
J. Magorrian MT 2009, borrowing from J. J. Binney’s 2006 course

S7: Classical mechanics – problem set 2

1. Show that if the Hamiltonian is indepdent of a generalized co-ordinate q0, then the conjugate momentum p0
is a constant of motion. Such co-ordinates are called cyclic co-ordinates. Give two examples of physical
systems that have a cyclic co-ordinate.

Ans: Using ṗi = −∂H/∂qi it’s obvious that if H doesn’t depend explicitly on, say, q1, then p1 is conserved.
Examples: pφ is conserved in axisymmetric potential V (R, z); pz is conserved for motion in a magnetic field
B = Bk̂; px, py, pz are conserved for free particles, etc.

2. A dynamical system has generalized co-ordinates qi and generalized momenta pi. Verify the following
properties of the Poisson brackets:

[qi, qj ] = [pi, pj ] = 0, [qi, pj ] = δij . (2-1)

Ans: From definition of PB

[qi, pj ] =
∑
k

∂qi
∂qk

∂pj
∂pk
−
∑
k

∂qi
∂pk

∂pj
∂qk

=
∑
k

δikδjk − 0 = δij . (2-2)

Similarly, [qi, qj ] and [pi, pj ] are obviously zero.

If p is the momentum conjugate to a position vector r and L = r×p, evaluate [Lx, Ly], [Ly, Lx] and [Lx, Lx].

Ans: By antisymmetry of PBs, [Lx, Lx] = 0 and [Lx, Ly] = −[Ly, Lx]. So we need only calculate [Lx, Ly] =

[ypz − zpy, zpz − xpz]. One way to do this is to use the linearity, antisymmetry and chain rule for PBs to reduce
the expression to something involving the canonical commutation relations (see lectures). Another is to apply
the definition of PB directly:

[Lx, Ly] =
∂

∂x
(ypz − zpy)

∂

∂px
(zpz − xpz)− ∂

∂px
(ypz − zpy)

∂

∂x
(zpz − xpz)

+
∂

∂y
(ypz − zpy)

∂

∂py
(zpz − xpz)− ∂

∂py
(ypz − zpy)

∂

∂y
(zpz − xpz)

+
∂

∂z
(ypz − zpy)

∂

∂pz
(zpz − xpz)− ∂

∂pz
(ypz − zpy)

∂

∂z
(zpz − xpz)

= (−py)(−x)− ypx = Lz.

(2-3)

This is the overly cautious way of writing out. A more sensible answer would point out that Lx is independent
of x and px and Ly is independent y and py, so the first two lines above must clearly be zero and we need only
consider the third.
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The Lagrangian of a particle of mass m and charge e in a uniform magnetic field B and electrostatic potential
φ is

L =
1

2
mṙ2 +

1

2
eṙ · (B × r)− eφ. (2-4)

Derive the corresponding Hamiltonian and verify that the rate of change of mṙ equals the Lorentz force.

Ans: Momentum

p ≡ ∂L

∂ṙ
= mṙ + 1

2
e(B × r). (2-5)

Hamiltonian is Legendre transform w.r.t. ṙ:

H = p · ṙ − L = mṙ2
+ 1

2
e(B × r) · ṙ − L

= 1

2
mṙ2

+ eφ = 1

2m

[
p− 1

2
e(B × r)

]2
+ eφ.

(2-6)

To verify that the rate of change of mṙ is given by the Lorentz force, start with Hamilton’s equation ṗ = −∂H/∂r:

(LHS) ṗ =
d

dt
mṙ + 1

2
e(B × ṙ)

(RHS) − ∂H

∂r
= − 1

m

[
p− 1

2
e(B × r)

]
· ∂
∂r

[
− 1

2
e(B × r)

]
− e∂φ

∂r

(2-7)

We can expand the RHS using the following (remember that r, p are independent):

p · ∂
∂r

(B × r) =
∂

∂r
[p · (B × r)] =

∂

∂r
[r · (p×B)] = p×B,

(B × r) · ∂
∂r

(B × r) = 1

2

∂

∂r

[
(B × r)

2
]

= 1

2

∂

∂r

[
B2r2 − (B · r)

2
]

= B2r − (B · r)B

= (B × r)×B

(2-8)

Using p = mṙ + 1

2
e(B × r) and (2-8) to expand ṗ = −∂H/∂r gives

ṗ =
d

dt
mṙ +

1

2
e(B × ṙ) =

e

2m

[
mṙ +

1

2
e(B × r)

]
×B − e2

4m
(B × r)×B − e∂φ

∂r
, (2-9)

which simplifies to d

dt
mṙ = eṙ ×B − e(∂φ/∂r) as expected.

Show that the momentum component along B and the sum of the squares of the momentum components
are all constants of motion when φ = 0. Find another constant of motion associated with time translation
symmetry.

Ans: Notice ambiguity! “Momentum” could mean either p or mṙ. We take the latter. Dot (2-9) with B:

d

dt
p ·B = B · ṗ = −eB · ∂φ

∂r
= 0 if φ constant. (2-10)

So component of p along B is conserved. So too is component of mṙ = p − 1

2
e(B × r). To show other two

components are constant, assume φ = 0 and dot Lorentz force equation with mṙ:

1

2

d

dt
(m2ṙ2

) = mṙ · d

dt
mṙ = (eṙ ×B) · ṙ = 0. (2-11)

So (mṙ)2 is conserved. Since B ·mṙ is along conserved, must have that sum-square of other two components of
mṙ (but not p) is conserved too.
The constant of motion associated with time translation symmetry is H itself.
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3. Let p and q be canonically conjugate co-ordinates and let f(p, q) and g(p, q) be functions on phase space.
Define the Poisson bracket [f, g]. Let H(p, q) be the Hamiltonian that governs the system’s dynamics. Write
down the equations of motion of p and q in terms of H and the Poisson bracket.

Ans: Definition of PB:

[f, g] =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (3-1)

Hamilton’s equations are q̇ = [q,H ], ṗ = [p,H ].

In a galaxy the density of stars in phase space is f(q, p, t), where q and p each have three components. When
evaluated at the location (q(t), p(t)) of any given star, f is time-independent. Show that f consequently
satisfies

∂f

∂t
+ [f,H] = 0, (3-2)

where H is the Hamiltonian that governs the motion of every star.

Ans: f is constant along orbits so df/dt = 0. Equation (3-2) follows on using the chain rule to write df/dt =

∂f/∂t + q̇(∂f/∂q) + ṗ(∂f/∂q) and then substituting for (q̇, ṗ) from Hamilton’s equations.

Consider motion in a circular razor-thin galaxy in which the potential of any star is given by the function
V (R), where R is a radial co-ordinate. Express H in terms of plane polar co-ordinates (R,φ) and their
conjugate momenta, with the origin coinciding with the galaxy’s centre. Hence, or otherwise, show that in
this system f satisfies the equation

∂f

∂t
+
pR
m

∂f

∂R
+

pφ
mR2

∂f

∂φ
−

(
∂V

∂R
−

p2φ
mR3

)
∂f

∂pR
= 0, (3-3)

where m is the mass of the star.

Ans: Standard procedure: Write down Lagrangian L in terms of plane-polar co-ordinates; this L defines
momenta conjugate to (R,φ) through p ≡ ∂L/∂q̇; take Legendre transform of L to get H.
The Lagrangian

L =
1

2
m
(
Ṙ2

+R2φ̇2
)
− V (R), (3-4)

so that the momenta pR = mṘ and pφ = mR2φ̇. Taking the Legendre transform,

H = pRṘ + pφφ̇−
1

2
m(Ṙ2

+R2φ̇2
) + V (R)

=
1

2m

[
p2
R +

p2
φ

R2

]
+ V (R),

(3-5)

where the generalized velocities Ṙ and φ̇ have been expressed in terms of the phase-space co-ordinates (R,φ, pR, pφ).
To obtain (3-3) start from (3-2), but writing out the [f,H ] explicitly:

0 =
∂f

∂t
+ [f,H ] =

∂f

∂t
+
∂f

∂R

∂H

∂pR
− ∂f

∂pR

∂H

∂R
+
∂f

∂φ

∂H

∂pφ
− ∂f

∂pφ

∂H

∂φ
, (3-6)

from which the required result follows.
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4. Show that in spherical polar co-ordinates the Hamiltonian of a particle of mass m moving in a potential
V (x) is

H =
1

2m

(
p2r +

p2θ
r2

+
p2φ

r2 sin2 θ

)
+ V (x). (4-1)

Show that pφ = constant when ∂V/∂φ ≡ 0 and interpret this result physically.

Ans: Starting from x = r sin θ cosφ etc, we can show that the particle’s velocity satisfies ẋ2 = ṙ2+r2 sin2 θφ̇2+r2θ̇2

and so the Lagrangian

L =
1

2
mẋ2 − V =

1

2
m
[
ṙ2 + r2 sin

2 θφ̇2
+ r2θ̇2

]
− V. (4-2)

Using pi ≡ ∂L/∂qi, the momenta

pr = mṙ, pθ = mr2θ̇, pφ = mr2 sin
2 θφ̇. (4-3)

Taking the Legendre transform of L,

H = p · q̇ − L = mṙ2 +mr2θ̇2 +mr2 sin
2 θφ̇2 − L

=
1

2
m
[
ṙ2 + r2 sin

2 θφ̇2
+ r2θ̇2

]
+ V (r, θ, φ),

(4-4)

from which (4-1) follows on using (4-3) to express the generalized velocities (ṙ, θ̇, φ̇) in terms of phase-space
co-ordinates (r, θ, φ, pr, pθ, pφ).
If V does not depend on φ then ṗφ = −∂H/∂φ = −∂V/∂φ = 0 and so pφ (the angular momentum about the z
axis) is conserved.

Given that V depends only on r, show that [H,K] = 0, where K ≡ p2θ + p2φ/ sin2 θ. By expressing K as a

function of θ̇ and φ̇ interpret this result physically.

Ans: One way of showing [H,K] = 0 is by writing out the six terms in the Poisson bracket explicitly. Alterna-
tively, note that the Hamiltonian (4-1) can be written H = p2

r/2m +K/2mr2 + V and so

[H,K] =
1

2m
[p2
r,K] +

1

m

[
K

r2
,K
]

+ [V,K]. (4-5)

The first term vanishes because K does not depend on r. Similarly, the final term vanishes because V = V (r)
and K does not depend on pr. Using the chain rule for PBs, the middle term

[K/r2,K] = [K,K] · 1

r2
+ [1/r2,K]K, (4-6)

but clearly [K,K] = 0 and [1/r2,K] = 0 since K is independent of pr. Therefore all terms in (4-5) vanish and so
[H,K] = 0, meaning that K is a constant of motion.
Writing K out in terms of generalized velocities θ̇, φ̇,

K = m2r2
[
(rθ̇)

2
+ (r sin θφ̇)

2
]

= m2r2v2
tangential, (4-7)

which is the square of the total angular momentum. It vanishes because the potential is spherically symmetric.

Consider circular motion with angular momentum h in a spherical potential V (r). Evaulate pθ(θ) when the
orbit’s plane is inclined by ψ to the equatorial plane. Show that pθ = 0 when sin θ = ± cosψ and interpret
this result physically.

Ans: The orbit is inclined at an angle ψ, so pφ = h cosψ. Using h2 = K = p2
θ + p2

φ/ sin2 θ, we have that

p2
θ = h2

(
1− cos2 ψ

sin2 θ

)
, (4-8)

which tends to zero as sin θ → ± cosψ – the particle is at its turning point in the (R, z) plane, which is where
both pθ and θ̇ are zero.
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5. Oblate spheroidal co-ordinates (u, v, φ) are related to regular cylindrical polars (R, z, φ) by

R = ∆ coshu cos v; z = ∆ sinhu sin v. (5-1)

For a particle of mass m show that the momenta conjugate to these co-ordinates are

pu = m∆2(cosh2 u− cos2 v)u̇,

pv = m∆2(cosh2 u− cos2 v)v̇,

pφ = m∆2 cosh2 u cos2 vφ̇.

(5-2)

Hence show that the Hamiltonian for motion in a potential Φ(u, v) is

H =
p2u + p2v

2m∆2(cosh2 u− cos2 v)
+

p2φ

2m∆2 cosh2 u cos2 v
+ Φ. (5-3)

Ans: Start from L = 1

2
m[Ṙ2 + (Rφ̇)2 + ż2]− Φ. Have that

R = ∆ coshu cos v

z = ∆ sinhu sin v
⇒ Ṙ = u̇∆ sinhu cos v − v̇∆ coshu sin v

ż = u̇∆ coshu sin v + v̇∆ sinhu cos v
(5-4)

So

Ṙ2
+ ż2

= ∆
2u̇2

[sinh
2 u cos

2 v + cosh
2 u sin

2 v] + ∆
2v̇2

[cosh
2 u sin

2 v + sinh
2 u cos

2 v]

= ∆
2u̇2

[(cosh
2 u− 1)(1− sin

2 v) + cosh
2 u sin

2 v] + ∆
2v̇2

[cosh
2 u(1− cos

2 v) + sinh
2 u cos

2 v]

= ∆
2
[
u̇2

+ v̇2
]

(cosh
2 u− cos

2 v)

(5-5)

and
L = 1

2
m∆

2
[
(cosh

2 u− cos
2 v)(u̇2

+ v̇2
) + cosh

2 u cos
2 vφ̇2

]
− Φ. (5-6)

The momenta (5-2) drop out using pu ≡ ∂L/∂u̇ etc. Taking the Legendre transform of L w.r.t. (u̇, v̇, φ̇) we have
that

H = puu̇ + pv v̇ + pφφ̇− L =
p2
u

m∆2(cosh2 u− cos2 v)
+

p2
v

m∆2(cosh2 u− cos2 v)
+

p2
φ

m∆2 cosh2 u cos2 v

− 1

2
m∆

2

[
p2
u + p2

v

(m∆2)2(cosh2 u− cos2 v)
+

(
pφ

m∆2 coshu cos v

)2
]

+ Φ,

(5-7)

using (5-2) to obtain u̇ = pu/m∆2(cosh2 u− cos2v) etc. Simplifying gives the required expression.

Show that [H, pφ] = 0 and hence that pφ is a constant of motion. Identify it physically.

Ans:

[H, pφ] =
∂H

∂u

∂pφ
∂pu︸︷︷︸

0

− ∂pφ
∂u︸︷︷︸
0

∂H

∂pu
+
∂H

∂v

∂pφ
∂pv︸︷︷︸

0

− ∂pφ
∂v︸︷︷︸
0

∂H

∂pv
+
∂H

∂φ

∂pφ
∂pφ︸︷︷︸

1

− ∂pφ
∂φ︸︷︷︸
0

∂H

∂pφ
, (5-8)

all but one of the terms being zero since ∂wi/∂wj = δij , where w ≡ (u, v, φ, pu, pv, pφ). (Remember that
phase-space co-ordinates are independent of one another!) The remaining term involves ∂H/∂φ which vanishes,
since the potential – and therefore H – does not depend on φ. The conserved momentum, pφ, is the angular
momentum about the symmetry axis.
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6. A particle of mass m and charge Q moves in the equatorial plane θ = π/2 of a magnetic dipole. Given that
the dipole has vector potential

A =
µ sin θ

4πr2
êφ, (6-1)

evaluate the Hamiltonian H(pr, pφ, r, φ) of the system.

Ans: You might be tempted to use H =
(p−QA)2

2m
+ Qφ, but that’s for Cartesian p. One possibility is to make

a canonical map to new polar co-ords, but it’s simpler to go back to basics and rederive H from L.

L = 1

2
mẋ2

+Q(ẋ ·A− Φ)

= 1

2
m[ṙ2 + r2φ̇2

] +Q(rφ̇)
µ

4πr2
.

(6-2)

pr = mṙ, pφ = mr2φ̇ +
Qµ

4πr
⇒ φ̇ =

(
pφ −

Qµ

4πr

)/
mr2. (6-3)

Take LT of L,
H = pr ṙ + pφφ̇− L = 1

2
m(ṙ2 + r2φ̇2

)

=
1

2m

[
p2
r +

1

r2

(
pφ −

Qµ

4πr

)2
]
.

(6-4)

The particle approaches the dipole from infinity at speed v and impact parameter b. Show that pφ and the
particle’s speed are constants of motion.

Ans: H does not depend explicitly on φ, so pφ = const. We know that H is conserved, but from (6-4) H = 1

2
mv2

and so the speed v is constant.

Show further that for Qµ > 0 the distance of closest approach to the dipole is

D = 1
2

{
b+
√
b2 − a2 for φ̇ > 0,

b+
√
b2 + a2 for φ̇ < 0,

(6-5)

where a2 ≡ µQ/πmv.

Ans: From the ICs we have pφ = ±mbv (sign depends on initial φ̇) and H = 1

2
mv2. H is constant along the

orbit. Therefore, equating H at infinity with H at pericentre (radius r0 for which pr = 0), we find that

1

2
mv2

=
1

2mr20

(
±mbv − Qµ

4πr0

)2

⇒ v =
1

r0

∣∣∣∣±bv − a2v

4r0

∣∣∣∣
⇒ r20 =

∣∣∣±br0 − 1

4
a2

∣∣∣ ,
(6-6)

using the fact that v > 0 when going from the first to the second line.
First let us investigate the case φ̇ < 0. Then (6-6) becomes r20 = | − br0− 1

4
a2| = br0 + 1

4
a2. The solutions to this

are given by 2r0 = b ±
√
b2 + a2. We choose the larger of the two solutions because we seek the turning point

for a particle that approaches from infinity. Therefore r0 = 1

2
(b +
√
b2 + a2) when the initial φ̇ < 0.

The case φ̇ > 0 is slightly more complicated. We need to solve r20 = |br0 − 1

4
a2|. The solutions are 2r0 =

b±
√
b2 − a2 (assuming br0 >

1

4
a2) and 2r0 = −b+

√
b2 + a2 (for br0 <

1

4
a2). The largest value of r0 is therefore

1

2
(b +
√
b2 − a2), provided a2 < 4br0.
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7. An axisymmetric top has Lagrangian

L = 1
2I1(φ̇2 sin2 θ + θ̇2) + 1

2I3(φ̇ cos θ + ψ̇)2 −mga cos θ, (7-1)

where (θ, φ, ψ) are the usual Euler angles. Show that the top’s Hamiltonian

H =
p2θ
2I1

+
(pφ − pψ cos θ)2

2I1 sin2 θ
+
p2ψ
2I3

+mga cos θ. (7-2)

Using Hamilton’s equations or otherwise show that the top will precess steadily at fixed inclination to the
vertical provided θ satisfies

0 = mga+
(pφ − pψ cos θ)(pφ cos θ − pψ)

I1 sin4 θ
. (7-3)

Ans: The Hamiltonian is derived in the lecture notes. For the top to precess steadily at fixed inclination we
require that θ̇ = ṗθ = 0. Using Hamilton’s equation for the rate of change of pθ ≡ I1θ̇,

0 = −∂H
∂θ

=
(pφ − pψ cos θ)

I1 sin2 θ
pψ sin θ − (pφ − pψ cos θ)2

I1 sin3 θ
cos θ −mga sin θ

=
(pφ − pψ cos θ)[pψ sin2 θ − (pφ − pψ cos θ) cos θ]

I1 sin3 θ
−mga sin θ

=
(pφ − pψ cos θ)[pψ − pφ cos θ]

I1 sin3 θ
−mga sin θ.

(7-4)
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8. A point charge q is placed at the origin in the magnetic field generated by a spatially confined current
distribution. Given that

E =
q

4πε0

r

r3
(8-1)

and B = ∇×A with ∇ ·A = 0, show that the field’s momentum

P ≡ ε0
∫

E ×B d3x = qA(0). (8-2)

Use this result to intrepret the formula for the canonical momentum of a charged particle in an electromag-
netic field. [Hint: use B = ∇×A and then index notation (easy) or vector identities (not so easy) to expand
E ×B into a sum of two terms. To each term apply the tensor form of Gauss’s theorem, which states that∫

d3x∇iT =
∮

d2SiT , no matter how many indices the tensor T carries. In one term you can make use of
∇ ·A = 0 and in the other ∇2r−1 = −4πδ3(r).]

Ans: Easy to show that

P = − q

4π

∫
d
3r
(
∇ 1

r

)
× (∇×A). (8-3)

Permutation tensor (Levi-Civita symbol)

ε123 = ε231 = ε312 = 1 even perm (1, 2, 3)

ε213 = ε321 = ε132 = −1 odd perm (1, 2, 3)

all other = 0.

(8-4)

Handy because (summation convention)

(a× b)i = εijkajbk

(∇× a)i = εijk∂jak = εijk
∂

∂xj
ak

(8-5)

Useful identity (contract over middle index)

εijkεklm = δilδjm − δjlδim (8-6)

Then [(
∇ 1

r

)
× (∇×A)

]
i

= εijk

(
∂j

1

r

)
(εklm∂lAm)

= (δilδjm − δjlδim)

(
∂j

1

r

)
∂lAm

=

(
∂j

1

r

)
∂iAj −

(
∂j

1

r

)
∂jAi.

(8-7)

Integrating by parts (strictly, Gauss’ theorem)

∫
d
3x

integrate︷ ︸︸ ︷(
∂j

1

r

)
∂iAj =

∮
d
2Sj

(
1

r
∂iAj

)
−
∫

d
3x

1

r
∂i

∇·A=0︷︸︸︷
∂jAj

= 0.∫
d
3x
(
∂j

1

r

)
∂jAi︸︷︷︸

integrate

=

∮
d
2Sj

(
∂j

1

r

)
Ai −

∫
d
3x

(
∂j∂j

1

r

)
︸ ︷︷ ︸

∇2r−1=−4πδ(r)

Ai

= 4πAi(0).

(8-8)

To interpret, recall that the canonical momentum for a particle in a magnetic field p = mṙ + qA...
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