S7 and BT VII: Classical mechanics - problem set 3

1. Starting from the definition of a canonical map in terms of the Poincaré integral invariant, explain how functions of the form
(a) $F_{1}(q, Q, t)$ generate mappings $p=\frac{\partial F_{1}}{\partial q}, P=-\frac{\partial F_{1}}{\partial Q}, K=H+\frac{\partial F_{1}}{\partial t}$;
(b) $F_{2}(q, P, t)$ generate mappings $p=\frac{\partial F_{2}}{\partial q}, Q=\frac{\partial F_{2}}{\partial P}, K=H+\frac{\partial F_{2}}{\partial t}$;
(c) $F_{3}(p, Q, t)$ generate mappings $q=-\frac{\partial F_{3}}{\partial p}, P=-\frac{\partial F_{3}}{\partial Q}, K=H+\frac{\partial F_{3}}{\partial t}$;
(d) $F_{4}(p, P, t)$ generate mappings $q=-\frac{\partial F_{4}}{\partial p}, Q=\frac{\partial F_{4}}{\partial P}, K=H+\frac{\partial F_{4}}{\partial t}$.

Cases (c) and (d) are not covered in the notes, but you can derive them by analogy with how (b) is obtained from (a).
2. A mechanical system has Hamiltonian $H=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right)$. By first eliminating $f(P)$, or otherwise, find a generating function $F_{1}(q, Q)$ for new phase-space co-ordinates (Q, P) in terms of which

$$
\begin{align*}
p & =f(P) \cos Q \\
q & =\frac{f(P)}{\omega} \sin Q \tag{2-1}
\end{align*}
$$

State any conditions that you need to apply to $f(P)$. What is the Hamiltonian in the new co-ordinates (Q, P) ? What are Hamilton's equations for (Q, P) ?
3. Find a generating function $F_{2}(q, P)$ for the mapping found in the previous question. (Do not expect your answer to be pretty.)
4. Show that the transformation

$$
\begin{align*}
& p=\mathrm{e}^{Q} \\
& q=-P \mathrm{e}^{-Q} \tag{4-1}
\end{align*}
$$

is canonical.
5. A particle has Lagrangian $L(\boldsymbol{x}, \dot{\boldsymbol{x}}, t)=\frac{1}{2} \dot{\boldsymbol{x}}^{2}-V(\boldsymbol{x}, t)$. Write down a Hamiltonian for the particle in terms of $\left(x, p_{x}, t\right)$.

The particle's co-ordinates in another frame are given by $\boldsymbol{x}^{\prime}=\boldsymbol{x}-\boldsymbol{\Delta}(t)$. Write down a Lagrangian $L\left(\boldsymbol{x}^{\prime}, \dot{\boldsymbol{x}}^{\prime}, t\right)$ and use it to construct a Hamiltonian in the new co-ordinates and momenta.

Find a generating function $F_{2}\left(\boldsymbol{x}, \boldsymbol{p}^{\prime}, t\right)$ for the mapping from \boldsymbol{x} to \boldsymbol{x}^{\prime}. Verify that under this mapping the original $H\left(\boldsymbol{x}, \boldsymbol{p}_{\boldsymbol{x}}, t\right)$ transforms to the Hamiltonian you constructed from $L\left(\boldsymbol{x}^{\prime}, \dot{\boldsymbol{x}}^{\prime}, t\right)$.
6. A particle moving in three dimensions has Hamiltonian $H\left(\boldsymbol{x}, \boldsymbol{p}_{\boldsymbol{x}}, t\right)=\boldsymbol{p}_{\boldsymbol{x}}^{2} / 2 m+V(\boldsymbol{x}, t)$. A mapping to new phase-space co-ordinates $\left(\boldsymbol{r}, \boldsymbol{p}_{\boldsymbol{r}}\right)$ is generated by the function

$$
\begin{equation*}
F_{2}\left(\boldsymbol{x}, \boldsymbol{p}_{\boldsymbol{r}}, t\right)=\boldsymbol{p}_{r}^{T} B^{T} \boldsymbol{x} \tag{6-1}
\end{equation*}
$$

where $B(t)$ is a time-dependent rotation matrix $\left(B B^{T}=I\right)$. Show that the Hamiltonian in the new coordinates is given by

$$
\begin{equation*}
K\left(\boldsymbol{r}, \boldsymbol{p}_{r}, t\right)=\frac{\boldsymbol{p}_{r}^{2}}{2 m}+V(B \boldsymbol{r}, t)+\boldsymbol{p}_{r}^{T} \dot{B}^{T} \boldsymbol{x} \tag{6-2}
\end{equation*}
$$

Show further that $\boldsymbol{p}_{r}^{T} \dot{B}^{T} \boldsymbol{x}$ can be written as $-\boldsymbol{p}_{\boldsymbol{r}} \cdot(\boldsymbol{\Omega} \times \boldsymbol{r})$ and explain how to obtain $\boldsymbol{\Omega}$.

