to check that the wavefunction does
not vanish when two particles come to the same point, nor does it vanish
when three particles come to the same point, but it does vanish when
four particles come to the same point. Thus the wavefunction is an exact
(densest) zero energy ground state of a four particle delta function.

While there are 4-particle interactions for these systems for which
wavefunctions are the exact ground state, it turns out that there are
physically relevant cases where the Read-Rezayi Zs parafermion wave-
function is an extremely good trial wavefunction. For bosons interacting
with a simple two body é-function potential potential at filling fraction
v = 3/2,the Zs parafermion wavefunction is extremely good. For elec-
trons interacting with simple coulomb interaction (in realistic quantum
well samples), it turns out that the wavefunction is extremely good for
v = 2+2/5, which we need to particle-hole conjugate in the partly filled
Landau level to get a v = 3/5 wavefunction. (** add cites **)

To construct a quasihole we can try building a quasihole from any of
the primary field operators. It turns out the one with the lowest charge
is constructed from oy

V=

Yan(z) = 01(2)V3(2)
Using the OPE we have
a1 (w)ihr (2) ~ (2 = w)"ie(z)
We thus choose
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with the smallest charge quasihole then being p = 1. With this choice,
for a quasihole at position w we generate a factor of

H(z —w)1/3

i
meaning the charge of the quasihole is

e*=ev/3
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Exercises

Exercise 21.1 Bose Vertexr Operators
In lecture we needed the following identity

(Vay (21)Vay (22) . .. Vay (28)) = H(z — zj)™i% (21.17)
where

> ai=0 (21.18)
where the vertex operators are defined by
Va(z) =: "¢ (21.19)

with ¢ a chiral bose field and colons meaning normal ordering.
(a) To get to this result, let us first show that for a bose operator a, such
that [a,a'] = 1, we have

eveefe! = Pl gragaB (21.20)
(b) Thus derive
(Va,Vay ... Vay) = exi<itAids) (21.21)
where
A; = wia +via (21.22)
and
VAi = eAi = euiatevia (21.23)

with the colons meaning normal ordering (all daggers moved to the left).
(c) Show that Eq. 21.21 remains true for any operators A; that are sums of
different bose modes ag, i.e., if

A = Z[uz(kj)al + vi(k)ak] (21.24)
k
Set A; = iai¢(z;) such that Va, = Va(z;). If ¢ is a free massless chiral bose
field which can be written as the sum of fourier modes of bose operators such
that
(¢(2)p(w)) = —In(z — w) (21.25)
conclude that Eq. 21.17 holds.

Note: This result is not quite correct, as it fails to find the constraint
Eq. 21.18 properly. The reason it fails is a subtlety which involves how one
separates a bose field into two chiral components. (More detailed calculations
that get this part right are given in the Big Yellow CFT book (P. Di Francesco,
P. Mathieu, and D. Senechal) and in a different language in A. Tsvelik’s book.)

There is, however, a quick way to see that the constraint must be true.
Note that the lagrangian of a massless chiral bose field is

1
L= 5-0:6(0: +v0)¢ (21.26)

which clearly must be invariant under the global transformation ¢ — ¢ + b.

(d)Show that the correlator Eq. 21.17 (with Eq. 21.19) cannot be invariant
under this transformation unless Eq. 21.18 is satisfied, or unless the value of
the correlator is zero.



Exercise 21.2 Z, Quantum Hall State

In this problem we intend to construct a quantum hall state from the the
Z4 parafermion conformal field theory (Details of the CFT can be found in A.
B. Zamolodchikov and V. A. Fateev, Soviet Physics JETP 62, 216 (1985), but
we will not need too many of the details here).

The wavefunction we construct is known as the Zs Read-Rezayi wavefunc-
tion (N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999) ).

The Z4 parafermion conformal field theory has 10 fields with corresponding
conformal weights (scaling dimension)
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field || 1 | o [ W2 [ |ow o[ e] p[x+] x|
e N N N
and the fusion table is given by

S S B B B S N A € I T S
O N N N A ¢ I T S
Vi fl [ [ ws | 1] x| er | P ¢ N
wlmlelilnl w | x | ¢ | o | o | o |
wlwl il oo | xw | o | ¢ | x | o |
o |l ov [ x= | x+ |o- | va+p | 14+e | or+x+ | o-+x- | ¥at+p | ¢2te |
oo o | x| x+ | 14e | wstp | ootx- | ovtxs | date | vatp |
el el p| e| ploptxs |ootx | L+vote |[rdvs+p]| or+xs | oo +x- |
p p|l e p| e |o—+tx |ortxr | Vvit+stp| 1+vate | oo +x— | or+xt |
X+ || x+ | o= | ot | x| ¥s+p | Y2te | ovtx+ | o-+x- | ¥itp | 14e |
X— || x= | x+ |o- | or | v2de | va+p | o-4+x- | or+x+ | 1+e | vs+p |

If I have not made any mistake in typing this table, the fusion rules should
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be associative
(axb)xc=ax(bxc) (21.27)

Note of interest: These fusion rules may look mysterious, but in fact they
are very closely related to the fusion rules of SU(2) appropriately truncated
(i.e., this is the SU(2)s WZW model). We can write each field as a young
tableau with no more than 2 (for SU(2)) columns and no more than 4 —1 =3
rows

fd |1 [ e [ fen o | e Lo x| x|

tableau empty DHH}@D @EEHB:'@H

The fusion rules are just a slight modification of the usual young tableau
manipulations for SU(2) where columns are removed if they have 4 boxes.
(See the big yellow book for details).

Using the techniques discussed in lecture:

(a) Use the operator product expansion (dimension counting) to find the
singularity as two v fields come close together. I.e, find the exponent « in
the relation

Tim 91 ()n(2) ~ (2 = ) 6 (2) (21.28)

(b) Construct all possible “electron” fields by making a product of the v,
field and a chiral bose vertex operator of the form

Pe(2) = 1 (2)e"??) (21.29)

that give a single-valued and nonsingular wavefunction for the electron. (See
Eq. 21.17, but ignore the sum condition Eq. 21.18) Le., find all acceptable
values of 8. Consider both the case where the “electron” is a boson or a
fermion. What filling fractions do these correspond to? (There are multi-
ple allowable solutions for both bosons and fermions). Consider among the
bosonic solution, the one solution of the highest density. The ground state
wavefunction in this case is the highest density zero energy state of a 5-point
delta function interaction. Show that the wavefunction does not vanish when
4 particles come to the same point, but does indeed vanish as 5 particles come
to the same point.

(c) Given a choice of the electron field, construct all possible quasihole
operators from all fields ¢ in the above table

ban(w) = p(w)e ™) (21.30)

For each case, fix the values of k by insisting that the wavefunction remain
single-valued in the electron coordinates. Determine the quasihole with the
lowest possible (nonzero) electric charge. What is this charge?

(d) Two such quasiholes can fuse together in two possible fusion channels.
What is the monodromy in each of these channels. I.e, what phase is accumu-
lated when the two quasiholes are transported around each other (assuming



the Berry matrix is zero — which is a statement about wavefunctions being
properly orthonormal — which we usually assume is true).

(e) Draw a Bratteli diagram (a tree) describing the possible fusion channels
for many of these elementary particles. Label the number of paths in the
diagram for up to 10 quasiholes. If there are 8 quasiparticles and the number
of electrons is divisible by 4, what is the degeneracy of the ground state? If
there are 4 quasiparticles and the number of electrons is 4m + 2 what is the
degeneracy of the ground state?

(f) Construct a 5 by 5 transfer matrix and show how to calculate the ground
state degeneracy in the presence of any number of quasiholes. Finding the
largest eigenvalue of this matrix allows you to calculate the “quantum dimen-
sion” d which is the scaling

Degeneracy ~ d[Number of Quasiholes) (21.31)
in the limit of large number of quasiholes. While diagonalizing a 5 by 5 matrix
seems horrid, this one can be solved in several easy ways (look for a trick or
a nice factorization of the characteristic polynomial).

(g) Consider instead constructing a wavefunction from the ¢, field

Ye(2) = ha(2)e??) (21.32)

What filling fraction does this correspond to (for bosons or fermions). In the
highest density case, what are the properties of this wavefunction (how does
it vanish as how many many electrons come to the same point).
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Commentary on References

(1)
(2)

A general reference which should be useful for much of the book
is the review article by Nayak, Simon, et alNayak et al. [2008].

A wonderful little book which is really fun to read that introduces
the Kauffman invariant and many other ideas of knot theory is
the book Knots and Physics by Kauffman?, now in its 3rd edition.
This book really inspired me when I was a grad student. It appears
to be available online in several places (not certain which, if any,
are legal). Although the whole book is fun; and much of it is
written at a very introductory level, mainly the end of part 1 is the
most relevant part where he explains the connection of Kauffman
invariant to Chern-Simons theory (and pieces get to be well beyond
introductory). There is a lot in here , the deep parts are easy to
gloss over.

A very nice introduction to non abelian anyons and topological
quantum computation is given in John Preskill’s lecture notes,
available online?.

Frank Wilczek has two books which both discuss Berry phase and
abelian anyons??. Both have mainly reprints in them with some
commentary by Wilczek. Often it is enough to read the commen-
tary!

If you need a refresher on path integrals, consider the first 15 pages
of Fabian Essler’s notes?. Also consider the nice article by Richard
MacKenzie?. MacKenzie includes some useful applications such as
Aharanov-Bohm effect. Look mainly at the first 22 pages.

The classic paper by Ed Witten which launched the field is 7. This
is a tremendously deep paper which introduces a lot of brilliant
ideas. I find something new every time I read it. I find it to be
tough reading in some places and easy in others.

From a more mathematial viewpoint several articles by Sir Michael
Atiya are very useful??. These are both introductions to topolog-
ical quantum field theories. There is also a more detailed book by
the same author?. The full book might be hard to read unless you
have a very strong maths background.

A rather remarkably well written and readable master’s thesis (!)
by Lokman Tsui on Chern- Simons theories, topological quantum
field theory, and knot theory?.

There are several nice references on the structure of topological
quantum field theories and diagrammatic calculus,
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Parsa Bonderson’s thesis: http://thesis.library.caltech.edu/2447/2/thesis.pdf
This is a more detailed version of the long article by Kitaev (“Anyons
in exactly solvable models”) which I mention below. Note there is
some slight change of convention between the two articles.

Also a good reference is the book on Topological Quantum Com-
putation by Zhenghan Wang

“Topological Quantum Computation”, Conference Board of the
Mathematical Sciences, Regional Conference Series in Mathemat-
ics, American Mathematical Society, (Providence, Rhode Island),
Number 112, 2008.

If you are more mathematical, you might like the thesis of Bruce
Bartlett available online here

https://arxiv.org/abs/math/0512103

(10) The monumental work “Anyons in an exactly solved model and
beyond” by Alexei Kitaev, Annals of Physics 321 (2006) 2-111
available online here
https://arxiv.org/abs/cond-mat /0506438
This brings the ideas of topological quantum field theory into the
condensed matter arena. This is not easy reading, but a ton of
great ideas are buried in this paper.

Another work by Kitaev, “Fault-tolerant quantum computation by
anyons”, Annals Phys. 303 (2003) 2-30.

available online here

https://arxiv.org/abs/quant-ph /9707021

introduces the famous toric code, discusses quantum error correc-
tion, and generalizes the toric code model to arbitrary non-abelian
groups.

Kitaev’s work on the quantum wire (which we might get to at the
end of the course) is here.
https://arxiv.org/abs/cond-mat,/0010440

A brief digest of some of the many ideas introduced in these three
papers is given by notes taken by Laumann of Kitaev’s lectures,
available here.

https://arxiv.org/abs/0904.2771

Loop gases are introduced in this paper by Freedman et al. It has
a lot of sections which are hard to parse.
http://stationq.cnsi.ucsb.edu/ freedman/Publications/83.pdf

The double-fibonacci string-net is discussed in some detail in this
work by Fidkowski et al,
https://arxiv.org/abs/cond-mat /0610583

The classic paper on string - nets very generally is this by Levin
and Wen.

https://arxiv.org/abs/cond-mat /0404617

The standard reference on introductory quantum hall effect is the
classic book, ”The Quantum Hall Effect”, edited by Prange and
Girvin, published by Springer. The first chapter, and the chapters
by Laughlin and Haldane are probably the best. The experimental
chapters are good for context too.
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Another decent reference quantum Hall physics is T. Chakraborty
and P. Piettilainen, ” The Quantum Hall Effects: Integral and Frac-
tional,” (Springer 1995).

A short review article by Macdonald is pretty nice and is available
here.

https://arxiv.org/pdf/cond-mat/9410047v1.pdf

The article that introduced the ideas of conformal field theory into
the field of quantum Hall effect is by Moore and Read, available
online here.

http://www.physics.rutgers.edu/ gmoore/MooreReadNonabelions.pdf
A recent review article on Fractional quantum Hall hierarchies
(and also discusses nonabelian quantum Hall and conformal field
theory) is online here.

https://arxiv.org/abs/1601.01697

A few random digressions:

(11)

(12)

(13)

(14)

If you are interested in 2+1 D quantum gravity, see this article .

I can’t vouch for it, but the introduction is interesting;
https://link.springer.com/article/10.12942 /1rr-2005-1

This is the article by Witten explaining how 241 D gravity is ”ex-
actly solvable.” More from Witten here. There is reconsideration
many years later, again by Witten, see here .
http://www.sciencedirect.com/science/article/pii/0550321389905919

I’ve been told the book by Jiannis Pachos on topological quantum
computation is a good resource.

If you are interested in the topology of manifolds in 3 and 4 di-
mensions, there are several good books. One by Kirby is online
here.

https://math.berkeley.edu/ kirby/papers/Kirby

There is a book by Gompf and Stipcitz ”4-manifolds and Kirby
Calculus” which is nice. Note that parts of this book are online
free if you google them.

https://www.amazon.co.uk /4-Manifolds-Calculus-Graduate-Studies-
Mathematics/dp/0821809946

For more information on conformal field theory. The standard
reference is the Big yellow book (Conformal Field Theory Authors:
Philippe Di Francesco, Pierre Mathieu, David Snchal) . The first
part of this book (up to chapter 12) is excellent, but even that
much is a lot of reading. There is a short set of lectures from les
Houches by Ginsparg .

https://arxiv.org/abs/hep-th/9108028

T also like the short set of notes by Fendley .
http://galileo.phys.virginia.edu/ pf7a/msmCFT.pdf

For even shorter introduction of what you need to apply CFT to
quantum Hall, see the appendix of Ref. 1 above, or the appendix
of *¥*.

The book by Kauffman and Lins gives more details of constructing
a full anyon theory from the kauffman invariant.
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http://press.princeton.edu/titles/5528.html
Neilsen and Chuang for quantum computation in general, although
there are plenty of other refs.
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