
J. Magorrian MT 2009, borrowing from J. J. Binney’s 2006 course

S7: Classical mechanics – problem set 2

1. Show that if the Hamiltonian is indepdent of a generalized co-ordinate q0, then the conjugate momentum p0
is a constant of motion. Such co-ordinates are called cyclic co-ordinates. Give two examples of physical
systems that have a cyclic co-ordinate.

2. A dynamical system has generalized co-ordinates qi and generalized momenta pi. Verify the following
properties of the Poisson brackets:

[qi, qj ] = [pi, pj ] = 0, [qi, pj ] = δij . (2-1)

If p is the momentum conjugate to a position vector r and L = r × p, evaluate [Lx, Ly], [Ly, Lx] and
[Lx, Lx].

The Lagrangian of a particle of mass m and charge e in a uniform magnetic field B and electrostatic
potential φ is

L =
1

2
mṙ2 +

1

2
eṙ · (B × r)− eφ. (2-2)

Derive the corresponding Hamiltonian and verify that the rate of change of mṙ equals the Lorentz force.

Show that the momentum component along B and the sum of the squares of the momentum components
are all constants of motion when φ = 0. Find another constant of motion associated with time translation
symmetry.

3. Let p and q be canonically conjugate co-ordinates and let f(p, q) and g(p, q) be functions on phase space.
Define the Poisson bracket [f, g]. Let H(p, q) be the Hamiltonian that governs the system’s dynamics. Write
down the equations of motion of p and q in terms of H and the Poisson bracket.

In a galaxy the density of stars in phase space is f(q, p, t), where q and p each have three components.
When evaluated at the location (q(t), p(t)) of any given star, f is time-independent. Show that f consequently
satisfies

∂f

∂t
+ [f,H] = 0, (3-1)

where H is the Hamiltonian that governs the motion of every star.

Consider motion in a circular razor-thin galaxy in which the potential of any star is given by the function
V (R), where R is a radial co-ordinate. Express H in terms of plane polar co-ordinates (R,φ) and their
conjugate momenta, with the origin coinciding with the galaxy’s centre. Hence, or otherwise, show that in
this system f satisfies the equation

∂f

∂t
+
pR
m

∂f

∂R
+

pφ
mR2

∂f

∂φ
−

(
∂V

∂R
−

p2φ
mR3

)
∂f

∂pR
= 0, (3-2)

where m is the mass of the star.

4. Show that in spherical polar co-ordinates the Hamiltonian of a particle of mass m moving in a potential
V (x) is

H =
1

2m

(
p2r +

p2θ
r2

+
p2φ

r2 sin2 θ

)
+ V (x). (4-1)

Show that pφ = constant when ∂V/∂φ ≡ 0 and interpret this result physically.

Given that V depends only on r, show that [H,K] = 0, where K ≡ p2θ + p2φ/ sin2 θ. By expressing K as a

function of θ̇ and φ̇ interpret this result physically.

Consider circular motion with angular momentum h in a spherical potential V (r). Evaulate pθ(θ) when
the orbit’s plane is inclined by ψ to the equatorial plane. Show that pθ = 0 when sin θ = ± cosψ and
interpret this result physically.
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5. Oblate spheroidal co-ordinates (u, v, φ) are related to regular cylindrical polars (R, z, φ) by

R = ∆ coshu cos v; z = ∆ sinhu sin v. (5-1)

For a particle of mass m show that the momenta conjugate to these co-ordinates are

pu = m∆2(cosh2 u− cos2 v)u̇,

pv = m∆2(cosh2 u− cos2 v)v̇,

pφ = m∆2 cosh2 u cos2 vφ̇.

(5-2)

Hence show that the Hamiltonian for motion in a potential Φ(u, v) is

H =
p2u + p2v

2m∆2(cosh2 u− cos2 v)
+

p2φ

2m∆2 cosh2 u cos2 v
+ Φ. (5-3)

Show that [H, pφ] = 0 and hence that pφ is a constant of motion. Identify it physically.

6. A particle of mass m and charge Q moves in the equatorial plane θ = π/2 of a magnetic dipole. Given that
the dipole has vector potential

A =
µ sin θ

4πr2
êφ, (6-1)

evaluate the Hamiltonian H(pr, pφ, r, φ) of the system.

The particle approaches the dipole from infinity at speed v and impact parameter b. Show that pφ and
the particle’s speed are constants of motion.

Show further that for Qµ > 0 the distance of closest approach to the dipole is

D = 1
2

{
b+
√
b2 − a2 for φ̇ > 0,

b+
√
b2 + a2 for φ̇ < 0,

(6-2)

where a2 ≡ µQ/πmv.

7. An axisymmetric top has Lagrangian

L = 1
2I1(φ̇2 sin2 θ + θ̇2) + 1

2I3(φ̇ cos θ + ψ̇)2 −mga cos θ, (7-1)

where (θ, φ, ψ) are the usual Euler angles. Show that the top’s Hamiltonian

H =
p2θ
2I1

+
(pφ − pψ cos θ)2

2I1 sin2 θ
+
p2ψ
2I3

+mga cos θ. (7-2)

Using Hamilton’s equations or otherwise show that the top will precess steadily at fixed inclination to the
vertical provided θ satisfies

0 = mga+
(pφ − pψ cos θ)(pφ cos θ − pψ)

I1 sin4 θ
. (7-3)

8. A point charge q is placed at the origin in the magnetic field generated by a spatially confined current
distribution. Given that

E =
q

4πε0

r

r3
(8-1)

and B = ∇×A with ∇ ·A = 0, show that the field’s momentum

P ≡ ε0
∫

E ×B d3x = qA(0). (8-2)

Use this result to intrepret the formula for the canonical momentum of a charged particle in an electromag-
netic field. [Hint: use B = ∇×A and then index notation (easy) or vector identities (not so easy) to expand
E ×B into a sum of two terms. To each term apply the tensor form of Gauss’s theorem, which states that∫

d3x∇iT =
∮

d2SiT , no matter how many indices the tensor T carries. In one term you can make use of
∇ ·A = 0 and in the other ∇2r−1 = −4πδ3(r).]
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