PROBLEM SET 2

Julia Yeomans

1. Explain carefully:
(i) what is meant by the order of a differential equation,
(ii) the difference between independent and dependent variables in a differential equation,
(iii) the difference between an ordinary and a partial differential equation,
(iv) when a differential equation is linear, and why this is important.
(v) Are the following differential equations linear or non-linear?
(i) $\frac{d^{2} y}{d x^{2}}+k^{2} y=f(x)$
(ii) $\frac{d^{3} y}{d x^{3}}+2 y\left(\frac{d y}{d x}\right)=\sin x$
(iii) $\frac{d y}{d x}+y^{2}=y x$
2. Solve the following differential equations using the method stated:
(a) separable
(i) $\frac{d y}{d x}=\frac{x e^{y}}{1+x^{2}}, \quad y=0$ at $x=0$
(ii) $\frac{d x}{d t}=\frac{2 t x^{2}+t}{t^{2} x-x}$
(b) "almost" separable
$\frac{d y}{d x}=2(2 x+y)^{2}$
(c) homogeneous
$2 \frac{d y}{d x}=\frac{x y+y^{2}}{x^{2}}$
(d) homogeneous but for constant
$\frac{d y}{d x}=\frac{x+y-1}{x-y-2}$
(e) integrating factor
(i) $\frac{d y}{d x}+\frac{y}{x}=3, \quad y=0$ at $x=0$
(ii) $\frac{d x}{d t}+x \cos t=\sin 2 t$
(f) Bernoulli

$$
\frac{d y}{d x}+y=x y^{\frac{2}{3}}
$$

3. Solve the following 1st order differential equations
(i) $\frac{d y}{d x}=\frac{x-y \cos x}{\sin x}$
(ii) $\quad\left(3 x+x^{2}\right) \frac{d y}{d x}=5 y-8$
(iii) $2 \frac{d y}{d x}=\frac{y}{x}+\frac{y^{3}}{x^{3}}$
(iv) $\quad x y \frac{d y}{d x}-y^{2}=(x+y)^{2} e^{-y / x}$
(v) $\quad x(x-1) \frac{d y}{d x}+y=x(x-1)^{2}$
(vi) $\quad \frac{d x}{d t}=\cos (x+t), \quad x=\frac{\pi}{2}$ at $t=0$
(vii) $\frac{d y}{d x}=\frac{x-y}{x-y+1}$
(viii) $\quad \frac{d x}{d y}=\cos 2 y-x \cot y, \quad x=\frac{1}{2} \quad$ at $y=\frac{\pi}{2}$
4. The equation

$$
\frac{d y}{d x}+k y=y^{n} \sin x
$$

where k and n are constants, is linear and homogeneous for $n=1$. State a property of the solutions to this equation for $n=1$ that is not true for $n \neq 1$.
Solve the equation for $n \neq 1$ by making the substitution $z=y^{1-n}$.
5. Solve the ordinary differential equation

$$
\frac{d y}{d x}=\frac{\left(3 x^{2}+2 x y+y^{2}\right) \sin x-(6 x+2 y) \cos x}{(2 x+2 y) \cos x}
$$

(Hint: look for a function $f(x, y)$ whose differential $d f$ gives the o.d.e.)

Answers
2. (a) (i) $e^{-y}=1-\frac{1}{2} \ln \left(1+x^{2}\right)$
(ii) $2 x^{2}+1=C\left(t^{2}-1\right)^{2}$
(b) $2 x+y=\tan (2 x+C)$
(c) $\quad C x^{\frac{1}{2}} y=y-x$
(d) $\ln \left(x-\frac{3}{2}\right)=\tan ^{-1}\left(\frac{y+\frac{1}{2}}{x-\frac{3}{2}}\right)-\frac{1}{2} \ln \left(1+\frac{\left(y+\frac{1}{2}\right)^{2}}{\left(x-\frac{3}{2}\right)^{2}}\right)+C$
(e) (i) $y=\frac{3 x}{2}$
(ii) $x=2(\sin t-1)+C e^{-\sin t}$
(f) $\quad y^{\frac{1}{3}}=x-3+C e^{-\frac{x}{3}}$
3. (i) $y=\frac{1}{\sin x}\left(x^{2} / 2+C\right)$
(ii) $\frac{1}{5} \ln (5 y-8)=\frac{1}{3} \ln (x /(x+3))+C$
(iii) $x=C\left(1-x^{2} / y^{2}\right)$
(iv) $\ln x=\frac{e^{y / x}}{1+y / x}+C$
(v) $y=\frac{x}{x-1}\left(\frac{1}{2} x^{2}-2 x+\ln x+C\right)$
(vi) $\tan \frac{1}{2}(x+t)=1+t$
(vii) $x-y+1=\sqrt{2(x+C)}$
(viii) $\quad x=\frac{1}{3} \cot y\left(3-2 \cos ^{2} y\right)+\frac{1}{2 \sin y}$
4. $\quad y^{1-n}=C e^{-a x}+\frac{(1-n)}{\left(1+a^{2}\right)}\{a \sin x-\cos x\} ; \quad a=k(1-n)$
5. $\left(3 x^{2}+2 x y+y^{2}\right) \cos x=C$

