S7 and BT VII: Classical mechanics - problem set 3

1. Starting from the definition of a canonical map in terms of the Poincaré integral invariant, explain how functions of the form
(a) $F_{1}(q, Q, t)$ generate mappings $p=\frac{\partial F_{1}}{\partial q}, P=-\frac{\partial F_{1}}{\partial Q}, K=H+\frac{\partial F_{1}}{\partial t}$;
(b) $F_{2}(q, P, t)$ generate mappings $p=\frac{\partial F_{2}}{\partial q}, Q=\frac{\partial F_{2}}{\partial P}, K=H+\frac{\partial F_{2}}{\partial t}$;
(c) $F_{3}(p, Q, t)$ generate mappings $q=-\frac{\partial F_{3}}{\partial p}, P=-\frac{\partial F_{3}}{\partial Q}, K=H+\frac{\partial F_{3}}{\partial t}$;
(d) $F_{4}(p, P, t)$ generate mappings $q=-\frac{\partial F_{4}}{\partial p}, Q=\frac{\partial F_{4}}{\partial P}, K=H+\frac{\partial F_{4}}{\partial t}$.

Cases (c) and (d) are not covered in the notes, but you can derive them by analogy with how (b) is obtained from (a).

Ans: We require that $\oint_{\gamma}(P \mathrm{~d} Q-K \mathrm{~d} t)=\oint_{\gamma}(p \mathrm{~d} q-H \mathrm{~d} t)$ for any loop γ in extended phase space. For this to hold the integrands must be equal up to a total derivative:

$$
\begin{equation*}
P \mathrm{~d} Q-K \mathrm{~d} t+\mathrm{d} S=p \mathrm{~d} q-H \mathrm{~d} t \tag{1-1}
\end{equation*}
$$

where $S=S(P, Q, t)$. In the following we'll assume that all co-ordinate transformations are invertible.
(a) Assume that P can be expressed as $P=P(q, Q, t)$. Then we can take $S=F_{1}(q, Q, t)$, so that

$$
\begin{equation*}
\mathrm{d} S=\frac{\partial F_{1}}{\partial q} \mathrm{~d} q+\frac{\partial F_{1}}{\partial Q} \mathrm{~d} Q+\frac{\partial F_{1}}{\partial t} \mathrm{~d} t \tag{1-2}
\end{equation*}
$$

Substitute into (1-1) and rearrange:

$$
\begin{equation*}
\left(P+\frac{\partial F_{1}}{\partial Q}\right) \mathrm{d} Q+\left(-K+\frac{\partial F_{1}}{\partial t}+H\right) \mathrm{d} t+\left(\frac{\partial F_{1}}{\partial q}-p\right) \mathrm{d} q=0 \tag{1-3}
\end{equation*}
$$

The result follows on noting that $(\mathrm{d} q, \mathrm{~d} Q, \mathrm{~d} t)$ are allowed to vary independently - we're using (q, Q, t) as independent co-ordinates of points on our loop γ in extended phase space.
(b) The long way: apply a Legendre transform to $-S=-F_{1}(q, Q, t)$, replacing Q by $P=$ $\partial\left(-F_{1}\right) / \partial Q$. This gives a new function $F_{2}(q, P, t)=Q P-\left(-F_{1}(q, Q, t)\right)$ in which $Q(q, P, t)$ is given implicitly by $P=\partial F_{1} / \partial Q$. Rearranging, $S=F_{1}=-Q P+F_{2}(q, P, t)$. Therefore

$$
\begin{equation*}
\mathrm{d} S=-P \mathrm{~d} Q-Q \mathrm{~d} P+\frac{\partial F_{2}}{\partial q} \mathrm{~d} q+\frac{\partial F_{2}}{\partial P} \mathrm{~d} P+\frac{\partial F_{2}}{\partial t} \mathrm{~d} t \tag{1-4}
\end{equation*}
$$

in which Q (and therefore $\mathrm{d} Q$) is to be regarded as a function of (q, P, t). Substituting into (1-1) and rearranging we have that

$$
\begin{equation*}
\left(-K+\frac{\partial F_{2}}{\partial t}+H\right) \mathrm{d} t+\left(\frac{\partial F_{2}}{\partial q}-p\right) \mathrm{d} q+\left(-Q+\frac{\partial F_{2}}{\partial P}\right) \mathrm{d} P=0 \tag{1-5}
\end{equation*}
$$

from which the required result follows on noting that $(\mathrm{d} q, \mathrm{~d} P, \mathrm{~d} t)$ vary independently.
Quicker way of deriving the correct S is to note that simply taking $S=F_{2}(q, P, t)$ won't work because that would leave nothing to kill the first term $P \mathrm{~d} Q$ of (1-1). So try $S=-Q P+$ $F_{2}(q, P, t)$ in which Q is regarded as a function $Q(q, P, t)$.
(c) Take $S=q p+F_{3}(p, Q, t)$, assuming $q=q(p, Q, t)$.
(d) $S=q p-Q P+F_{4}(p, P, t)$, assuming $q=q(p, P, t)$ and $Q=Q(p, P, t)$.
2. A mechanical system has Hamiltonian $H=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right)$. By first eliminating $f(P)$, or otherwise, find a generating function $F_{1}(q, Q)$ for new phase-space co-ordinates (Q, P) in terms of which

$$
\begin{align*}
p & =f(P) \cos Q \\
q & =\frac{f(P)}{\omega} \sin Q \tag{2-1}
\end{align*}
$$

State any conditions that you need to apply to $f(P)$. What is the Hamiltonian in the new co-ordinates (Q, P) ? What are Hamilton's equations for (Q, P) ?

Ans: Substituting $f(P)=\omega q / \sin Q$ from the second equation into the first,

$$
\begin{equation*}
p=\omega q \frac{\cos Q}{\sin Q}=\frac{\partial F_{1}}{\partial q} \tag{2-2}
\end{equation*}
$$

Therefore $F_{1}(q, Q)=\frac{1}{2} \omega q^{2} \cot Q+G(Q)$ for some function $G(Q)$. But we must also satisfy

$$
\begin{equation*}
P=-\frac{\partial F_{1}}{\partial Q}=\frac{1}{2} \omega q^{2} \frac{1}{\sin ^{2} Q}-\frac{\partial G}{\partial Q} . \tag{2-3}
\end{equation*}
$$

Substituting $q=(f(P) / \omega) \sin Q$ into this, we see that $G=0$ and $f(P)= \pm \sqrt{2 \omega P}$.
The transformation has no explicit time dependence, so $\partial F_{1} / \partial t=0$. Then

$$
\begin{equation*}
K(Q, P)=H(q(Q, P), p(Q, P))=\frac{1}{2}\left[(f(P) \cos Q)^{2}+\omega^{2}\left(\frac{f(P) \sin Q}{\omega}\right)^{2}\right]=\frac{1}{2} f(P)^{2}=\omega P \tag{2-4}
\end{equation*}
$$

Hamilton's equations are simply

$$
\begin{equation*}
\dot{P}=0, \quad \dot{Q}=\omega \tag{2-5}
\end{equation*}
$$

This (P, Q) are action-angle co-ordinates for the SHO Hamiltonian and a more usually written (J, θ).
3. Find a generating function $F_{2}(q, P)$ for the mapping found in the previous question. (Do not expect your answer to be pretty.)

Ans: Brief statement of the problem: we need to find an $F_{2}(q, P)$ for which the implicit relations $p=\partial F_{2} / \partial q, Q=\partial F_{2} / \partial P$ produce the mapping

$$
\begin{align*}
& p=\sqrt{2 \omega P} \cos Q \\
& q=\sqrt{\frac{2 P}{\omega}} \sin Q \tag{3-1}
\end{align*}
$$

The least painful approach is to recall how F_{2} is related to F_{1}. From Q1 we know that $F_{1}=S=$ $-P Q+F_{2}$. So,

$$
\begin{align*}
F_{2} & =P Q+F_{1} \\
& =P Q+\frac{1}{2} \omega q^{2} \cot Q \tag{3-2}
\end{align*}
$$

taking the expression for F_{1} from Q2. We can use the second of (3-1) to obtain

$$
\begin{align*}
\sin Q & =q \sqrt{\frac{\omega}{2 P}} \tag{3-3}\\
\cos Q & = \pm\left(1-q^{2} \frac{\omega}{2 P}\right)^{1 / 2}
\end{align*}
$$

from which we have that

$$
\begin{equation*}
F_{2}=P \sin ^{-1}\left(q \sqrt{\frac{\omega}{2 P}}\right) \pm q \sqrt{\frac{P \omega}{2}}\left(1-\frac{\omega q^{2}}{2 P}\right)^{1 / 2} \tag{3-4}
\end{equation*}
$$

An alternative is to solve the PDEs $p=\partial F_{2} / \partial q, Q=\partial F_{2} / \partial P$ for F_{2} directly:

$$
\begin{equation*}
p= \pm \sqrt{2 \omega P}\left[1-\frac{\omega}{2 P} q^{2}\right]^{1 / 2}=\frac{\partial F_{2}}{\partial q} \tag{3-5}
\end{equation*}
$$

Substituting $q \sqrt{\omega / 2 P}=\sin u$ and integrating gives

$$
\begin{align*}
\pm F_{2} & =\sqrt{2 \omega P} \int\left[1-\frac{\omega}{2 P} q^{2}\right]^{1 / 2} \mathrm{~d} q+G(P) \\
& =2 P \int \cos ^{2} u \mathrm{~d} u+G(P) \\
& =P \int(1+\cos 2 u) \mathrm{d} u+G(P) \tag{3-6}\\
& =P u+\frac{1}{2} P \sin 2 u+G(P) \\
& =P \sin ^{-1}\left(q \sqrt{\frac{\omega}{2 P}}\right) \pm q \sqrt{\frac{P \omega}{2}}\left(1-\frac{\omega q^{2}}{2 P}\right)^{1 / 2}+G(P)
\end{align*}
$$

Finally, we need to choose $G(P)$ to make $\partial F_{2} / \partial P=Q$. Checking that $G(P)=0$ satisfies this condition is left as an exercise...
4. Show that the transformation

$$
\begin{align*}
& p=\mathrm{e}^{Q} \\
& q=-P \mathrm{e}^{-Q} \tag{4-1}
\end{align*}
$$

is canonical.
Ans: Look at

$$
\begin{equation*}
p \mathrm{~d} q-P \mathrm{~d} Q=\mathrm{e}^{Q}\left(P \mathrm{e}^{-Q} \mathrm{~d} Q-e^{-Q} \mathrm{~d} P\right)-P \mathrm{~d} Q=-\mathrm{d} P \tag{4-2}
\end{equation*}
$$

which is a total derivative. Therefore the transformation is canonical.
An alternative is to check Poisson brackets. Clearly we have that $[q, q]=[p, p]=0$. The only step remaining is to check whether $[q, p]=1$. We have that

$$
\begin{equation*}
[q, p]=\frac{\partial q}{\partial Q} \frac{\partial p}{\partial P}-\frac{\partial p}{\partial Q} \frac{\partial q}{\partial P}=P \mathrm{e}^{Q} \times 0-\mathrm{e}^{Q} \times\left(-\mathrm{e}^{-Q}\right)=1 \tag{4-3}
\end{equation*}
$$

5. A particle has Lagrangian $L(\boldsymbol{x}, \dot{\boldsymbol{x}}, t)=\frac{1}{2} \dot{\boldsymbol{x}}^{2}-V(\boldsymbol{x}, t)$. Write down a Hamiltonian for the particle in terms of $\left(\boldsymbol{x}, \boldsymbol{p}_{\boldsymbol{x}}, t\right)$.

The particle's co-ordinates in another frame are given by $\boldsymbol{x}^{\prime}=\boldsymbol{x}-\boldsymbol{\Delta}(t)$. Write down a Lagrangian $L\left(\boldsymbol{x}^{\prime}, \dot{\boldsymbol{x}}^{\prime}, t\right)$ and use it to construct a Hamiltonian in the new co-ordinates and momenta.

Find a generating function $F_{2}\left(\boldsymbol{x}, \boldsymbol{p}^{\prime}, t\right)$ for the mapping from \boldsymbol{x} to \boldsymbol{x}^{\prime}. Verify that under this mapping the original $H\left(\boldsymbol{x}, \boldsymbol{p}_{\boldsymbol{x}}, t\right)$ transforms to the Hamiltonian you constructed from $L\left(\boldsymbol{x}^{\prime}, \dot{\boldsymbol{x}}^{\prime}, t\right)$.

Ans:

$$
\begin{equation*}
H\left(x, p_{x}, t\right)=\frac{1}{2} p_{x}^{2}+V(x, t) . \tag{5-1}
\end{equation*}
$$

In the accelerated co-ordinates, we have

$$
\begin{equation*}
L\left(x^{\prime}, \dot{x}^{\prime}, t\right)=\frac{1}{2}\left(\dot{x}^{\prime}+\dot{\Delta}\right)^{2}-V\left(x=x^{\prime}+\Delta, t\right), \tag{5-2}
\end{equation*}
$$

from which $p_{x}^{\prime}=\dot{x}^{\prime}+\dot{\Delta}$ and so

$$
\begin{align*}
H\left(x^{\prime}, p_{x}^{\prime}, t\right) & =\dot{x}^{\prime} p_{x}^{\prime}-L\left(x^{\prime}, \dot{x}^{\prime}, t\right) \\
& =\frac{1}{2} p_{x}^{\prime 2}-p_{x}^{\prime} \dot{\Delta}+V\left(x=x^{\prime}+\Delta, t\right) . \tag{5-3}
\end{align*}
$$

The mapping generated by a function $F_{2}\left(x, p_{x}^{\prime}, t\right)$ is $x^{\prime}=\partial F_{2} / \partial p_{x}^{\prime}, p_{x}=\partial F_{2} / \partial x$. So, try

$$
\begin{equation*}
x^{\prime}=x-\Delta=\frac{\partial F_{2}}{\partial p_{x}^{\prime}} \quad \Rightarrow \quad F_{2}\left(x, p_{x}^{\prime}, t\right)=(x-\Delta) p_{x}^{\prime} . \tag{5-4}
\end{equation*}
$$

Check: $p_{x}=\partial F_{2} / \partial x=p_{x}^{\prime}$, which is fine.
The transformed Hamiltonian

$$
\begin{align*}
K\left(x^{\prime}, p_{x}^{\prime}, t\right) & =H\left(x\left(x^{\prime}, p_{x}^{\prime}, t\right), p_{x}\left(x^{\prime}, p_{x}^{\prime}, t\right), t\right)+\frac{\partial F_{2}}{\partial t} \tag{5-5}\\
& =\frac{1}{2} p_{x}^{\prime 2}+V\left(x=x^{\prime}+\Delta, t\right)-\dot{\Delta} p_{x} .
\end{align*}
$$

6. A particle moving in three dimensions has Hamiltonian $H\left(\boldsymbol{x}, \boldsymbol{p}_{\boldsymbol{x}}, t\right)=\boldsymbol{p}_{\boldsymbol{x}}^{2} / 2 m+V(\boldsymbol{x}, t)$. A mapping to new phase-space co-ordinates $\left(\boldsymbol{r}, \boldsymbol{p}_{\boldsymbol{r}}\right)$ is generated by the function

$$
\begin{equation*}
F_{2}\left(\boldsymbol{x}, \boldsymbol{p}_{\boldsymbol{r}}, t\right)=\boldsymbol{p}_{r}^{T} B^{T} \boldsymbol{x} \tag{6-1}
\end{equation*}
$$

where $B(t)$ is a time-dependent rotation matrix $\left(B B^{T}=I\right)$. Show that the Hamiltonian in the new coordinates is given by

$$
\begin{equation*}
K\left(\boldsymbol{r}, \boldsymbol{p}_{r}, t\right)=\frac{\boldsymbol{p}_{r}^{2}}{2 m}+V(B \boldsymbol{r}, t)+\boldsymbol{p}_{r}^{T} \dot{B}^{T} \boldsymbol{x} \tag{6-2}
\end{equation*}
$$

Show further that $\boldsymbol{p}_{\boldsymbol{r}}^{T} \dot{B}^{T} \boldsymbol{x}$ can be written as $-\boldsymbol{p}_{\boldsymbol{r}} \cdot(\boldsymbol{\Omega} \times \boldsymbol{r})$ and explain how to obtain $\boldsymbol{\Omega}$.
Ans: It is safest to carry out the following manipulations using index notation. We have that $F_{2}=$ $p_{r i} B_{j i} x_{j}$ and that the transformation is given implicitly by

$$
\begin{align*}
r_{k} & =\frac{\partial F_{2}}{\partial p_{r k}}=\delta_{i k} B_{j i} x_{j}=B_{j k} x_{j} \\
p_{\boldsymbol{x} k} & =\frac{\partial F_{2}}{\partial x_{k}}=p_{\boldsymbol{r} i} B_{j i} \delta_{j k}=p_{\boldsymbol{r} i} B_{k i} \tag{6-3}
\end{align*}
$$

Therefore $\boldsymbol{r}=B^{T} \boldsymbol{x}($ so $\boldsymbol{x}=B \boldsymbol{r})$ and $\boldsymbol{p}_{\boldsymbol{x}}=B \boldsymbol{p}_{\boldsymbol{r}}$. The transformed Hamiltonian

$$
\begin{align*}
K & =H+\frac{\partial F_{2}}{\partial t}=\frac{1}{2 m} \boldsymbol{p}_{\boldsymbol{x}}^{2}+V(\boldsymbol{x}, t) \\
& =\frac{1}{2 m}\left(B \boldsymbol{p}_{\boldsymbol{r}}\right)^{2}+V(B \boldsymbol{r}, t)+\boldsymbol{p}_{r}^{T} \dot{B}^{T} \boldsymbol{x} \tag{6-4}\\
& =\frac{1}{2 m} \boldsymbol{p}_{\boldsymbol{r}}^{2}+V(B \boldsymbol{r}, t)+\boldsymbol{p}_{r}^{T} \dot{B}^{T} \boldsymbol{x}
\end{align*}
$$

as required. To express the final term above in something more friendly, recall from the notes that

$$
\begin{align*}
\dot{\boldsymbol{x}} & =\dot{B} \boldsymbol{r}+B \dot{\boldsymbol{r}} \\
& =\dot{B} B^{T} \boldsymbol{x}+B \dot{\boldsymbol{r}} \tag{6-5}\\
& =\boldsymbol{\omega} \times \boldsymbol{x}+B \dot{\boldsymbol{r}}
\end{align*}
$$

because $0=\frac{\mathrm{d}}{d t}\left(B B^{T}\right)=\dot{B} B^{T}+B \dot{B}^{T}=\dot{B} B^{T}+\left(\dot{B} B^{T}\right)^{T}$, meaning that $\dot{B} B^{T}$ is skew symmetric and so $\dot{B} B^{T} \boldsymbol{x}$ can be written as $\boldsymbol{\omega} \times \boldsymbol{x}$ for some choice of $\boldsymbol{\omega}$. Therefore $\left(\dot{B} B^{T}\right)^{T} \boldsymbol{x}=B \dot{B}^{T} \boldsymbol{x}=-\boldsymbol{\omega} \times \boldsymbol{x}$. Premultiplying $B \dot{B}^{T} \boldsymbol{x}=-\boldsymbol{\omega} \times \boldsymbol{x}$ by B^{T} gives

$$
\begin{equation*}
\dot{B}^{T} \boldsymbol{x}=-B^{T}(\boldsymbol{\omega} \times \boldsymbol{x})=-B^{T} \boldsymbol{\omega} \times B^{T} \boldsymbol{x}=-\boldsymbol{\Omega} \times \boldsymbol{r} \tag{6-6}
\end{equation*}
$$

where $\boldsymbol{\Omega}=B^{T} \boldsymbol{\omega}$. Thefore $\boldsymbol{p}_{r}^{T} \dot{B}^{T} \boldsymbol{x}=-\boldsymbol{p}_{\boldsymbol{r}} \cdot(\boldsymbol{\Omega} \times \boldsymbol{r})$, as required.
The simplest way of finding $\boldsymbol{\Omega}$ is from the relation $\dot{B} B^{T} \boldsymbol{x}=\boldsymbol{\omega} \times \boldsymbol{x}$, which can be written $\dot{B} \boldsymbol{r}=B(\boldsymbol{\Omega} \times \boldsymbol{r})$, or $B^{T} \dot{B} \boldsymbol{r}=\boldsymbol{\Omega} \times \boldsymbol{r}$. Then $\boldsymbol{\Omega}$ can be found by writing out the RHS as a skew-symmetric matrix acting on \boldsymbol{r},

$$
\Omega \times r=\left(\begin{array}{ccc}
0 & -\Omega_{3} & \Omega_{2} \tag{6-7}\\
\Omega_{3} & 0 & -\Omega_{1} \\
-\Omega_{2} & \Omega_{1} & 0
\end{array}\right)\left(\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right)
$$

The components of Ω follow by writing out $B^{T} \dot{B}$ explicitly and comparing to this.

