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Problem Set 4

Tight Binding Chain, Band Structure, and Semiconductor Physics

4.1. One Dimensional Tight Binding Model

This problem really belongs in problem set 2 due to its similarities with problems 2.7. and
2.8.. I recommend that you back up and review those problems before attempting this one.
They are extremely similar to this.

(a)Monatomic Solid: Consider a one-dimensional tight binding model of electrons hopping
between atoms. Let the distance between atoms be called a, and here let us label the atomic
orbital on atom n as |n〉 for n = 1 . . .N (and you may assume periodic boundary conditions,
and you may assume 〈n|m〉 = δnm). Suppose there is an on-site energy ǫ and a hopping
matrix element −t. In other words, suppose 〈n|H |m〉 = ǫ for n = m and 〈n|H |m〉 = −t for
n = m± 1.

⊲ Derive and sketch the dispersion curve for electrons. (Hint: Use the effective Schroedinger
equations of problem 2.2.a. The resulting equation should look very similar to that of problem
2.7. above.)

⊲ How many different eigenstates are there in this system?

⊲ What is the effective mass of the electron near the bottom of this band?

⊲ What is the density of states?

⊲ If each atom is monovalent (it donates a single electron) what is the density of states at
the fermi surface?

⊲ Estimate the heat capacity of the system at low temperature.

⊲ What is the heat capacity if each atom is divalent? What about the spin susceptibility?

(b) Diatomic Solid: Now consider a model of a diatomic solid as such

−A−B −A−B −A−B−

Suppose that the onsite energy of type A is different from the onsite energy of type B. I.e,
〈n|H |n〉 is ǫA for n being on a site of type A and is ǫB for n being on a site of type B. (All
hopping matrix elements −t are still identical to each other).

⊲ Calculate the new dispersion relation. (This is extremely similar to problem 2.8. above.
If you are stuck, try studying that problem again.)

⊲ Sketch this dispersion relation in both the reduced and extended zone schemes.

⊲ What happens in the “atomic” limit when t becomes very small.

⊲ What is the effective mass of an electron near the bottom of the lower band?

⊲ If each atom (of either type) is monovalent, is the system a metal or an insulator?

⊲ What happens if ǫA = ǫB ?

4.2. Number of States in the Brillouin Zone

A specimen in the form of a cube of side L has a primitive cubic lattice whose mutually
orthogonal primitive lattice vectors have length a. Show that the number of different allowed
~k-states within the first Brillouin zone equals the number of primitive unit cells forming the
specimen (do not consider spin). One may assume periodic boundary conditions, although
it is worth thinking about whether this still holds for hard-wall boundary conditions as well.
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4.3. ‡Nearly Free Electron Model

Consider an electron in a weak periodic potential in one dimension V (x) = V (x+ a). Write
the periodic potential as

V (x) =
∑

G

eiGxVG

where the sum is over the reciprocal lattice G = 2πn/a, and V ∗

G = V−G assures that the
potential V (x) is real.

(a) Explain why for k near to a Brillouin zone boundary (such as k near π/a) the electron
wavefunction should be taken to be

ψ = Aeikx +Bei(k+G)x (1)

where G is a reciprocal lattice vector such that |k| is close to |k +G|.
(b) For an electron of mass m with k exactly at a zone boundary, use the above form of the
wavefunction to show that the eigenenergies at this wavevector are

E =
~
2k2

2m
+ V0 ± |VG|

where G is chosen so |k| = |k +G|.
⊲ Give a qualitative explanation of why these two states are separated in energy by 2|VG|.
⊲ Give a sketch (don’t do a full calculation) of the energy as a function of k in both the
extended and the reduced zone schemes.

(c) *Now consider k close to, but not exactly at, the zone boundary. Give an expression for
the energy E(k) correct to order (δk)2 where δk is the wavevector difference of k to the zone
boundary wavevector.

⊲ Calculate the effective mass of an electron at this wavevector.

(d) Consider a two dimensional square lattice with one divalent atom per unit cell. If the
periodic potential is very very weak, you can consider the electrons to be free and to form a
circular Fermi sea. Using the intuition from above (as well as the result of 4.2. above) sketch
the Fermi surface for weak, medium, and strong periodic potentials.

⊲ Roughly how strong should the periodic potential be for the system to be no longer a
metal.

4.4. Band Theory

(a) Give a brief description of the formation of electron bands in crystals including reference
to the atomic structure of the constituent atoms.

(b) Explain the following:

(i) sodium, which has 2 atoms in a bcc (conventional cubic) unit cell, is a metal;

(ii) calcium, which has 4 atoms in a fcc (conventional cubic) unit cell, is a metal;

(iii) diamond, which has 8 atoms in a fcc (conventional cubic) unit cell with a basis, is
an electrical insulator, whereas silicon and germanium, which have similar structures, are
semiconductors.

⊲ Why is diamond transparent?
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(c) A two-dimensional material has a square lattice with lattice constant a =0.3 nm. The
dispersion relations for electron energies in the conduction and valence bands are given by

ǫc(k) = 6− 2(cos kxa+ cos kya)

ǫv(k) = −2 + (cos kxa+ cos kya)

where energies are given here in units of eV. Sketch ǫc and ǫv for the direction kx = ky.

⊲ Indicate the value and position of the minimum band gap.

⊲ Show that close to the conduction and valence band edges, contours of constant energy
are circles in k-space and..

⊲ .. determine the effective masses of both the electrons and the holes.

⊲ Sketch the density of states as a function of energy for the whole of both the conduction
and the valence band.

(d) Using a tight-binding Hamiltonian, explain where the above dispersion relations come
from.

4.5. Law of Mass Action and Doping of Semiconductors

(a) Assume that the band gap energy Eg is much greater than the temperature kbT . Derive
expressions for the density of electrons (n) and for the density of holes (p) and for the
product np. Show that in a pure semiconductor at a fixed T , the product np depends only
on the density of states in the conduction band and the density of states in the valence band
(through their effective masses), and on the band gap energy. You may need to use the
integral

∫
∞

0 dxx1/2e−x =
√
π/2.

(b) The band gaps of Silicon and Germanium are 1.1 eV and 0.75 eV respectively. You
may assume the effective masses for Silicon and Germanium are isotropic, roughly the same,
and are roughly .5 of the bare electron mass for both electrons and holes. (Actually the
effective masses are not quite the same, and furthermore the effective masses are both rather
anisotropic.. but we are just making a rough estimates here).

⊲ Estimate the conduction electron concentration for intrinsic (undoped) Silicon at room
temperature.

⊲ Make a rough estimate of the maximum concentration of ionized impurities that will still
allow for this “intrinsic” behavior.

⊲ Estimate the conduction electron concentration for Germanium at room temperature.

(c) The graph in Figure 1 shows the relationship between charge-carrier concentration for a
certain n-doped semiconductor.

⊲ Estimate the bandgap for the semiconductor and the concentration of donor ions.

⊲ Describe in detail an experimental method by which this data could have been measured
and suggest possible sources of experimental error.

4.6. More about Semiconductors

(a) In semiconductor physics what is meant by a hole and why is it useful?

(b) An electron near the top of the valence band in a semiconductor has energy

E = −10−37|~k|2

where E is in Joules and k is in m−1. An electron is removed from a state ~k = 2× 108m−1x̂
where x̂ is the unit vector in the x-direction. For a hole, calculate (and give the sign of!)



4

FIG. 1. Figure for Problem 4.5.

(i) the effective mass

(ii) the energy

(iii) the momentum

(iv) the velocity.

(v) If there is a density p = 105m−3 of such holes all having almost exactly this same
momentum, calculate the current density and its sign.

(c)Show that the chemical potential in an intrinsic semiconductor lies in the middle of the
gap at low temperature.

⊲ Explain how the chemical potential varies with temperature if the semiconductor is doped
with (i) donors (ii) acceptors.

(d) A direct gap semiconductor is doped to produce a density of 1023 electrons/m3. Calculate
the hole density at room temperature given that the gap is 1.0 eV, and the effective mass
of carriers in the conduction and valence band are 0.25 and 0.4 electron masses respectively.
Hint: use the result of problem 4.5.a.


