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SECOND PUBLIC EXAMINATION

Honour School of Physics Part B: 4 Year Course

B3: V. GENERAL RELATIVITY AND COSMOLOGY

AND VI. CONDENSED-MATTER PHYSICS

TRINITY TERM 2011

Wednesday, 22 June, 2.30 pm – 5.30 pm

Answer four questions, two from each section:

Start the answer to each question in a fresh book.

At the end of the examination hand in your answers
to Section V and Section VI in separate bundles.

A list of physical constants and conversion factors accompanies this paper.

The numbers in the margin indicate the weight that the Examiners expect to
assign to each part of the question.

Do NOT turn over until told that you may do so.
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Section V. (General relativity and cosmology)

1. The space time metric around the Earth is

ds2 = −c2α(r)dt2 + [α(r)]−1dr2 + r2dθ2 + r2 sin2 θdφ2

with α(r) = 1− 2GM
rc2

and where M is the mass of the Earth, R is its radius and θ = 0
corresponds to the North Pole. Geodesics in this space time satisfy:

d

dλ

(
2c2αṫ

)
= 0

d

dλ

(
2r2θ̇

)
− 2r2 sin θ cos θφ̇2 = 0

d

dλ

(
2r2 sin2 θφ̇

)
= 0

d

dλ

(
2ṙ

α

)
− c2α′ṫ2 +

α′

α2
ṙ2 + 2rθ̇2 + 2r sin2 θφ̇2 = 0

where λ is an affine parameter and α′ = dα
dr . Consider Satellite A with a circular orbit,

ṙ = 0, around the Earth along a line of constant φ̇ = 0. Show that we are allowed to
choose λ = t and that (

dθ

dt

)2

=
GM

r3
. [6]

Consider an observation station on the surface of the Earth at the North Pole.
Find the proper time elapsed on Satellite A during an interval of time ∆t as compared
to the proper time elapsed on the observation station. Show that the ratio between the
two can be approximated by

∆τSatellite A

∆τNorth Pole
' 1 +

GM

c2R
− 3

2
GM

c2r
. [10]

Now compare the proper time of a geostationary Satellite B on a circular orbit
with θ = π/2 with that on an observation station sitting on the equator right below it.
Show that the ratio between the two proper times can be approximated by

∆τSatellite B

∆τEquator
= 1 +

GM

c2R
− GM

c2r
.

[5]

Explain the difference between the two results. [4]
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2. Consider the metric

ds2 = −c2dt2 + a2(t)(dr2 + r2dθ2 + r2 sin2 θdφ2) .

Write down the Lagrangian for the geodesic equations in terms of an affine parameter
λ. [3]

Show that the geodesic equations on this space time are

d

dλ

(
−2c2ṫ

)
= +2a

da

dt
(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2)

d

dλ

(
2a2ṙ

)
= 2a2r(θ̇2 + sin2 θφ̇2)

d

dλ

(
2a2r2θ̇

)
= 2a2r2 sin θ cos θφ̇2

d

dλ

(
2a2r2 sin2 θφ̇

)
= 0

where over-dots correspond to derivatives taken with respect to λ. Use these geodesic
equations to write down all the non-zero connection coefficients for this space time. [10]

Now consider a geodesic along the radial direction and set θ = π/2 and φ = 0.
Show that the geodesic equations can be solved to give

ṙ =
α

a2

c2ṫ2 =
α2

a2
+ β

where α and β are integration constants. Show that for a massless particle we have
β = 0. [6]

Show that, if you choose a(t) = exp[H(t− t0)] (where H is constant), the solution
to the geodesic equations of a massless particle, emitted at time te from a distance re

from the origin, is

exp[H(t− t0)] =
H

c
(αλ + ε)

r =
c2

H2

[
− 1

αλ + ε
+ δ

]
.

Combine these expression to show that at t = t0

Ha(t0) re = cz

with 1 + z = 1/R(te). [6]
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3. The metric for a closed universe is given by

ds2 = −c2dt2 + a2(t)

[
dr2

1− (r/R)2
+ r2dθ2 + r2 sin2 θdφ2

]

where the scale factor satisfies the FRW equation
(

ȧ

a

)2

=
8πG

3
ρ +

Λc2

3
− c2

(Ra)2
.

Here Λ is the cosmological constant and ρ is the energy density of dust. Draw a sketch
showing how the three distinct contributions on the right hand side of the FRW equation
evolve with time and the order in which each of them dominates. [4]

Consider Λ = 0 and assume that today, at t = t0, we have that ρ is just very
slightly larger than 3c2

8πG(Ra)2
. How will this Universe evolve in the future? Give a rough

estimate, in terms of t0, for how long you expect this Universe to last until a collapses
to 0. [6]

Considering a radial geodesic for a photon, find the distance travelled as function
of physical time, r(t), as a function of the comoving distance,

Dc ≡
∫ t

0

cdt′

a(t′)
.

What is the furthest distance a photon can travel in this universe? [6]

Now consider Λ 6= 0. Use the Raychauduri equation to find a static solution of
the FRW equations. Show that in this Universe we have a particular value of the energy
density, ρE , given by

ρE ≡ Λc2

4πG
,

and that the scale factor is given by

a =
√

1
R2Λ

. [5]

Consider a universe for which ρ is just slightly larger than ρE . What is ä and how
does this universe evolve? Consider now a universe for which ρ is just slightly smaller
than ρE . What is ä and how does this universe evolve? Given what you found, do you
think the static universe is stable? [4]
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4. Consider a flat, homogenous and isotropic universe with scale factor a(t) satisfying
the FRW equation (

ȧ

a

)2

=
8πG

3
(ρM + ρR) ,

where ρM is the energy density in dust and ρR is the energy density in radiation. How do
ρM and ρR depend on a ? Find a as a function of t at early times (when ρR dominates)
and at late times (when ρM dominates) and ensure that that they match at equality,
teq, when ρM = ρR. (Pick your constant of integration such that a = 1 today, at t0.) [6]

Find an expression for the horizon size when t < teq. Show that it takes the form

rh(z) =
c

H0

√
1 + zeq

(1 + z)2
,

where the redshift is defined through 1 + z = 1
a , zeq is the redshift at equality and H0

is the Hubble constant. [7]

The number density of photons in the Universe is given by

nγ ' 0.486
kBT0

h̄c

1
a3

' 8.3× 108

a3
m−3

where T0 = 2.73K. Explain, using rough arguments, why this expression arises from the
assumption of thermal equilibrium in the early Universe. What conditions in the early
Universe ensure that there is thermal equilibrium? [5]

Find an expression for the total number of photons within one cosmological hori-
zon, Nγ as a function of redshift for early times, assuming z > zeq or t < teq. Show
that Nγ → 0 as z → ∞. Find an expression for the value of z when Nγ = 1 in terms
of Nγ(t0). Explain why your result isn’t compatible with the assumption of thermal
equilibrium or with a homogeneous and isotropic Universe at very early times. [7]
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Section VI. (Condensed Matter Physics)

5. Define the reciprocal lattice basis vectors (b1,b2,b3) corresponding to a direct
lattice with orthogonal basis vectors. [2]

The electron density ρ in a crystal has translational symmetry such that
ρ(r) = ρ(r + R) where R is a direct lattice vector: show that ρ(r) can be written
as

ρ(r) =
∑

G

ρG exp (iG · r)

where G = (hb1 + kb2 + lb3) and h, k and l are integers. [6]

Derive an expression for the amplitude of X-ray scattering by a crystal in terms of
the atomic form factors and the geometrical structure factor, and show that the change
in wavevector of permitted X-ray reflections corresponds to a reciprocal lattice vector. [6]

GaAs has the cubic zincblende structure which has a face-centred cubic lattice
with a basis of two atoms: Ga at (0, 0, 0) and As at (1/4, 1/4, 1/4) in the conventional
cubic unit cell. Obtain an expression for the structure factor and find the conditions on
(h k l) for permitted X-ray reflections. [6]

Estimate the relative intensities of (1 1 1) and (2 0 0) reflections measured in a
powder X-ray diffraction experiment. Give a physical explanation for the difference in
intensities, and compare your result with that obtained for Si which has the same fcc
lattice and atomic basis positions as GaAs. [The atomic numbers of Ga and As are:
ZGa = 31, ZAs = 33.] [5]
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6. A one-dimensional monatomic crystal contains identical atoms of mass m which
experience a nearest-neighbour potential V (x), where x is the distance between atoms.
Under what conditions can V (x) be approximated as a quadratic function of the dis-
placement from the equilibrium position (harmonic approximation)? [4]

Analyse the dynamics of the crystal in terms of its normal modes of vibration in
the harmonic approximation and obtain the dispersion relation between frequency and
wavevector. Obtain an expression for the sound velocity v and indicate it on a sketch
of the dispersion curve. [10]

The Lennard-Jones potential

V (x) = 4ε

[(
σ

x

)12

−
(

σ

x

)6
]

,

where x is the atomic separation and σ and ε are constants, provides a convenient
description of the inter-atomic pair potential for rare gas solids. Assuming that only
nearest-neighbour interactions are important, obtain expressions for the sound velocity
and the maximum frequency of vibration in terms of the parameters ε and σ, and
estimate their values in solid argon, given that ε = 10 meV and σ = 0.34 nm. [11]
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7. In the nearly free electron model electrons experience a weak periodic potential
V (r) = V (r + R), where R is any lattice vector. Show that Vk−k′ = 〈k|V (r)|k′〉, where
|k〉 is the plane wave state, is non-zero only when (k− k′) is a reciprocal lattice vector
G. Using perturbation theory show that the secular equation is

(ε0(k)−E) (ε0(k + G)−E)− |VG|2 = 0 , [9]

where ε0 is the energy of |k〉. Consider a divalent two-dimensional metal with a square
lattice, lattice parameter a = 0.3 nm, and one atom per primitive unit cell. The periodic
potential has two Fourier components V10, V11, corresponding to G = (1, 0) and (1, 1)
respectively; both are negative, and |V10| > |V11|.

(i) Write down the secular equation and obtain an expression for the electron
energies at k = (π/a, 0). [4]

(ii) As illustrated in the diagram, the state at (π/a, π/a) is four-fold degenerate
in the free electron approximation, with energy ε0.

(2� /a, 2� /a)(0, 2� /a)

(0,0) (2� /a,0)

In the presence of the periodic potential the secular equation is
∣∣∣∣∣∣∣∣∣

ε0 − E V10 V11 V10

V10 ε0 −E V10 V11

V11 V10 ε0 − E V10

V10 V11 V10 ε0 −E

∣∣∣∣∣∣∣∣∣
= 0 ,

which simplifies to

(ε0 − E − V11)
2
[
(ε0 −E + V11)

2 − 4V 2
10

]
= 0 .

Sketch the energy levels at (π/a, π/a) and (π/a, 0) in the same diagram. [4]

By considering overlapping energy bands, find the value of V10 at which the system
becomes semiconducting given that V11 = −0.2 eV. [8]
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8. The magnetization of a system of identical non-interacting magnetic ions, each
with total angular momentum J in the presence of an applied magnetic field B at
temperature T , is given by

M = ngµBJBJ (βgµBJB)

where n is the number of ions per unit volume, g is the g-value, µB is the Bohr magneton,
β = 1/(kBT ), and BJ(x) is the Brillouin function

BJ(x) =
2J + 1

2J
coth

[
(2J + 1)x

2J

]
− 1

2J
coth

[
x

2J

]
.

(i) Sketch the function BJ(x) and explain the behaviour of M when x À 1. [3]

(ii) Show in the limit x ¿ 1 that the susceptibility has the simple Curie form for
a paramagnet, χ = C/T , and obtain an expression for the Curie constant C. [5]

[You may use the approximation cothu ≈ u−1 + u/3 + O(u3) for u ¿ 1).]

Consider now that the ions interact with each other, which gives rise (in the mean
field approximation) to an effective magnetic field Be = µ0λM that is proportional to
the magnetisation, so that the total magnetic field Btotal = Bapplied + Be. Explain how
this interaction gives rise to ferromagnetic behaviour and show that the susceptibility χ
displays Curie-Weiss behaviour, χ = C/(T − TC). Obtain an expression for the critical
temperature TC that marks the boundary between ferromagnetic and paramagnetic
behaviour. [10]

Iron is a face-centred cubic ferromagnetic metal with TC = 1043 K, J = 1, g = 2
and n = 8.5 × 1028 m−3. Estimate the values of λ and Be. At an atomic level the
effective field arises from an exchange interaction with neighbouring atoms. Assuming
that the effective field arises entirely from nearest neighbour interactions, estimate the
magnitude of the exchange interaction energy. [7]
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