J. Magorrian MT 2009, borrowing from J. J. Binney’s 2006 course
S7: Classical mechanics — problem set 2

Show that if the Hamiltonian is indepdent of a generalized co-ordinate gg, then the conjugate momentum pg
is a constant of motion. Such co-ordinates are called cyclic co-ordinates. Give two examples of physical
systems that have a cyclic co-ordinate.

A dynamical system has generalized co-ordinates ¢; and generalized momenta p;. Verify the following
properties of the Poisson brackets:

i q5) = [pis ] =0, [qi,p5] = ds5- (2-1)

If p is the momentum conjugate to a position vector r and L = r x p, evaluate [Lg, Ly], [Ly, L] and
[Lyz, L]

The Lagrangian of a particle of mass m and charge e in a uniform magnetic field B and electrostatic
potential ¢ is

1 1
L= §m1'“2 +ger (B x 1) — e (2-2)

Derive the corresponding Hamiltonian and verify that the rate of change of m7s equals the Lorentz force.

Show that the momentum component along B and the sum of the squares of the momentum components
are all constants of motion when ¢ = 0. Find another constant of motion associated with time translation
symmetry.

Let p and ¢ be canonically conjugate co-ordinates and let f(p,q) and g(p,q) be functions on phase space.
Define the Poisson bracket [f, g]. Let H(p, q) be the Hamiltonian that governs the system’s dynamics. Write
down the equations of motion of p and ¢ in terms of H and the Poisson bracket.

In a galaxy the density of stars in phase space is f(q,p,t), where g and p each have three components.
When evaluated at the location (q(¢), p(t)) of any given star, f is time-independent. Show that f consequently
satisfies

of

ot
where H is the Hamiltonian that governs the motion of every star.

Consider motion in a circular razor-thin galaxy in which the potential of any star is given by the function
V(R), where R is a radial co-ordinate. Express H in terms of plane polar co-ordinates (R, ¢) and their
conjugate momenta, with the origin coinciding with the galaxy’s centre. Hence, or otherwise, show that in
this system f satisfies the equation

2
OF [ prOf | bo af_<av_ bo ) or _ (3-2)

+[f,H] =0, (3-1)
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where m is the mass of the star.

Show that in spherical polar co-ordinates the Hamiltonian of a particle of mass m moving in a potential

V() is
1 p2 p2
H=—— (P +2+ 2|+ V(). 4-1

2m (pr Tt 2 sin29> V() (1)

Show that p, = constant when 0V/0¢ = 0 and interpret this result physically.

Given that V depends only on r, show that [H, K| = 0, where K = p2 —|—p§5/ sin? 0. By expressing K as a
function of @ and ¢ interpret this result physically.

Consider circular motion with angular momentum h in a spherical potential V(r). Evaulate py(f) when
the orbit’s plane is inclined by 1 to the equatorial plane. Show that pg = 0 when sinf = +costy and
interpret this result physically.



Oblate spheroidal co-ordinates (u, v, ¢) are related to regular cylindrical polars (R, z, ¢) by
R = Acoshucosv; z= Asinhusinv. (5-1)
For a particle of mass m show that the momenta conjugate to these co-ordinates are
pu = mA?(cosh? u — cos?

po = mA?(cosh? u — cos? v)0, (5-2)

V),

Do = mAZ? cosh? u cos® vé.
Hence show that the Hamiltonian for motion in a potential ®(u,v) is

2 2 2
Py + Py Py
H = + + . 9-3
2mA2(cosh? u — cos2v)  2mA2 cosh? u cos? v (5-3)

Show that [H,p,] = 0 and hence that pg is a constant of motion. Identify it physically.

A particle of mass m and charge Q moves in the equatorial plane § = 7/2 of a magnetic dipole. Given that
the dipole has vector potential
Ak sinﬁé
A2 ©

evaluate the Hamiltonian H (p,,py,r, $) of the system.

The particle approaches the dipole from infinity at speed v and impact parameter b. Show that p, and
the particle’s speed are constants of motion.

Show further that for Qu > 0 the distance of closest approach to the dipole is

1 b+ V b2 _a2 for ¢ > O7 (6'2)
21 b+Vb2+a2 for <O,

(6-1)

where a? = uQ/mmv.

An axisymmetric top has Lagrangian
L=1n (p?sin® 0 + 6%) + %Ig(q.ﬁ cos 0 + 1) — mga cos 0, (7-1)
where (0, ¢, 1) are the usual Euler angles. Show that the top’s Hamiltonian
2 2 2
Py (P —pycost)® Py
H=—"24+~———_— " +—— 4+ mgacosf. 7-2
25 21 sin? 0 213 g (2)

Using Hamilton’s equations or otherwise show that the top will precess steadily at fixed inclination to the

vertical provided 6 satisfies

(Py — Py c0s 0)(py cos b — py)
I, sin* 0

0 =mga + . (7-3)

A point charge ¢ is placed at the origin in the magnetic field generated by a spatially confined current
distribution. Given that

q T
= — 8_1
4dmeg 13 (8-1)
and B =V x A with V- A = 0, show that the field’s momentum
P= eO/E x Bd3z = qA(0). (8-2)

Use this result to intrepret the formula for the canonical momentum of a charged particle in an electromag-
netic field. [Hint: use B = V x A and then index notation (easy) or vector identities (not so easy) to expand
E x B into a sum of two terms. To each term apply the tensor form of Gauss’s theorem, which states that
J 32V, T = f d2S;T, no matter how many indices the tensor T' carries. In one term you can make use of
V- A =0 and in the other V?r~1 = —4753(r).]



