
J. Magorrian, MT 2009

(most problems taken from J. J. Binney’s 2006 course)

S7: Classical mechanics – problem set 1

1. A particle is confined to move under gravity along a smooth wire that passes through two rings at (x, y, z) =
(0, 0, h) and (X, 0, 0). The particle starts at rest from the first, upper ring. Using conservation of energy,
show that the time for the particle to travel from the upper to lower ring is given by

T [z(x)] =

∫ X

0

[
1 + z′2

2g(h− z)

]1/2

dx, (1-1)

where z(x) is the height of the wire as a function of horizontal position x. Find the shape z(x) that extremizes
T [z(x)]. [Hint: integrals of the form ∫ (

A− t
B + t

)1/2

dt (1-2)

can be solved by substituting t = A− (B +A) sin2 θ.]

Ans: By conservation of energy, the particle moves with speed v2(z) = 2g(h− z). We then have that

v2
= ẋ2

+ ż2
=

(
dx

dt

)2 [
1 + z′2

]
= 2g(h− z), (1-3)

where z′ = dz/dx. Taking the square root of both sides and rearranging,

dt =

[
1 + z′2

2g(h− z)

]1/2

dx, (1-4)

so that the time taken to travel from x = 0 to x = X along path z(x) is given by τ [z(x)] =
∫ X

0
L(z, z′, x) dx with

L(z, z′, x) =

[
1 + z′2

2g(h− z)

]1/2

. (1-5)

This is a functional of the form we’ve encountered in lectures, but with t replaced by x and x(t) by z(x). Since
L does not depend explicitly on x, the path z(x) that extremizes τ [z(x)] satisfies

constant = z′
∂L

∂z′
− L = − L

1 + z′2
= −

[
1

2g(h− z)(1 + z′2)

]1/2

. (1-6)

Rearranging and integrating, ∫ z(x)

h

(
h− z
A + z

)1/2

dz = x, (1-7)

where A is a constant and we have used the bc z(x = 0) = h. Substituting z = h− (A+h) sin2 θ and integrating,

x = (A + h)
[
θ − 1

2
sin 2θ

]
. (1-8)

Writing φ ≡ 2θ this becomes
x = A+h

2
[φ− sinφ] ,

z = h− A+h

2
[1− cosφ] ,

(1-9)

which is a cycloid with (x, z) = (0, h) at its cusp. The constant A is determined by the condition that the curve
pass through the endpoint (X, 0).
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2. Write down the Lagrangian for the motion of a particle of mass m in a potential Φ(R,φ) and obtain the
equations of motion in plane-polar co-ordinates (R,φ). Show that if Φ does not explicitly depend on φ then
the generalized momentum pφ ≡ ∂L/∂φ̇ is a constant of the motion and interpret this result physically.

Ans: The radial speed is Ṙ and the angular speed Rφ̇, so T = 1

2
m[Ṙ2 + R2φ̇2]. The Lagrangian L = T − V =

1

2
m[Ṙ2 +R2φ̇2]−mΦ(R,φ), for which the EL equations become

d

dt
(mṘ) = mRφ̇2 −m∂Φ

∂R
,

d

dt
(mR2φ̇) = −m∂Φ

∂φ
.

(2-1)

The second of these shows that the generalized momentum pφ ≡ mR2φ̇ is conserved if Φ does not depend on φ;
the angular momentum of the particle is constant if there are no torques acting on it.

Obtain the Lagrangian in terms of the variables u ≡ 1/R and φ. Show that if Φ(R) = −α/R the EL
equations give

u(φ) = A cos(φ− φ0) +B, (2-2)

where A, B and φ0 are arbitrary constants. Show that the orbit is an ellipse if B > A and a parabola or
hyperbola otherwise.

Ans: For R = 1/u, Ṙ = −u̇/u2 and the Lagrangian becomes

L = 1

2
m

[
u̇2

u4
+
φ̇2

u2

]
−mΦ(u). (2-3)

The EL equation for φ,
d

dt

(
φ̇

u2

)
= 0 ⇒ φ̇

u2
= h, a constant. (2-4)

The EL equation for u is
d

dt

(
m
u̇

u4

)
+ 2m

u̇2

u5
+m

φ̇2

u3
−mα = 0. (2-5)

We can eliminate t from this by substituting φ̇ = hu2 and dt = dφ/hu2 to obtain

hu2 d

dφ

(
m

u4
hu2 du

dφ

)
+

2m

u5
h2u4

(
du

dφ

)2

+mh2u−mα = 0. (2-6)

Expanding the derivative in the first term and simplifying,

d2u

dφ2
+ u =

α

h2
, (2-7)

for which the general solution is
u(φ) = A cos(φ− φ0) + α/h2, (2-8)

where A and φ0 are constants. If B = α/h2 > A then u > 0 and so the orbit is bound. To find the general shape
of the orbit, let x = r cos(φ− φ0) and y = r sin(φ− φ0). Then, from the general solution above with B = α/h2,

1

r
= A

x

r
+
α

h2
⇒ 1−Ax = Br ⇒ (1−Ax)

2
= B2

(
x2

+ y2
)
. (2-9)

Rearranging gives (B2 − A2)x2 + 2Ax +By2 = 1, which is the equation of a conic section – an ellipse if B > A,
hyperbola if B < A or parabola if B = A.
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3. A particle of mass m slides inside a smooth straight tube OA. The particle is connected to point O by a
light spring of natural length a and spring constant mk/a. The system rotates in a horizontal plane with
constant angular velocity ω about a fixed vertical axis through O. Find the distance r of the particle from O
at time t for the case when ω2 < k/a, if r = a and ṙ = 0 at t = 0. Show also for this case that the maximum
value of the reaction of the tube on the particle is 2maω3/b, where b2 = k/a− ω2.

Ans: T = 1

2
m(ṙ2 + ω2r2) and V (r) = 1

2
(mk/a)(r − a)2, so the Lagrangian

L(r, ṙ) = T − V = 1

2
m(ṙ2

+ ω2r2
)− 1

2

mk

a
(r − a)

2. (3-1)

The equation of motion is

d

dt
mṙ −mω2r +

mk

a
(r − a) = 0 ⇒ r̈ + Ω

2r = k, (3-2)

with Ω2 ≡ k/a− ω2 (= b2 in the question). The general solution is

r = A cos Ωt +B sin Ωt +
k

Ω2
. (3-3)

Choosing the integration constants A and B to satisfy r = a and ṙ = 0 at t = 0 gives

r =

(
a− k

Ω2

)
cos Ωt +

k

Ω2
. (3-4)

The angular momentum mr2ω of the particle varies as it oscillates in and out. Therefore the particle feels a
torque fr, where f is the reaction of the tube on the particle and

fr =
d

dt
mr2ω = 2mrṙω ⇒ f = 2mωṙ. (3-5)

ṙ is maximum at Ωt = π/2 with value ṙmax = Ω(a− k/Ω2), so fmax = 2maω3/Ω.

Ans: (alternative) In terms of (non-rotating) polar co-ordinates (r, φ), the particle has Lagrangian

L(r, φ, ṙ, φ̇) = 1

2
m(ṙ2

+ r2φ̇2
)− 1

2

mk

a
(r − a)

2, (3-6)

but is subject to the holonomic constraint φ− ωt = 0. So, the augmented Lagrangian

L′ = L + λ(φ− ωt)

= 1

2
m(ṙ2

+ r2φ̇2
)− 1

2

mk

a
(r − a)

2
+ λ(φ− ωt),

(3-7)

for which the EL equations are
d

dt
mṙ −mrφ̇2

+
mk

a
(r − a) = 0 (r)

d

dt
mr2φ̇ = λ (φ)

φ− ωt = 0 (λ).

(3-8)

The first and last of these taken together reduce to equation (3-2) above and the derivation of r(t) proceeds as
from there. To obtain the reaction force, use the fact that the (generalized) constraint force is given in this case
by ∂L/∂φ = λ. By the second and third equations of (3-8), λ = d

dt
mr2ω, a torque, and the reaction force follows

from (3-5).
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4. Write down the Euler equations for a free rigid body in terms of its principal moments of inertia I1, I2,
I3 and the angular velocity Ω in the body frame. If the body is rotationally symmetric about its z axis
show that Ω3 is a constant of the motion and that Ω precesses about the z axis with angular frequency
Ω3(I3 − I1)/I1. What is the period of this precession for the earth, which has (I3 − I1)/I1 = 0.00327?

Ans: Euler’s equation is J̇ + Ω × J = 0, where J and Ω are the angular momentum and angular velocity
referred to axes that co-rotate with the body. If we choose these axes to be the body’s principal axes, then
J = (I1Ω1, I2Ω2, I3Ω3) and Euler’s equation becomes

I1

dΩ1

dt
= (I2 − I3)Ω2Ω3,

I2

dΩ2

dt
= (I3 − I1)Ω3Ω1,

I3

dΩ3

dt
= (I1 − I2)Ω1Ω2.

(4-1)

Recall that

I1 =

∫
ρ(x)(y2

+ z2
) d

3x

I2 =

∫
ρ(x)(x2

+ z2
) d

3x

I3 =

∫
ρ(x)(x2

+ y2
) d

3x,

(4-2)

so I1 = I2 if the body is rotationally symmetric about the z axis. Then (4-1) implies that Ω̇3 = 0 and the first
two of (4-1) can be rewritten

Ω̇1 = −ΩpΩ2, Ω̇2 = ΩpΩ1, (4-3)

with Ωp ≡ Ω3(I3 − I1)/I1. The general solution is

Ω1 = A cos(Ωp + φ0)

Ω2 = A sin(Ωp + φ0),
(4-4)

where the amplitude A and phase φ0 are constants of integration. So, Ω (and therefore J) precesses about the
body’s z axis. For the earth, Ω3 = (1 day)−1, so that the precession frequency should be Ωp = 0.00327 day−1,
corresponding to a period of about 300 days. In fact, the observed period is 433 days.
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5. A heavy symmetric top rotating about a fixed point has Lagrangian

L = 1
2I1

(
θ̇2 + φ̇2 sin2 θ

)
+ 1

2I3

(
ψ̇ + φ̇ cos θ

)2

−mgl cos θ, (5-1)

where I1 = I2 and I3 are its principal moments of inertia and (φ, θ, ψ) are the usual Euler angles. Write
down two conserved momenta and hence show that θ obeys the equation I1θ̈ = −∂Veff/∂θ, where

Veff(θ) =
(pφ − pψ cos θ)2

2I1 sin2 θ
+mgl cos θ. (5-2)

Suppose that the top is released with initial conditions θ = θ0, φ̇ = 0 and ψ̇ = ψ0 �
√
mglI1/I3. Show that

it nutates about θ ' θ0 with frequency I3ψ̇0/I1.

Ans: Since φ and ψ are cyclic co-ordinates (∂L/∂φ = ∂L/∂ψ = 0), the conserved momenta are clearly

pφ =
∂L

∂φ̇
= φ̇(I1 sin

2 θ + I3 cos
2 θ) + ψ̇I3 cos θ,

pψ =
∂L

∂ψ̇
= I3(ψ̇ + φ̇ cos θ).

(5-3)

The velocity φ̇ can be written in terms of these momenta as

φ̇ =
pφ − pψ cos θ

I1 sin2 θ
. (5-4)

There are at least two ways of proceeding from here. The first way is to use the EL equation for θ to obtain I1θ̈
in terms of (θ, ψ̇, φ̇), then eliminate ψ̇ and φ̇ in that expression in favour of pψ and pφ, finally showing that this
gives something equal to (minus) the derivative of the given Veff . This is long!
The second, simpler, way is to find the Hamiltonian corresponding to the given L, noting that L is of the
form 1

2

∑
ij
q̇iAij q̇j − V (q), where the matrix elements Aij = Aji are functions of the generalized coordinates

q = (θ, φ, ψ). Then pi = ∂L/∂q̇i =
∑

j
Aij q̇j , so that H = p · q̇ − L = 1

2

∑
ij
q̇iAij q̇j + V (q), in which q̇i is

understood to be a function of q and p. Therefore

H(θ, pθ, pφ, pψ) = 1

2
I1

(
θ̇2

+ φ̇2
sin

2 θ
)

+ 1

2
I3

(
ψ̇ + φ̇ cos θ

)2
+mgl cos θ

=
p2
θ

2I1

+
(pφ − pψ cos θ)2

2I1 sin2 θ
+
p2
ψ

2I2
3

+mgl cos θ,
(5-5)

using (5-4) for φ̇, (5-3) for (ψ̇ + φ̇ cos θ) and the definition pθ ≡ ∂L/∂θ̇ = I1θ̇ for θ̇. Hamilton’s equation

ṗθ = −∂H/∂θ when written out in terms of θ̇ becomes I1θ̈ = −dVeff/dθ.

For the initial conditions θ = θ0, φ̇ = 0, ψ̇ = ψ̇0 �
√
mglI1/I3 we have pφ = ψ̇0I3 cos θ0, pψ = ψ̇0I3, so that

Veff(θ) ≈ I2
3 ψ̇

2
0(cos θ0 − cos θ)2

2I1 sin2 θ
, (5-6)

the effect of the mgl cos θ term being negligible as ψ̇0 �
√
mglI1/I3. Since the local minimum of Veff is very

close to θ0, we may expand Veff as a Taylor series about θ0,

Veff(θ0 + ∆θ)− Veff(θ0) ≈ I2
3 ψ̇

2
0(cos θ0 − cos θ0 cos ∆θ + sin θ0 sin ∆θ)2

2I1(sin θ0 cos ∆θ + cos θ0 sin ∆θ)2
≈ 1

2

(
I3ψ̇0

I1

)2

(∆θ)
2. (5-7)

So, for small departures from equilibrium, θ oscillates about θ0 with frequency I3ψ̇0/I1.
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6. A particle of mass m1 hangs by a light string of length l from a rigid support, and a second mass, m2, hangs
by an identical string from m1. The angles with the (downward) vertical of the strings supporting m1 and
m2 are θ1 and θ2, respectively. Write down the Lagrangian L(θ1, θ2, θ̇1, θ̇2) of the system. Hence show that
the frequencies of the two normal modes of oscillation about the equilibrium θ1 = θ2 = 0 are

ω2
± =

g

l

m1 +m2

m1

[
1±

√
m2

m1 +m2

]
. (6-1)

Describe the motion in each of the normal modes in the cases (a) m1 � m2, and (b) m2 � m1.

Ans: Mass m1 moves with speed lθ̇1 and has potential energy −m1gl cos θ1. Mass m2 has position (x, y) =

(l sin θ1 + l sin θ2, l cos θ1 + l cos θ2), so its potential potential energy is −m2gl(cos θ1 + cos θ2) and, for θ1, θ2 ' 0, its
speed is dominated by its horizontal component of velocity, lθ̇1 + lθ̇2. Expanding L = T − V about θ1 = θ2 = 0,

L ≈ 1

2
m1l

2θ̇2
1 + 1

2
m2l

2
(θ̇1 + θ̇2)

2 − 1

2
m1glθ

2
1 − 1

2
m2glθ

2
1 − 1

2
m2glθ

2
2. (6-2)

The linearized equations of motion are then

d

dt

[
m1l

2θ̇1 +m2l
2
(θ̇1 + θ2)

]
+ (m1 +m2)glθ1 = 0,

d

dt

[
m2l

2
(θ̇1 + θ̇2)

]
+m2glθ2 = 0.

(6-3)

Substituting θi = Θie
iωt, these become the eigenvalue equation(
−ω2(m1 +m2)l2 + (m1 +m2)gl −ω2m2l

2

−ω2m2l
2 −ω2m2l

2 +m2gl

)(
Θ1

Θ2

)
= 0. (6-4)

Taking the determinant,

(m1 +m2)(gl − ω2l2)m2(gl − ω2l2) = (m2ω
2l2)

2

⇒
√
m1 +m2

m2

(gl − ω2l2) = ±ω2l2

⇒ gl = ω2l2
(

1±
√

m2

m1 +m2

)
⇒ ω2

=
g

l

1

1±
√

m2
m1+m2

=
g

l

[
1∓
√

m2
m1+m2

1− m2
m1+m2

]
=
g

l

m1 +m2

m1

[
1∓
√

m2

m1 +m2

]
.

(6-5)

Case (a), m1 � m2. Both frequencies ≈
√
g/l because the upper, heavier mass swings without disturbance

from the second.
Case (b), m2 � m1. To first order in m1/m2,√

m2

m1 +m2

=

[
1− m1

m1 +m2

]1/2

' 1− m1

2m2

. (6-6)

One frequency is now very high (the light mass m1 on the taught string) and the other is ≈
√
g/2l (mass on a

string of length 2l).
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7. A circular hoop of mass m and radius a hangs from a point on its circumference and is free to oscillate in
its own plane. A bead of mass m can slide without friction around the hoop. Choose a set of generalized
co-ordinates and write down the Lagrangian for the system. Show that the natural frequencies of small
oscillations about equilibrium are ω1 =

√
2g/a and ω2 =

√
g/2a.

Ans: See diagram below for co-ordinate system. The hoop’s moment of inertia about its centre of mass I0 = ma2.
By the parallel axis theorem, its moment of inertia about the pivot point is Ip = I0 +ma2 = 2ma2. The kinetic
energy of the hoop is then 1

2
Ipθ̇

2 = ma2θ̇2 and its PE is −mga cos θ. The bead’s horizontal offset from the pivot

is a sin θ + a sinφ and its vertical offset is a cos θ + a cosφ. So for θ, φ ' 0 the bead has KE ' 1

2
ma2(θ̇ + φ̇)2 and

PE −mga cos θ −mga cosφ. To second order in θ, φ, the Lagrangian of bead+hoop is

L = 1

2
ma2

[
2θ̇2

+ (θ̇ + φ̇)
2
]

+ 1

2
mga(2θ2

+ φ2
). (7-1)

The equations of motion are
d

dt

[
2ma2θ̇ +ma2

(θ̇ + φ̇)
]

+ 2mgaθ = 0,

d

dt

[
ma2

(θ̇ + φ̇)
]

+mgaφ = 0.
(7-2)

Substituting θ = Θeiωt, φ = Φeiωt gives the eigenvalue equation(
−3ω2 + 2 g

a
−ω2

−ω2 −ω2 + g

a

)(
Θ

Φ

)
= 0. (7-3)

Taking the determinant of both sides,(
2
g

a
− 3ω2

)(
g

a
− ω2

)
− ω4

= 0 ⇒ 2ω4 − 5ω2 g

a
+ 2

(
g

a

)2

= 0

⇒
(
ω2 − g

2a

)(
ω2 − 2g

a

)
= 0.

(7-4)
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8. The (X,Y, Z) frame rotates with angular speed ω = ωk. A particle of mass m moves in the potential

V (X,Y, Z) = 1
2m(ω2

XX
2 + ω2

Y Y
2 + ω2

ZZ
2). (8-1)

By solving for the frequencies of the particle’s normal modes about the equilibrium X = Y = Z = 0, show
that the motion is unstable if ωX < ω < ωY .

Ans:
L = 1

2
m [ṙ + ωk × r]

2 − V (r)

= 1

2
m
[
(Ẋ − ωY )

2
+ (Ẏ + ωX)

2
+ Ż2

]
− 1

2
m
[
ω2
XX

2
+ ω2

Y Y
2

+ ω2
ZZ

2
]
.

(8-2)

Notice that ∂2L/∂X∂Ẏ 6= 0, so the matrix Cij in the lectures is non-zero. Nevertheless, we can proceed using
the same ideas as before. The equations of motion are

d

dt
m(Ẋ − ωY )−m(Ẏ + ωX)ω +mω2

XX = 0,

d

dt
m(Ẏ + ωX) +m(Ẋ − ωY )ω +mω2

Y Y = 0,

d

dt
mŻ +mω2

ZZ = 0.

(8-3)

The Z motion decouples from the (X,Y ) motion, so one normal frequency is ωZ .
Letting X = X0eiΩt, Y = Y0eiΩt, the equations of motion become(

−Ω2 − ω2 + ω2
X −2iΩω

2iΩω −Ω2 − ω2 + ω2
Y

)(
X0

Y0

)
= 0. (8-4)

The determinant
(Ω

2
+ ω2 − ω2

X)(Ω
2

+ ω2 − ω2
Y )− 4Ω

2ω2
= 0, (8-5)

which, after rearranging and using the usual formula for quadratics, has solution

2Ω
2

= 2ω2
+ ω2

X + ω2
Y ±

√
(2ω2 + ω2

X + ω2
Y )2 − 4(ω2 − ω2

X)(ω2 − ω2
Y )

= B ±
√
B2 − 4(ω2 − ω2

X)(ω2 − ω2
Y ).

(8-6)

If ωX < ω and ω < ωY , then −4(ω2 − ω2
X)(ω2 − ω2

Y ) > 0 and one of the two roots of Ω2 is negative and so the
motion is unstable.
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9. What is meant by the terms symmetry principle and conservation law as used in classical dynamics? Give
simple examples to illustrate the symmetries underlying the conservation of linear and angular momenta.

A system with three degrees of freedom described by co-ordinates q1, q2, q3 has Lagrangian

L = 1
2 (q̇2

1 + q̇2
2 + q̇2

3)− 1
2 (q2

1 + q2
2 + q2

3)− α(q2q3 + q3q1 + q1q2), (9-1)

where 0 < α < 1
2 . Show that L is invariant under infinitesimal rotations about the (1, 1, 1) axis in q-space,

and hence find a constant of motion other than the total energy. Verify from the equation of motion that it
is indeed constant.

Ans: The first two terms in the Lagrangian are clearly invariant under rotations about any axis, so we merely
have to show that L′ = q2q3 + q3q1 + q1q2 is invariant under rotations about n = (1, 1, 1).
The change in L′ under such a rotation

δL′ = L′(q + εn× q)− L′(q)

= ε
∂L′

∂q
· (n× q) +O(ε2)

= ε(q3 + q2, q3 + q1, q2 + q1) · (q3 − q2, q1 − q3, q2 − q1)

= ε
[
(q2

3 − q2
2) + (q2

1 − q2
3) + (q2

2 − q2
1)
]

= 0.

(9-2)

By Noether’s theorem, the corresponding constant of the motion

C =
∂L

∂q̇
· (n× q) = (q̇1, q̇2, q̇3) · (q3 − q2, q1 − q3, q2 − q1)

= q̇1(q3 − q2) + q̇2(q1 − q3) + q̇3(q2 − q1).

(9-3)

To show that C is indeed constant, differentiate (9-3) with respect to time,

dC

dt
= q̈1(q3 − q2) + q̈2(q1 − q3) + q̈3(q2 − q1) + q̇1(q̇3 − q̇2) + q̇2(q̇1 − q̇3) + q̇3(q̇2 − q̇1)

= q̈1(q3 − q2) + q̈2(q1 − q3) + q̈3(q2 − q1),

(9-4)

and take q̈i from the equations of motion,

q̈1 + q1 + α(q3 + q2) = 0,

q̈2 + q2 + α(q1 + q3) = 0,

q̈3 + q3 + α(q2 + q1) = 0,

(9-5)

to obtain

−dC

dt
= (q1 + α(q3 + q2))(q3 − q2) + (q2 + α(q1 + q3))(q1 − q3) + (q3 + α(q2 + q1))(q2 − q1)

= 0.

(9-6)
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10. A particle with position co-ordinates r moves in a central potential V (r). Find all potential functions V (r)
and corresponding functions α(r) for which the vector

K = ṙ × (r × ṙ) + α(r)r (10-1)

is conserved.

Ans: K conserved ⇒ K̇ = 0. So,

0 = r̈ × (r × ṙ) + ṙ × d

dt
(r × ṙ) + α′

r · ṙ
r
r + αṙ, (10-2)

where α′ ≡ dα/dr and we have used dr/dt = r · ṙ/r.
The potential is spherically symmetric, so d

dt
(r × ṙ) = 0 and from the equations of motion we have that

r̈ = −∂V/∂r = −V ′r/r. Then

0 = −V
′

r
r × (r × ṙ) +

α′

r
(r · ṙ)r + αṙ

= −V
′

r

[
(r · ṙ)r − r2ṙ

]
+
α′

r
(r · ṙ)r + αṙ

(10-3)

Multiplying by r and writing out the ith component of the equation in tensor notation,

0 = −V ′
[∑

j

rj ṙjri − r2ṙi

]
+ α′

∑
j

rj ṙjri + αrṙi

= −V ′
[∑

j

rj ṙjri −
∑
j

r2ṙjδij

]
+ α′

∑
j

rj ṙjri +
∑
j

αrṙjδij

=
∑
j

ṙj
[
−V ′rirj + r2V ′δij + α′rirj + αrδij

]
.

(10-4)

We are free to choose each ṙj in our ICs, so the contents of the square bracket must vanish. We are also free
to choose each ri, so if the [· · ·] is to vanish for any trajectory the factors multiplying rij and δij must vanish
separately. So,

r2V ′ + αr = 0 and − V ′ + α′ = 0 ⇒ dα

α
= −dr

r
⇒ α = A/r ⇒ V = −A/r, (10-5)

where A is a constant.

Find also the potentials V (r) and functions β(r) for which the components of the matrix

Qij ≡ ṙiṙj + β(r)rirj (10-6)

are constants of the motion, where ri, ṙi (i = 1, 2, 3) are the components of position and velocity of the
particle along any three independent fixed axes.

Ans:

0 = Q̇ij = r̈iṙj + ṙir̈j + β′
r · ṙ
r
rirj + β(ṙirj + riṙj)

= −V
′

r
(riṙj + ṙirj) +

β′

r
r · ṙrirj + β(ṙirj + riṙj)

(10-7)

Now expand r · ṙ =
∑

k
rkṙk and introduce factors δik or δjk into the other terms to pull out a common ṙk factor.

Independence of each ri and ṙk in ICs gives 0 = β − V ′/r and 0 = β′, so that V = 1

2
βr2, where β is a constant.
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