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Course
Website

Survey!

Condensed Matter Year 3 : Hilary Term
2014

Lectures Remaining: O!

Next Lecture: Revision Lecture Thursday
Week 4 Trinity Term, 11am

Our Full Schedule is listed here. .

This is the web page for the course "Condensed Matter Physics" being taught in Hilary
term 2014, This course is section VI of the third year syllabus. My opinion is that the
name of this course should be changed to "Solid State Physics" since that is more
accurately the topic covered.

We have a message-board / forum for the coursel

Videos of lectures will be posted here. (Access limited to Oxford students only for
now).

INEW: A survey about your use of the Videos and how to make them more useful is
posted here.
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Much of this problem set is standard exam material.

Problem Set 1

Einstein, Debye, Drude, and Free Electron Models

1.1. Einstein Solid

(a) Classical Einstein Solid (or “Boltzmann” Solid):

Consider a single harmonic oscillator in three dimensions with Hamiltonian

2
_P ko
H_2m+2x

r= Calculate the classical partition function

- _(Qdf:)q / dx e=BH(px)
i)

The classical calculation
has never been on

an exam (although it

is examinable)

Note: in this problem p and x are three dimensional vectors (they should appear bold to

indicate this unless your printer is defective).
> Using the partition function, caleulate the heat capacity 3kg.

t= Conclude that if you can consider a solid to consist of N atoms all in harmonic wells, then
the heat capacity should be 3Nkp = 3R, in agreement with the law of Dulong and Petit.

(b) Quantum Einstein Solid: Now consider the same Hamiltonian quantum mechanically.

> Caleulate the quantum partition function

model could be on an exam

7= Zc—ﬂb}- The quantum Einstein
j

where the sum over j is a sum over all Eigenstates.
> Explain the relationship with Bose statistics.

> Find an expression for the heat capacity.

(although it rarely is)

> Show that the high temperature limit agrees with the law of Dulong of Petit.

t= Sketch the heat capacity as a function of temperature.
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1.2. Debye Theory:

Debye theory is (a)! State the assumptions of the Debye model of heat capacity of a solid.
very frequently t> Derive the Debye heat capacity as a function of temperature (you will have to leave the
examinad| final result in terms of an integral that cannot be done analytically).

r- From the final result, obtain the high and low temperature limits of the heat capacity
analytically.

You may find the following integral to be useful
b ,Is _ s = 3 . —nT _ oo L_JT_'l
Jo dagm =50y e =6 =T

. . . . i
By integrating by parts this can also be written as ft}x d‘r(ef_—-ljf — dz_

(b) The following table gives the heat capacity C' for potassium iodide (KI) as a function of
temperature.

T(K) [ o1 1.0 5 8 w |15 ]2
C (] K~ mol -1}| 85 x 1077 [8.6 x 107 |1.2 x 10~ |59 x 10~'| 1.1 | 2.8 | 6.3

> Discuss, with reference to the Debye theory, and make an estimate of the Debye temper-
ature.




1.3. Drude Theory of Transport in Metals

Drude theory does
show up on exams
-- particularly in the
context of
semiconductors

AC Drude theory is
likely to be too hard
for an exam

(a) Assume a scattering time 7 and use Drude theory to derive an expression for the conduc-
tivity of a metal.

b) Define the resistivity matrix p as E = pj.
) P Pl
> Use Drude theory to derive an expression for the matrix p for a metal in a magnetic field.

(You might find it convenient to assume B parallel to the Z axis. The under-tilde notation
means that the quantity p is a matrix.)

t> Invert this matrix to obtain an expression for the conductivity matrix g.

(c) Define the Hall coefficient.

> Estimate the magnitude of the Hall voltage for a specimen of sodium in the form of a
rod of rectangular cross section 5mm by 5mm carrying a current of 1A in a magnetic field
of 1T. The density of sodium atoms is roughly 1 gram/em?®, and sodium has atomic mass of
roughly 23. You may assume that there is one free electron per sodium atom (Sodium has
valence one).

> What practical difficulties would there be in measuring the Hall voltage and resistivity
of such a specimen (and how might these difficulties be addressed).

(d) What properties of metals does Drude theory not explain well?

(e)* Consider now an applied AC field E ~ ¢! which induces an AC current j ~ e™*,
Modify the above calculation (in the presence of a magnetic field) to obtain an expression for
the complex AC conductivity matrix g(w). For simplicity in this case you may assume that
the metal is very clean, meaning that 7 — oo, and you may assume that E 1 B. You might
again find it convenient to assume B parallel to the  axis. (This problem might look hard,
but if you think about it for a bit, it isn’t really much harder than what you did above!)

> At what frequency is there a divergence in the conductivity?
> What does this divergence mean? (When 7 is finite, the divergence is cut off).

> Explain how could one use this divergence (known as the cyclotron resonance) to measure
the mass of the electron. ( In fact, in real metals, the measured mass of the electron is
generally not equal to the well known value m, = 9.1095 x 10~3! kg. This is a result of band
structure in metals, which we will explain later in the course. )

ETC.... SEE MY WEBSITE
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Sample Exams with Solutions:

One on my website
One in back of book

Solutions to 2011 exam on
web — with all the past papers
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PAST PAPERS (1996- present)

Go to my website
for commentary
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Which Past Paper Questions are on the Syllabus Now?

Condensed Matter Papers 2011 and thereafter. All on Syllabus

B Paper 2010

Q1. On Syllabus. End of part d is tricky and was not really covered, but could be deduced by a
perceptive student.

Q 2,3,4,5. On Syllabus.

Q6. Mostly not on syllabus. The students should be able to deduce the density of states of a 2d
electron gas.

Q7,8 Not on syllabus

ETC !
SEE MY WEBSITE!

B Paper 2009.

Q1. On syllabus. This question is solved in great detail in my lecture notes (note also there is an error in
the height of data point e of the plot. Discussed in the book)

Q2,3. On syllabus.
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STATISTICAL ANALYSIS
OF PAST PAPERS (2004-present)

Go to my website
for commentary
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Topic  Subtopic Year= ©04 ©O5 06 07 08 09 10 11 12 13
# of Times
Something About Phonons H 1 1 1 1 1 1 1 1 1 1
Define Phonan 1
Phonon Density of States 1 1
In2d 1 1
In 1d / diatomic 1 1
How would you measure phonons {light/neutrons) 2 1 1
Why is there a degeneracy of modes at__. 2 1
Debye Specific Heat 4 1 1 1 1
Derivation in 3d 2 1 1
Derivation In 2d 2 1 1
Derivation In 1d 1 1
How many, what kind of {acoustic/optical/transverse/longitudinal) phonon modes 5 1 1 1 1 1
Describe Motion of acoustic/optical modes 4 1 1 1 1
Some Sort of Harmonic Chain 7 1 1 1 1 1 1 1
Diatomic with Two Masses 2 1 1
Monatomic 3 1 1 1
Alternating Sprint Constants 2 1 1
Second or Further Neighbor interactions 1 1
monatomic limit of diatomic 2 1 1
Sketch Dispersions / monotomic diatomic 2 1 1
Something about the Free Electron Gas 1 1 1 1 1 1 1
Derive Specific Heat of Fermi Gas z 1 1
Cefine Fermi Energy / Fermi Surface 2 1 1
Density of States of Free Electron Gas 3 1 1 1
Definition of 1 1
Derivation In 3d 1
Derivation In 2d 2 1 0.5 0.5
Derivation In 1d 0.5 05
Estimate a Fermi Energy / Relationship of N to Ef 5 1 1 1 1
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Topic  Subtopic Year= 04 05 06 O7 08 09 10 11 12 13
# of Times
Something About Diffraction / Crystal Structure 1 1 1 1 1
Derive Structure Factor / Scattering Amplitude [ 1 1
Calculate Interplanar distances 3 1 1
Diffraction ] 1 1 1
Derive Systematic Absences 2 1
When two atoms scatter same; H not scattering 2 1 1
Analyze a Powder Diffraction Pattern 5 1 1 1
Predict Diffraction Data 2 1
Write Down Structure Factor for X 3 1 1
Identify a unit cell doubling 2
Plan View 2
primitive vs conventional unit cell 4 1 1
Identify Lattice/Basis 4 1 1 1
Calculate Reciprocal Lattice 2
Wigner Seitz / Brillouin Zone Construction 3 1
Contrast neutron/xray 1 1

Describe equipment for neutronxray
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Topic  Subtopic Year = 06 07 08 09 10 11 12 13
Something about Band Structure/Semiconductor Physics IE' 1 1 1 1 1 1 1
Nearly Free Electron Model (NFEM) 6 1 1 1 1 1 1

Derive Gaps of NFEM at zone boundary 3 1 1 1
Draw Dispersion 2 1 1
Describe Effective Mass 3 1 1 1
Monovalent / Divalent - Metal/Insulator 3 1 1 1
Gaps open when doubling unit cell 1 1
Draw a fermi surface in 2d/3d for weak/strong potential 2 1 1
Tight Binding Band 1 1
Describe Density of States 1 1
Describe opening of gap 1 1
Define Effective Mass 3 1 1
Define Chemical Potential / Doping 1 1
Define Mobility 3 1 1
Define Conductivity 1 1
Define Hole 1
Signs of velocity, energy, current, ... 1
Law of Mass Action / formula for n(T,mu) 5 1 1 1 1
Derivation 4 1 1 1 1
Use to calculate some density/mu when doped 4 1 1 1
Temperature dependence of semiconductors 2 1
Estimate band gap / doping from data 1 1
How this would be measured 2 1
How chemical potential changes with doping 1
Density of States (1d, 2d, 3d) 2 05 05 05 0.5
Optical Properties of Semiconductors 1 1
Direct / Indirect Gap 1 1
States bound to donors 1 1
Drude Theory 1 1
Derive Hall Coefficient 1 1
Derive Conductivity/Mobility 2 1
Extract mobility/density from experimental data 1 1
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Topic  Subtopic Year= ©04 ©O5 06 07 08 09 10 11 12 13
# of Times

Something about magnetism 1 1 1

Define Para/Diamagnetism . 1 1

Estimate Larmor Diamagnetism 1 1

General Curie Law Derivation 1 1

Curie Law Derivation for Spin 1/2 3 1

Derive Pauli Paramagnetism 1

Adiabatic Demagnetization 1

What is exchange J 2 1

Molecular (mean) field 5 1 1

Relationship of 1 to Tc 3 1

What causes domains 1 1

Domain Relation to Hysteresis 2 1

Derive Size of Bloch Wall 1 1
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VI: Condensed-matter physics

Free electron model of metals, Fermi energy and Fermi surface.

Th € Syl Ia bus Drude theory, conductivity and Hall effect (one carrier only).

Lattice vibrations: law of Dulong and Petit; phonons; dispersion
relation with two atomic types: acoustic and optical branches;
Einstein and Debye models of heat capacity.

Structure and types of condensed matter. Bonding of atoms: ionic,
covalent, van der Waals, metallic [Non examinable: hydrogen).
Elasticity and thermal expansion.

Crystals. Bravais lattices, lattice planes, Miller indices and unit
cells (conventional and primitive). Reciprocal lattice: Bragg
and Laue formulation of diffraction; Brillouin zone: neutron and
X-ray scattering.

ons in periodic potentials; tight binding model; band s
ture; Fermi surface; semiconductors and insulators. Semiconduc-
tors: Doping; law of mass action; direct and indirect band gap;
concepts of holes and effective mass; mobility and Hall effect in
semiconductor [Non examinable: p-n junction, MOSFET].

Magnetism: Para- dia-, ferro-,antiferro-, and ferrimagnetism;
application of Hund’s rules to determination of magnetic ground
states of 1solated ions; Local Moment vs [tinerant magnetism.
Mean field theory. Domains, domain motion, hysteresis.
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Syllabus Notes:

Electrons in periodic potentials; tight binding model; band struc-
ture; Ferm surface; semiconductors and msulators. Semiconduc-
— tors: Doping: law of mass action; direct and indirect band gap;
concepts of holes and effective mass; mobility and Hall effect in
semiconductor [Non examinable: p-n junction, MOSFET].

Magnetism: Para- dia-, ferro-.antiferro-, and ferrimagnetism;
application of Hund’s rules to determination of magnetic ground
states of 1solated 1ons; Local Moment vs Itinerant magnetism.
Mean field theory. Domains, domain motion, hysteresis

No Quantum Well

U,
%7 Hubbard Model?
oy

5/22/2014
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The Long and Short of it...
Give correct length answers!
Time Limit = 2 hours (0:10+1:50)

Don’t ramble about
something that is not asked!
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3. Explain what is meant by the following terms in relation to the electronic bandstructure:
Fermi energy, chemical potential, Fermi surface and effective mass.

Explain how a weak periodic potential in a (one-dimensional) crystal can lead to the

formation of a band gap. Sketch and describe qualitatively how the band gap and effective

masses close to the Brillouin zone boundaries change as the magnitude of the periodic
potential is increased.

A fictitions metal crystallises into a simple cubic lattice with lattice constant a and one atom
per lattice point. The potential in the crystal is weakly modulated with the periodicity
of the lattice. Sketch the first Brillouin zone for this crystal. The metal is monovalent
(that is, it has only one valence electron per unit cell). Describe the shape and dimensions
of the Fermi surtace if the modulation is extremely weak. What if it is somewhat weak
(compared to the Fermi energyv), but not extremely weak? A second metal has an identical
unit cell, but is divalent (two valence electrons per unit cell). Give a qualitative description
and sketch of the Fermi surtace for this divalent metal. Discuss what happens in both the
monovalent and divalent cases as the periodic potential becomes extremely strong.

From Collection (2008 Exam)
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From 2001 Exam

5. Explain briefly the origin of the electronic band gap in a typical electrical
insulator.

The periodic potential V{z) experienced by an electron in a one-dimensional
crystal may be given in the form

Viz) = Vo + Ve 0% 4 V_g etiOr,

where (¢ is the reciprocal lattice vector, and |Viz| = |V_g|. Explain why a suitable
wavelinetion for an electron in such a potential may be written to a livst approximation

as ) )
(z) = Ae'** 4 Bellk—Clr

By substituting 1(:x) into the Schridinger equation and comparing coefficients in
e*T and itk '53"?, show that the energy of an electron of mass m and wavevector k at
the zone boundary is given by

szz
E=V,+ ;

+ |Viz].

m

Discuss the significance of each of the three terms on the right-hand side of this equation
in terms of band theory.

Using this result explain why diamond is a good electrical insulator, whereas
silicon and germanium. which have the same structure fvpe as diamond, are
semiconductors,  (In the diamond structure there are two tetravalent atoms in the
hasis.)

e

]

&1

(1]

6]
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6.6. Reciprocal Lattice
Show that the reciprocal lattice of a FCC (face-centered-cubic) lattice is a BCC (body-
centered-cubic) lattice. Correspondingly show that the reciprocal lattice of a BCC lattice is
an FCC lattice. If an FCC lattice has conventional unit cell with lattice constant a, what is
the lattice constant for the conventional unit cell of the reciprocal BCC lattice?

BCC FCC

d
Lo ALK

a a
Primitive lattice vectors Primitive lattice vectors
a,=[1,0,0] a a,=[%, %,0] a
a,=[0,1,0] a a,=[0, %, %] a
as=[%, %, %] a a;=[%, 0, %] a
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2007 Exam:

1. Gold crystallises in the fee strueture with a lattice constant a. An X-ray diffraction
experiment using X-rays of wavelength 0.2nm detects a scattering peak at the smallest
angle of deviation 26 of 50.2°. What are the Miller indices of this peak, what will be the
angle at which the next peak is observed and what is the value of the lattice constant
of gold?

Derive an expression for the Fermi energy of a nearly free electron metal and use
this to estimate the Fermi energy of gold, explaining any assumptions that you make.

Estimate the value of the electronic contribution to the specific heat of gold at
10 K. Explain how vou could measure the electronic specific heat at low temperatures.

[6]
7]
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