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Syllabus (Sections marked ? are not covered in the HT2013 course)

Calculus of variations: Euler–Lagrange equation, (variation subject to constraints)?.

Lagrangian mechanics: principle of least action; generalized co-ordinates; configuration space. Application
to motion in strange co-ordinate systems, particle in an electromagnetic field, normal modes, rigid bodies?.
Noether’s theorem and conservation laws.

Hamiltonian mechanics: Legendre transform; Hamilton’s equations; examples; principle of least action
again?; Liouville’s theorem?; Poisson brackets; symmetries and conservation laws; canonical transforma-
tions. Hamilton–Jacobi equation?.

Recommended reading

T. W. B. Kibble & F. H. Berkshire, Classical mechanics, 5th ed. About £19.

The single most suitable book for this course.

L. D. Landau & E. M. Lifshitz, Mechanics. About £30.

First volume of the celebrated “Course of Theoretical Physics”. Succinct.

H. Goldstein, C. Poole & J. Safko, Classical mechanics, 3rd ed. About £50.

Covers more advanced topics too. Verbose.

Supplementary reading

The following books are more difficult, but some might find them inspiring for a second pass at the subject.

V. I. Arnol’d, Mathematical methods of classical mechanics

Adopts a more elegant, more mathematically sophisticated approach than the other books listed
here, but develops the maths along with the mechanics.

G. J. Sussman & J. Wisdom, Structure and interpretation of classical mechanics. About £45, but also freely
available online.

Uses a modern, explicit “functional” notation and breaks everything down into baby steps suitable
for a computer.
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0 Some maths

0.0 Notation

Vectors:

x = xi+ yj + zk (0.1)

(in 3d) or

x = x1x̂1 + x2x̂2 + · · ·+ xnx̂n (0.2)

for the general case.

Gradients of function f(x, ẋ):
∂f

∂x
≡ ∂f

∂x1
x̂1 +

∂f

∂x2
x̂2 + · · · ,

∂f

∂ẋ
≡ ∂f

∂ẋ1
x̂1 +

∂f

∂ẋ2
x̂2 + · · · .

(0.3)

So,

p · ∂f
∂x

= p1
∂f

∂x1
+ p2

∂f

∂x2
+ · · · . (0.4)

0.1 An introduction to the calculus of variations

Recall that a function is simply a rule for mapping elements of one set (the function’s domain) to elements of
another set (its range). A functional is a mapping from the set of all functions that satisfy some specified
conditions (e.g., the set of all smooth maps from the real line to three-dimensional space) to the real numbers.
Examples include:

• the nth moment

In[y] =

∫ x1

x0

xny(x) dx (0.5)

of a one-dimensional function y(x) defined for x0 < x < x1 and having y(x0) = y(x1) = 0;
• the length of a curve x(t) joining two fixed points x(t0) and x(t1) in n-dimensional space,

L[x] =

∫ t1

t0

|ẋ|dt; (0.6)

• the gravitational potential energy of a mass distribution ρ(x),

V [ρ] = − 1
2G

∫
ρ(x)ρ(x′) d3xd3x′

|x− x′| . (0.7)

For this course we need only consider functionals of the form

F [x] =

∫ t1

t0

L(x, ẋ, t) dt (0.8)

that eat smooth one-dimensional curves x(t) with fixed endpoints x(t0) = x0, x(t1) = x1 in an n-dimensional
space. The first two examples above are of this form. The third is not. Internally, the functional runs over
the curve, feeding the local values of (x, ẋ, t) to a function L and accumulating the results. Note that this L
treats x, ẋ and t as independent variables; it does not know that ẋ = dx/dt!
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Now let’s look at how the output of the functional changes when we distort the curve slightly from x(t) to
x(t) +h(t). The variation of the curve h(t) must be smooth and vanish at the endpoints in order that x+h

be admissible to F , but is otherwise arbitrary. The variation or differential of the functional

δF [x;h] ≡ lim
ε→0

F [x+ εh]− F [x]

ε
. (0.9)

An extremal is a curve x(t) for which δF [x;h] = 0 for all admissible h(t). Finding these extremals (if they
exist) is the business of the calculus of variations.

Fundamental lemma of the calculus of variations If a smooth curve f(t), defined on the range
t0 < t < t1, satisfies ∫ t1

t0

f(t) · h(t) dt = 0 (0.10)

for all continuous h(t) having h(t0) = h(t1) = 0, then f(t) ≡ 0.

Proof by contradiction: we show that if f 6= 0 then equation (0.10) would not be true for all h(t).
Suppose that there were some tblip between t0 and t1 for which f(tblip) 6= 0. Then, because f has no
discontinuous jumps we can always find a small interval (tleft, tright) around this tblip where f 6= 0. Now
consider the function

h(t) = f(t)×
{

(tright − t)(t− tleft), for tleft < t < tright,
0, otherwise.

(0.11)

This clearly satisfies the conditions of the lemma, but

∫ t1

t0

f(t) · h(t) dt =

∫ tright

tleft

f2(t)(tright − t)(t− tleft) dt > 0, (0.12)

since the integrand is positive between tleft and tright. So, we’ve shown that if f 6= 0 anywhere then we
can always find some h(t) that makes

∫
f · h dt 6= 0. Turning this around, if there is no h for which the

integral is non-zero, then we must have f = 0 between t0 and t1.

Now we come to the key result of this section. Let F [x] be a functional of the form

∫ t1

t0

L(x, ẋ, t) dt, (0.13)

defined on the set of smooth functions x(t) satisfying boundary conditions x(t0) = x0 and x(t1) = x1. Then
a curve x(t) is an extremal of F if and only if it satisfies the Euler–Lagrange equation,

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0. (0.14)

Proof: If x is an extremal of F then for any variation h we have

0 = δF = lim
ε→0

1

ε

∫ t1

t0

(
L(x+ εh, ẋ+ εḣ, t)− L(x, ẋ, t)

)
dt

=

∫ t1

t0

(
∂L

∂x
· h+

∂L

∂ẋ
· ḣ
)

dt

=

∫ t1

t0

[
∂L

∂x
− d

dt

(
∂L

∂ẋ

)]
· hdt+

(
∂L

∂ẋ
· h
)∣∣∣∣

t1

t0

,

(0.15)

where the last line follows from the previous one using integration by parts. The final term on the last
line vanishes because the boundary conditions mean that h(t0) = h(t1) = 0. Thus (0.15) becomes

0 =

∫ t1

t0

[
∂L

∂x
− d

dt

(
∂L

∂ẋ

)]
· h dt (0.16)
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for any smooth h. Applying the fundamental lemma, our extremal curve x(t) must satisfy the Euler–
Lagrange equation (0.14). Conversely, if a curve x(t) satisfies (0.14) then it is clear from (0.15) that it
is an extremal of the functional F .

Example: the shortest path between two points Consider the set of smooth curves in the (t, x)
plane that pass between two fixed points x(t0) = x0 and x(t1) = x1. The path length of any such curve x(t)
is given by the functional (0.13) with L =

√
1 + ẋ2. The EL equation for this L is

d

dt

(
ẋ√

1 + ẋ2

)
= 0, (0.17)

since ∂L/∂x = 0 and ∂L/∂ẋ = ẋ/
√

1 + ẋ2. Therefore extremals satisfy ẋ = A, a constant. Integrating,
x = At + B, with the constants A and B completely determined by the condition that the curve pass
through the two fixed points.

Important: When writing down the EL equation, remember that x and ẋ are independent arguments of
L. Use the fact that along extremals x(t) satisifies ẋ = dx/dt only when solving (i.e., integrating) for x(t).

Easy first integral when L does not depend explicitly on t (Beltrami identity) Solving the
EL equation often leads to lots of messy algebra. But if L = L(x, ẋ), the EL equation can be reduced to the
first-order differential equation ẋ · (∂L/∂ẋ)− L = constant. To see this, note that on solution paths

df

dt
=
∂f

∂x
· dx

dt
+
∂f

∂ẋ
· dẋ

dt
=
∂f

∂x
· ẋ+

∂f

∂ẋ
· ẍ (0.18)

for any function f(x, ẋ). So,

d

dt

[
ẋ ·
(
∂L

∂ẋ

)
− L

]
=

[
ẍ · ∂L

∂ẋ
+ ẋ · d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
· ẋ− ∂L

∂ẋ
· ẍ
]

= ẋ ·
[

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x

]
= 0.

(0.19)

Look out for a more “physical” way of deriving this result later in the course!

Example: minimal surface of revolution Among all the curves that pass through the points (t0, x0)
and (t1, x1), find the one that generates the surface of minimum area when rotated about the t-axis. A
physical example is a soap bubble drawn between two coaxial circular hoops.

The surface area generated by a curve x(t) is

2π

∫ t1

t0

x
√

1 + ẋ2 dt. (0.20)

Comparing to equation (0.13), we see that L(x, ẋ) = 2πx
√

1 + ẋ2, independent of t. Using the result above
for general L(x, ẋ), the extremals of (0.20) satisfy

ẋx√
1 + ẋ2

− x
√

1 + ẋ2 = A. (0.21)

This is easily rearranged, via x = A
√

1 + ẋ2, to give

Aẋ =
√
x2 −A2. (0.22)

Integrating, the curve that extremizes the surface area of revolution is

x(t) = A cosh

(
t+B

A

)
, (0.23)

where the constants A and B are chosen to satisfy the boundary conditions x(t0) = x0 and x(t1) = x1.
Depending on the choice of x0 and x1, there can be zero, one or two solutions for (A,B). Of course, in the
zero-solution case an extremal does exist, but it is not smooth and therefore lies beyond the remit of the
machinery developed above.
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0.2 Variation subject to constraints?

Sometimes it is necessary to find extremals of a functional F [x] (equation (0.13)) subject to a constraint of
the form

g(x, t) = 0 (0.24)

among the co-ordinates. From (0.15), the condition for a curve x(t) to be an extremal is then

δF [x,h] =

∫ t1

t0

[
∂L

∂x
− d

dt

(
∂L

∂ẋ

)]
· hdt = 0 (0.25)

for any smooth h(t) that satisfies

h · ∇g = h1
∂g

∂x1
+ · · ·+ hn

∂g

∂xn
= 0, (0.26)

since we must have g(x + h, t) = 0. This last condition means that we cannot use the fundamental lemma
directly. Instead let us multiply (0.26) by an arbitrary function λ(t) and insert it into the integrand of (0.25).
This combines the two conditions (0.25) and (0.26) into one:

0 =

∫ t1

t0

[
∂L

∂x
− d

dt

(
∂L

∂ẋ

)
+ λ

∂g

∂x

]
· hdt. (0.27)

The function λ(t) is a Lagrange multiplier. Now suppose that, say, ∂g/∂x1 6= 0. Then we may choose
λ(t) to make [

∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
+ λ

∂g

∂xi

]
= 0 (0.28)

for i = 1, so that the x̂1 term in the integrand of (0.27) vanishes. We are then free to vary (h2(t), . . . , hn(t))
independently as long as we choose h1(t) to ensure that the constraint condition (0.26) holds. Using the
fundamental lemma on (0.27) we see that the relation (0.28) must apply for i = 2, . . . , n as well as for i = 1.
Therefore extremals of F [x] subject to the constraint g = 0 satisfy

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= λ

∂g

∂x
. (0.29)

This results in n+ 1 equations (n components of EL equation plus the constraint g = 0) for n+ 1 unknowns
(x1, . . . , xn and λ). In practice one usually takes linear combinations of different components of the EL
equation to eliminate λ(t). For this reason λ is sometimes known as Lagrange’s undetermined multiplier.

Alternatively Introduce a new co-ordinate λ and a new functional

G[x, λ] ≡
∫ t1

t0

λ(t)g(x, t) dt (0.30)

that acts on curves {x(t), λ(t)} in this (n + 1)-dimensional space. Obviously, variations of {x(t), λ(t)} that
satisfy g = 0 will have δG = 0 too. Combining the two conditions δF = 0 and δG = 0 into one,

δ(F +G) = δ

∫ t1

t0

L′ dt = 0 (0.31)

with
L′({x, λ}, {ẋ, λ̇}, t) ≡ L(x, ẋ, t) + λg(x, t). (0.32)

Writing down the x and λ components of the EL equation for L′, we find that

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= λ

∂g

∂x
,

g = 0.

(0.33)

It is clear that a path x(t) found by solving (0.33) satisfies the constraint g = 0 and therefore G ≡ 0 and so
δG = 0 too. Since δ(F +G) = 0 by construction, the path is an extremal of F too, δF = 0.

Exercise: At this point one might object that the EL equation for L′ applies only to paths {x(t), λ(t)}
with fixed endpoints. The conditions on the functional (0.13) mean that we are given x(t0) = x0 and
x(t1) = x1. What do we know about λ(t0) and λ(t1)?
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0.3 Legendre transforms

Given a function f(x), its Legendre transform g(p) is another function that encodes the same information
as f(x) but in terms of p = df/dx instead of x. A necessary condition for the Legendre transform to exist
is that the first derivative f ′(x) be strictly monotonic, so that either f ′′ > 0 everywhere or that f ′′ < 0
everywhere.

Consider the set of (non-vertical) lines in the (x, y) plane, y = ax− b. Introduce another plane and to each
line in the original plane assign a single point (a, b) in the new plane. The (a, b) plane is known as the
(projective) dual of the original (x, y) plane. Since the relation b+ y = ax still holds if we exchange (a, b)
with (x, y), it follows that the dual of the (a, b) plane is the original (x, y) plane; each plane is the dual of
the other.

Now take a smooth curve y = f(x) in the original (x, y) plane. This curve traces out another curve in the
dual (a, b) plane, the point (x, f(x)) being mapped to a = f ′(x), b = xf ′(x)− f(x). For example, the plots
below show the curve y = f(x) = x sinx (left) and its image (right) in the dual (a, b) space. The second
derivative f ′′(x) changes sign at the point B.

y

x

B

A

−
b

y=
ax
−b

b

a

B

A

If f(x) is convex (f ′′ > 0) then a increases monotonically with x and we can define the Legendre transform
of f(x) as

g(a) ≡ xf ′(x)− f(x)

= xa− f(x),
(0.34)

where x(a) is the point on the original curve where f ′(x) = a. That is, b = g(a) is the dual to the curve
y = f(x) and vice versa.

Exercise: For the higher-dimensional case in which hyperplanes y = a · x − b map to points (a, b) in
the dual space, show that the Legendre transform of a function f(x) is g(a) = x · a− f(x), where x(a)
is the point for which ∇f = a.

In particular, for later use note that the Legendre transform of a function L(q̇) is given by H(p) = q̇ ·p−L(q̇),
where q̇ in the RHS is expressed in terms of p = ∂L/∂q̇.

Example from thermodynamics: the Helmholtz free energy A(T, V,N) = U − TS is the Legendre
transform of the internal energy U(S, V,N) with respect to T = ∂U/∂S.
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1 Lagrangian mechanics

1.1 Hamilton’s principle of least action

Consider a particle of mass m whose potential energy V (x; t) is independent of its velocity. Its equation of
motion is

d

dt
mẋ = −∂V

∂x
. (1.1)

This is equivalent to the EL equation (0.14),

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0, (1.2)

if we choose ∂L/∂ẋ = mẋ and ∂L/∂x = −∂V/∂x, or L = 1
2mẋ

2 − V . Now suppose we were given the
instantaneous positions of the particle at times t0 and t1. The results above imply that the path that the
particle takes between these two fixed points is an extremal of the action integral,

S[x] ≡
∫ t1

t0

L(x, ẋ, t) dt, (1.3)

where the Lagrangian L = T − V is the difference between the particle’s kinetic and potential energies.

Now let us consider a system of N particles, having masses mi, positions xi and for which the potential
energy is V (x1, . . . ,xN ; t). The latter includes the effects of inter-particle interactions, such as gravity or
electrostatic repulsion, as well as any externally applied forces, but we assume that it does not depend on
the particles’ velocities. If we again take L({xi}, {ẋi}; t) = T − V to be the difference between the kinetic
and potential energies of the whole system of particles, then the EL equations

d

dt

∂L

∂ẋi
− ∂L

∂xi
= 0 (i = 1, . . . , N), (1.4)

reduce to the standard Newtonian equations of motion:

d

dt
miẋi = − ∂V

∂xi
(i = 1, . . . , N). (1.5)

We can think of the system of particles as moving in 3N -dimensional configuration space. Given snapshots
of the 3N co-ordinates of the full system at times t0 and t1, we see that the path the system traces out in
configuration space at intermediate times is an extremal of the action

S({xi(t)}) =

∫ t1

t0

L({xi}, {ẋi}, t) dt. (1.6)

Notice that the condition for a curve to be an extremal of the action (1.3) is independent of the particular
co-ordinate system we use to describe the curve. This means we can use any sensible co-ordinate system to
parametrize the curves we feed in to the action integral and the EL equation will return the extremal curve
(i.e., the equation of motion) in that co-ordinate system. We describe our mechanical system using a set of
generalized co-ordinates, q(t) ≡ (q1(t), . . . , qn(t)), that pin down the instantaneous position of the system
in n-dimensional configuration space. We assume that there is no redundancy among the qi, so that the
system has n degrees of freedom. The system moves through configuration space with a generalized
velocity q̇ ≡ (q̇1, . . . , q̇n).

Now suppose we know that q(t0) = q0 and q(t1) = q1. Then the general form of Hamilton’s principle of least
action states that the path in configuration space the system takes between these two times is an extremal
of the action integral

S[q] ≡
∫ t1

t0

L(q, q̇, t) dt, (1.7)
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where the Lagrangian L is a function only of the generalized co-ordinates, the generalized velocities and
time. Therefore, the equation of motion of the system is

d

dt

∂L

∂q̇
− ∂L

∂q
= 0. (1.8)

The quantity p ≡ ∂L/∂q̇ is known as the generalized momentum of the system, F = ∂L/∂q is the
generalized force.

Some comments:
(i) In this formulation we assume only that that L is some scalar function of (q, q̇, t), which we are free to

choose in order to make the EL equations (1.8) match the true equations of motion of the system. For
the common case in which the particles move in a velocity-independent potential V (q, t) we know from
the examples above that a suitable choice is L = T − V .

(ii) L is not unique. For example, for any function Λ(q, t) we can add dΛ/dt to L and still obtain the same
equations of motion. (Prove it!)

(iii) Different elements of q can have different units. Therefore different elements of the generalized momen-
tum p and generalized forces ∂L/∂q can have different units too.

(iv) If one has external (generalized) forces that are not accounted for in L, they can be added to the RHS
of (1.8).

1.2 Why bother?

The most obvious advantage of the Lagrangian approach to mechanics over the elementary “Newtonian”
approach is that it allows us to derive the equations of motion of many mechanical systems without the
tedious task of resolving forces. As L is a scalar quantity we are free to use whatever co-ordinate system we
like to label points in configuration space: we may express L in terms of those co-ordinates, turn the handle
and obtain the equations of motion. It does not directly tell us how to solve the equations of motion though.

A related benefit of the Lagrangian approach is that it makes a deep connection between symmetries and
conservation laws. Problems involving mechanical systems are often invariant under some continuous trans-
formations (e.g., rotation about a particular axis or translation in a certain direction), which means that
there is a corresponding constant of motion (see §1.6 below). This often suggests the most “natural” co-
ordinate system to use for the problem, which can then help us to solve the equations of motion explicitly,
or at least teach us something qualitative about the behaviour of solutions.

Lagrangian mechanics really comes into its own when modelling the motion of rigid bodies (§A.2 below).
We probably won’t have time to cover that topic during lectures though.

The methods we’re applying to mechanical systems in this course can also be applied to other problems (see,
e.g., the first two chapters of Goldstein). Much of modern, non-classical physics is derived from some form
of action principle.

1.3 Equations of motion for some simple systems

Simple pendulum A bob of mass m is attached to one end of a rigid massless rod of length l. The
other end of the rod is attached to a fixed point, about which the rod can rotate in a fixed vertical plane. The
most natural parameter to use to describe the instantaneous configuration of this one-dimensional pendulum
is the angle θ the rod makes with the vertical. Since the potential energy V (θ) = −mgl cos θ is independent
of generalized velocity θ̇, we have that

L = T − V = 1
2ml

2θ̇2 +mgl cos θ, (1.9)

so that pθ ≡ ∂L/∂θ̇ = ml2θ̇. The equation of motion (1.8) for the system is then θ̈ + (g/l) sin θ = 0.

Springy pendulum Replace the rigid rod in the simple pendulum above with a massless spring of
natural length l and spring constant ω2, so that when the string is extended or compressed to a length r its
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potential energy Vspring(r) = 1
2ω

2(r − l)2. The natural generalized co-ordinates to use for this system are
(r, θ). A Lagrangian in these co-ordinates is

L = T − (Vgrav + Vspring) = 1
2mṙ

2 + 1
2mr

2θ̇2 +mgr cos θ − 1
2ω

2(r − l)2, (1.10)

which yields the equations of motion

d

dt
mṙ = mrθ̇2 +mg cos θ − ω2(r − l),

d

dt
mr2θ̇ = −mgr sin θ.

(1.11)

Spherical pendulum Now let’s return to our simple pendulum constructed from a rigid rod, but relax
the constraint that the rod can rotate only in a fixed plane. The Cartesian co-ordinates of the location of
the bob with respect to the pivot can be written as

x = l sin θ cosφ

y = l sin θ sinφ

z = l cos θ,

(1.12)

where (φ, θ) are the usual polar co-ordinates of a point on the surface of a sphere. We orient our co-ordinate
system with the Oz axis pointing downwards, so that θ is the angle the bob makes with the downwards
vertical. Differentiating (1.12) with respect to time to find ẋ(θ, φ), we have that the Lagrangian

L = 1
2mẋ

2 − V = 1
2m[ẋ2 + ẏ2 + ż2] +mgl cos θ

= 1
2ml

2[θ̇2 + φ̇2 sin2 θ] +mgl cos θ.
(1.13)

The generalized momenta (pθ, pφ) conjugate to the generalized co-ordinates (θ, φ) are given by

pθ ≡
∂L

∂θ̇
= ml2θ̇, pφ ≡

∂L

∂φ̇
= ml2 sin2 θφ̇. (1.14)

Notice that these are both angular momenta. In particular, pφ is the angular momentum about the z axis
and the EL equation for φ, ṗφ = ∂L/∂φ = 0, tells us that pφ is conserved. The EL equation for θ is

ml2θ̈ = ml2φ̇2 sin θ cos θ −mgl sin θ

=
p2
φ cos θ

ml2 sin3 θ
−mgl sin θ,

(1.15)

where in the second line we have used our expression for the constant pφ = ml2 sin2 θφ̇ to eliminate φ̇.

Exercise: It is difficult to integrate equation (1.15) to obtain an explicit expression for θ as a function
of t. Using the fact that θ̈ = θ̇(dθ̇/dθ), explain how (1.15) can be used to obtain an expression for θ̇ as
a function of θ. Show that the θ motion reduces to motion in a one-dimensional effective potential

Veff(θ) =
p2
φ

2ml2 sin2 θ
−mgl cos θ, (1.16)

and explain how to find the minimum and maximum values of θ taken by the pendulum for a given set
of initial conditions.

Particle in a central field The location of particle of mass m moving in three dimensions in a
spherically symmetric gravitational potential Φ(r) is most naturally expressed using spherical polar co-
ordinates, q = (r, θ, φ), in terms of which

(x, y, z) = (r sin θ cosφ, r sin θ sinφ, r cos θ). (1.17)
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Since V = mΦ does not depend on q̇ = (ṙ, θ̇, φ̇), the Lagrangian

L = T − V = 1
2m
[
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

]
− V (r), (1.18)

where the velocity ẋ2 in the square brackets comes from differentiating the co-ordinate transform (1.17) with
respect to t. The EL equation (1.8) gives the equations of motion

ṗr = mrθ̇2 +mr sin2 θφ̇2 − dV

dr
, ṗθ = mr2 sin θ cos θφ̇2, ṗφ = 0, (1.19)

where the components of the generalized momentum

pr ≡ mṙ, pθ ≡ mr2θ̇, and pφ ≡ mr2 sin2 θφ̇. (1.20)

pφ is a constant because ṗφ = 0. As the potential is spherically symmetric, we can orient our co-ordinate

system so that θ = π
2 and θ̇ = 0 initially. Then pθ = ṗθ = 0, showing that the motion remains confined to

the plane θ = π
2 .

Exercise: Write down the Euler equation for r. In the equation you get, use (1.20) to express θ̇ and
φ̇ in terms of the constants pθ and pφ. Show that this motion is identical to that obtained from the
one-dimensional effective Lagrangian,

L(r, ṙ) = 1
2mṙ

2 − Veff(r),

with Veff(r) = V (r) +
p2
φ

2mr2
.

(1.21)

A common temptation is to try to save work by first eliminating φ̇ and θ̇ from L(r, θ, ṙ, θ̇, φ̇) and then
to obtain the EL equations from the resulting “Lagrangian” L(r, θ, ṙ, pθ, pφ). This is wrong! Why?

If a co-ordinate qi does not appear explicitly in L, then ∂L/∂qi = 0 and the EL equation tells us that
the corresponding momentum pi ≡ ∂L/∂q̇i is conserved. Such qi are known as cyclic or ignorable co-
ordinates.

1.4 Particle in a magnetic field

So far we have considered problems in which the Lagrangian can be written as L = T −V , where T is kinetic
energy and V (q, t) is the (velocity-independent) potential energy of the system. It turns out that these same
methods can be used to describe more general systems.

Consider a particle of charge Q and mass m moving in an electromagnetic field. Its equation of motion is

d

dt
mẋ = QE +Qẋ×B. (1.22)

Since the Lorentz force F = Qẋ × B does no work on the particle, it makes no contribution to either T or
V and so we cannot derive (1.22) from a Lagrangian of the form L = T − V (x). Nevertheless, one can still
concoct a Lagrangian that produces this motion. Recall that we can express

E = −∇φ− ∂A

∂t
and B = ∇×A (1.23)

in terms of an electrostatic potential φ(x, t) and a magnetic vector potential A(x, t). Here we show that the
Lagrangian

L = 1
2mẋ

2 +Q(ẋ ·A− φ). (1.24)

produces the equation of motion (1.22).
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The EL equation for this L is
d

dt
(mẋ+QA)−Q∇(φ− ẋ ·A) = 0. (1.25)

(Notice how the presence of the velocity-dependent force from the magnetic field means that the generalized
momentum p = mẋ+QA 6= mẋ.) The derivative with respect to time in the LHS of (1.25) is to be carried
out along the curve x(t). Therefore, using the chain rule,

dAi
dt

=
∂Ai
∂t

+
∑

j

dxj
dt

∂

∂xj
Ai =

[
∂A

∂t
+

(
dx

dt
· ∇
)
A

]

i

, (1.26)

in which I avoid writing dx/dt as ẋ because I want to emphasise that – for now – x and ẋ are independent.
Substituting this into (1.25) and rearranging, we have that

d

dt
mẋ−Q

[
∂A

∂t
+∇φ

]
−Q

[(
dx

dt
· ∇
)
A−∇(ẋ ·A)

]
= 0. (1.27)

The expression inside the first square bracket is simply −E. The expression inside the second is −ẋ×B. To
see this, use the vector identity

∇(ẋ ·A) = (ẋ · ∇)A+ (A · ∇)ẋ︸ ︷︷ ︸
0

+ẋ× (∇×A)︸ ︷︷ ︸
B

+A× (∇× ẋ)︸ ︷︷ ︸
0

, (1.28)

in which the second and fourth terms vanish because ẋ and x are independent variables: ∂ẋi/∂xj = 0.
Finally, use the fact that ẋ = dx/dt along extremals and it is clear that the second bracket vanishes.
Therefore the EL equations (1.25) for the Lagrangian (1.24) reduce to the familiar (1.22).

Here I have simply pulled this Lagrangian out of a hat, but when one looks at the problem in a proper,
relativistically covariant way the action

S[x] =

∫ [
1
2mẋ

2 +Q(ẋ ·A− φ)
]

dt (1.29)

pops out naturally. As ever, adding a total derivative

dΛ

dt
=
∂Λ

∂t
+ ẋ · ∇Λ (1.30)

to the integrand of S (and thus to the Lagrangian (1.24)) has no effect on the extremal x(t) obtained by
solving δS = 0. This is equivalent to the gauge transformation

φ→ φ− ∂Λ

∂t
, A→ A+∇Λ. (1.31)

1.5 Motion in non-inertial co-ordinate systems

Ant on a turntable An ant finds itself on a turntable that rotates with constant angular velocity Ω. The
ant sets up cartesian (X,Y, Z) co-ordinates co-rotating with the turntable, so that the “lab” co-ordinates
(x, y, z) of a point (X,Y, Z) on the turntable are given by



x
y
z


 =




cos Ωt − sin Ωt 0
sin Ωt cos Ωt 0

0 0 1





X
Y
Z


 . (1.32)
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The Lagrangian of a particle in the ant’s co-ordinates

L = T − V = 1
2m(ẋ2 + ẏ2 + ż2)− V

= 1
2m(Ẋ2 + Ẏ 2 + Ż2) +mΩ(XẎ − ẊY ) + 1

2mΩ2(X2 + Y 2)− V,
(1.33)

the second line following from the first on differentiating the transformation matrix (1.32). The (X,Y )
equations of motion for a free particle (V = 0) on the turntable in the ant’s co-ordinate system are therefore

d

dt
mẊ = 2mΩẎ +mΩ2X,

d

dt
mẎ = −2mΩẊ +mΩ2Y. (1.34)

Notice that these are simply ẋ = ẏ = 0 in the co-rotating frame. Turning to the ant itself, if friction keeps
it at rest (Ẋ = Ẏ = 0) with respect to the turntable, then it feels an outward force of magnitude mRΩ2,
where R2 = X2 +Y 2 (second term on RHS of each of (1.34)). This is reduced if the ant tries to walk against
the rotation of the turntable (first terms on RHS), and vanishes completely if the ant runs around the circle
R = constant with speed RΩ.

Writing r = (X,Y, Z) for the co-ordinates of a particle in the rotating frame (r for rotating, x for fixed) and
Ω ≡ (0, 0,Ω), the Lagrangian (1.33) can be expressed as

L(r, ṙ, t) = 1
2mṙ

2 +mṙ · (Ω × r) + 1
2m(Ω × r)2 − V (r, t)

= 1
2m (ṙ +Ω × r)2 − V (r, t).

(1.35)

Instead of wrestling with the matrix (1.32), a simpler way of deriving (1.35) is to note that a particle moving
with respect to the rotating r frame with velocity ṙ has in the x frame a velocity whose magnitude

|ẋ| = |ṙ +Ω × r|, (1.36)

which, together with L = 1
2mẋ

2 − V , gives (1.35) directly. Notice that equation (1.36) is a statement only
about the magnitude of the vector ẋ, not its direction; we show below that ẋ and (ṙ+Ω × r) are related by
a rotation, as one might expect.

The equations of motion for the particle in the rotating frame are easy to obtain from (1.35). Making use of
the relation a · (b× c) = c · (a× b), the partial derivatives of L are found to be

p ≡ ∂L

∂ṙ
= mṙ +mΩ × r,

∂L

∂r
= mṙ ×Ω +m(Ω × r)×Ω − ∂V

∂r
.

(1.37)

Therefore the equation of motion

d

dt
mṙ = −mΩ̇ × r − 2mΩ × ṙ −mΩ × (Ω × r)− ∂V

∂r
, (1.38)

showing that in this non-inertial, rotating frame the particle moves as if it were subject to three additional
“pseudo-forces”: the inertial force of rotation −mΩ̇× r, the Coriolis force −2mΩ× ṙ and the centrifugal
force −mΩ × (Ω × r).

Exercise: Show that in the northern hemisphere the Coriolis force deflects every body moving across
the earth’s surface to the right and every falling body towards the East.

Exercise: In cosmology it is often useful to express the equations of motion of “dust” (stars, gas) in
terms of co-moving co-ordinates, r, which are related to “physical” co-ordinates, x, through x = a(t)r
where a(t) is the scale factor of the universe. Show that in these co-ordinates the motion of a dust
particle satisifies

r̈ + 2
ȧ

a
ṙ +

ä

a
r = − 1

a2

∂Φ

∂r
. (1.39)
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More general moving co-ordinates There is a more general way of dealing with moving frames. Con-
sider a co-ordinate transformation of the form

x = R+Br, (1.40)

in which the co-ordinates of a particle P in the “fixed” x system are
given in terms of those in the r system by a rotation B(t) followed by
a translation R(t). Differentiating (1.40), the velocity of the particle in
the x frame is given by

ẋ = Ṙ+ Ḃr +Bṙ. (1.41)

For example, a rock on the earth’s equator has co-ordinates r = (R⊕, 0, 0). Equations (1.40) and (1.41) give
its co-ordinates and velocities in a frame centred on the sun and oriented with respect to the “fixed stars” if
we choose R(t) to be the location of the centre of the earth in this fixed frame and use B(t) to describe the
rotation of the earth about its axis.

Pure rotation Let us first consider the case R = Ṙ = 0 in which the (three-dimensional) x and r co-
ordinate axes are related by a pure rotation, so that x = Br. Since B is a rotation, BBT = I, so B−1 = BT

and r = B−1x = BTx. Substituting this into (1.41) gives

ẋ = ḂBTx+Bṙ. (1.42)

To understand the effect of ḂBT , differentiate the relation BBT = I to obtain

ḂBT +BḂT = 0 ⇒ ḂBT + (ḂBT )T = 0. (1.43)

Thus ḂBT is a skew-symmetric matrix. Now write out the expression ω × x = (ω2x3 − ω3x2, ω3x1 −
ω1x3, ω1x2 − ω2x1) in matrix form. The result is




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0





x1

x2

x3


 . (1.44)

So, by choosing ω appropriately, any skew-symmetric matrix can be represented by the operation ω × x. In
particular, the relation (1.42) can be written as

ẋ = ω × x+Bṙ (1.45)

for some (possibly time-dependent) ω, which is an eigenvector of ḂBT with eigenvalue 0. This ω is the
instantaneous angular velocity of the r framewith respect to the x frame. Using x = Br and introducing
Ω ≡ B−1ω, the instantaneous angular velocity in the r frame,we have that

ẋ = BΩ ×Br +Bṙ

= B(Ω × r + ṙ),
(1.46)

because Bb × Bc = B(b × c). Substituting this ẋ into L = 1
2mẋ

2 − V = 1
2m(ẋT · ẋ) − V gives the

Lagrangian (1.35). So, the Lagrangian we derived earlier for the special case of a steady rotation Ωt about
the x̂3 = r̂3 axis holds even when the rotation axis and rotation rate change with time, provided we take Ω
to be the instantaneous angular velocity in the rotating frame.

Exercise: Calculate ḂBT for each of the following matrices and find ω by comparing your results with
equation (1.44). What is Ω in each case?

B1 =




cos Ωt − sin Ωt 0
sin Ωt cos Ωt 0

0 0 1


 , B2 =




cos Ωt − sin Ωt 0
0 0 −1

sin Ωt cos Ωt 0


 . (1.47)
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Pure translation, no rotation If the r and x co-ordinates are related by a pure translation, then
B = I and equation (1.41) becomes

ẋ2 =
(
Ṙ+ ṙ

)2
= Ṙ2 + 2Ṙ · ṙ + ṙ2

= Ṙ2 + 2
d

dt
(Ṙ · r)− 2R̈ · r + ṙ2.

(1.48)

A suitable Lagrangian is
L = 1

2mṙ
2 −mR̈ · r − V (r, t), (1.49)

dropping the first two terms from (1.48) because they contribute nothing to the equations of motion.

General case – translation plus rotation For the general case, we introduce an intermediate co-ordinate
system x′ related to x by a translation and to r by a rotation:

x = R+ x′,

x′ = Br.
(1.50)

Using (1.49), the Lagrangian L(x′, ẋ′, t) = 1
2 ẋ
′2 −mR̈ · x′ − V . Taking ẋ′ = B(ṙ + Ω × r) from (1.46), we

have finally that
L(r, ṙ, t) = 1

2m (ṙ +Ω × r)2 −mR̈ · (Br)− V. (1.51)

Exercise: Let B be a constant (time-independent) rotation matrix and choose mR̈ = −∂V/∂x. Show
that in this freely falling frame the equations of motion become d

dtmṙ = 0.

Exercise: Show for the case ṙ = 0 that

ẋ− Ṙ = ḂBT (x−R)

= ω × (x−R).
(1.52)

Explain why this means that Ω and ω are independent of the choice of R.

1.6 Noether’s theorem

A constant of motion is any function C(q, q̇, t) for which the total time derivative

dC

dt
=
∂C

∂t
+ q̇ · ∂C

∂q
+ q̈ · ∂C

∂q̇
(1.53)

vanishes along a trajectory q(t) that satisfies the equations of motion. For example, if ∂L/∂t = 0 then we
already know from the Beltrami identity (0.19) of §0.1 that

H(q, q̇) = q̇ · ∂L
∂q̇
− L (1.54)

is a constant of motion. Similarly, if L contains a cyclic co-ordinate qi (one for which ∂L/∂qi = 0), then the
generalized momentum pi = ∂L/∂q̇i is a constant of the motion.

In general, a system with n degrees of freedom has 2n − 1 independent constants of motion. To see this,
suppose that a system has (q, q̇) at some time t. Then one can in principle integrate the system for-
wards/backwards to some reference time, t0. The values of q and q̇ at t0 are some complicated functions
qi(t0) = fi(q, q̇, t), q̇i(t0) = gi(q, q̇, t), of their values at time t. Eliminating t from these 2n equations leaves
2n− 1 constants of motion. There are few mechanical systems for which one can write down expressions for
all 2n−1 constants of motion, but we have already seen (e.g., motion of particle in central field) that finding
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just n constants of motion is enough to understand the behaviour of a mechanical system with n degrees of
freedom, at least qualitatively.

Noether’s theorem states that for every continuous symmetry of the Lagrangian there is a corresponding
conserved quantity. Suppose we apply a transformation to our mechanical system, which results in a small
change in co-ordinates

q → q + εK(q), (1.55)

where K(q) is a vector-valued function of q. For example, we might move our favourite pendulum slightly
to the left, or turn it anticlockwise a little. If the Lagrangian L(q, q̇, t) is invariant under this transformation
then there is a constant of motion

C(q, q̇) =
∂L

∂q̇
·K. (1.56)

Proof: Since the transformation (1.55) leaves L unchanged then, at ε = 0,

0 =
dL

dε
=
∂L

∂q
· ∂q
∂ε

+
∂L

∂q̇
· ∂q̇
∂ε

=
∂L

∂q
·K +

∂L

∂q̇
· K̇.

(1.57)

Using the EL equation to replace the ∂L/∂q factor,

0 =
d

dt

(
∂L

∂q̇

)
·K +

∂L

∂q̇
· K̇ =

d

dt

(
∂L

∂q̇
·K
)
. (1.58)

Example: homogeneity of space The Lagrangian for a closed system of N particles,

L = 1
2

∑

i

miẋ
2
i −

∑

ij

V (|xi − xj |), (1.59)

is invariant if we apply the translation xi → xi + εn̂ to all the particles’ co-ordinates, for any choice of
direction n̂. By Noether’s theorem, this symmetry means that

∑

i

(
∂L

∂ẋi

)
· n̂ =

(∑

i

miẋi

)
· n̂, (1.60)

is a constant of the motion. Since the relation holds for any n̂, we have that
∑
imiẋi is an invariant. Thus,

translation invariance of L implies conservation of total linear momentum.

Example: isotropy of space Similarly, the Lagrangian (1.59) is invariant if we pick any direction n̂

and carry out an infinitesmal rotation of the system about this axis: xi → xi + εn̂ × xi. Noether tells us
that there is a conserved quantity

∑

i

(
∂L

∂ẋi

)
· (n̂× xi) =

(∑

i

xi ×miẋi

)
· n̂. (1.61)

In other words, rotational invariance of L leads to conservation of angular momentum.

Example: particle in a uniform magnetic field A particle moves in a uniform magnetic field
B = (0, 0, B) = Bk. From (1.24), the Lagrangian L = 1

2mẋ
2 + Q(ẋ · A − φ). Since E = 0, we are free

to choose φ = 0. To find the constants of motion it proves easiest to consider two different choices for the
vector potential A, each of which lead to the same B and therefore to the same equations of motion.

Our first choice is A = (−By, 0, 0). Then we get L = 1
2mẋ

2 −QẋBy. This is invariant under translations in
either the i or k directions: x→ x+ εi, x→ x+ εk. Therefore, two constants of the motion are

∂L

∂ẋ
· i = px = mẋ−QBy and

∂L

∂ẋ
· k = pz = mż. (1.62)
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Our second choice is A = (0, Bx, 0). Then L = 1
2mẋ

2−QẏBx, which is invariant under translations in either
j or k directions, leading to the additional constant of motion

∂L

∂ẋ
· j = py = mẏ +QBx. (1.63)

The physical meaning of pz is obvious. To understand px and py, consider

P ≡ px + ipy = m(ẋ+ iẏ) +QB(ix− y) = mξ̇ + iQBξ, (1.64)

where ξ ≡ x + iy. This is a first-order ODE for ξ. Multiplying by the integrating factor eiωt, where the
Larmor frequency ω ≡ QB/m, the solution is

ξ(t) =
P

iωm
+Keiωt, (1.65)

where K is a constant of integration. We now see that px and py (through P ) encode the x and y co-ordinates
of the guiding centre around which the particle gyrates. The radius of gyration is given by the integration
constant |K|, which sets the particle’s energy.
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2 Hamiltonian mechanics

2.1 Hamilton’s equations

The Euler–Lagrange equation (1.8),

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0, (2.1)

when written out in component form becomes a set of n coupled second-order ODEs. Like any set of n
coupled second-order ODEs, we can turn it into a set of 2n first-order ODEs by introducing n additional
variables. In this case, introduce p ≡ ∂L/∂q̇ to obtain

ṗ =
∂L

∂q
, p =

∂L

∂q̇
, (2.2)

the second of which is an awkward implicit equation for q̇.

We’d like to have a new function that somehow encodes the same information as L(q, q̇, t), but with q̇

replaced by p ≡ ∂L/∂q̇. Provided L(q, q̇, t) is a convex function of the velocities q̇, then we can do just
this by taking the Legendre transform (§0.3) of L(q, q̇, t) with respect to q̇. This gives a new function, the
Hamiltonian,

H(q, p, t) ≡ p · q̇ − L(q, q̇, t), (2.3)

which is a function of the generalized co-ordinates q, the conjugate momenta p and time; we have to use the
relation p = ∂L/∂q̇ to express all q̇ on the RHS in terms of p and q (and possibly t).

To obtain the equations of motion in terms of this new function, take the total differential of each side
of (2.3). The RHS gives

dH = q̇ · dp+ p · dq̇ −
(
∂L

∂q
· dq +

∂L

∂q̇
· dq̇ +

∂L

∂t
dt

)

= q̇ · dp− ∂L

∂q
· dq − ∂L

∂t
dt,

(2.4)

using p = ∂L/∂q̇ to cancel two of the terms on the first line. This must equal the total differential of the
LHS,

dH =
∂H

∂q
· dq +

∂H

∂p
· dp+

∂H

∂t
dt. (2.5)

Since (2.4) and (2.5) have to be equal for any choice of (dq,dp,dt), it follows that

q̇ =
∂H

∂q
; −∂L

∂q
=
∂H

∂q
; −∂L

∂t
=
∂H

∂t
. (2.6)

Using the relation ṗ = ∂L/∂q, these become Hamilton’s equations:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (2.7)
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2.2 Why bother?

In Hamiltonian mechanics we can think of our mechanical system as a point (q, p) moving in 2n-dimensional
phase space with velocity given by (2.7). Contrast this to Lagrangian mechanics in which there is no such
simple geometrical interpretation of the correpsonding paths through configuration space, even when the
equations are written out in the coupled form (2.2).

In practice it usually turns out that Hamilton’s equations are no easier to solve than the corresponding EL
equations. The power of Hamiltonian mechanics comes from the ease with which one can use the explicit
ODEs (2.7) to discover general properties of trajectories in phase space. This helps uncover much of the
hidden structure that underpins classical mechanics. It turns out that very similar structures underlie
quantum mechanics.

2.3 Examples

Simple pendulum The Lagrangian (1.9) L(θ, θ̇) = 1
2ml

2θ̇2 + mgl cos θ, so that pθ ≡ ∂L/∂θ̇ = ml2θ̇.
Using the Legendre transform (2.3) to turn this L into a function of (θ, pθ) gives

H(θ, pθ) = pθ θ̇ − L

=
p2
θ

2ml2
−mgl cos θ,

(2.8)

in which we have used the expression for pθ to express all occurrences of θ̇ in terms of pθ. Hamilton’s
equations (2.7) become

θ̇ =
∂H

∂pθ
=

pθ
ml2

, ṗθ = −∂H
∂θ

= −mgl sin θ. (2.9)
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Notice that there is essentially no difference between these and the cor-
responding EL equation. The Hamiltonian approach does, however, en-
courage us to think of the motion of the pendulum as taking place in a
two-dimensional phase plane (θ, pθ), in which the velocity field is given
by (θ̇, ṗθ) = (∂H/∂pθ,−∂H/∂θ) (red arrows on plot). The phase-space
co-ordinates of the bob follow the integral curves of this velocity field
(blue curves), so called because they are obtained by “integrating” (i.e.,
solving) Hamilton’s equations to find the trajectory.

Particle in a potential well If the particle’s potential energy V = V (x, t) then the Lagrangian
L = 1

2mẋ
2 − V , giving p = ∂L/∂ẋ = mẋ, the usual momentum familiar from Netownian mechanics. The

Legendre transform (2.3) of L is
H(x, p, t) = p · ẋ− L(x, ẋ, t)

=
p2

2m
+ V (x, t)

. (2.10)

Hamilton’s equations (2.7) reduce to the very familiar

ẋ =
∂H

∂p
=
p

m
, ṗ = −∂H

∂x
= −∂V

∂x
. (2.11)

This example serves as a useful reminder of which of Hamilton’s equations has the minus sign.

Particle in a central field The Lagrangian (1.18) L = 1
2m(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2)−V (r), which gives

momenta pr = mṙ, pθ = mr2θ̇ and pφ = mr2 sin2 θφ̇. Applying the Legendre transform (2.3) to turn this

L(r, ṙ, θ̇, φ̇) into something that depends explicitly on (ṙ, pr, pθ, pφ) gives the Hamiltonian

H(r, pr, pθ, pφ) = pr ṙ + pθ θ̇ + pφφ̇− L(r, ṙ, θ̇, φ̇)

=
p2
r

2m
+

p2
θ

2mr2
+

p2
φ

2mr2 sin2 θ
+ V (r).

(2.12)
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Hamilton’s equations (2.7) become

ṙ =
pr
m
,

ṗr =
p2
θ

r3
+

p2
φ

r3 sin2 θ
− dV

dr
,

θ̇ =
pθ
mr2

,

ṗθ =
p2
φ cos θ

mr2 sin3 θ
,

φ̇ =
pφ

mr2 sin2 θ
,

ṗφ = 0.
(2.13)

Just as in the Lagrangian case (§1.3), if we orient our co-ordinate system so that the particle starts with
θ = π

2 and θ̇ = 0 then Hamilton’s equations tell us that pθ and θ remain zero throughout the motion and
pφ is a constant of motion. This is equivalent to motion in the simpler “effective” Hamiltonian Heff(r, pr) =
p2
r/2m+ Veff(r), where the one-dimensional effective potential

Veff(r) =
p2
φ

2mr2
+ V (r). (2.14)

Notice that it is much easier to exploit the conservation of the momenta pθ and pφ in Hamiltonian mechanics
than in Lagrangian mechanics.

Motion of a particle referred to a rotating co-ordinate system The Lagrangian (1.35) L =
1
2m[ṙ+Ω× r]2−V (r, t) from which p ≡ ∂L/∂ṙ = m(ṙ+Ω× r). Using (2.3) to construct the corresponding
Hamiltonian gives

H(r, p) = p · ṙ − L
= m[ṙ +Ω × r] · ṙ − 1

2m[ṙ +Ω × r]2 + V

= 1
2mṙ

2 − 1
2m(Ω × r)2 + V

=
p2

2m
− p · (Ω × r) + V.

(2.15)

Exercise: Write out Hamilton’s equations for this system and show that they are equivalent to equa-
tion (1.38).

Particle in an electromagnetic field Similarly, for the Lagrangian (1.24), L = 1
2mẋ

2 +Q(ẋ ·A−φ),
the momenta p = ∂L/∂ẋ = mẋ+QA. The Hamiltonian

H = p · ẋ− L = mẋ2 +QA · ẋ−
[

1
2mẋ

2 +Q(ẋ ·A− φ)
]

= 1
2mẋ

2 +Qφ

=
(p−QA)2

2m
+Qφ.

(2.16)

Exercise: By writing the second of Hamilton’s equations for this case in the form

ṗi = − 1

2m

∂

∂xi

∑

j

(pj −QAj)(pj −QAj)−Q
∂φ

∂xi
(2.17)

show that ṗ = Q∇(ẋ · A) − Q∇φ (remember x and p are independent co-ordinates in phase space).
Hence show that Hamilton’s equations reduce to the expected mẍ = Qẋ× (∇×A)−Q∇φ.

2.4 General remarks

1. If a co-ordinate qi doesn’t appear in the Lagrangian, then, by construction, it doesn’t appear in
the Hamiltonian either. The corresponding momentum pi is conserved because, from Hamilton’s
equations,

ṗi = −∂H
∂qi

= 0. (2.18)
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2. The rate of change of H along a trajectory (q(t), p(t)),

dH

dt
=
∂H

∂t
+ q̇ · ∂H

∂q
+ ṗ · ∂H

∂p

=
∂H

∂t
+
∂H

∂p
· ∂H
∂q
− ∂H

∂q
· ∂H
∂p

=
∂H

∂t
,

(2.19)

the second line following from the first on using Hamilton’s equations (2.7). Thus H is conserved if it
does not depend explicitly on time. (We have already seen this from the Beltrami identity in §0.1.)

3. If L = T − V , where T is a homogeneous quadratic form in the velocities q̇,

T = 1
2

∑

ij

aij(q, t)q̇iq̇j , (2.20)

with aij = aji and V = V (q, t), then the Hamiltonian H = T + V . To see this, notice that

pk ≡
∂L

∂q̇k
= 1

2

∑

ij

(aijδikq̇j + aij q̇iδjk) =
∑

i

akiq̇i. (2.21)

Constructing the Hamiltonian in the usual way, we have that

H = p · q̇ − L =
∑

k

[∑

i

akiq̇i

]
q̇k −


 1

2

∑

ij

aij q̇iq̇j − V


 = T + V. (2.22)

2.5 Liouville’s theorem?

The instantaneous state of a mechanical system is described by a point in phase space with co-ordinates
(q, p). This point moves through phase space with a velocity (q̇, ṗ) given by Hamilton’s equations (2.7). If
we release an ensemble of systems with the same Hamiltonian but slightly different initial conditions, the
phase points flow through phase space like a fluid.

Before tackling this particular flow, we first need a standard result: any flow in which the divergence of the
velocity field is identically zero preserves volume (i.e., is incompressible). To show this, let us take a general
velocity field

ẋ = f(x, t) (2.23)

in an n-dimensional space and examine the relative motion of two nearby points x0(t) and x1(t). Let
∆(t) ≡ x1(t)− x0(t). From a Taylor expansion of (2.23) we have that after time δt, dropping terms O(δt2),

∆j → ∆j +
∑

k

∂fj
∂xk

∆kδt =

(
δjk +

∂fj
∂xk

δt

)
∆k = Jjk∆k, (2.24)

where Jjk = δjk + (∂fj/∂xk)δt. The change in volume effected by this transformation is given by det Jjk.

Exercise: Show by direct expansion that det(I+Aδt) = 1+(trA)δt+O(δt2) for any square matrix A.

Using the result of the exercise, the flow preserves volume if
∑
i(∂fi/∂xi) = 0, i.e., if the velocity field has

zero divergence.

Now we return to phase space. Let us introduce the shorthand w ≡ (q, p) = (q1, . . . , qn, p1, . . . , pn) for the
co-ordinates of a point in 2n-dimensional phase space. By Hamilton’s equations, the “velocity field” in phase
space is ẇ = (∂H/∂p,−∂H/∂q). Its divergence

div (ẇ(w, t)) ≡ ∂

∂w
· (ẇ(w, t)) =

∂2H

∂q∂p
− ∂2H

∂p∂q
= 0. (2.25)
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So, the phase-space volume enclosed by the points representing our ensemble of systems is conserved. This is
Liouville’s theorem. Similarly we can introduce the phase-space mass density f(x, v, t), which has to respect
the (phase-space) continuity equation

0 =
∂f

∂t
+ div (fẇ) =

∂f

∂t
+

∂

∂q
· (f q̇) +

∂

∂p
· (f ṗ)

=
∂f

∂t
+
∂f

∂q
· q̇ +

∂f

∂p
· ṗ+ f

(
∂q̇

∂q
+
∂ṗ

∂p

)

︸ ︷︷ ︸
div ẇ=0

=
∂f

∂t
+
∂f

∂q
· ∂H
∂p
− ∂f

∂p
· ∂H
∂q

.

(2.26)

This is known as Liouville’s equation.

2.6 Poisson brackets

The Poisson bracket [A,B] of any two smooth phase-space functions A(q, p, t), B(q, p, t) is defined as

[A,B] ≡ ∂A

∂q
· ∂B
∂p
− ∂A

∂p
· ∂B
∂q

. (2.27)

It is straightforward to show that the Poisson bracket has the following properties (verify them!):
(i) [A,B] = −[B,A] (antisymmetry);

(ii) [αA+ βB,C] = α[A,C] + β[B,C] for any real numbers α,β (linearity);
(iii) [AB,C] = [A,C]B +A[B,C] (chain rule);
(iv) [[A,B], C] + [[B,C], A] + [[C,A], B] = 0 (Jacobi identity).

Furthermore, phase-space co-ordinates satisfy the canonical commutation relations or fundamental
Poisson bracket relations

[pi, pj ] = 0, [qi, qj ] = 0 and [qi, pj ] = δij . (2.28)

This follow directly from the definition (2.27) and, remembering that (q, p) are independent coordinates in
phase space, the relations ∂pi/∂qj = ∂qi/∂pj = 0 and ∂pi/∂pj = ∂qi/∂qj = δij .

In terms of Poisson brackets, Hamilton’s equations become

q̇i = [qi, H], ṗi = [pi, H]. (2.29)

The rate of change of any function f(q, p, t) along a trajectory (q(t), p(t)) is

df

dt
=
∂f

∂t
+
∂f

∂q
· q̇ +

∂f

∂p
· ṗ

=
∂f

∂t
+
∂f

∂q
· ∂H
∂p
− ∂f

∂p
· ∂H
∂q

=
∂f

∂t
+ [f,H].

(2.30)

Alternative notation It is sometimes convenient to combine q and p into the single vector w ≡ (q, p) =
(q1, . . . , qn, p1, . . . , pn). Then Hamilton’s equations (2.7) can be written as

ẇ = J · ∂H
∂w

, (2.31)
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where the symplectic matrix

J ≡
(

0n In
−In 0n

)
, (2.32)

and 0n and In are the n× n zero and identity matrices, respectively. The expression (2.27) for the Poisson
bracket becomes

[A,B] =

(
∂A

∂w

)T
· J · ∂B

∂w
=

2n∑

α,β=1

∂A

∂wα
Jαβ

∂B

∂wβ
. (2.33)

Because ∂wi/∂wα = δiα the canonical commutation relations (2.28) are simply

[wi, wj ] = Jij . (2.34)

2.7 Symmetries and conservation laws

Constants of motion If a function F (q, p) is a constant of the motion then, using (2.30),

0 = Ḟ =
dF

dt
=
∂F

∂t
+ [F,H] ⇒ [F,H] = 0. (2.35)

The functions F and H are then said to (Poisson) commute. Conversely, if we can find a function F (q, p)
for which [F,H] = 0, then F is a constant of motion. Given two constants of motion, F (q, p) and G(q, p),
we have from the Jacobi identity that

[[F,G], H] + [[G,H]︸ ︷︷ ︸
0

, F ] + [[H,F ]︸ ︷︷ ︸
0

, G] = 0. (2.36)

So, [F,G] is also a constant of motion. In some cases the new function [F,G] will turn out to be trivial (e.g.,
it might be zero or a straightforward function of the known invariants F and G), but sometimes it will be a
new, independent constant of motion.

Example: Let r = (r1, r2, r3) be Cartesian co-ordinates and p the corresponding conjugate momentum.
The angular momentum J = r × p has components

J1 = r2p3 − r3p2, J2 = r3p1 − r1p3, J3 = r1p1 − r2p1. (2.37)

The Poisson bracket of the first two,

[J1, J2] = [r2p3 − r3p2, r3p1 − r1p3]

= [r2p3, r3p1]− [r2p3, r1p3]︸ ︷︷ ︸
0

− [r3p2, r3p1]︸ ︷︷ ︸
0

+[r3p2, r1p3]

= [r2p3, r3p1] + [r3p2, r1p3]

= −r2p1 + p2r1 = J3.

(2.38)

If J1 and J2 are constants of motion, then so too is J3. Or, more generally, the vector J is conserved if any
two of its components are.

Exercise: Show that [J2, Ji] = 0.

Symmetries and conservation laws In section §1.6 we saw that if a Lagrangian L is invariant under
a small change in co-ordinates, q → q + εK(q), then C = K · (∂L/∂q̇) is a constant of motion. There is a
corresponding relationship between symmetry and conservation laws in Hamiltonian mechanics.
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We have seen how the Hamiltonian function defines a phase flow (q̇, ṗ) = ([q, H], [p, H]) = (∂H/∂p,−∂H/∂q).
Similarly, any function G(q, p) defines a flow through phase space with

dq(λ)

dλ
= [q(λ), G],

dp(λ)

dλ
= [p(λ), G],

(2.39)

in which the parameter λ takes the place of time. If we integrate the coupled ODEs (2.39) for a fixed interval
in λ, we obtain a one-parameter mapping Gλ : (q(0), p(0)) → (q(λ), p(λ)) of phase space onto itself. The
function G is the generator of this mapping. The solutions to (2.39) are the integral curves of G.

Exercise: Suppose that (x, p) are Cartesian co-ordinates in phase space. What mapping is generated
by G = x1? By G = p1? By G = x1p2 − x2p1?

Exercise: Show that the derivative of a function F (q, p) along the flow generated by G is

dF

dλ
=
∂F

∂q
· dq

dλ
+
∂F

∂p
· dp

dλ
= [F,G]. (2.40)

For small λ, Gλ is the infinitesmal map

q → q + λ
∂G

∂p
, p→ p− λ∂G

∂q
, (2.41)

or δq = λ∂G/∂p, δp = −λ∂G/∂q. If H is invariant under this map, then G is called a symmetry of the
Hamiltonian. The condition for this is that

0 = δH =
∂H

∂q
· δq +

∂H

∂p
· δp

= λ
∂H

∂q
· ∂G
∂p
− λ∂H

∂p
· ∂G
∂q

= λ[H,G].

(2.42)

But Ġ = [G,H], so if G is a symmetry then G is conserved. Conversely, for any constant of motion G(q, p)
then there is a map (2.41) that leaves H invariant. (In constrast, in Lagrangian mechanics Noether’s theorem
says only that symmetry⇒constant; it does not show that constant⇒symmetry too.)

Exercise: What mapping does H generate? What condition do we need to impose on H for this to
work?

Exercise: Show that the infinitesmal map (2.41) can be written as

w → w + λJ
(
∂G
∂w

)

= w − λ
(
∂G
∂w

)T
J

=
[
I − λ

(
∂G
∂w

)T
J
(
∂
∂w

)]
w,

(2.43)

where w =

(
q

p

)
and J is the symplectic matrix (2.32). By chaining many such mappings together,

obtain a formal expression for the mapping Gλ for general λ using the definition exp(X) = limn→∞(I+
X/n)n for the exponential of a linear operator.
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2.8 Poincaré integral invariants

The following two sections provide another way of looking at the structure of phase space in which time plays
a more explicit role: you may have noticed that many of the results concerning Poisson brackets required us
to restrict our attention to functions F (q, p) that do not depend explicitly on time.

Some hydrodynamics: Stokes’ lemma Suppose we have a fluid in which points at position x move
with velocity ẋ = ∇×u, for some u = u(x). At time t0 we set up a closed loop γ0 of dye-releasing particles.
At any later instant the particles will lie along another closed loop γ(t). Between times t0 and t the particles
will have traced out a surface S, the ends of which are the curves γ0 and γ(t). The surface S is known as a
vortex tube: individual particles within the loop move along integral curves of ∇ × u, which are vortex
lines of u. Because the particles always move parallel to ∇× u we have that

∫
S

(∇× u) · n̂dS = 0, where n̂
is the outward-pointing unit normal to the vortex tube. Stokes’ theorem tells us that

∮

γ

u · dx−
∮

γ0

u · dx =

∫

S

(∇× u) · n̂dS = 0, (2.44)

where γ is any other loop that encircles the vortex tube.

Extended phase space Given a mechanical system with n degrees of freedom the corresponding phase
space has 2n dimensions. If we treat time t as an additional co-ordinate we obtain a (2n + 1)-dimensional
space, known as extended phase space.

Exercise: A one-dimensional simple harmonic oscillator has Hamiltonian H = 1
2 (p2 + q2). Show that

solutions to Hamilton’s equations yield helical curves in extended phase space.

Exercise: Now suppose that H = 1
2 (p2 +ω2q2), where ω = ω(t). How does the time dependence of the

spring constant change the trajectories in extended phase space?

Vortex tubes in 3d extended phase space Consider a system with one degree of freedom so that
extended phase space has three dimensions. We recycle our use of w from the previous section to label points
in (extended) phase space and look at one-dimensional loops w(γ) = p(γ)p̂ + q(γ)q̂ + t(γ)t̂, where (p̂, q̂, t̂)
are the natural basis vectors to use for extended phase space. We assume that (p̂, q̂, t̂) (in that order) form
a right-handed set.

We introduce a special vector u = pq̂ −H t̂. The vortex lines of u are given by the solutions w(τ) of

(
dp

dτ
,

dq

dτ
,

dt

dτ

)
=

dw

dτ
= ∇× u =

∣∣∣∣∣∣

p̂ q̂ t̂
∂
∂p

∂
∂q

∂
∂t

0 p −H

∣∣∣∣∣∣
=

(
−∂H
∂q

,
∂H

∂p
, 1

)
, (2.45)

using ∂p/∂t = 0 because (p, q, t) are independent co-ordinates of extended phase space. The vortex lines of
the special vector u are the solutions to Hamilton’s equations of motion!

Any one-dimensional loop γ0 we draw in extended phase space will form a vortex tube, the vortex lines of
which are the integral curves of Hamilton’s equations. The circulation about γ0 is

∮

γ0

u · dw =

∮

γ0

(
p

dq

dγ
−H dt

dγ

)
dγ =

∮

γ0

(p dq −Hdt) . (2.46)

Stokes’ lemma tells us that ∮

γ1

(pdq −Hdt) =

∮

γ0

(p dq −Hdt) (2.47)

for any other loop γ1 that encircles the same vortex tube.

Comments:
1. The “special” vector u = pq̂ −H t̂ is not unique: for any S(q, p, t) the vortex lines of u+∇S are the

same as those of u; we can add a total derivative dS to either integrand in (2.47).
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2. If we choose γ0 and γ1 to lie on constant-t slices, t = t0 and t = t1 respectively, of extended phase
space, then dt = 0 and (2.47) becomes

∮

t0

p dq =

∮

t1

pdq ⇒
∫

S(t0)

dp dq =

∫

S(t1)

dpdq. (2.48)

That is, the area S(t) of the phase plane enclosed by a loop γ does not change as the loop evolves:
we have rederived Liouville’s theorem for the simplest case, n = 1, in a much more complicated way...

+ =

p

q

The figure on the right shows why
∮
γ
pdq =

∫
S

dp dq,
where S is the surface enclosed by the loop γ: both
“terms” on the LHS of this graphical equation contribute
to p dq, but dq is negative in the first term and positive
in the second.

General case It turns out that this result can be generalized to systems with more than one degree of
freedom. The “special” vector becomes u =

∑n
i=1 piq̂i − H t̂, the vortex lines of which again are precisely

the integral curves of Hamilton’s equations: every vortex line of u is a solution to Hamilton’s equations
and every solution to Hamilton’s equations is a vortex line of u. A generalization of Stokes’ lemma to
(2n+ 1)-dimensional space tells us that

∮

γ0

(p · dq −Hdt) =

∮

γ1

(p · dq −Hdt) (2.49)

for any one-dimensional loops γ0 and γ1 that encircle the same two-dimensional vortex tube. The quan-
tity (2.49) is known as a Poincaré (–Cartan) integral invariant.

Comments
1. For later use we note that, for any function S(p, q, t),

∮

γ

(
∂S

∂p
· dp+

∂S

∂q
· dq +

∂S

∂t
dt

)
= 0. (2.50)

This means we can add a total derivative of S to either, or both, sides of (2.49).
2. If we choose γ0 and γ1 to be constant-t slices, t = t0 and t = t1, of extended phase space then (2.49)

becomes ∮

γ0

p · dq =

∮

γ1

p · dq

⇒
∑

i

∮

γ0

pi dqi =
∑

i

∮

γ1

pi dqi

⇒
∑

i

∫

Si(γ0)

dpi dqi =
∑

i

∫

Si(γ1)

dpi dqi,

(2.51)

where Si(γ) is the projection of the loop γ onto the (pi, qi) plane. If we set up a loop of particles
at some time t0, the sum of the projected areas of the loop γ onto the (pi, qi) planes is preserved as
the loop evolves. Volume preservation (Liouville’s theorem) can be viewed as a consequence of these
more fundamental integral invariants.
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2.9 Canonical maps

We have seen how easy it is to change variables q → Q in the Lagrangian formulation of mechanics. The
price we pay for the more interesting and powerful structure of phase space in Hamiltonian mechanics is
that co-ordinate transformations are not so straightforward.

In this section we investigate how to change to new phase-space co-ordinates (Q,P ),

Qi = Qi(q, p, t),

Pi = Pi(q, p, t),
(i = 1, . . . , n), (2.52)

that preserve the Poincaré invariants of the previous section. First, some definitions: If for any loop γ in
extended phase space we have that

∮

γ

(P · dQ−Kdt) =

∮

γ

(p · dq −Hdt) (2.53)

in which the function K(Q,P , t) is independent of the choice of γ, then the transformation (2.52) is called a
canonical map (or a canonical transformation) and the new co-ordinates (P ,Q) are called canonical
co-ordinates.†
Evolution under time is an example of a canonical map. To see this, suppose that we define (Q,P ) to
be the values that (q, p) will have one second in the future. Then (2.53) is clearly satisfied if we take
K(Q,P , t) = H(Q,P , t+ 1 sec).

Hamilton’s equations in the new co-ords The RHS of (2.53) is
∮
γ
u·dw, where w = (p(γ), q(γ), t(γ))

and u =
∑
i piq̂i −H t̂. We have already seen that the vortex lines for this u are given by

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2.54)

Similarly, the LHS of (2.53) is
∮
γ
U ·dW , where W = (P (γ),Q(γ), t(γ)) and U =

∑
i PiQ̂i−K t̂. The vortex

lines of U are clearly given by

Q̇ =
∂K

∂P
, Ṗ = −∂K

∂Q
. (2.55)

Both (2.54) and (2.55) describe the same vortex lines in the same extended phase space, but expressed
in different co-ordinates. Therefore Hamilton’s equations in the new co-ordinates are given by (2.55) with
Hamiltonian K(Q,P , t).

Generating functions Equation (2.53) can hold for all loops γ only if the integrands differ by a total
derivative dS of any well-behaved function S(P ,Q, t):

P · dQ−Kdt+ dS = p · dq −Hdt. (2.56)

A powerful way of constructing canonical maps is by playing with the function S. Let us assume that we can
express P = P (q,Q, t) so that we can eliminate P from S to obtain S = F1(q,Q, t), a function of both the
old and new co-ordinates and time, but not the momenta. Substituting this S = F1 into (2.56) and using
the chain rule gives

P · dQ−Kdt+
∂F1

∂q
· dq +

∂F1

∂Q
· dQ+

∂F1

∂t
dt = p · dq −Hdt. (2.57)

As (dq,dQ,dt) can be varied independently (the equality above has to hold for any loop γ) we must have

p =
∂F1

∂q
, P = −∂F1

∂Q
, K = H +

∂F1

∂t
. (2.58)

† NB: Some books define a canonical map as one that preserves the form of Hamilton’s equations. Our
condition (2.53) is more stringent.
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where H in the last equation is to be interpreted as the original H(q, p, t) substituting for q = q(Q,P , t), p =
p(Q,P , t) to make it a function of (Q,P , t). Thus the function F1(q,Q, t) generates an implicit transformation
from (q, p)→ (Q,P ). By construction, it satisfies the condition (2.53) and therefore is canonical.

Exercise: What mapping is generated by F1 = q·Q? Show that the Hamiltonian H(q, p) = 1
2 (p2+ω2q2)

is transformed to K(Q,P ) = 1
2 (Q2 + ω2P 2).

Unfortunately, generating functions of the form F1(q,Q, t) are not suitable for constructing mappings close
to the identity. So, instead of writing S = F1(q,Q, t), let us take

S = −P ·Q+ F2(q,P , t), (2.59)

in which we treat Q as a function Q(q,P , t). Substituting this into (2.56) and using the chain rule to expand
dS gives:

P · dQ−Kdt− P · dQ−Q · dP +
∂F2

∂q
· dq +

∂F2

∂P
· dP +

∂F2

∂t
dt = p · dq −Hdt. (2.60)

One way of explaining the −P · Q term that appears in (2.59) that it comes from taking the Legendre
transform of F1. An alternative, simpler approach is to note that (a) we are free to choose (almost) whatever
we like for S and (b) including −P ·Q in S nicely cancels out the P ·dQ on the LHS of (2.56). As (dP ,dq,dt)
vary independently, we must have that

p =
∂F2

∂q
, Q =

∂F2

∂P
, K = H +

∂F2

∂t
. (2.61)

This is another implicit canonical mapping between (q, p, t) and (Q,P , t).

Exercise: Show that F2(q,P ) = q · P generates the identity map. What mapping does F2(q,P ) =
q · P + εn̂ · q produce? What about F2 = q · P + εn̂ · P ?

Exercise: Show that for small λ the generating function F2(q,P ) = q · P + λG(q,P ) produces the
infinitesmal map (2.41). (Use the fact that P → p as λ→ 0.)

Is a given mapping canonical? A simple way of testing whether a mapping is canonical is by examining
P · dQ− p · dq. If that can be expressed as a total derivative dS(p, q, t) or dS(P ,Q, t) then the mapping is
canonical.

Exercise: Show that the mapping Q = − log p, P = pq is canonical. Find a function F1(q,Q) that
generates this mapping. Find another generating function of the form F2(q, P ).

Another test is to return to the definition (2.53) of a canonical map and to check whether

∑

i

∫

Si(γ)

dPidQi =
∑

i

∫

si(γ)

dpidqi (2.62)

for all loops γ, where si(γ) and Si(γ) are the projections of γ onto the (pi, qi) and (Pi, Qi) planes. Let us
look at the projections of the (pk, qk) planes onto all of the (Qi, Qj), (Pi, Pj) and (Pi, Qj) planes. We have
that

dQidQj =
∑

k

(
∂Qi
∂qk

∂Qj
∂pk

− ∂Qj
∂qk

∂Qi
∂pk

)
dpkdqk,

dPidQj =
∑

k

(
∂Pi
∂qk

∂Qj
∂pk

− ∂Qj
∂qk

∂Pi
∂pk

)
dpkdqk,

dPidPj =
∑

k

(
∂Pi
∂qk

∂Pj
∂pk
− ∂Pj
∂qk

∂Pi
∂pk

)
dpkdqk,

(2.63)
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where the quantities in parentheses are the Jacobians of the transformation from (qk, pk) to the new (Qi, Qj)
etc coordinates. The only way of making (2.62) hold for all choices of the loop γ is by requiring that

∑

k

(
∂Qi
∂qk

∂Qj
∂pk

− ∂Qj
∂qk

∂Qi
∂pk

)
= 0,

∑

k

(
∂Pi
∂qk

∂Qj
∂pk

− ∂Qj
∂qk

∂Pi
∂pk

)
= δij ,

∑

k

(
∂Qi
∂qk

∂Qj
∂pk

− ∂Qj
∂qk

∂Qi
∂pk

)
= 0.

(2.64)

That is, for a map to be canonical, the new coords (Q,P ) must themselves satisfy the canonical commutation
relations (a.k.a. fundamental Poisson bracket relations)

[Qi, Qj ] = [Pi, Pj ] = 0, [Qi, Pj ] = δij , (2.65)

in which the Poisson brackets are understood to be evaluated with respect to the old (q, p) coordinates, as
in (2.64). Equation (2.65) is a necessary and sufficient condition for (2.62) to be true: a map (q, p)→ (Q,P )
is canonical if and only if the new coordinates (Q,P ) satisfy the canonical commutation relations (2.65).

Invariance of Poisson brackets under canonical maps We can use the condition (2.65) to show that
all Poisson brackets are invariant under canonical maps. To simplify notation, we introduce

w =

(
q

p

)
and W =

(
Q

P

)
, (2.66)

in terms of which the relations (2.65) become simply [Wi,Wj ] = Jij , where Jij are the elements of the
symplectic matrix (2.32). Then, using expression (2.33) for the Poisson bracket of the functions A(w, t),
B(w, t), we have that

[A,B]w =
2n∑

α,β=1

∂A

∂wα
Jαβ

∂B

∂wβ
=

2n∑

α,β=1

(
2n∑

i=1

∂A

∂Wi

∂Wi

∂wα

)
Jαβ




2n∑

j=1

∂B

∂Wj

∂Wj

∂wβ




=
2n∑

i,j=1

∂A

∂Wi




2n∑

α,β=1

∂Wi

∂wα
Jαβ

∂Wj

∂wβ


 ∂B

∂Wj
=

2n∑

i,j=1

∂A

∂Wi
[Wi,Wj ]

∂B

∂Wj

=
2n∑

i,j=1

∂A

∂Wi
Jij

∂B

∂Wj
= [A,B]W .

(2.67)

So, canonical maps preserve all Poisson brackets.

Exercise: We have been cavalier about the choice of signs in the Jacobians in equation (2.63) above.
Here is how to show that the signs in that expression are correct. Any pair of n-dimensional vectors (a, b)
defines a parallelogram in n-dimensional space. We define the oriented area of the projection of this
parallelogram onto the (xi, xj) plane to be (dxi∧dxj)(a, b) = aibj−ajbi. Show that (dxi∧dxj)(b,a) =
−(dxi ∧ dxj)(a, b) = (dxj ∧ dxi)(a, b).
Given new coordinates X = X(x), the projection of the (a, b) parallelogram onto the (Xi, Xj) plane is

(dXi ∧ dXj)(a, b) =

(∑

k

∂Xi

∂xk
dxk ∧

∑

l

∂Xj

∂xl
dxl

)
(a, b) =

∑

kl

∂Xi

∂xk

∂Xj

∂xl
(dxk ∧ dxl)(a, b). (2.68)

Hence show that the condition
∑
i(dPi ∧ dQi)(a, b) =

∑
i(dpi ∧ dqi)(a, b) for all (a, b) implies (2.64).

Now read §§12–16, 18–20, 32–48 of Arnol’d.
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3 Linearisation and small oscillations (WIP)

A mechanical system is in equilibrium if all time derivatives vanish. In particular, if q = q0 is an equilibrium
configuration, then we must have q̇ = 0 and, from the EL equation, ∂L/∂q = 0 too. To study the behaviour
of a system close to equilibrium, the usual first step is to linearize the equations of motion. This reduces
the problem to modelling a coupled set of simple harmonic oscillators, making it easy to test whether the
equilibrium is stable or unstable, to calculate the frequencies with which the system “rings” when knocked,
and much more.

Expanding L(q, q̇) to second order as a Taylor series about (q, q̇) = (q0, 0),

L(q + h, q̇ + ḣ) = L(q0, 0) +
∑

i

hi

(
∂L

∂qi

)

(q0,0)

+
∑

i

ḣi

(
∂L

∂q̇i

)

(q0,0)

+ 1
2

∑

ij

[
hiFijhj + hiCij ḣj + ḣiC

T
ijhj + ḣiMij ḣj

]
+O(h3),

(3.1)

where the constants Fij = Fji ≡ ∂2L/∂qi∂qj , Mij = Mji ≡ ∂2L/∂q̇i∂q̇j and Cij = CTji ≡ ∂2L/∂qi∂q̇j , all
evaulated at (q, q̇) = (q0, 0). Remembering that ∂L/∂qi = 0 at equilibrium, it is easy to see that none of the
first three terms affect the equations of motion. The linearized EL equation for hk is then

d

dt


 1

2

∑

i

hiCik + 1
2

∑

j

CTkjhj +
∑

j

Mkj ḣj


−


∑

j

Fkjhj + 1
2

∑

j

Ckj ḣj + 1
2

∑

i

ḣiC
T
ik


 = 0

⇒
∑

i

[
Mkiḧi + (Cik − Cki)ḣi − Fkihi

]
= 0.

(3.2)

The solutions to this homogeneous linear equation are of the form h(t) = Q exp(iωt), with the vector Q and
ω related through the eigenvalue equation

[ω2M − iωĈ + F ]Q = 0, (3.3)

where Ĉij = (Cij−Cij) is the antisymmetric part of C. Taking the determinant of this, the eigenfrequencies
ω are given by the roots of

det(F − iωĈ + ω2M) = 0, (3.4)

The system is (linearly) stable if all the eigenfrequencies are real.

For most problems

L = T − V = 1
2

∑

ij

aij(q)q̇iq̇j − V (q), (3.5)

with some symmetric functions aij(q) = aji(q) such that the kinetic energy is a positive definite quadratic
form in the velocities. For typical cases it turns out that Mij = aij(q0), Fij = −∂2V/∂qi∂qj and Cij =
0. An exception is when there are velocity-dependent forces (e.g., motion in a rotating frame or in an
electromagnetic field). We simply ignore such problems in the following and assume from now on that
Cij = 0.

It is easy to see that each of the eigenfrequencies ω is either purely real or purely imaginary. Substituting
hi = Qi exp(iωt) into (3.2), multiplying by Q?k, summing over k and rearranging gives

ω2 = −
∑

ki

FkiQ
?
kQi/

∑

ki

MkiQ
?
kQi. (3.6)

Each of the sums is real, because

(∑

ki

MkiQ
?
kQi

)?
=
∑

ki

MkiQkQ
?
i =

∑

ki

MikQkQ
?
i =

∑

ki

MkiQ
?
kQi, (3.7)
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by the symmetry of Mki (and Fki), and swapping labels (i, k) in the last step. Since the kinetic energy
T = 1

2Mij ḣiḣj is a positive definite quadratic form, it follows that all ω2 > 0 (and therefore the system is
stable) if q0 is a local minimum of V .

Normal co-ordinates If the eigenfrequencies ωα obtained by solving (3.4) are distinct, then the corre-
sponding eigenvectors Qα are orthogonal in the sense that

QTβMQα = 0, if ωα 6= ωβ . (3.8)

This follows on multiplying the (C = 0) eigenvalue equation (3.4)

(F + ω2
αM)Qα = 0 (3.9)

by another eigenvector Qβ and then using the symmetry of F and M to show that (ωβ − ωα)QTαMQβ = 0.
The importance of this is that any small oscillation h(t) that satisfies the linearized equation of motion (3.2)
can be decomposed into a sum of normal modes,

h(t) =
∑

α

aαQα cos(ωαt+ φα), (3.10)

where the amplitudes aβ and phases φβ can be found by premultiplying (3.10) by QTβM to obtain

QTβMh(t) = aβ cos(ωβ + φβ) (3.11)

(assuming the Qi are normalized such that QTβMQα = δαβ). Thus for each β, QTβMh(t) is a combination of
the original co-ordinates that oscillates sinusoidally at angular frequency ωβ , regardless of how the system
was set into motion. A combination of the co-ordinates that inevitably oscillates sinusoidally is called a
normal co-ordinate.

Exercise: In terms of generalized co-ordinates (θ1, θ2), a double pendulum has Lagrangian

L = ml2θ̇2
1 + 1

2ml
2θ̇2

2 +ml2 cos(θ1 − θ2)θ̇1θ̇2 + 2mgl cos θ1 +mgl cos θ2. (3.12)

Expanding about the equilibrium θ1 = θ2 = 0 to second order, show that this may be written

L ' ml2θ̇2
1 + 1

2ml
2θ̇2

2 +ml2θ̇1θ̇2 −mglθ2
1 − 1

2mglθ
2
2, (3.13)

and that the EL equations in matrix form are

θ̈ = −g
l

(
2 −1
−2 2

)
θ, (3.14)

where θ = (θ1, θ2)T . Find the normal modes. [Ans: eigenmodes (1,
√

2)T eiω−t and (1,−
√

2)T eiω+t, with
eigenfrequencies ω2

± = (g/l)(2±
√

2).]
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Attic?

A Rigid bodies?

A.1 Constraints?

Sometimes it is convenient to have some redundancy among the co-ordinates. For example, a circular hoop
of mass m rolls without slipping down a rigid wire inclined at an angle α to the horizontal. The obvious

co-ordinates to describe the system are the distance x of the hoop from
its starting point and the angle φ between the hoop’s point of contact
with the wire and a reference point P on its rim. But ẋ = Rφ̇ because
the hoop rolls without slipping, so that

x = Rφ+ constant, (A.1)

the constant depending on the initial conditions. So, x and φ are not
independent co-ordinates.

A holonomic constraint is a relation
g(q; t) = 0, (A.2)

where g is a function of the n co-ordinates (q1, . . . , qn) and possibly time t. Equation (A.1) is an example
of such a constraint. Following §0.2, the procedure for finding the equations of motion of a system with
k independent holonomic constraints is to introduce a new generalized co-ordinate λi for each constraint
gi(q; t) = 0. Treating these n + k co-ordinates as independent, consider motion in the (n + k)-dimensional
augmented configuration space with Lagrangian

L′({q,λ}, q̇, t) ≡ L(q, q̇, t) +

k∑

i=1

λigi(q, t). (A.3)

Writing down the q and λi components of the EL equation for L′, the equations of motion are

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
=

k∑

i=1

λi
∂gi
∂q

,

g1 = · · · = gk = 0.

(A.4)

Each constraint gi results in an additional generalized force on the RHS of the EL equation, the size of which
is controlled by the co-ordinate λi.

Exercise: Consider a system with co-ordinates (r, θ), Lagrangian L = 1
2mṙ

2 + 1
2mr

2θ̇2 +mgr cos θ and

constraint r − l = 0. Show that the constraint force has magnitude |mrθ̇2 +mg cos θ|. More generally,
show that if the co-ordinate q1 is held fixed when one solves the EL equations, then the magnitude of
the corresponding (generalized) constraint force is given by |∂L/∂q1|.

Returning to our example of a hoop on a wire, the hoop’s kinetic energy T can be broken down into the
energy due to translational motion of its centre of mass, 1

2mẋ
2, and the rotational energy about the centre

of mass, 1
2mR

2φ̇2. The potential energy V = −mgx sinα. There is one constraint,

g(x, φ) = x−Rφ = 0. (A.5)

The augmented Lagrangian

L′ = 1
2mẋ

2 + 1
2mR

2φ̇2 +mgx sinα+ λ(x−Rφ), (A.6)
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for which the EL equations are
d

dt
mẋ−mg sinα = λ,

d

dt
mR2φ̇ = −λR,

ẋ−Rφ̇ = 0.

(A.7)

Using the third equation to eliminate φ̇ from the second, we have that d
dtmẋ = −λ. Substituting this into

the first equation and eliminating λ, gives

ẍ = 1
2g sinα. (A.8)

So the hoop rolls down the plane with only half the acceleration it would have in the frictionless case.

Not all constraints can be written as g(x, t) = 0. An example of a system with such a non-holonomic
constraint is a hoop rolling without slipping down a plane instead of along a wire. Natural co-ordinates
to use are the location (x, y) of the hoop’s centre, the orientation φ of a reference a point on the rim of the
hoop and another angle θ giving the orientation of the hoop in the plane. The no-slip conditions mean that
the hoop’s velocity satisfies

ẋ = Rφ̇ sin θ, ẏ = Rφ̇ cos θ, (A.9)

but these cannot be integrated to give an expression of the form g(x, y, θ, φ, t) = 0. To see this, think of
rolling the hoop on closed circuits of different lengths around the plane, returning to the starting position
(x, y) with the same θ. The angle φ at the end depends on the length of the circuit.

A.2 Lagrangian mechanics of rigid bodies?

A rigid body is a system of particles having masses mi and positions xi satisfying constraints of the form
|xi − xj | = rij for all pairs (i, j) of particles, where each rij is a constant.

Exercise: A rigid body moves in an external gravitational potential Φ(x). Show that extremizing the
action integral (1.3) with Lagrangian L = T − V , where T = 1

2

∑
imiẋi

2 and V =
∑
imiΦ(xi), subject

to the constraints that (xi − xj)2 = r2
ij , leads to the usual Newtonian equations of motion for a rigid

body:
d

dt
mkẋk = −mi

∂Φ

∂xk
+
∑

j 6=k
〈constraint forces〉, (A.10)

where the constraint forces are of the form λkj(xk − xj) with λkj = λjk.

Exercise: Use (A.10) to show that if there are no external forces acting on the body, then its linear
momentum

∑
imiẋi and angular momentum

∑
i xi × miẋi are conserved. See §1.6 later for a more

elegant way of obtaining this result.

The configuration space of a rigid body is six dimensional. In case this is not obvious, pick any three non-
collinear points x1, x2 and x3 in the body. We need three numbers to specify x1, another two for x2 (we
already know r21) and a final one to fix x3. The positions xi of all the other points in the body are then
completely determined by the constraints |xi − x1| = ri1, |xi − x2| = ri2 and |xi − x3| = ri3, once we’ve
chosen whether x4 lies “above” or “below” the plane defined by (x1,x2,x3).

Let us set up a co-ordinate system that moves with the body, its origin at x1, its first basis vector r̂1 =
(x2 − x1)/|x2 − x1|, the second, r̂2, orthogonal to r̂1 but lying in the (x1,x2,x3) plane and the third given
by r̂3 = r̂1 × r̂2. In this frame, the co-ordinates ri of particles in the body do not change with time, ṙi = 0.
In the inertial x frame, the particles’ co-ordinates

xi = R+Bri, (A.11)

where R = x1 and the rotation matrix B is set by the orientation of (r̂1, r̂2, r̂3). We use this R and a set of
three angles, known as Euler angles, that describe B as our six generalized co-ordinates for the body. The
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particles’ velocities
ẋi = Ṙ+ ω × (xi −R)

= Ṙ+B(Ω × ri),
(A.12)

the first equality following from the definition (1.52) of the (x-frame) angular velocity ω, the second from
the definition of the (r-frame) angular velocity Ω ≡ B−1ω together with (A.11).

Angular momentum of a rigid body rotating about a fixed point Before defining the Euler angles,
let us investigate the case of a rigid body rotating about a fixed point x = r = 0, so that R = 0. Using the
relations (A.11) and (A.12) above, the angular momentum in the x frame

j ≡
∑

i

xi ×miẋi =
∑

i

Bri ×miB(Ω × ri) = B

[∑

i

ri ×mi(Ω × ri)
]

= BJ , (A.13)

where the angular momentum vector in the r-frame

J ≡
∑

i

ri ×mi(Ω × ri)

→
∫
r × ρ(Ω × r) d3r =

∫
ρ[r2Ω − (Ω · r)r]d3r,

(A.14)

and we have moved to the continuum limit to avoid a rash of indices in the following. In tensor notation
this becomes

Ji =
3∑

j=1

IijΩj , with Iij ≡
∫

d3r ρ(r2δij − rirj), (A.15)

where the Kronecker delta symbol δij = 1 if i = j and is zero otherwise. Writing out the inertia tensor Iij
explicitly,

I =

∫
d3r ρ(r)



Y 2 + Z2 −XY −XZ
−XY X2 + Z2 −Y Z
−XZ −Y Z X2 + Y 2


 , (A.16)

where r = (X,Y, Z). Since it is a real symmetric matrix, it has real eigenvalues Ii and eigenvectors b̂i.
If we orient our co-moving axes r̂1, r̂2, r̂3 so that r̂i = b̂i then I becomes diag(I1, I2, I3) and the angular
momentum Ji = IiΩi. The b̂i are known as the body’s principal or body axes and the Ii its principal
moments of inertia.

The following table shows Iij for some simple mass distributions, assuming that each has total mass M and
that the mass is distributed uniformly. Unless stated otherwise, Iij is measured about the centre of mass.

Iij
Rod length a (about centre) 1

12Ma2diag(1, 1, 0)

Rod length a (about end) 1
3Ma2diag(1, 1, 0)

Ring radius a 1
2Ma2diag(1, 1, 2)

Disc radius a 1
4Ma2diag(1, 1, 2)

Spherical shell radius a 2
3Ma2diag(1, 1, 1)

Sphere radius a 2
5Ma2diag(1, 1, 1)

Exercise: Verify these!

Note that the vectors x, ω and j live in the x frame, while r, Ω and J live in the r frame. Vectors in different
frames can meet only through the intercession of the operator B. From (1.46), if we have a vector V that
lives in the r frame, then the rate of change of the corresponding x-frame vector, v ≡ BV , is given by

dv

dt
= B(V̇ +Ω × V ). (A.17)
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We can immediately apply this to j = BJ in the case of a free rigid body rotating about a fixed point (e.g.,
centre of mass of a freely falling body). Since there are no external torques j is conserved. So,

dj

dt
= B(J̇ +Ω × J) = 0 ⇒ J̇ +Ω × J = 0, (A.18)

which is known as Euler’s equation. In the principal-axis frame Ji = IiΩi and Euler’s equation becomes

I1
dΩ1

dt
= (I2 − I3)Ω2Ω3,

I2
dΩ2

dt
= (I3 − I1)Ω3Ω1,

I3
dΩ3

dt
= (I1 − I2)Ω1Ω2.

(A.19)

The motion of rigid bodies is interesting because the angular momentum J is not proportional to the angular
velocity Ω (unless I1 = I2 = I3).

Exercise: (The “tennis racquet theorem”) A rigid body rotates freely about its third principal axis,
with J = (0, 0, I3Ω3). It is given a small perturbation, so that Ω1 and Ω2 are non-zero, but small.
By substituting trial solutions of the form Ω1 = a1e

kt and Ω2 = a2e
kt into (A.19) and neglecting

second-order terms such as Ω1Ω2, show that the motion is stable (k2 < 0) if either I3 > max(I1, I2) or
I3 < min(I1, I2). Thus rotation about either the short or the long axis of a free rigid body is stable, but
rotation about the intermediate axis is unstable.

Exercise: Consider a free symmetric top with I1 = I2 6= I3. Show that Ω3 is a constant of motion
and that the angular velocity Ω precesses around the r̂3 axis with frequency

Ωp =
I1 − I3
I1

Ω3. (A.20)

Notice that the precession is retrograde (Ωp < 0) if I3 > I1 (i.e., if the body is oblate).

Kinetic energy of a rigid body rotating about a fixed point Using ẋ = B(Ω×r), the kinetic energy
T = 1

2

∑
imiẋ

2
i becomes

T = 1
2

∫
ρ [B(Ω × r)]T · [B(Ω × r)] d3r = 1

2

∫
ρ (Ω × r)2

d3r

= 1
2

∫
ρ
[
Ω2r2 − (Ω · r)2

]
d3r.

(A.21)

We can rewrite the contents of the square brackets as

Ω2r2 − (Ω · r)2 =
∑

ij

ΩiΩjr
2δij −

∑

i

Ωiri
∑

j

Ωjrj =
∑

ij

ΩiΩj(r
2δij − rirj), (A.22)

so that
T = 1

2

∑

ij

ΩiIijΩj = 1
2Ω

T · I ·Ω, (A.23)

where Iij are the components of the inertia tensor (A.15).

Exercise: Starting from (A.12), show that if we allow translational motion (Ṙ 6= 0) and we take R to
be the position of the body’s centre of mass, then the kinetic energy of the body can be split into two
parts,

T = 1
2MṘ2 + 1

2

∑

ij

ΩiIijΩj , (A.24)
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where M is the total mass of the body. The first term is the kinetic energy of translational motion of the
body’s centre of mass, the second the rotational kinetic energy of the body about its centre of mass.

The rest of this section explains how to obtain a Lagrangian for a body moving in a uniform gravitational
field about a fixed point (e.g., a top spinning about a point on a table). We first introduce Euler angles.
These describe the rotation matrix B and serve as our generalized co-ordinates. Then we obtain the potential
energy and kinetic energy in terms of these angles and the principal moments of inertia of the system.

Euler angles The standard method for parametrizing B is as follows. Start with the r̂1, r̂2, r̂3 axes
coincident with the inertial x̂1, x̂2, x̂3 axes. Then apply the following sequence of rotations to the former:

1. Rotate through an angle φ about the r̂3 = x̂3 axis. Under this rotation r̂3 = x̂3 is unchanged and r̂1

(temporarily) picks out a new direction known as the “line of nodes”. Label this direction r̂N .
2. Rotate through an angle θ about the line of nodes (the temporary r̂1 axis). The line of nodes remains

fixed, and r̂3 comes to its final position.
3. rotate through an angle ψ about the r̂3 axis.

Writing out this sequence of operations explicitly, we have that



r̂1

r̂2

r̂3


 =




cosψ sinψ 0
− sinψ cosψ 0

0 0 1






1 0 0
0 cos θ sin θ
0 − sin θ cos θ






cosφ sinφ 0
− sinφ cosφ 0

0 0 1





x̂1

x̂2

x̂3


 , (A.25)

or r̂ = Cx̂, where C is the product of the three rotation matrices above. Since C is orthogonal, we have that
x̂ = CT r̂, or x̂i = Cjir̂j . So, a point P with co-ordinates r = rir̂i in the r̂ basis can be written as

a = rir̂i = riCij x̂j . (A.26)

In other words, the point P has x co-ordinates x = Br, where the (co-ordinate) rotation matrix B = CT .

Exercise: It is perhaps not immediately obvious, so show that any rotation can be represented by some
choice (sometimes not unique) of Euler angles (φ, θ, ψ).

Potential energy of an axisymmetric top Assume that the top is rotationally sym-
metric about the r̂3 axis. Then V does not change as ψ and φ are varied, because in
the definition of Euler angles the ψ and φ rotations take place about this axis. Therefore
V = mgl cos θ, where (r1, r2, r3) = (0, 0, l) is the position of the top’s centre of mass in the
body frame.

Kinetic energy in terms of Euler angles Finally, we need to express the Ω appearing in (A.23) in
terms of (φ, θ, ψ) and their derivatives. Between times t and t+ dt the orientation of the rigid body changes
from (φ, θ, ψ) to (φ + dφ, θ + dθ, ψ + dψ) and the x co-ordinates of a point r = constant on the body vary
from x to x+ dx. Since x(t) = B(t)r, we have that (to first order in dt,dφ etc)

dx = B(φ+ dφ, θ + dθ, ψ + dψ)B−1(φ, θ, ψ)x− x = ωdt× x, (A.27)

the last equality following from the definition (1.52) of angular velocity. Taking the changes in each angle
separately,

B(φ+ dφ, θ, ψ)B−1(φ, θ, ψ)x− x = ωφdt× x
B(φ, θ + dθ, ψ)B−1(φ, θ, ψ)x− x = ωθdt× x
B(φ, θ, ψ + dψ)B−1(φ, θ, ψ)x− x = ωψdt× x,

(A.28)

and the total angular velocity ω = ωφ + ωθ + ωψ (again, to first order). Our job is to express ωφ, ωθ and
ωψ in terms of either the x̂ or the r̂ basis. Let us do this first for the special case φ = ψ = 0. The first of
equations (A.28) is a rotation of dφ about the x̂3 axis, giving

ωφ = φ̇x̂3 = φ̇ sin θr̂2 + φ̇ cos θr̂3, (A.29)
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because, solving (A.25) for x = (0, 0, 1)T , x̂3 = r̂2 sin θ + r̂3 cos θ when φ = ψ = 0. The second is a rotation
of dθ about the line of nodes r̂N (= r̂1 when ψ = φ = 0). Therefore

ωθ = θ̇r̂1. (A.30)

The third is a rotation of dψ about r̂3, so
ωψ = ψ̇r̂3. (A.31)

Gathering these last three equations together, ω = ωφ + ωθ + ωψ = B(Ω1,Ω2,Ω3)T with

Ω1 = θ̇, Ω2 = φ̇ sin θ, Ω3 = ψ̇ + φ̇ cos θ. (A.32)

The expression (A.23) for the kinetic energy of our axisymmetric (I1 = I2) top becomes

T = 1
2I1

(
θ̇2 + φ̇2 sin2 θ

)
+ 1

2I3

(
ψ̇ + φ̇ cos θ

)2

. (A.33)

This is assuming that φ = ψ = 0. But for an axisymmetric top the kinetic energy cannot depend on these
cyclic co-ordinates and we can always choose the origin of reference for φ and ψ to have ψ = φ = 0. Thus
the expression holds for all ψ, φ and so the Lagrangian for an axisymmetric top moving about a fixed point
in a uniform field is

L = T − V = 1
2I1

(
θ̇2 + φ̇2 sin2 θ

)
+ 1

2I3

(
ψ̇ + φ̇ cos θ

)2

−mgl cos θ. (A.34)

Exercise: (optional detour) It is also possible to obtain Ω in terms of (φ, θ, ψ) without assuming that
φ = ψ = 0. Show that for general (φ, θ, ψ),

Ω = φ̇x̂3 + θ̇r̂N + ψ̇r̂3

= [φ̇ sin θ sinψ + θ̇ cosψ]r̂1 + [φ̇ sin θ cosψ − θ̇ sinψ]r̂2 + [ψ̇ + φ̇ cos θ]r̂3

, (A.35)

using (A.25) to obtain x3 and rN in terms of the r̂i. Substitute this into the expression (A.23) for the
kinetic energy and show that it reduces to (A.33) when I1 = I2.

Exercise: Free symmetric top revisited We have already seen how the angular velocity Ω of a
free symmetric top precesses about r̂3 at a rate Ωp = Ω3(I1 − I3)/I1 (A.20). Now let us look at it
from an inertial frame. By substituting ψ = Ωpt into (A.35) or otherwise explain how one can identify

ψ̇ with the precession rate Ωp. Use this together with Ω3 = ψ̇ + φ̇ cos θ from (A.35) to show that

φ̇ = I3Ω3/I1 cos θ and hence that the wobble rate φ̇ of a uniform disc (I1 = I2 = 1
2I3) satisfies φ̇ ' −2ψ̇

when Ω1,Ω2 � Ω3.

Pinned axisymmetric top in uniform gravitational field The generalized momenta

pφ =
∂L

∂φ̇
= φ̇I1 sin2 θ + φ̇I3 cos2 θ + ψ̇I3 cos θ,

pψ =
∂L

∂ψ̇
= ψ̇I3 + φ̇I3 cos θ

(A.36)

in (A.34) are clearly constants of motion. So too is the energy E = T + V , which can be written as

E = 1
2I1θ̇

2 +

[
(pφ − pψ cos θ)2

2I1 sin2 θ
+
p2
ψ

2I3
+mgl cos θ

]
. (A.37)

This comes from using (A.36) to eliminate

ψ̇ =
pψ
I3
− φ̇ cos θ, φ̇ =

pφ − pψ cos θ

I1 sin2 θ
, (A.38)
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from the expression (A.33) for T in favour of the constants pψ, pφ. Therefore the problem reduces to motion
in the one-dimensional potential Veff(θ) given by the contents of the square bracket in (A.37).

Substituting u = cos θ, equation (A.37) becomes

E = 1
2

I1u̇
2

1− u2
+

(pφ − pψu)2

2I1(1− u2)
+
p2
ψ

2I3
+mglu, (A.39)

or, rearranging,
u̇2 = (α− βu)(1− u2)− (a− bu)2 ≡ f(u) (A.40)

with constants

a =
pφ
I1
, b =

pψ
I1
, α =

1

I1

(
2E − pψ

I3

)
, β =

2mgl

I1
> 0. (A.41)

f(u) is a cubic with f(u)→∞ as u→∞. Since u = cos θ, u must lie between -1 and 1. Looking at (A.41)
we see that f(±1) < 0 unless a = b. Therefore f(u) has two roots u1, u2 in the interval −1 < u < 1, between
which u̇2 = f(u) > 0. This means that the inclination θ nutates (nods) between two values θ1 = cos−1 u1

and θ2 = cos−1 u2. Meanwhile the azimuthal angle φ precesses at a rate

φ̇ =
a− bu
1− u2

. (A.42)

If u = b/a lies between u1 and u2, φ̇ changes sign meaning that the curve traced by the top on the (θ, φ)
sphere has loops – see lectures!


