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Problem Set 2

Chemical Bonding, Thermal Expansion, Normal Modes, Phonons in 1d

2.1. Chemical Bonding

(a) Qualitatively describe five different types of chemical bonds and why they occur.

⊲ Describe which combinations of what types of atoms are expected to form which types
of bonds (make reference to location on the periodic table).

⊲ Describe some of the qualitative properties of materials that have these types of bonds.

(Yes, you can just copy the table out of the notes, but the point of this exercise is to learn
the information in the table!)

(b) Describe qualitatively the phenomenon of Van der Waals forces. Explain why the force
is attractive and proportional to 1/R7 where R is the distance between two atoms.

(c) The ionization energy of a sodium (Na) atom is 5.14 eV. The electron affinity of a chlorine
(Cl) atom is 3.62 eV. The bond length of a sodium-chloride molecule (i.e., one Na atom and
one Cl atom) is .236 nm. Assuming the cohesive energy is purely Coulomb energy, calculate
the total energy released when a Na atom and a Cl atom come together to form an NaCl
molecule. The actual experimental value is 4.26 eV. Qualitatively account for the sign of
your error.

2.2. Covalent Bonding in Detail*

(a) Linear Combination of Atomic Orbitals (LCAO) In class we considered two atoms
each with a single atomic orbital. We called the orbital |1〉 around nucleus 1 and |2〉 around
nucleus 2. More generally we may consider any set of wavefunctions |n〉 for n = 1, . . . , N .
For simplicity, let us assume this basis is orthonormal 〈n|m〉 = δn,m

Let us write a trial wavefunction for our ground state as

|Ψ〉 =
∑

n

φn|n〉

This is known as a linear combination of atomic orbitals (LCAO). We would like to find the
lowest energy wavefunction we can construct in this form, that is the best approximation to
the actual ground state wavefunction. (The more states we use in our basis, generally, the
more accurate our results will be).

We claim that the the ground state is given by the solution of the effective Schroedinger
equation

Hφ = E φ (1)

where φ is the vector of N coefficients φn, and H is the N by N matrix

Hn,m = 〈n|H |m〉

with H the Hamiltonian of the full system we are considering.

To prove this, let us construct the energy

E =
〈ψ|H |ψ〉

〈ψ|ψ〉
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⊲ Show that minimizing this energy with respect to each φn gives the same eigenvalue
equation, Eq. 1. (Caution: φn is generally complex! If you are not comfortable with complex
differentiation, write everything in terms of real and imaginary parts of each φn). Similarly,
the second eigenvalue of the effective Schroedinger equation will be an approximation to the
first excited state of the system.

This technique is know as the molecular orbital approach, or the LCAO (linear combination of
atomic orbitals) approach. It is used heavily in numerical simulation of molecules. However,
more generally, one cannot assume that the basis set of orbitals is orthonormal. (See problem
6.5 from the book for handling the LCAO without this assumption.)

(b) Two-orbital covalent bond Let us return to the case where there are only two orbitals
in our basis. This pertains to a case where we have two identical nuclei and a single electron
which will be shared between them to form a covalent bond. We write the full Hamiltonian
as

H =
p2

2m
+ V (r−R1) + V (r−R2) = K + V1 + V2

where V is the Coulomb interaction between the electron and the nucleus, R1 is the position
of the first nucleus and R2 is the position of the second nucleus. Let ǫ be the energy of the
atomic orbital around one nucleus in the absence of the other. In other words

(K + V1)|1〉 = ǫ|1〉

(K + V2)|2〉 = ǫ|2〉

Define also the cross-energy element

Vcross = 〈1|V2|1〉 = 〈2|V1|2〉

and the hopping matrix element

t = −〈1|V2|2〉 = −〈1|V1|2〉

These are not typos!

⊲ Why can we write Vcross and t equivalently using either one of the expressions given on
the right hand side?

⊲ Show that the eigenvalues of our Schroedinger equation Eq. 1 are given by

E = ǫ+ Vcross ± |t|

⊲ Argue (perhaps using Gauss’s law) that Vcross should roughly cancel the repulsion be-
tween nuclei, so that, in the lower eigenstate the total energy is indeed lower when the atoms
are closer together.

⊲ This approximation must fail when the atoms get sufficiently close. Why?



3

2.3. Potentials Between Atoms

As a model of thermal expansion, we study the distance between two nearest neighbor atoms
in an anharmonic potential that looks roughly like this

✻

✲
✻kBT

V (x)

x
x0

where x is the distance between the two neighboring atoms. This potential can be expanded
around its minimum as

V (x) =
κ

2
(x − x0)

2 −
κ3
3!

(x − x0)
3 + . . . (2)

where the minimum is at position x0 and κ3 > 0. For small energies, we can truncate the
series at the cubic term. (Note we are defining the energy at the bottom of the well to be
zero here).

A very accurate approximate form for inter-atomic potentials (particularly for inert atoms
such as helium or argon) is given by the so-called Lennard-Jones potential

V (x) = 4ǫ

[

(σ

x

)12

−
(σ

x

)6
]

+ ǫ (3)

where ǫ and σ are constants that depend on the particular atoms we are considering.

⊲ What is the meaning of the exponent 6 in the second term of this expression (i.e., why is
the exponent necessarily chosen to be 6).

⊲ By expanding Eq. 3 around its minimum, and comparing to Eq. 2, calculate the values
of the coefficients x0, κ, and κ3 for the Lennard-Jones potential in terms of the constants ǫ
and σ. We will need these results in exercise 2.5. below.

2.4. Classical Model of Thermal Expansion

In classical statistical mechanics, we write the expectation of x as

〈x〉β =

∫

dxx e−βV (x)

∫

dx e−βV (x)

Although one cannot generally do such integrals for arbitrary potential V (x) as in Eq. 2, one
can expand the exponentials as

e−βV (x) = e−
βκ

2
(x−x0)

2

[

1 +
βκ3
6

(x− x0)
3 + . . .

]
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and let limits of integration go to ±∞

⊲ Why is this expansion of the exponent and the extension of the limits of integration
allowed?

⊲ Use this expansion to derive 〈x〉β to lowest order in κ3, and hence show that the coefficient
of thermal expansion is

α =
1

L

dL

dT
≈

1

x0

d〈x〉β
dT

=
1

x0

kB κ3
2κ2

with kB Boltzmann’s constant.

⊲ In what temperature range is the above expansion valid?

⊲ While this model of thermal expansion in a solid is valid if there are only two atoms, why
is it invalid for the case of a many-atom chain? (Although actually it is not so bad as an
approximation!)

2.5. Properties of Solid Argon

For argon, the Lennard-Jones constants ǫ and σ from Eq. 3 are given by ǫ = 10meV and
σ = .34nm. You will need to use some of the results from exercise 2.3. above.

(a) Sound

Given that the atomic weight of argon is 39.9, estimate the sound wave velocity in solid
argon. The actual value of the longitudinal velocity is about 1600 m/sec.

(b) Thermal Expansion

Using the results of exercise 2.4. Estimate the thermal expansion coefficient α of Argon.
Note: You can do this part even if you couldn’t completely figure out exercise 2.4.!

The actual thermal expansion coefficient of Argon is approximately α = 2×10−3/K at about
80K. However at lower temperature α drops quickly. See exercise 8.4 from the book to see a
more quantum treatment which explains this feature.

2.6. Classical Normal Modes to Quantum Eigenstates

In lecture we stated, without proof that a classical normal mode becomes a quantum eigen-
state. Here we prove this fact for a simple diatomic molecule in a potential well.

Consider two particles, each of mass m in one dimension, connected by a spring (K), at the
bottom of a potential well (with spring constant k). We write the potential energy as

U =
k

2
(x21 + x22) +

K

2
(x1 − x2)

2

⊲ Write the classical equations of motion.

⊲ Transform into relative xrel = (x1−x2) and center of mass xcm = (x1+x2)/2 coordinates.

(a) Show that in these transformed coordinates, the system decouples, thus showing that the
two normal modes have frequencies

ωcm =
√

k/m

ωrel =
√

(k + 2K)/m

Note that since there are two initial degrees of freedom, there are two normal modes.
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Now consider the quantum mechanical version of the same problem. The Hamiltonian is

H =
p21
2m

+
p22
2m

+ U(x1, x2)

⊲ Again transform into relative and center of mass coordinates.

Define the corresponding momenta are given by prel = (p1 − p2)/2 and pcm = (p1 + p2).

(b) Show that [pα, xγ ] = −i~δα,γ where α and γ take the values cm or rel.

(c) In terms of these new coordinates show that the Hamiltonian decouples into two inde-
pendent harmonic oscillators with the same eigenfrequencies ωcm and ωrel. Conclude that
the spectrum of this system is

Enrel,ncm
= ~ωrel(nrel +

1

2
) + ~ωcm(ncm +

1

2
)

where ncm and nrel are nonnegative integers.

(d) At temperature T what is the expectation of the energy of this system?

In problem 9.7 of the book, the principle that normal modes become quantum eigenstates is
proven in more generality.

2.7. Normal Modes of a One Dimensional Monatomic Chain

(a)‡ Explain what is meant by “normal mode” and by “phonon”.

⊲ Explain briefly why phonons obey Bose statistics.

(b)‡ Derive the dispersion relation for the longitudinal oscillations of a one dimensional mass-
and-spring crystal with N identical atoms of mass m, lattice spacing a, and spring constant
κ. (Motion of the masses is restricted to be in one dimension).

(c)‡ Show that the mode with wavevector k has the same pattern of mass displacements as
the the mode with wavevector k+ 2π/a. Hence show that the dispersion relation is periodic
in reciprocal space (k-space).

⊲ How many different normal modes are there.

(d)‡ Derive the phase and group velocities and sketch them as a function of k.

⊲ What is the sound velocity?

⊲ Show that the the sound velocity is also given by vs =
√

β−1/ρ where ρ is the chain
density and β is the compressibility.

(e) Find the expression for g(ω), the density of states of modes per angular frequency.

⊲ Sketch g(ω).

(f) Write an expression for the heat capacity of this one dimensional chain. You will inevitably
have an integral that you cannot do analytically.

(g) Show that at high temperature the law of Dulong-Petit (for one dimension) is recovered.
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2.8. Normal modes of a One Dimensional Diatomic Chain

a

m1 m2

κ κ

(a) What is the difference between an acoustic mode and an optical mode.

⊲ Describe how particles move in each case.

(b) Derive the dispersion relation for the longitudinal oscillations of a one dimensional di-
atomic mass-and-spring crystal where the unit cell is of length a and each unit cell contains
one atom of mass m1 and one atom of mass m2 connected together by springs with spring
constant κ (all springs are the same, and motion of particles is in one dimension only).

(c) Determine the frequencies of the acoustic and optical modes at k = 0 as well as at the
Brillouin zone boundary.

⊲ Determine the sound velocity and show that the group velocity is zero at the zone bound-
ary.

⊲ Show that the the sound velocity is also given by vs =
√

β−1/ρ where ρ is the chain
density and β is the compressibility.

(d) Sketch the dispersion in both reduced and extended zone scheme.

⊲ If there are N unit cells, how many different normal modes are there?

⊲ How many branches of excitations are there? (I.e., in reduced zone scheme, how many
modes are there there at each k).

(e) What happens when m1 = m2 ?

2.9. One more problem

Problem 4.1 really belongs to this problem set, but this set is too long already, and some
tutors felt it was too hard to discuss this material so early in the course, so I pushed this one
to the beginning of problem set 4. If you have extra time, give it a shot.


