
Topological Phases of Matter: Problem Set # 1

S. Simon

January 2009

Problem 0 About the Braid Group

For several problems below I refer to the braid group. To define the braid group
BM for M particles, line up the M strands from left to right. The generator σm for
m = 1 . . . ,M−1 is a counter-clockwise exchange of particles m and m+1 as shown in
Fig. 1 The braid generators may be composed in products and inverted as shown in

Figure 1: The three generators of the braid group on four strands, B4

Figure 2: The three generators of the braid group on four strands, B4

Fig. 2. Each braid (arbitrary product of the braid generators and their inverses) can
be thought of as representing a class of topologically equivalent paths of M particles
in a plane moving through time.
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Figure 3: An element of the braid group B3(S
2). The braid shown here is σ1σ

−1
2

(a) Convince yourself geometrically that the defining relations of the braid group
are:

σi σi+1 σi = σi+1 σi σi+1 1 ≤ i ≤M − 2 (1)

σi σj = σj σi for |i− j| > 1, 1 ≤ i, j ≤M − 1 (2)

(b) Instead of thinking about particles on a plane, let us think about particles on
the surface of a sphere. In this case, the braid group of M strands on the sphere is
written as BM(S2). To think about braids on a sphere, it is useful to think of time
as being the radial direction of the sphere, so that braids are drawn as in Fig. 3.
The braid generators on the sphere still obey Eqns. 1 and 2, but they also obey one
additional identity

σ1σ2 . . . σM−2σM−1σM−1σM−2 . . . σ2σ1 = I (3)

where I is the identity (or trivial) braid. What does this additional identity mean
geometrically?

[In fact, for understanding the properties of anyons on a sphere, Eq. 3 is not
quite enough. We will try to figure out below why this is using Ising Anyons as an
example.]

. . . . . . . . .

Problem 1 Ising Anyons and Majorana Fermions

The most commonly discussed type of non-Abelian anyon is the Ising anyon. This
occurs in the Moore-Read quantum Hall state, as well as (potentially) in any chiral
p-wave superconductor. The non-Abelian statistics of these anyons may be described
in terms of Majorana fermions. [ Majorana Fermions γj satisfy the anticommutation
relation

{γi, γj} = 2δij (4)

as well as being self conjugate γ†i = γi.] Ising anyons, can be represented by attaching
a majorana to each anyon. The Hamiltonian for these majoranas is zero – they are
completely noninteracting.
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(a) Show that the ground state degeneracy of a system with 2N majoranas is 2N

if the Hamiltonian is zero. Thus conclude that each pair of Ising anyons is a two-state
system.

(b) When anyon i is exchanged clockwise with anyon j, the unitary transformation
that occurs on the ground state is

Uij =
eiα√

2
[1 + γiγj] i < j. (5)

for some real value of α. By confirming the braid relations Eq. 1 and 2, show that
these unitary operators form a 2N dimensional representation of the braid group.

(c) Consider the operator

γFIVE = (i)Nγ1γ2 . . . γ2N (6)

(the notation FIVE is in analogy with the γ5 of the dirac gamma matrices). Show that
the eigenvalues of γFIVE are ±1. Further show that this eigenvalue remains unchanged
under any braid operation. Conclude that we actually have two 2N−1 dimensional
representations of the braid group. We will assume that any particular system of
Ising anyons is in one of these two representations.

(d) Thus, 4 Ising anyons on a sphere comprise a single 2-state system, or a qubit.
Show that by only braiding these four Ising anyons one cannot obtain any unitary
operation on this qubit. Indeed, braiding Ising anyons is not sufficient to build a
quantum computer. [Part d not required to solve part e,f]

(e) Now consider 2N Ising anyons on a sphere (See above problem about anyons on
a sphere). Show that in order for either one of the 2N−1 dimensional representations
of the braid group to satisfy the sphere relation, Eqn. 3, one must choose the right
abelian phase α in Eq. 5. Determine this phase.

(f) The value you just determined is not quite right. It should look a bit unnatural
as the abelian phase associated with a braid depends on the number of anyons in the
system. Go back to Eqn. 3 and insert an additional abelian phase on the right hand
side which will make the final result of part (e) independent of the number of anyons
in the systm. In fact, there should be such an additional factor — to figure out where
it comes from, go back and look again at the geometric “proof” of Eqn. 3. Note
that the proof involves a self-twist of one of the anyon world lines. The additional
phase you added is associated with one particle twisting around itself. The relation
between self-rotation of a single particle and exchange of two particles is a generalized
spin-statistics theorem.

. . . . . . . . .

Problem 2 Small Numbers of Anyons on a Sphere

On the plane, the braid group of two particles is an infinite group (The free group
with one generator). However, this is not true on a sphere

First review problem 0 about braiding on a sphere.

Topological Phases of Matter PS # 1



Problem 3 4

(a) Now consider the case of two particles on a sphere. Determine the full structure
of the braid group. Show it is a well known finite discrete group. What group is it?

(b) Now consider three particles on a sphere. Determine the full structure of the
braid group. Show that it is a finite discrete group. (Harder: What group is it? It is
“well known” only to people who know a lot of group theory. But you can google to
find information about it on the web with some work.)

Suppose we have two or three anyons on a sphere. Suppose the ground state is
two-fold degenerate. If the braid group is discrete, conclude that no possible type
of anyon statistics will allow us to do arbitrary SU(2) rotations on this degenerate
ground state by braiding.

. . . . . . . . .

Problem 3 One Approach to Exotic Statistics in 3+1 D

As discussed in the class, the origin of exotic statistics is that the set of space-time
paths separate into disconnected sets which cannot be smoothly deformed into each
other. This allows us to associate different unitary operations with each topologically
different space-time path.

In 3+1 D, for paths of point particles, the topologically different space-time paths
are only the different permutations of which particle starts where and which ends
where (this is just the statement that you cannot form a knot of one dimensional
strings in four dimensions). However, if we imagine that our elementary particles are
directed loops, rather than points then there are more possibilities. Let us suppose we
have N such directed loops and we line them up and number them from left to right.
Loops can be exchanged (as if they were point particles) or they can be threaded
through each other (See figures 4 and 5). Let σi be a threading of i + 1 through i

Figure 4: Exchanging loops as if they were simple point particles

Figure 5: Threading loop i+ 1 through loop i
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(Fig 5) followed by exchanging i+ 1 and i. Note that we have directed the loops (put
arrows on them) so that a loop flipped over is not the same as the original loop.

Suppose, we have N directed-loop-like particle that are “bosonic” under simple
exchange. (I.e., exchanging two such loops leaves the wavefunction unchanged). This
particle may still have nontrivial “statistics” under threading as in Fig. 5. Show that
the σi operators are isomorphic to the σi operators of the braid group BN , that is,
they obey Eqns. 1 and 2. Conclude that for any type of anyonic statistic that exists
for point particles in 2+1 D, there can exist a corresponding ”loop particle” statistics
in 3+1 D.

. . . . . . . . .
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