S7: Classical mechanics - problem set 2

1. Show that if the Hamiltonian is indepdent of a generalized co-ordinate q_{0}, then the conjugate momentum p_{0} is a constant of motion. Such co-ordinates are called cyclic co-ordinates. Give two examples of physical systems that have a cyclic co-ordinate.
2. A dynamical system has generalized co-ordinates q_{i} and generalized momenta p_{i}. Verify the following properties of the Poisson brackets:

$$
\begin{equation*}
\left[q_{i}, q_{j}\right]=\left[p_{i}, p_{j}\right]=0, \quad\left[q_{i}, p_{j}\right]=\delta_{i j} \tag{2-1}
\end{equation*}
$$

If \boldsymbol{p} is the momentum conjugate to a position vector \boldsymbol{r} and $\boldsymbol{L}=\boldsymbol{r} \times \boldsymbol{p}$, evaluate $\left[L_{x}, L_{y}\right],\left[L_{y}, L_{x}\right]$ and $\left[L_{x}, L_{x}\right]$.

The Lagrangian of a particle of mass m and charge e in a uniform magnetic field \boldsymbol{B} and electrostatic potential ϕ is

$$
\begin{equation*}
L=\frac{1}{2} m \dot{\boldsymbol{r}}^{2}+\frac{1}{2} e \dot{\boldsymbol{r}} \cdot(\boldsymbol{B} \times \boldsymbol{r})-e \phi . \tag{2-2}
\end{equation*}
$$

Derive the corresponding Hamiltonian and verify that the rate of change of $m \dot{\boldsymbol{r}}$ equals the Lorentz force.
Show that the momentum component along \boldsymbol{B} and the sum of the squares of the momentum components are all constants of motion when $\phi=0$. Find another constant of motion associated with time translation symmetry.
3. Let p and q be canonically conjugate co-ordinates and let $f(p, q)$ and $g(p, q)$ be functions on phase space. Define the Poisson bracket $[f, g]$. Let $H(p, q)$ be the Hamiltonian that governs the system's dynamics. Write down the equations of motion of p and q in terms of H and the Poisson bracket.

In a galaxy the density of stars in phase space is $f(\boldsymbol{q}, \boldsymbol{p}, t)$, where \boldsymbol{q} and \boldsymbol{p} each have three components. When evaluated at the location $(\boldsymbol{q}(t), \boldsymbol{p}(t))$ of any given star, f is time-independent. Show that f consequently satisfies

$$
\begin{equation*}
\frac{\partial f}{\partial t}+[f, H]=0 \tag{3-1}
\end{equation*}
$$

where H is the Hamiltonian that governs the motion of every star.
Consider motion in a circular razor-thin galaxy in which the potential of any star is given by the function $V(R)$, where R is a radial co-ordinate. Express H in terms of plane polar co-ordinates (R, ϕ) and their conjugate momenta, with the origin coinciding with the galaxy's centre. Hence, or otherwise, show that in this system f satisfies the equation

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\frac{p_{R}}{m} \frac{\partial f}{\partial R}+\frac{p_{\phi}}{m R^{2}} \frac{\partial f}{\partial \phi}-\left(\frac{\partial V}{\partial R}-\frac{p_{\phi}^{2}}{m R^{3}}\right) \frac{\partial f}{\partial p_{R}}=0 \tag{3-2}
\end{equation*}
$$

where m is the mass of the star.
4. Show that in spherical polar co-ordinates the Hamiltonian of a particle of mass m moving in a potential $V(x)$ is

$$
\begin{equation*}
H=\frac{1}{2 m}\left(p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}+\frac{p_{\phi}^{2}}{r^{2} \sin ^{2} \theta}\right)+V(\boldsymbol{x}) \tag{4-1}
\end{equation*}
$$

Show that $p_{\phi}=$ constant when $\partial V / \partial \phi \equiv 0$ and interpret this result physically.
Given that V depends only on r, show that $[H, K]=0$, where $K \equiv p_{\theta}^{2}+p_{\phi}^{2} / \sin ^{2} \theta$. By expressing K as a function of $\dot{\theta}$ and $\dot{\phi}$ interpret this result physically.

Consider circular motion with angular momentum h in a spherical potential $V(r)$. Evaulate $p_{\theta}(\theta)$ when the orbit's plane is inclined by ψ to the equatorial plane. Show that $p_{\theta}=0$ when $\sin \theta= \pm \cos \psi$ and interpret this result physically.
5. Oblate spheroidal co-ordinates (u, v, ϕ) are related to regular cylindrical polars (R, z, ϕ) by

$$
\begin{equation*}
R=\Delta \cosh u \cos v ; \quad z=\Delta \sinh u \sin v \tag{5-1}
\end{equation*}
$$

For a particle of mass m show that the momenta conjugate to these co-ordinates are

$$
\begin{align*}
& p_{u}=m \Delta^{2}\left(\cosh ^{2} u-\cos ^{2} v\right) \dot{u} \\
& p_{v}=m \Delta^{2}\left(\cosh ^{2} u-\cos ^{2} v\right) \dot{v} \tag{5-2}\\
& p_{\phi}=m \Delta^{2} \cosh ^{2} u \cos ^{2} v \dot{\phi}
\end{align*}
$$

Hence show that the Hamiltonian for motion in a potential $\Phi(u, v)$ is

$$
\begin{equation*}
H=\frac{p_{u}^{2}+p_{v}^{2}}{2 m \Delta^{2}\left(\cosh ^{2} u-\cos ^{2} v\right)}+\frac{p_{\phi}^{2}}{2 m \Delta^{2} \cosh ^{2} u \cos ^{2} v}+\Phi \tag{5-3}
\end{equation*}
$$

Show that $\left[H, p_{\phi}\right]=0$ and hence that p_{ϕ} is a constant of motion. Identify it physically.
6. A particle of mass m and charge Q moves in the equatorial plane $\theta=\pi / 2$ of a magnetic dipole. Given that the dipole has vector potential

$$
\begin{equation*}
\boldsymbol{A}=\frac{\mu \sin \theta}{4 \pi r^{2}} \hat{\boldsymbol{e}}_{\phi} \tag{6-1}
\end{equation*}
$$

evaluate the Hamiltonian $H\left(p_{r}, p_{\phi}, r, \phi\right)$ of the system.
The particle approaches the dipole from infinity at speed v and impact parameter b. Show that p_{ϕ} and the particle's speed are constants of motion.

Show further that for $Q \mu>0$ the distance of closest approach to the dipole is

$$
D=\frac{1}{2} \begin{cases}b+\sqrt{b^{2}-a^{2}} & \text { for } \dot{\phi}>0 \tag{6-2}\\ b+\sqrt{b^{2}+a^{2}} & \text { for } \dot{\phi}<0\end{cases}
$$

where $a^{2} \equiv \mu Q / \pi m v$.
7. An axisymmetric top has Lagrangian

$$
\begin{equation*}
L=\frac{1}{2} I_{1}\left(\dot{\phi}^{2} \sin ^{2} \theta+\dot{\theta}^{2}\right)+\frac{1}{2} I_{3}(\dot{\phi} \cos \theta+\dot{\psi})^{2}-m g a \cos \theta \tag{7-1}
\end{equation*}
$$

where (θ, ϕ, ψ) are the usual Euler angles. Show that the top's Hamiltonian

$$
\begin{equation*}
H=\frac{p_{\theta}^{2}}{2 I_{1}}+\frac{\left(p_{\phi}-p_{\psi} \cos \theta\right)^{2}}{2 I_{1} \sin ^{2} \theta}+\frac{p_{\psi}^{2}}{2 I_{3}}+m g a \cos \theta \tag{7-2}
\end{equation*}
$$

Using Hamilton's equations or otherwise show that the top will precess steadily at fixed inclination to the vertical provided θ satisfies

$$
\begin{equation*}
0=m g a+\frac{\left(p_{\phi}-p_{\psi} \cos \theta\right)\left(p_{\phi} \cos \theta-p_{\psi}\right)}{I_{1} \sin ^{4} \theta} \tag{7-3}
\end{equation*}
$$

8. A point charge q is placed at the origin in the magnetic field generated by a spatially confined current distribution. Given that

$$
\begin{equation*}
\boldsymbol{E}=\frac{q}{4 \pi \epsilon_{0}} \frac{\boldsymbol{r}}{r^{3}} \tag{8-1}
\end{equation*}
$$

and $\boldsymbol{B}=\nabla \times \boldsymbol{A}$ with $\nabla \cdot \boldsymbol{A}=0$, show that the field's momentum

$$
\begin{equation*}
\boldsymbol{P} \equiv \epsilon_{0} \int \boldsymbol{E} \times \boldsymbol{B} \mathrm{d}^{3} \boldsymbol{x}=q \boldsymbol{A}(0) \tag{8-2}
\end{equation*}
$$

Use this result to intrepret the formula for the canonical momentum of a charged particle in an electromagnetic field. [Hint: use $\boldsymbol{B}=\nabla \times \boldsymbol{A}$ and then index notation (easy) or vector identities (not so easy) to expand $\boldsymbol{E} \times \boldsymbol{B}$ into a sum of two terms. To each term apply the tensor form of Gauss's theorem, which states that $\int \mathrm{d}^{3} \boldsymbol{x} \nabla_{i} \boldsymbol{T}=\oint \mathrm{d}^{2} S_{i} \boldsymbol{T}$, no matter how many indices the tensor \boldsymbol{T} carries. In one term you can make use of $\nabla \cdot \boldsymbol{A}=0$ and in the other $\nabla^{2} r^{-1}=-4 \pi \delta^{3}(\boldsymbol{r})$.]

