Quantum Mechanics MT 2024: Problem Sheet 1

This problem sheet has been developed from previous problem sheets of (at least) James Binney, Stephen Blundell, Fabian Essler

Quantum Ideas

1.1 Give an example of a physical phenomenon that requires us to work with *probability amplitudes* rather than with probabilities.

1.2 Determine the kinetic energy of an electron that has de Broglie wavelength $\lambda = h/p$ of 0.1nm.

Dirac notation

1.3 Given the ket $|\psi\rangle = e^{i\pi/5}|a\rangle + e^{i\pi/4}|b\rangle$, express the bra $\langle \psi |$ as a linear combination of the bras $\langle a |$ and $\langle b |$.

1.4 An electron can be in one of two potential wells that are so close that it can 'tunnel' from one to the other. Its state vector can be written

$$
|\psi\rangle = a|A\rangle + b|B\rangle,\tag{1}
$$

where $|A\rangle$ is the state of being in the first well and $|B\rangle$ is the state of being in the second well and all kets are correctly normalised. What is the probability of finding the particle in the first well given that: (a) $a = i/2$; (b) $b = e^{i\pi}$; (c) hormansed. W
 $b = \frac{1}{3} + i/\sqrt{2}$?

1.5 What is the difference between 0, $\hat{0}$, $|0\rangle$ and $\hat{0}|\psi\rangle$, where $|\psi\rangle$ is any ket?

1.6 An electron can "tunnel" between potential wells that form a linear chain, so its state vector can be written as

$$
|\psi\rangle = \sum_{n=-\infty}^{\infty} a_n |n\rangle,
$$
 (2)

where $|n\rangle$ is the state of being in the n^{th} well, where n increases from left to right. Let

$$
a_n = \frac{1}{\sqrt{2}} \left(\frac{-i}{3}\right)^{\frac{|n|}{2}} e^{in\pi}.
$$
\n
$$
(3)
$$

(a) What is the probability of finding the electron in the nth well?

(b) What is the probability of finding the electron in well 0 or anywhere to the right of it?

1.7 A watched kettle never boils (proverb)

A certain 2-state quantum system has two states $|on\rangle$ and $|off\rangle$. Whenever the system starts in initial condition $|\psi(t=0)\rangle = |off\rangle$, the subsequent time-evolution of this particular system is such that

$$
|\psi(t)\rangle = \cos(\omega t)|\text{off}\rangle + \sin(\omega t)|\text{on}\rangle\tag{4}
$$

If the system is measured at time T , what is the probability that the system is found in state $|on\rangle$?

If $T < \frac{\pi}{2\omega}$, does including additional earlier measurements at various times $t_i < T$ make it more or less likely that the final measurement at time T will now find the system in state $|on\rangle$? What happens in the limiting case where the system is measured continually up until time T?

Operators

1.8 What is a Hermitian operator? Given that \hat{A} and \hat{B} are Hermitian, which of the following operators are Hermitian (c is an arbitrary complex number):

$$
\hat{A} + \hat{B}; \, c\hat{A}; \, \hat{A}\hat{B}; \, \hat{A}\hat{B} + \hat{B}\hat{A}?
$$

1.9 Given that \hat{A} and \hat{B} are Hermitian operators, show that $i[\hat{A}, \hat{B}]$ is a Hermitian operator.

1.10 Given that for any two operators $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$, show that

$$
(\hat{A}\hat{B}\hat{C}\hat{D})^{\dagger} = \hat{D}^{\dagger}\hat{C}^{\dagger}\hat{B}^{\dagger}\hat{A}^{\dagger}.
$$

1.11 A three-state quantum system has a complete orthonormal set of states $|1\rangle, |2\rangle, |3\rangle$. With respect to this basis the operators \hat{H} and \hat{B} have matrices

$$
\hat{H} = \hbar \omega \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \hat{B} = b \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},
$$

where ω and b are real constants.

(a) Are \hat{H} and \hat{B} Hermitian?

(b) Write down the eigenvalues of \hat{H} and find the eigenvalues of \hat{B} . Solve for the eigenvectors of both \hat{H} and \hat{B} . Explain why neither matrix uniquely specifies its eigenvectors.

(c) Show that \hat{H} and \hat{B} commute. Give a basis of eigenvectors common to \hat{H} and \hat{B} .

1.12 Let \hat{Q} be the operator of an observable and let $|\psi\rangle$ be the ket giving the state of our system. (a) What are the physical interpretations of $\langle \psi | \hat{Q} | \psi \rangle$ and $|\langle q_n | \psi \rangle|^2$, where $|q_n\rangle$ is the n^{th} eigenket of the observable \hat{Q} and q_n is the corresponding eigenvalue?

(b) What is the operator $\sum_{n} |\widetilde{q}_n\rangle \langle q_n|$, where the sum is over all eigenkets of \hat{Q} ? What is the operator $\sum_{n} q_n |q_n\rangle \langle q_n|$?

Commutators : Manipulations

1.13 Show that

(a) $[\hat{A}\hat{B}, \hat{C}] = \hat{A}[\hat{B}, \hat{C}] + [\hat{A}, \hat{C}]\hat{B}$

(b) $[\hat{A}\hat{B}\hat{C}, \hat{D}] = \hat{A}\hat{B}[\hat{C}, \hat{D}] + \hat{A}[\hat{B}, \hat{D}]\hat{C} + [\hat{A}, \hat{D}]\hat{B}\hat{C}$. Explain the similarity with the rule for differentiating a product. (c) $[\hat{x}^n, \hat{p}] = i\hbar n \hat{x}^{n-1}$ (you may use that $[\hat{x}, \hat{p}] = i\hbar$)

(d) $[f(\hat{x}), \hat{p}] = i\hbar \frac{df}{dx}$ for any analytic function $f(x)$.

1.14 Does it always follow that if a system is an eigenstate of \hat{A} and $[\hat{A}, \hat{B}] = 0$ then the system will be in a eigenstate of \hat{B} ? If not, give a counterexample.