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Chapter 1

Path Integrals in Quantum Mechanics

1.1 Mathematical Background

In this first part of the chapter, we will introdufenctionalswhich are one of the main tools in modern theoretical
physics and explain how to differentiate and integrate therthe second part, these techniques will be applied to
re-formulate quantum mechanics in terms of functionalgrdaés (path integrals).

1.1.1 Functionals

What is afunctional Let us first consider a real functigh: [a,b] — R, mapping all elements € [a, b] in the
domainla, b] to real numberg(x). A functional is similar to a function in that it maps all elents in a certain
domain to real numbers, however, the nature of its domaietig different. Instead of acting on all points of an
interval or some other subset of the real numbers, the doafdimctionals consists of (suitably chosen) classes
of functions itself. In other words, given some cldg§ of functions, a functionaF' : {f} — R assigns to each
suchf areal numbeF[f].

Differentiation and integration are the two main operagion which the calculus of (real or complex) functions
is based. We would like to understand how to perform anals@perations on functionals, that is, we would like

to make sense of the expressions

SF)
2. [orew (1)

for functional differentiation and integration. Here, wendte a functional derivative by/J f, replacing the
ordinaryd/dx or 9/dx for functions, and the measure of a functional integrallyy; replacingdz in the case of
integrals over functions. A common application of ordindifferentiation is to find the extrema of a functign
by solving the equatiorf’(z) = 0. Of course, one can also ask about the extrema of a functiontiat is the
functionsf which minimise (or maximise) the valug[f]. One important application of functional differentiation
which we will discuss is how these extrema can be obtainedlatians to the equation

Lk
of

To make our discussion more concrete we will now introduae (ell-known) examples of functionals.

—0. (1.2)

Example: distance between two points

A very simple functionalr’ consists of the map which assigns to all paths between twd firints the length of
the path. To write this functional explicitly, let us considh simple two-dimensional situation in the y) plane
and choose two pointge,y1) and (z2,y2). We consider all functiong f} defining paths between those two
points, that is functions on the intenal , z-] satisfyingf(z1) = y1 andf(x2) = y2. The length of a path is then
given by the well-known expression

F[f] = / dx+/1+ f(x)?. (1.3)
What is the minimum of this functional? Of course, we knowt ti@ correct answer is "a line”, but how do we
prove this formally? Let us approach this problem in a sonawledestrian way first before re-formulating it in

3



4 CHAPTER 1. PATH INTEGRALS IN QUANTUM MECHANICS

terms of functional derivatives along the lines of Eq. (1@pnsider a small but otherwises abritrary perturbation
e of a pathf which vanishes at the endpoints, that is, which satigfies) = e(x2) = 0. We can then define the
function

I\ = F[f + A :/ dr /14 (f'(z) + N (2))?, (1.4)
where) is a real parameter. A necessary conditionffao be a minimum of the functiond is then
dl
—(0) = 15

Hence, this simple trick has reduced our functional minatigs problem to an ordinary one for the functibn
The derivative of at A = 0 can be easily worked out by differentiating "under the iméd'tin Eq. (1.4). One finds

/ m (16)

The derivative or in this expression can be removed by partial integratioepkeg in mind that the boundary
term vanishes due tobeing zero at:; andxs. This results in

dl 2 d
5(0) = —/I dxe(ac)ﬁ

1

['() L7
1+f'<:c)21 ' &

From Eq. (1.5) this integral needs to vanish and given ¢hatan arbitrary function this is only the case if the
integrand is zero pointwise in. This leads to the differential equation

f'(z)
— | =0, 1.8
1+f’(x)2] 9

for the functionf. The desired extrema of the length functiohaiust be among the solutions to this differential
equation which are given by the lines

4
dx

f(x) = const . (1.9)

Note that the differential equation (1.8) is second ordel @msequently its general solution has two integration
constant. They are precisely "used up” by implementing tendlary conditiong (z1) = y; andf(z2) = y2, SO
that we remain with a unique solution, the line between owardhosen points.

Example: action in classical mechanics

In physics, a very important class of functionals action functionalsLet us recall their definition in the context
of classical mechanics. Start withgeneralised coordinategt) = (¢1(¢),...,¢.(t)) and a Lagrangial. =
L(q,q). Then, the action functiond|q] is defined by

Sla) = / "t La(t), a(t)) (1.10)

ty

It depends on classical pathg$t) between timeg; and¢. satisfying the boundary conditiorgt;) = q; and
q(t2) = qo. Hamilton's principlestates that the classical path of the system minimises tlendanctionalS. To
work out the implications of Hamilton’s principle we follothe same steps as in the previous example. We define
the function .

P2

I(\) = S[q + e :/ dt L(q+ Ne, &+ Aé) . (1.11)
ty

where we have introduced small but arbitrary variatiens (e, ...,¢,) of the coordinates, satisfying(t;) =
€(t2) = 0. As before, we work out the derivative bat\ = 0

2 [OL, . oL . ...
»n0 = /tl dt [8—%(q,q)ei+a—qi(q,q)el} (1.12)

t2 oL d oL
| D) — L% 1.1
/m dt e; [aq_(q,q) 7 aq_(%q)} , (1.13)

K2 K2



1.1. MATHEMATICAL BACKGROUND 5

where the last step follows from partial integration (anel loundary term vanishes dued@;) = e(t2) = 0 as
previously). Thee; vary independently and, hence, for the above integral tishahe bracketed expression in
(2.13) must be zero for each index valud his gives rise to th&uler-Lagrange equations

doL, .. oL, .
@a—qi(q, q) — +—(q,9)=0. (1.14)

9qi
The solutions to these equations represent the classitted phthe system which minimise the action functional.
They contair2n integration constants which are fixed by the boundary candiy(¢;) = q; andq(tz2) = qo.

1.1.2 Functional differentiation

We have seen that, for the above examples, the problem ahgafyr differentiating) functionals can be reduced
to ordinary differentiation "under the integral”. Whileishapproach is transparent it is not particularly convenien
for calculations. We would, therefore, like to introducehmr-hand notation for the variation procedure based
on the functional derivativé/d f(x) so that the minimum of a functiondl can be obtained from the equation
dF[f]/of(x) = 0. The crucial step in our previous variation calculationswae ordinary differentiation with
respect to the parametgr In order to reproduce the effect of this differentiationm functional derivative should
certainly satisfy all the general properties of a derivagtihat is, it should be linear, it should satisfy the product
and chain rules of differentiation and we should be able toroate it with the integral. Let us see how far we can
get with those assumptions, starting with our first examplg)(

5F[f] B L T . 1 T2 . f/(:f?) 5‘]0/(57)

Our next step has been partial integration and in order tdheeta carry this out we need to assume that ordinary
and functional derivative commute. Then we find

OF[f] _ / Py

T

f'(@) 5f(Z)

= 1.16
5f(x) 1+ f(@)2| 6f(x) (10

In the bracket we recognise the desired left-hand-side efitfierential equation (1.8). Our last step consisted

of removing the integral due to the presence of an arbitranatione in the integrand. Here, we can formally
reproduce this step by demanding the relation

1

5 (@) _ s
5f(x)’5( ), (1.17)

which can be viewed as a continuous version of the equé&pfg; = J;; for a set ofn coordinatesy;. Using
the relation (1.17) in Eq. (1.16) we finally obtain the degdiresult

) 1.18
1+f'<:c)2] ' (119

SFIf]  d

5f(z)  dx

To summarise, functional derivatiaré f () can be understood as a linear operation which satisfies dtipr
and chain rules of ordinary differentiation, commutes vatHinary integrals and derivatives and is subject to the
"normalisation” (1.17).

Armed with this "definition”, let us quickly re-consider osecond example, Hamilton’s principle of classical
mechanics. We find

§S[ql &t
S = ) AHa.a) (119)
0L o dwll) | OL i

ta
= di a_ ) ) +_ )
/tl En (a,9) Sat) T 9 (a,9) 50l

)

~—

] (1.20)

~—

2 _[0L d oL ] 5q; (
= [ dt|5-(a4) - =o(a,q)| 5 1.21
/tl | 9g; (@d) =5 4 (a0, 4) 5qs(1) (1.21)

" [2F d oL . oL d oL
- 90, @A) — Z5(a,q) | 050(F — 1) = 57-(q, 4) = o0 (a, ¢ 1.22
/m at | 9, (@.4) - — 24, (q, q)] 0ij0(t — 1) 9 (q,q) - — 4, (a,9)  (1.22)
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where, in the second last step, we have used the obviousalisaton

) — 61J6(£— t) (123)

of Eq. (1.17).

1.1.3 Functional integration

As before, we consider a class of functidnfg, f = f(z), defined on a specific domafn'} and a functionaF'[ f].
Here, we slightly generalise our previous set-up and altade represent a set of coordinates in various numbers
of dimensions. For example, in the context of (quantum) raaids, is one-dimensional and represents time, so
that we are dealing with functions of one real variable. In (quantum) field theory, on the otrendyx stands

for a four-vectorz#. As we will see, most of the discussion in this subsectiomé@ependent of the space-time
dimension, so we do not need to be more specific until later.

We would now like to introduce a functional integral (1.1)po¥'. While ordinary integrals have an integration
range which may consist of an interval in the real numbessirttegration range for functional integrals is a whole
class of functions. Such integrals are not easy to defindmatitgse notes, we will make no attempt at mathematical
rigour. Instead, we will concentrate on the features of fiamal integrals relevant to our applications in quantum
mechanics and quantum field theory.

To "define” functional integrals we can take a lead from thénifgon of ordinary integrals. There, one intro-
duces a grid (or lattice) of points; } with separatiom\z in space-time and approximates the functfoa f(x)
by the collection of its valueg = (y1, ..., yn), Wherey, = f(x;), at the lattice points. The conventional integral
over f (in the one-dimensional case) can then be defined a&ihe: 0 limitof Az )", y;. For functional integrals
we have to integrate over all functiofisand, hence, in the discrete case, over all possible vegtorhis suggest,
we should "approximate” the functional integral measyir® f by multiple ordinary integrald II;dy; = [ d"y.

We also need a discrete versidhof the functional such thaf'(y) ~ F|[f] fory ~ f. Then, we can formally
introduce functional integrals by setting

[rEi~ gim [ @y ). (1.24)

In practise, this relation means we can often representifumal integrals by multiple ordinary integrals or, at
least, deduce properties of functional integrals from ¢hafamultiple integrals.

In general, functional integrals are prohibitively difficto evaluate and often a lattice calculation (that is, the
numerical evaluation of the RHS of Eq. (1.24) on a compusgatf)é only option. However, there is one class of in-
tegrals, namelysaussian integraland integrals closely related to Gaussian ones, which ssadue to analytical
computations. It turns out that such Gaussian functiortagirals are of central importance in physics and we will
focus on them in the remainder of this section. In keepindp wie spirit of Eq. (1.24), the discussion will center
on ordinary multiple Gaussian integrals from which we dedpioperties of Gaussian functional integrals.

Gaussian integral over a single variable

As a reminder, we start with a simple one-dimensional Gaunssitegral over a single variabje It is given by

I(a) = /jo dy exp(—%ayQ) = \/%, (1.25)

wherea is real and positive. The standard proof of this relatioroimes writing (a)? as a two-dimensional
integral overy; andy» and then introducing two-dimensional polar coordinates \/y? + y2 andyp. Explicitly,

I(a)?

/ dy exp(—gayf)/ dys exp(—§ay§) =/ dyl/ dys exp(—ga(nyry%)ﬁl-ZG)

21

o 00 1
/ dy / drrexp(—=ar?) = — . (1.27)
0 0 2 a
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Multidimensional Gaussian integrals

Next we considen-dimensional Gaussian integrals
m 1 T
Wo(A) = [ d"y exp —3y Ay | , (1.28)

over variableyy = (y1,...,yn), WhereA is a symmetric, positive definite matrix. This integral candasily
reduced to a product of one-dimensional Gaussian intelgyali&agonalising the matriA. Consider an orthogonal
rotationO such thatA = ODO? with a diagonal matridD = diag(as, . .., a,). The Eigenvalues; are strictly
positive since we have assumed thats positive definite. Introducing new coordinages- Oy we can write

YAy =3"Dy = > a;j} (1.29)
=1

where the propert®” O = 1 of orthogonal matrices has been used. Note further thattbehian of the coordi-
nate change — y is one, sincédet(O)| = 1. Hence, using Egs. (1.25) and (1.29) we find for the intedr@8)

& 1
Wo(A) =] / dij; exp(—iaigf) = 2m)"*(aray . ..a,) "2 = (27)"?(detA) V2 (1.30)
=1
To summarise, we have found for the multidimensional Gaunssitegral (1.28) that

Wo(A) = (2m)"/?(detA) /2, (1.31)

a result which will be of some importance in the following.
One obvious generalisation of the integral (1.28) involsdding a term linear iy in the exponent, that is

1
Wo(A,J) = /d"y exp (—§yTAy + JTy) . (1.32)

HereJ = (Ji,...,J,) is ann-dimensional vector which can be viewed as an external sofarcy. With the
inverse matrixA = A~! and a change of variablgs— ¥, where

y=AJ+§ (1.33)

this integral can be written as
Lop e Lop, -
Wo(A,J) = exp §J AJ d"y exp 5y Ay | . (1.34)

The remaining integral is Gaussian without a linear termcao be easily carried out using the above results.
Hence, one finds

Wo(A,J) = Wy(A)exp (%JTAJ) = (27m)"/?(detA) "% exp (%JTAJ) . (1.35)

The exponential in Gaussian integrals can be consideregrbability distribution and, hence, we can intro-
duce expectation values for functiofgy) by

(O)o EN/d"y O(y) exp (—%yTAy> : (1.36)

The normalisationV is chosen such thdt) = 1 which implies
N =Wo(A)™! = (27) 2 (detA)/? . (1.37)

The sub-scripb refers to the fact that the expectation value is computel keispect to a Gaussian distribution.
As we will see later, such expectation values play a centtalwhen it comes to extracting physical information
from a quantum field theory. Of particular importance aremtfranent®f the Gaussian probability distribution (or
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[-point function¥ which are given by the expectation values of monomi@lsy, - - - i, )o. From Egs. (1.32) and
(1.35) they can be written as

9 9
8, " dJ;

YirYia - - - Yi)o =N WO(A,J)] [ 0 0 exp (%JTAJ)} : (1.38)
J=0

J—o oJ;, O,

The first equality above suggests an interpretation of thes&an integrali’y (A, J) with source] as agenerating
functionfor the [-point functions. The second equality provides us with aveorent way of calculating-point
functions explicitly. It is easy to see, for example, that ttvo-point and four-point functions are given by

(Yiyi)o = Aij (Wiyiyryi)o = DNijApr + DA g + Ay Ay (1.39)

Every differentiation with respect t@; in Eq. (1.38) leads to a factor &;;J; in front of the exponential. Unless
J; is removed by another differentiation the contributionigsaes after setting to zero. In particular, this means
that all odd/-point functions vanish. For the evépoint functions one deduces that the; terms which appear

are in one-to-one correspondence with all ways of pairinthepndices, . .., ;. Hence, for evehwe have
<yi1 e yil>0 = Z Aim iTJQ e AiPl—liPl (140)
pairings p
where the sum runs over all pairings= {(p1,p2),- .-, (pi—1,p1)} of the numberd1,...,I}. This statement is

also known adVick’s theorem Fori = 2 and! = 4 this formula reproduces the results (1.39) for the two- and
four-point functions.

We would now like to use some of the above formulae for muttiglisional Gaussian integrals to infer analo-
gous formulae for Gaussian functional integrals, follogvihe corrrespondence (1.24). We start with the analogue
of Wy(A, J) in Eq. (1.32), thegenerating functional

WolA, J] :/Dfexp (—%/dx/d:if(:l’)A(:Z’,:c)f(x)+/de(x)f(:c)) . (1.41)

Note, that the summations in the expondent of Eq. (1.32) baee replaced by integrations. The "kerndl(’z, x)
is the generalisation of the matriX and, in our applications, will be usually a differential ogr. It is straight-
forward to write down the analogue of the result (1.35) f&r ¢fienerating functional

WolA, J] = exp (—%trlnA) exp (% / di / d:cJ(:Z’)A(fc,x)J(m)) . (1.42)

whereA = A~! is the inverse of the operatot and we have used the well-known matrix identityt A =
exp trin A to re-write the determinant of in terms of its trace. (We have absorbed the powetzrah front of
Eq. (1.35) into the definition of the path integral measig) It is not clear, at this stage, how to compute the
inverse and the trace of the operatgrbut we will see that, in many cases of interest, this can beraplished by
looking at the Fourier transform of. For now, we proceed formally and define fhpoint functions

(Fa).eefao =N [ DF fo0).feen (<5 [an [ars@acas) . 4
where the normalisatialV is given by A" = exp(1trIn A). In analogy with Eq. (1.38) we have
) ) 1 - N A
(f(x1)...f(z1))o = {&](ml) ST exp <§ /dz / dz J(z)A(z,x)J(z))} L (1.44)

This expression can be used to computetpeint functions in terms oA, where Eq. (1.17) should be taken into
account. Since functional derivatives have the same gepeyperties than ordinary derivatives Wick'’s theorem
applies and thé-point functions take the form

(fa) . faE)do = Y. Ay, 2p,).. Ay, ) (1.45)

pairings p
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Steepest descent approximation

Although functional integrals in the context of quantum imaaics or quantum field theory are, in general, non-
Gaussian they can be approximated by Gaussian integralsuiry situations of physical interest. The steepest
descent method is one such approximation scheme whichsslgleelated to the transition between quantum and
classical physics (as will be explained later).

As usual, we start with simple one-dimensional integratswork our way towards path integrals. Consider
the integral

1(¢) = / dy exp(—5()/€) (1.46)

with a real functiors = s(y) and a real positive parametgr(In our physical examples the role otvill be played

by #.) We would like to study the value of this integral for sm@llFor such values, the main contributions to the
integral come from regions in close to the minima o, that is pointg,(®) satisfyings’(y(“)) = 0. Around such a
minimum we can expand

s(y) = s(y'?) + %6@62 +o, (1.47)

wheree = (y — 59 /&, a = s"(y®) and the dots stand for terms of order higher tgariThen, we can
approximate

I1(€) ~ \/€exp(—s(y) /€) / de exp (_%%2) : (1.48)

The remaining integral is Gaussian and has already beenwtechin Eq. (1.25). Inserting this result we finally

find
16) = 1/ 225 exp(~s(s") /6) (1.49)

To leading order the integral is simply given by the exporsevaluated at the minimul® and the square root
pre-factor can be interpreted as the first order correction.
Let us generalise this to the multi-dimensional integrals

WO = [ d'y expl(-5)/6). (L50)
wherey = (y1,...,,). Around a solutiory(®) of g_i(Y) = 0 we expand
1
S(y) =S + 56" Ae+ .., (1.51)

wheree = (y — y(©)/y€ and A;j; = 524

s
: . e  Oyi9y;
dimensional Gaussian integral we find

(y©)). Using this expansion and the result (1.31) for the multi-

W(€) = (2m)™/? (detA) ™/ exp(—S(y(?) /€) . (1.52)

We would now like to apply the steepest descent method toghergting functional fof-point functions. In
analogy with our procedure for Gaussian integrals, we ctrodace this generating function by

1
w@9 - [ayes(~5s0)-7) (153)
so that thé-point functions are given by
0 0
(Yir - Yir) EN/dnyyn -y exp(—=5(y)/§) = &N [&Jil SEY W(ng)] o (1.54)

Minima y(¢) of the exponent in Eq. (1.53) are obtained from the equations
08§

B dyi

Applying the result (1.52) to the generating function (3.68e finds

Ji (1.55)

W39 ~ (deth) ™ 2exp (~L(S() - 3741 ) (1.56)



10 CHAPTER 1. PATH INTEGRALS IN QUANTUM MECHANICS

From Eq. (1.55), we should think g€°) as a function of the sourcewhich has to be inserted into the above result
for W(J,¢). Thel-point functions in the steepest descent approximatiortivan be computed by inserting the
so-obtainedV (J, £) into Eq. (1.54).

Finally, we apply the steepest descent method to functiotegrals of the form

We = /Df exp(—=S[f1/€) (1.57)

where S[f] is a functional. In our exampleS will be the action of a physical system. The steepest descent
approximation now amounts to an expansion around the ‘icilssolution” f(¢) characterised by

08

i —o. 1.58

57 1=0 (1.58)

With 525

AlZ,x) = ————

) = S @@

we find in analogy with the multi-dimensional steepest desapproximation (1.52)

(£ (1.59)

We ~ exp (%trln A) exp (73[ £ /5) . (1.60)

Note that the leading contribution to the functional intdgn this approximation comes from the classical path
f{©). We can now introduce the generating functional

Wels) = [ Df exp | ¢ (811~ [assais)] (1.61)
which generates thiepoint functions
1) )
G1) - i EN D G1) - i ) €X -5 = l./\/|: WelJ .
P S =X [ DF fGan). S exp(-S111/0) = €N |70 Wil o
The steepest descent approximation can then be appliedchtioe solutionf(©) = £(°)(.J) of .
0S
T@) = 550 (1.63)
and leads to the result
WelJ] ~ exp (%trlnA) exp {% (S[f(c)] — / da J(z)f© (z))] (1.64)

1.1.4 Perturbation theory for non-Gaussian functional inegrals

Perturbation theorys an approximation scheme which can be applied to integraich differ only slightly from
Gaussian ones. Let us start with the multi-dimensional aageconsider the non-Gaussian integral (1.50) with the
specific exponent = %yTAy + AV (y), thatis,

Wi(A) = /d"y exp (—%yTAy — )\V(y)) . (1.65)

(We can set to one for the purpose of this section.) Here, we take thetadtion term™/ (y) to be a polynomial
in y and\ is the "coupling constant”. Expanding the part of the expuiat which involves the "perturbation”
AV, we can write

X (kK
waa) = woa) Y iy, (1.66)
k=0 ’

where the expectation value. .), is defined with respect to the Gaussian measure, as in E@)(1Gven that
V(y) is polynomial each of these expectation values can be edbmliusing Wick's theorem (1.40). Of course,
the resulting expressions will be progressively more carafgd for increasing powers ik but, provided\ is
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sufficiently small, we can hope that the integral is well4apgmated by cutting the infinite series in (1.66) off at
some finite value ok. Let us see how this works in practise by focusing on the exawipa quartic interaction

term
1 n
=g (1.67)
Ti=1
Neglecting terms of ordex? and higher we have
Wi(A) A 4 ;
Wo(A) 1_IZ<%‘>0 4.22%% 0+ O\ (1.68)

1= %Z 128 Z i Z it Z 3R A AY + AY) +O(V)  (1.69)

g ]
where Wick’s theorem (1.40) has been used in the second‘ﬁwpe is a very useful representation of expressions
of the formA, 4, ... A;,_,4 in terms of diagrams. First, recall that the indiéeg . . . label pointsz;, x5, ... of
our discrete space-time. This suggests we should repreaehtsuch index by a point (or dot). Eafihy; is then
represented by a line connecting deind dotj. One may think of the quantit$h;; as "'moving the system” from
x; to z; and it is, therefore also callgutopagator Given these rules, the diagrams for the terms at okdemd

orderA? in Eq. (1.69) are shown in Figs. 1.1 and 1.2, respectivelyvi@Isly, these diagrams are constructed by

X

Figure 1.1: Feynman diagram contributingitd, (A) at first order in perturbation theory for a quartic interanti

R 0o ©

Figure 1.2: Feynman diagrams contributing®@ (A)) at second order in perturbation theory for a quartic interac
tion.

joining up four-leg vertices, one for each power of the cougph. The reason we are dealing with four-leg vertices
is directly related to the quartic nature of the interactierm, as an inspection of Wick’s theorem (1.40) shows.
The diagrams associated to the ord&rterms in the perturbation expansion can then be obtainediyerting
the legs ofk four-vertices in all possible ways.

We are also interested in computing theoint functions

_ . 1
Wiy -y )n =Wa(A) 6P gl = /d Y Yiy - - - Yiy €XP (—QyTAy - AV(Y)) (1.70)

in perturbation theory. Here, we have defined@reen functiongi(f)___il. Since we have already discus3&q(A)
the Green functions are what we still need to compute, inrdifully determine thé-point functions. One way
to proceed is to simply expand the Green function in powera ahd write the individual terms as Gaussian
expectation values (1.36). This leads to
! = (—A)F
gi(1)...il =Wo(A) Z ( k!) Yir -9 V() )o - (1.71)
k=0

Each Gaussian expectation value in this expansion can balaedd using Wick’s theorem. Alternatively, in
analogy with the Gaussian case, we may also introduce thergtimg function

1
Wi(A,J) = /d"y exp <—§yTAy - A\V(y)+ JTy> (1.72)
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so that the Green functions can be written as

0 0
11 2 J=0

We can now expand the generating function into a perturbatoies
o~ N [ ok Lz 7)) e~ (CVE (0
Wa(A ) =3 0= [ d'yV(y) e ( —oyTAy + 3Ty | =3 0=V (o5 ) Wo(A D), (1.74)

k k!
k=0 k=0

around the Gaussian generating functiép. The partial differential operatdr (0/0J) is obtained by formally
replacingy; with 9/8J; in the functionV = V(y). Combining the last two equations we find

) X k
o N[ o (0
Gili = D s a5V (53) WAy (1.75)
k=0 J=0
(=R o B} a\" 1.,
- A 7 “ITA 17
Wl )k; W a5 an  \ar) et &Y ) (1.76)

where we have used Eq. (1.35) in the second step. From out (&s38) for Gaussiar-point functions this
expression for the Green function is of course equivaletiieécearlier one (1.71). Either way, we end up having
to compute each term in the perturbation series applyind'¥/fbeorem. Let us see how this works explicitly by
computing the two-point function for the quartic pertuibat(1.67) up to first order ih. We find for the Green
function

G IWo(A) = (yayido — MyiysV(ym))o + O(N?) (1.77)

A A
= Ay =58 > <ym>o -3 D AnmiDpm Ay + O(N?) . (1.78)

The three terms in this expression can be represented begmarfan diagrams shown in Fig. 1.3. At zeroth order

Figure 1.3: Feynman diagram contributing to two-leg Gregcfion at zeroth and first order in perturbation theory
for a quartic interaction.

in X\ the two-point function is simply given by the propagator atdirst order we have two diagrams. The first
of these, however, is disconnected and consists of a progaggad a "vacuum bubble” which we have earlier (see
Fig. 1.1) recognised as one of the contribution8lfp(A ). If we compute the two-point function from Eq. (1.70)
by inserting the Green function (1.78) and our earlier teb9) for W (A) (dropping terms of ordek?) we
find that this disconnected term cancels, so that

A
(YiyjIn = Dij — 5 D AmiDpm A + O(N) . (1.79)

Hence, the two-point function up to first order lconsists of the two connected diagrams in Fig. 1.3 only.
The cancellation of disconnected diagrams in the two-phinttion is an attractive feature since it reduces the
number of diagrams and removes "trivial” contributatiorgwever, in general-point functions still do contain
disconnected diagrams. For example, the four-point fonctit order\? has a disconnected contribution which
consists of a propagator plus the third diagram in Fig 1.3s, Itherefore, useful to introduce a new generating
functionZ, (A, J) whose associated Green functions

o _ 0
G .= 5 B Z\(A,J) e (1.80)
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the so-calledonnected Green functionsnly represent connected diagrams. It turns out that threcidefinition
of this new generating function is
Zx(A,J)=1InW)(A,T) . (1.81)

One indication that this is the right choice comes from trseilt(1.69) for the vacuum contributidiry (A.) which
can also be written as

Wi(A)
Wo(A)

A A2
=exp | -3 Z AZ 4 = ;(MiiAjjAfj +AL) |+ 0. (1.82)
Note that the third term in Eq. (1.69) which corresponds todisconnected diagram in Fig. 1.2 has indeed been
"obsorbed” by the exponential. It turns out that this is agyahfeature. As a result, connected Green functions
can be evaluated in terms of Feynman diagrams in the same ndiaoy Green function can, except that only
connected Feynman diagrams are taken into account.

As before, the above results for multiple integrals can bendly re-written for functional integrals. We
can simply carry out the replacemenis — f(z,), G\ . — GO(z1,....z), Ay — Ay, ),
9/0J;, — 6/0J(xp) and -, — J dz,. This leads to the formalism for perturbative quantum (jiete-
ory based on functional integrals. Perturbation theorygsiably the most important method to extract physical
information from quantum field theories and we will come b&xk more explicitly later in the course.

1.2 Quantum Mechanics

1.2.1 Background
From Young's slits to the path integral

As inspiration, recall the two-slit interference experithésee Fig.1.4). One of the key features of quantum me-
chanics is that the total amplitudg,, at a point on the screen is related to the contributiépnsnd A, from the

two possible paths, 1 and 2, by.ta1 = A1 + A2. The path integral formulation of quantum mechanics presid

a way of thinking in these terms, even in a situation whenpmiiast to the two-slits experiment, there are no such
obviously defined classical paths.

Figure 1.4: A two-slit interference experiment.

The time evolution operator

The standard approach to quantum mechanics in a first casgod quickly from the time-dependent Schrodinger
equation to the time-independent one, and to discuss eigetiéns of the Hamiltonian. The path integral approach
is different. Here the focus is on time-evolution, and efgentions of the Hamiltonian remain in the background.
We start from the time-dependent Schrodinger equation

Op(t)

ih=s = Hi(t).
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If the Hamiltonian is time-independent, the solution camiigten as

(t) = exp(—1Ht/h)1(0)

Here,e—iH!/" i3 the time-evolution operator. It is a function (the expaiia) of another operator (the Hamilto-
nian), and we need to remember that functions of operatorbealefined via the Taylor series for the function
involved.

1.2.2 Path integral for the evolution operator
Derivation

We are going to think of the time evolution operator as thedpod of a large numbeN of contributions from
individual time steps/N. We will do this for a particle moving in one dimension withimé-independent Hamil-
tonian H = T + V consisting as usual of a potential enefigyand a kinetic energ§’, written in terms of the
momentum operatgr and particle mass: asT' = p?/2m. We can introduce time steps simply by writing

oiHE/h _ (e—th/Nh)N . (1.83)

Next, we'd like to think of the particle’s path as passingtigh pointse,, at the successive time-steps/N. We
can do this by introducing position eigenstaftesand inserting the identity in the form

1- /Oo dale) (x| (1.84)
between each factor on the right of Eq. (1.83). In this way e g
(zole= /M3y ) = / day ... / A1 (wole HUNE ) (g e HUN B ) (g o= HENE )
The next job is to evaluate matrix elements of the form
(ale N g, 1)
The way to do this is by separating the contributions ftfBrandV’, using the fact that, foN — oo
(efth/Nh)N _ (efiTt/Nhefin/Nh)N '

Now we use two versions of the resolution of the identity: ¢me in Eq. (1.84) based on position eigenstates,
which diagonalisé’, and a second one based on momentum eigenstateshich diagonalis€'. We have

<:L,n|efiTt/Nhefin/Nh|xn+1> _ /dpn<l,n|efiTt/Nh|pn><pn|efin/Nh|xn+1>.

The action of the operatdr on the statéx,, 1) is simple:V|zy4+1) = V(Tp+1)|2n+1), WhereV (z) denotes the
c-number function. Similarly fop on |p,,): plp.) = pn|pn), Wherep is the operator ang, is a number. Then

R e L B

Next, the matrix element between states from our two bagesis = (2r/) ~1/2¢'P*/" (check that you can justify
this), and so

. 1/2
/dpnefipit/QmNh<xn|pn><pn|zn+1> _ (271_71)71/dpnefipit/QmNhfipn(a:n+171,1)/?‘1 _ <2m];_;f) eimN(;,;anxny/zm_
Tl

Putting everything together, and writing the interval begw time-slices as= ¢/N, we get

_ . m \N/2 ie X2 [m Tpat — n )2
<$0|e 1Ht/h|;17N> = A}gnoo (277‘1677,) /dxl .../d%Nfl exp <E Z [5 <%) — V(:En+1) .

n=0
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Finally, we interpret the sum in the argument of the expoiakas a time integral, writing
e X | m (2 20\ 2 i [t i
n+1 = 4n /I — /
- e R n = - dt’ = - t
b [2 < - ) V(e m] : / Ldt' = - Sle(t)

where/ is the Lagrangian
m (dz\?
£=3 (E) ~Vi@)

andS[z(¢')] is the action for the system on the patft’). Our final result is
(zie P gy = N / Dla(t'))e! S/ (1.86)

The notation here is as followg: D[z (¢')] indicates a functional integral over path@’), in this case starting from
x; att’ = 0 and ending atr att’ = ¢, andA is a normalisation factor, which is independent of what tihaetand
end points are.

The significance of Eq (1.86) is that it expresses the quamtuplitude — for a particle to propagate from a
starting pointz; to a finishing pointz; in timet — in terms of an integral over possible paths, with the cbation
from each path weighted by a phase faefsr” that is expressed in terms of a classical quantity, the mctitor
the path. In this sense, we have succeeded in extendingetitentent of interference in the context of Young’s slits
to a general quantum system.

Correspondence principle

One of the simplest and most attractive features of the padigial formulation of quantum mechanics is that it
provides a framework in which we can see classical mechamisgig as a limiting case. We expect classical
mechanics to emerge in the linkit— 0 (or more precisely, whehis small compared to the characteristic scale in
S). Within the path integral, this limit is just the one in whiwve can apply the steepest descents approximation,
since then the argument of the exponential in Eq. (1.86) iftipied by the large quantity;—!. Using that
approximation, the dominant contribution to the path indwill come from the vicinity of the path for which the
action$ is stationary. But we know from Hamilton’s principle thaidlpath is precisely the classical one, and so
we have reached the desired conclusion.

1.2.3 Path integral in statistical mechanics

With some simple changes, we can express the Boltzmanrr facih hence other quantities in statistical mechan-
ics, as a path integral. Comparing the time evolution opekat'”*/" with the Boltzmann factoe—?, we see
that we require the substitutiah= 3h. As a consequence, for the tinfe which parameterises points on a path
and has limit$) < ¢’ < t, we substitute = i/, which has limit9) < = < S4. Now we can write a matrix element
of the Boltzmann factor as

(zle=PH |25) = N / Dl(r)Je= SN/ (1.87)

Sla(r)] = /Oﬁth [g (j—f)QJrV(x)

The crucial point to note about Eq. (1.88) is that becauskes$tibstitution = it’, there is a change in the relative
sign of the terms in the action coming from kinetic and patmnergies. With this sign changgjx(7)] is often
referred to as the Euclidean action, by analogy with the gh&rom a Lorentz metric to a Euclidean one, produced
by a similar factor of. Our result, Eq. (1.87), gives matrix elements of the Bolimmfactor for a quantum system
as a functional integral over classical paths, this timé piths weighted by eeal factor,e—=(M1/7,

Quantities we want to calculate in the context of statistisachanics are the partition functiaghand thermal
averages, for example the averggéx)) of a functionf(z) of the coordinate: of the particle. These are related
in a simple way to the matrix elements of the Boltzmann fatttat we have discussed. Consider first the partition
function, and recall its definition for a system with energydlsE;: Z = Y, e #F: . Clearly, this is simply

with
(1.88)
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Z = Tre~#™, written in the eigenbasis 6{. Since the trace of a matrix is invariant under change ofhas can
use this second form, which leads us to

Z = / dx <x|efﬁH|z> EN/D[z(T)]e*S[I(T)]/ﬁ ,

where the path integral is now over periodic paths, satigfyi( 57) = x(0). In a similar fashion, we can evaluate
thermal averages as

(@) =2 [ Dlar)fa(o)e S

1.2.4 Two examples

While the path integral is very important as a way of thinkatgput quantum mechanics and for treating more
advanced problems, it turns out not to be a particularly eaient way to handle elementary ones. Nevertheless,
we should see how it works for a couple of simple examples.

Evaluation for a free particle

As a first illustration, consider a free particle moving ineotimension. We want to start from Eq (1.85), set
V(x) = 0 and evaluate the multiple integrals explicitly. Within taggument of the exponential, each coordinate
x, appears inside two quadratic terms. The integrals that wd teeevaluate are therefore of the form

(f‘r—f)m /Z dzexp (—afu — 2 - Bz — of?) = (W(Oj“ifﬂ))m exp (_aofﬂ

[Prove this by completing the square in the argument of tipe&ntial.] We use this result to integrate out_;,
thenxy_o and so on. After completing of the integrals we obtain

[u — ’U]Q) . (1.89)

N-1

m \N/2 m ) m \ (N—k—1)/2 m 1/2
dz;... [ deny— —= n+l — Tn = - ‘Nz
(27Tieh) / o / N1 XD ( 2ieh = (#n+1 = an) ) (27T16h) (27r1[k + 1]6h) %

N—-k—2
m

' m 2 2
X /dzl---/dekafl exp <21€h T;O (41 — Tn)” — A+ 1]ch (TN —TN—k-1) )

Fork = N — 1 this gives

. 1/2 m
iHt/h — ( m ) (7_ o 2) 1.90

(zole |zN) il exp iht (xn —20)7) - ( )
To check whether this is correct, we should evaluate the sgmetity using a different method. For a free
particle, this can be done by inserting into the expressioitife matrix element of the time evolution operator a
single resolution of the identity in terms of momentum eigates. Repeating manipulations very similar to the
ones we used to derive the path integral, we have

(wole 1M a) = (2at) ™ [ dp Gaolp)ple o)

= (2rh)~! / dp exp < 21p2t +ip(xo — fEN)/h>

mh

= (o) oo (gpton —07)

— confirming our earlier result, Eq. (1.90).

Evaluation for a harmonic oscillator

As a second example, we will evaluate the thermal avetagjefor a one-dimensional harmonic oscillator, with
the potential energy



1.3. FURTHER READING 17

In terms of the matrix element of the Boltzmann factor for ethive have a path integral representation, this
thermal average is
5 [ dz2*(z|e PH |z)
(x*) = .
J dz (z]e=PH |z)
For the harmonic oscillato§[(7)] is quadratic inz(7), and so the path integral is Gaussian. To evaluate it, we
should diagonalise the Euclidean action, which is

Slz(r)] = /Oﬂh dr l% (dZ(TT))Q + gx(r)zl .

To do that, we simply expand(r) in Fourier components, writing

(1.91)

IR ominT/ Bk 1 /Bh —orinr/Bh
z(7) = — Qe ™nT/IPR and Op = — drz(r)e™ ™" .
=T, 2 VAR Jy 4T

n=—oo

Sincex(r) is real,¢_,, = (¢,)*, and so we can take as independent variables the real anthemagarts ofp,,
for n > 0, together withpy which is real. The Jacobian for this change of variables ityubecause with our
choice of normalisation the Fourier transform is an expgamefz(7) in an orthonormal basis. In this way we have

/D[x(T)] = / d¢0£[0/ dmn/d%n and  S[z(r)] = ;0 [m (2}%)2 +K

Averaging the amplitudes,, with the weighte=5[*("))/? ' and introducing the oscillator frequeney= /x/m,
we have

1
|¢n|2 + §’i¢(2) .

h/k
mP—-n) = 5mn— .
(md—n) 1+ (2nn/ Bhw)?
We obtain finally (using a contour integral to evaluate a smm)

2
(0) = _ L L ) L ) N SR
(@=(0)) = Bh ;(’bn Bk ; 1+ (2mn/Bhw)?  2tanh(Bhw/2) K |efhw —1 T3
(1.92)
The rightmost form of the result is recognisable as the Rldoanula for the average energy in the oscillator

multiplied by <!, which is to be expected since this energy has equal kinetipatential contributions, and the
potential energy i%(z2) /2.

To summarise, we've succeeded in writing the Boltzmanrofdetr the harmonic oscillator as a path integral,
and in evaluating this path integral, and the result we'viaioled matches what is familiar from more elementary
treatments. Of course, the approach seems rather labdooas elementary problem like this one, but it brings
real advantages for more advanced ones.

1.3 Further reading

e Functional derivatives (or calculus of variations) aree®d by Boas and by Riley, Bence and Hobson, in
their textbooks omMathematical Methods

e Multidimensional Gaussian integrals are discussed by-dirstin in the introductory chapters Quantum
Field Theory and Critical Phenomerzand ofPath integrals in Quantum Mechanics

e Extended treatments of path integrals in quantum mechanécgiven by Zinn-Justin in both of the above
books and by Schulman ifechniques and Applications of Path Integration

e The reference to Feynman'’s original paper is: Rev. Mod. PP§s367 (1948).

e Pathintegrals in quantum mechanics are introduced in tte\iio chapters of Bailin and Lovtroduction
to Gauge Theory

Be warned that, except for the first one, these referencesmawritten with undergraduate readers in mind.
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Chapter 2

Stochastic Processes and Path Integrals

2.1 Introduction

In this chapter we turn to a class of problems from classigistical physics known as stochastic processes. We
will discuss stochastic processes from several pointsavfyincluding the path integral formulation.

Recalling our discussion of path integrals in quantum meidsait is worth stressing a distinction between the
path integral for the time evolution operator and the ond@HerBoltzmann factor. For the time evolution operator,
the weight for a path(¢) is the phase factexp(iS[z(t)]/k), while for the Boltzmann factor, the weight for a path
x(7) is the real, positive quantityxp(—S[x(7)]/k). In this second case, we have the possibility of viewing the
weights as probabilities attached to the paths. For stticha®cesses, one literally has probabilities associated
with various paths that a system may follow as a functionroéti A path integral treatment of stochastic processes
therefore gives us a context in which functional integraketon a very clear and concrete meaning.

An example of a stochastic process that we will discuss inesdetail is Brownian motion: a small particle,
suspended in a fluid and observed under a microscope, moggamom way because it is buffeted by collisions
with water molecules. The theory of Brownian motion, depeldby Einsteinin 1905, gave important confirmation
of ideas of statistical mechanics and a way to determine ibservations the value of Avogadro’s number.

2.2 Random variables

We start by listing some definitions and introducing somédulsgeas. There is some overlap between the material

in this section and our earlier discussion of Gaussian rategbut also some differences in emphasis: here we are
more restrictive, in the sense that we concentrate on fomef one variable, rather than many variables; but we

are also more general, in the sense that we consider disrisiwhich are not necessarily Gaussian.

A random variableX is specified by giving the set of possible valugs; that it can take (which may be
discrete or continuous), and by a normalised probabilsjrifiution Px ().

2.2.1 Moments ofX
(X" = /x”PX(m)dx

mean (X)
variance (X?) —(X)? =0
standard deviation o

2.2.2 Characteristic function

The characteristic function is the Fourier transform ofphebability distribution.

ox (k) = (e*X) = /PX(x)eikxdx _ i (ik)™

n=0

X

19
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Itis also called thenoment generating functipeince

1 4
(X") = o (k)

k=0

2.2.3 Cumulants

Write as a definition of the cumulangs, (X)

Then 1

Cu(X) = |, M)
We have

Gi(X) = (X)

Ca(X) = (X?) —(X)? etc

In a rough sense, the size of théh cumulant tells you how much théh moment deviates from the value you
would have expected for it, given only knowledge of the lowater moments.

2.2.4 Gaussian distribution

Defined by
1 x —x0)>
Pxe) = e ()
which gives

ox (k) = exp(ikzg — %JQI@Q).

From this, we see that the cumulants afg{X ) = zo, Co(X) = % andC,,(X) = 0 for n > 3. Hence, in the
language of cumulants, a Gaussian distribution is comiglspcified by the values of its first two cumulants.

2.2.5 Random Walks

Consider a set aV random variables, for simplicity taken to be independeatig identically distributed:
Yn=X1+Xo+ ...+ XN
We can think ofNV as labelling discrete time, and &%, as a random walk in one dimension. The mealgfis
(Yy) = N(X)

and the varianc&?; is

so thaty = v/ No.

2.2.6 The central limit theorem

ConsiderSy = Yy /N. Then, for largeV: the distribution ofSy converges towards a Gaussian (with meaf)
and variancer /+/N) irrespective of the distribution oX, provided only that X') and (X?2) are not infinite.
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Proof via the characteristic function.
We have N
Doy (k) = (€F9V) = (!N 2i=1 X5y = (W WV = [y (k/ NV .

Writing this in terms of cumulants, we have

exp <Z (17];)!7” Cm(SN)> = exp (N Z (ik{ni]\!])mCm(XO ,

m=0 m=0

and so
Cn(Sy) = Cp(X) - NT7™

This shows that for largéV, only C1(Sx) andCs(Sx) are non-vanishing. Such a feature of the cumulants is
unigue to a Gaussian distribution, and$e must be Gaussian distributed.

To demonstrate explicitly that this is the case, we can demshe calculation of the probability distribution for
Sn, which we write asPs,, (s). It can be obtained as the inverse Fourier transform of tlaeaciteristic function
for Sy, and so we have

Poy () 1/00 e *5 g (k)dlk (2.1)

:% -

Now, taking account only of the first two cumulants, we have

(s (0] = exp <C(2LN)’“> |

This makes it clear that only the range < +/N gives a significant contribution to the integral. But in thisige,
the corrections involving higher cumulants are small: timeplve

k: m
N' v <N17m/2
(%) s

which goes to zero a — oo for m > 3. Retaining onlyC (Sx) andCs2(Sw) in ¢s, (k), we can evaluate the

Fourier transform to obtain
N O\ N(s — (X))’
Po(s) = (27‘(0’2) P (_ 202 ) '

Note that what we have done is a steepest descents evaloffion (2.1).

2.3 Stochastic Processes

A random variable or variables evolving as a function of tifaesome other coordinate}’(¢).

For example, the position and velocity of a particle thatridergoing Brownian motion.
A stochastic process is characterised by an (infinite) sezpief probability densities

Pi(y1,t1) the probability thaty” =y, att = t,

P, (y1,t1;Y2,t2 ... Yn, tn) joint probability thaty” = y; att =¢; andY =y, att =t etc
Some general properties of these densities are
Py (y1,t1...)>0 probabilities are non-negative

/Pn(yl,tl e Yn,tn)dyr ...dy, =1 probabilities are normalised

/Pn(yl, t1 oo Yny tn)dyn = Poo1(y1,t1 - Yn—1,tn—1) the sequence ieducible
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2.3.1 Correlation functions

One can define an infinite sequence of correlation functions:
V) = [ dnPintn

(Y)Y (t2)) = //dyldy2P2(yl,t1;y2,t2)yly2

2.3.2 Stationary Processes
Stationary processes are ones that are invariant undengelrathe origin for time, so that
P’n(ylatl .. ynvtn) = P’n(ylvtl +7_" yn;tn +7_)

for all n and for any choice of. For a stationary proces¥ (¢1)) is independent of;, (Y (t1)Y (t2)) depends
only on the difference; — t», and so on.

2.3.3 Conditional probabilities
We write the conditional probability thaf = y» att,, giventhatY = y; atty, asPy; (y2, t2|y1,t1). This obeys

/dy2P1\1(y2,t2|y1,t1) =1
sinceY must takesomevalue att,. Conditional and unconditional probabilities are relabgd

Py(y1,t1;92,t2) = Piji(y2, talyr, t1) - Pi(yi,t1) -

The idea of conditional probabilities generalises in theiols way: the quantity

Pip—1(Uns talys, tiiye,to oo Yn—1,tn—1)
is the probability to findv” = y,, att,, given thatY” = y; att;, Y = y» att, etc.

2.3.4 Markov Processes
A process without memory, except through the values of thetora variables.

This is the most important special class of stochastic mseE® because processes of this kind are common
and are much easier to study than more general ones.
Considert; < to < ... < t,: a Markov process is one for which

Pijn—1(Un> talyr, tisyz,to o Yn—1,tn—1) = Pijt (Yns tnlYn—1,tn—1)

for all n. In such a case, at tintg_, one can predict the future,( att,,) from present informatiory, 1) without
additional knowledge about the past (the valueg,ofs . .. y1). For example, for a Brownian particle, one might
expect to predict the future velocity of a particle givenyottile current value of the velocity, although the attempt
would fail if information about the current states of thedlmolecules is important for the prediction.

A Markov process is fully determined by the two functiod%{y:,t1) and Py (y2, t2; 91, t1). The absence of
memory makes Markov processes tractable.

Any Py (y,t) and Py (y2, t2|y1,t1) define a Markov process, provided they satisfy certain d¢ardi. The
main ones are th€hapman-Kolmogorov equatiqalso known as th&moluchowskequation), which is the con-
dition that for anyts > to > t;

Py (ys, tslyr, t1) = /dy2P1|1(y3,t3|y2,t2)P1|1(y2,t2|y1,t1),

and theevolution equatioywhich is the condition that, for any > ¢,

Pi(ya,t2) = /dy1P1|1(y2,t2|y1,t1)P1(y1,t1)-
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2.3.5 A stationary Markov process
A Markov process which is invariant under translation inéim

Thatis to sayP: (y1,t1) does not depend an, and Py (y2, t2; 1, t1) depends only oty — ¢y, y1 andys.

2.4 Markov Chains

The simplest version of a Markov process has only a finite rermbof discrete values possible for the random
variableY’, and involves discrete (integer) time-steps. Such presese called Markov chains.
For a Markov chainPy (y, t) is anN-component vector angh | (y2,t + 1;y1,t) = TisanN x N matrix.

2.4.1 Anexample

Consider a two-state process, in which= 1 or Y = 2. Evolution from timet to timet¢ + 1 can be specified as
follows:

Evolution:Y =1 — Y = 1 has probabilityl — ¢

Evolution:Y =1 — Y = 2 has probabilityy

Evolution:Y = 2 — Y = 2 has probabilityl — r

Evolution:Y = 2 — Y = 1 has probability-

ThenP;(y,t) can be represented by the vector
ay(t
=)

with a1 () + a2(¢) = 1. The evolution equation is

a(t+1)=T-a(t)

_(1=q r
T_( . H).

Note that, in generall’ is a square matrix with non-negative entries, but that ibisnecessarily symmetric.

with

2.4.2 Mathematical digression

On properties of eigenvectors for square matrices that atéHermitian, but that are diagonalisable by a similarity
transformation

In general there are distinct left and right eigenvectosseisited with each eigenvalue. Using Dirac notation,
we have

M|Rq) = Aa|Ra) and (Lo|M = (Ly| Ao
with
{{Lal}" = |La) # |Ra) ,
whereM is anN x N matrix, | R) is anN-component column vector ar{d | is an N-component row vector.

The two sets of eigenvectors éwrthogonal meaning that, with an appropriate choice of nhormalisatiore
has

(La|Rp) = ap ,

but(L.|Lg) and(R.|Rg) have no special properties.
To prove this, start from

M|Rqs) = XalRa) () and  (Lg|M = (Lg|As (xx)
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Take(Lg| - (*) — (*%) - | Ry) to obtain
0=(Aa — )‘ﬂ)<Lﬂ|Ra> :

Hence(Lgs|R,) = 0 for Ag # Ao, While by choice of normalisation (and of basis in the casdegfeneracy) we
can setLg|R,) = dq3, SO including the casksz = A,.

A useful idea is that o$pectral decompositigmeaning that we can wrif®l in terms of its eigenvectors and
eigenvalues, as

M = |[Ra)Aa(Lal.

2.4.3 Now apply these ideas to Markov chains

One eigenvalue of the evolution operator and the assodigftezlgenvector are easy to find. Consider (in compo-
nent form)

ai(t + 1) = ZTijaj(t) .
J
From conservation of probability, we must have

Zai(t +1)= Zai(t)

for anya(t), which can only be true i§ . 7;; = 1 for all j. From this, we can conclude that one eigenvalu of
is A\; = 1, and that the associated left eigenvectoflis| = (1,1,...1). The corresponding right eigenvector is
not so trivial. It has physical significance for the long-¢ifimit of the Markov process. To see this, consider

a(n) = (T)"a(0).

Now. from the spectral decomposition and biorthogonaliy see that
(T)" = |Ra)AM(Lal -

To avoid divergences, one requirgs,| < 1 for all . in addition, for a large class of problems is the unique
eigenvalue with largest magnitude, so that| < 1 for a # 1. Thenin the limit, — oo we haveT” — |Ry)(L|.
From this we can conclude that the limiting distribution igemn by| Ry ).

2.4.4 Returning to the two-state process of Sec. 2.4.1

(tf )G )= (%)

we finda; = r/(r + q), which gives us the limiting distribution.

By solving

2.5 Brownian motion

Now we will switch from these generalities to the specificrapée of Brownian motion, which we will consider
from three points of view: first, using a stochastic diffdi@ihequation (that is, a differential equation which
includes a random term) called thengevin equationsecond, using a partial differential equation for the time
evolution of probability, known as theokker-Planck equatigrand third, using a path integral.

2.5.1 Langevin Equation

Considering Brownian motion as an example, we can take aostopic approach to the evolution of the velocity,
v(t). For simplicity, we take(¢) to be a scalar — either one component of the velocity for dgd@rnhoving in three
dimensions, or simply the velocity of a particle constrdit@move in one dimension. The Langevin equation is

do(t)
dt

= —yo(t) + ()., 22)
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where the term involving the constantepresents viscous drag exerted by the fluid on the panitieh tends to
reduce its velocity, and the functiopit) represents a random force on the particle, due to collisigtismolecules

of the fluid. Sincey(t) is random, it can by characterised by its correlation fuori In view of the central limit
theorem, it is often sufficient to know just the first two morteeWe take this force to be zero on average, and take
its values at times separated by more than a microscopiwvait® be uncorrelated, so that

(n()) =0 and  (n(t)y(t")) =To(t—1).

In this way, the parametdr characterises the strength of the noise. Note that avemgegealisations of the
noise are given by a Gaussian functional integral:

(..) E/D[n(t)]...e_% Jdtn* (@)

Now, we can solve Eqg. (2.2) explicitly for any noise histafy) in the standard way for a first-order ordinary
differential equation, using an integrating factor. We find

v(t) = v(0)e " + /t At'e= 7=yt (2.3)
0

which can be checked by substituting back. From this salutiee can calculate averages. We find

((t)) = v(0)e ™"

and
t t
OP) = [pO)Pe " +e " / / 1 e+ (8 ) (1))
0 0
T
= [v(O)]Qe‘QV%E[l—e‘W], (2.4)
and also
t—7/2 pt4+7/2
lim (v(t —7/2)v(t +7/2)) = lim e~ / / dtydtae? ) (8 ) (ts))
t—o0 t—o0 0 0
T
— o7 2
2Fye . (2.5)

2.5.2 Fluctuation-dissipation relation

So far, it has seemed that the two constants specifying tingevan equation;y (viscous drag) and’ (noise
strength), are independent. In fact, of course, they both treeir microscopic origins in collisions of the Brownian
particle with fluid molecules, and for this physical reasoere is an important relation connecting them. We get
it by looking at behaviour in the long-time limit, and usingormation that we know from statistical mechanics —
specifically, the equipartition theorem.

From Eg. (2.4), fot — oo we have

r
2 —
(1) = 5

But from equipartion, the kinetic energy of the particle {@hwe have taken to move in one dimension only) is
ksT/2, and so{v?*(t)) = kgT/m, with m the mass of the Brownian particle. To analyse an experinosetcan

go further: if the particle has a simple, known shape (fonepi, it is spherical), thef can be calculated in terms
of the particle dimensions and the fluid viscosity, by sajvine Navier-Stokes equations. In this way, the strength
of molecular noise is fixed in absolute terms.

2.5.3 Displacement of a Brownian particle

Experimentally, it is hard to observe the instantaneouscisi of a Brownian particle. Instead, one observes its
position at a sequence of times which are not closely enopgbes for its velocity to remain constant between
each observation. To interpret experiments, it is theeefimportant to calculate moments of positieft), and in
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particular(x2(¢)). One obvious approach to this calculation is to obtg(t) in terms ofy(t) by integrating the
expression fop(t) given in Eq. (2.3), and to average moments:(f) over realisations ofi(¢). An alternative is
to derive and solve equations for the time evolution of themanots, as follows.

Consider 1 .
(@ (0) = 2a(t) ().

Differentiating again, we have

d d d )
) ) = (2)o®) + (O

Now, we can simplify the first term on the right side of this ation by using the Langevin equation to substitute
for v(t), and we know the second term from equipartition. In this wayoltain

S oty () = () Ta) + 2L 4 Ga(eym)). 26)

Since(x(t)n(t)) = 0, we can integrate Eq. (2.6), obtaining

(o) S (t)) = Ce™ 4 2L

ym

whereC'is an integration constant. Taking as our initial conditigf) = 0, we find

d _keT .
(at) go(0) = -l =e 7).
Integrating again, we have
2kpT [* ot 2kgT 1 _
2% (t)) = L—e ")t = t—=(1—e").
o) =2 Jar' = =l = )

To appreciate this result, it is useful to think about limiticases. At short times{ < 1)

@) ~ 2oLy Lo, OO7 kel

m ¥ 2 m
which, reasonably enough, is ballistic motion at the mearasg|speed expected from equipartition. At long times

(t>1)
2kgT

ym

t.

(@*(1)) =

In this case, the mean square displacement grows only §neih time, which we recognise as diffusive motion.
The diffusion coefficient2kgT/ym involves system-specific constantandm: as indicated abovey can be
calculated in terms of the size of particles and the visgadithe fluid, andn can likewise be determined inde-
pendently. A measurement of this diffusion constant treeee€onstitutes a measurement of Boltzmann’s constant
kg, which is related to the gas constddtvia Avogadro’s number. Sinc& is known from elementary measure-
ments on nearly ideal gases, we have a determination of Aroganumber. The relevant theory was published
by Einstein in 1905, and early experimental results wergigea by Perrin in 1910.

2.5.4 Fokker-Planck Equation

As we have seen, the treatment of Brownian motion using thgé&an equation involves first analysing behaviour
with a given realisation of the random forgét), then averaging over all realisations. An alternative apph is
to consider the probability distribution of the velocityhd Fokker-Planck equation determines the time evolution
of this probability. It can be derived starting from the Lamin equation, as follows.

Consider time evolution fromto ¢ + At with A¢ > 0. By analogy with Eq. (2.3) we have

"t AL
vt + At) = v(t)e A 4 /t dt'e= 7=t (2.7)
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so that the velocity chang&v = v(t + At) — v(t) is Gaussian ditributed ifi(t') is. Now, following the general
approach to Markov processes, as introduced above, thalpitity distribution P; (v, t) for the velocityv of a
Brownian particle at time satisfies the (integral) evolution equation

Py(v,t+ At) = / duPypi (v, t + Atfu, t) Py (u,t). (2.8)

We would like to get from this to a differential equation, laking the limit of smallA¢, in which we expect that
|v —u| will also be small. Some care is necessary in the derivaiecause we should think &, (v, ¢ + At|u, t)
as giving the probability distribution af, for a fixedwu, while in Eq. (2.8) the quantity is fixed and the integral is
onw. To deal with this, we change variables frano Av = v — u, and then Taylor expand iAv, obtaining

Pl(’l},t+ At)

/d(Av) Pyji(v,t + Atjv — Av, t) Py (v — Av, t)

/d(Av) Pyji(v— Av + Av,t + At — Av, t) Py (v — Av, )

2L (—Av)™ 9"
/d(Av) S ( n'”) 87pm(v + Av,t + At|v, t) Py (v,1) .
n=0 ’

Note in the middle line of this equation the substitutios- v — A + Awv, used so that the combinatien— Av
appears uniformly in the integrand, facilitating the Taydapansion. The moments &fv which appear here,

/d(Av)(Av)”PNl(v + Av,t+ Atjv,t) = ((Av)™),

take for smallAt¢ the values

(Av) = —yv- At + O(AF?), ((Av)?) =T - At + O(At?) and (Av)™y S O(At?) for n > 3.
Hence 5 At 92
I At ,
Pi(v,t + At) = Py(v,t) + WAt% vPy(v,t) + Tﬁpl(v’t) + O(At?)

and hence r
Ot Py (v, t) = ¥0, vPy(v,t) + Eagpl(v,t) . (2.9)

which is the Fokker-Planck equation. Its solution is simspte find in the limitt — oo, because the®; (v, ) is
independent of initial conditions and oflt is simple to show that

Py (v,00) = (l)l/Q exp (— U2/F)
1\UY, T 0é )
which is the Maxwell distribution familiar from kinetic tioey (recall from the fluctuation-dissipation relation that

V/T = m/(2ksT)).

2.5.5 Diffusion equation

Now we switch our attention from evolution of the velocity éwolution of the position. Note that the time-
dependence of position by itself it a Markov process, since future values of position depenanigton the
current value of position, but also on the current velodttis possible to treat the combined evolutiomgt) and
v(t), but for simplicity we will avoid this. We do so by noting thatlocity relaxes on the timescaje *: provided
we treat evolution of:(¢) only on much longer timescales(t) is simply a random function, like the foregt)
that appears in the Langevin equation. We have

dz(t)
= . 2.1
% v(t) (2.10)
From Eq. (2.5) the moments of the velocity, fos> v~1, are
r

(v(t)) =0 and () = —
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where the replacement ¢f /2)e =1t~ by §(¢ — ¢') is appropriate if other quantities that dependtont’ vary
much more slowly. Clearly, Eq. (2.10) is like the Langeviuation, Eq. (2.2), but with:(¢) replacingu(t) and
with v = 0. We can therefore adapt many of the results we have alreatiedeln particular, by comparison with
the Fokker-Planck equation, Eq. (2.9), the evolution dqudbr P, (z, t), the probability distribution for position,
is

22”“

which we recognise as the diffusion equation, with diffustmefficientD = I'/2+2. Its solution, with an initial
condition that the particle is at positian at timet, is

_ T — x0)?
Pi(z,t) = Py(x,t; 20, t0) = (20 D|t — to|) "% exp <ﬁ> . (2.12)

2.5.6 Path integral for diffusion

We can recast the description we have built up for the motfam Brownian particle on timescales much longer
thany~! as a path integral. The most streamlined way to do so is tothateasy(t) is a Gaussian random variable
with (v(t)) = 0 and(v(t)v(t')) = (I'/v?)d(t — t'), its distribution is given by the Gaussian functional

Alternatively, we can consider evolution through a seqeefaiscrete intervals, dividing a total tinhénto vV
equal timeslices, each of duratiers= ¢t/N. Extending Eq. (2.12), we have

N— 2
P (x0,0;21,€ ... Tp,ne; ... TN, ) = (47TD€) ? exp < Z (:EnJrl > ) , (2.13)

which is the equivalent of Eq. (1.85).

A general feature of typical paths that contribute to a pathgral can be read off from Eq. (2.13), by consid-
ering the typical distance a Brownian particle moves in atdirae. In a timee the variance of the displacement is
{(zny1 — xn)?) = 2De. The characteristic velocity averaged over this time irgkis

(a1 —@))V? <Q)1/2 |

€ €

which diverges as — 0. In other words, paths are continuous (siri¢e,+1 — z,)?) — 0 ase — 0), but not
differentiable. They are in fact fractal objects, with dimséon two, in contrast to one-dimensional smooth curves.

2.6 Further Reading

e L. E. Reichl, A Modern Course in Statistical Physi¢Edward Arnold). Chapters 5 and 6 give a basic
introduction to probability theory, the central limit theon and the Master equation.

F. Reif, Fundamentals of Statistical and Thermal PhygideGraw-Hill). Chapter 15 covers Master equa-
tions, Langevin equations and Fokker-Planck equations.

N. G. van KampenStochastic Processes in Physics and Chem{dtorth-Holland). A reasonably complete
and quite advanced reference book.

L. S. SchulmanTechniques and Applications of Path Integrat{@viley). Chapter 9 gives a careful account
of the link between Brownian motion and the so-called Wigntgral.



Chapter 3

Statistical mechanics in one dimension

In this chapter we treat some problems from statistical raeids that are selected partly because the mathematical
methods used to study them have close links with the ideasame et in the context of the path integral formu-
lation of quantum mechanics and in the theory of stochasticgsses. One common feature of the systems we
discuss, which makes their behaviour interesting, is tiey &ire built from particles (or other microscopic degrees
of freedom) which havénteractionsbetween them. In this crucial sense, they differ from thepsast problems

of statistical mechanics, which involve only non-intenagtparticles: the ideal classical gas of kinetic theory] an
the ideal Fermi and Bose gases of elementary quantum ialtistechanics. Interparticle interactions can lead
to behaviour quite different from that of non-interactingt®ems, with the possibility of spontaneous order and
symmetry breaking at low temperature, and phase transiasnemperature is varied. In general, it is impossible
or very difficult to treat the statistical mechanics of isteting systems exactly. It can be done, however, for a
variety of one-dimensional models, and the necessary igeés are introduced in this chapter: the criterion of
tractability is the second reason for the selection of @oitd we make here. As we will see, it is a general feature
of one-dimensional systems that they do not show phasettoarssor symmetry-breaking at non-zero temperature.
Nevertheless, they serve to show how interactions can hagatsolling influence. We will return to the topic of
phase transitions in interacting systems in higher dinoerssiusing approximate methods, later in the course. The
one-dimensional models we define in this chapter all havéaols\extensions to higher dimensions.

3.1 Lattice models

As often in physics, it is useful to make models that are idéshto include only the essential features of the prob-
lem we are concerned with. Details that are believed to ledeivant are omitted, so that these models are simple
but not completely realistic. For our present purposes, aglmodels with two ingredients: some microscopic
degrees of freedom, and a form for the energy. We will reféhédatter as the Hamiltonian for the model, even in
cases where there are no equations of motion, so that theodiitk to classical mechanics. We start with models
in which the microscopic degrees of freedom are defined asithe of a lattice. This lattice may represent the
atomic lattice of a crystalline solid, or it may simply be aangenient mathematical construct.

3.1.1 Ising model

Several interesting and much-studied models are inspiyetthd phenomenon of magnetism. In these models,
the microscopic degrees of freedom are intended to reprasemic magnetic moments: we will refer to them
asspins although we take them to be classical variables. In the Isishgase, the Ising spifi; at sitei of a
lattice is a scalar with two state$; = +1. We will consider a one-dimensional lattice, and take fieragnetic
exchange interactions of strengfh(a positive quantity) between neighbouring spins, so toafigurations in
which neighbouring spins have the same orientation arerlowenergy. We also include the Zeeman energy of
spins in an external magnetic field of strengtfin scaled units). The Hamiltonian is

H=—J> SiSix1—hY Si. (3.1)

It is sometimes useful to specify periodic boundary condgifor a system ol sites, by setting 1 = 51 and
taking the sums onin Eqg. (3.1) to run froml to N.

29
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In a ground state all spins have the same orientation, seht@dirst term ofH{ is minimised. Withh = 0 there
are two such states: (§; = +1 for all ¢, and (ii) S; = —1 for all i. Hence, at zero temperature, when the system
is in a ground state, there is long-range order. Alsa, &t0, the model has symmetry under global spin inversion
(the energy is unchanged if the directions of all spins arersed viaS; — —S;): this symmetry is broken in each
of the ground states. With # 0 there is a unique ground statg; = sign(h).

3.1.2 Lattice gas

A lattice gas model inludes some of the features presentalamon-ideal gas, but within a simplifying framework

in which atoms occupy sites of a lattice. Hard core repulbiginveen atoms is built in by allowing the occupation
numbern; of sitei to take only two valuesn; = 0 orn; = 1. In addition, there is an attractive energy between
atoms on neighbouring sites of magnituddeand the concentration of atoms is controlled by a chemictdrgial

1. The Hamiltonian is

H = —Vani_,_l — uZni. (32)

Both the Ising model and the lattice gas have microscopicedsgof freedom with two possible states, and one
can be mapped onto the other: for a lattice in which each sitezneighbours £=2 in one dimension) the
replacements; = 2n; — 1,4J =V, and2h — 2zJ = ;1 give Higing = Hiattice gas + CONStant.

3.1.3 ClassicaKY and Heisenberg models

Magnetic systems can also be represented using classinalthat are two or three component unit vectors, in
place of Ising spins, giving th&Y and Heisenberg models. In each case, writing the spin at site5;, with
|S;| = 1 and an external field &g the Hamiltonian is

H=-JY Si-Sip1—h-> 8. (3.3)

For theXY model we can alternatively use an an@jeo specify the orientation of spifi;, writing

H= fJZcos(GiH —0;) — hZcos(@i) . (3.4)

At h = 0 both these models are symmetric under global rotationsso$pins; they both also have continuous sets
of ground states, in which all spins are aligned but the comdiection is arbitrary.

3.1.4 Potts model

In some circumstances a symmetry other than rotational stnynis appropriate. In the-state Potts model,
microscopic variables; take an integer numberpossible states;; = 1...q, and the Hamiltonian is symmetric
under global permutations of these states, with

H:—J26(Ui,0’i+1), (35)

where we use the notatiorio;, 0;41) for a Kronecker delta. With ferromagnetic interactiods* 0), all o; are
the same in a ground state and theregsach states. Far = 2 the Potts model is equivalent to the Ising model.

3.2 Continuum models

As an alternative to these lattice models, it is also usefdkicribe such systems in terms of fields (the microscopic
degrees of freedom) that are defined as a function of conimapatial coordinatas(or = in one dimension). If
the underlying physical problem involves a lattice (as imgstalline solid), then a continuum description may
arise if we take a coarse-grained view of the system, in whitdrmation at the scale of the lattice spacing is
averaged out. In such an approach it is natural to replaceatésvalued lattice variables, such as Ising spins, by
fields that take values from a continuous range.
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3.2.1 Scalary* theory

A continuum model equivalent to the Ising model should beeamn a scalar fielgp(z), since Ising spins are
scalars. The Hamiltonian at= 0 should be invariant under global inversiptz) — —¢(z) and should have two
ground states, witly(x) = +¢y. In addition, it should favour energetically states in whigz) is constant, since
for the lattice model neighbouring spins have higher endtipey are oppositely orientated. These considerations

lead us to
_ J (dp(x)\® B
H= /dx [2 <—dx ) + V(p(x)) — ho(x) (3.6)
where the potentidl’ (¢ (x)) is chosen to have minima a{(z) = +¢y, and in its simplest form is
t o U 4
V(e(@) = 5¢%(@) + 16*(@). 3.7)

We requirex > 0 so that the energy has a lower bound; if in additian 0, thenV (p(z)) has a single minimum
aty(x) = 0, whereas fot < 0 it has two minima ap(z) = +(—t/u)'/2.

3.2.2 Continuum limit of the XY model

We can write down a continuum version of tR& model without making the step that took us from Ising spins to
the fieldy(x), since the states available to vector spins form a contisgeti Starting from Eq. (3.4), it is natural
to introduce a field(x) and write

e fufi (2

3.3 Statistical mechanics

> hcos(@(x))] . (3.8)

For completeness, we recall some of the main results obstati mechanics. Consider a configuration (or mi-
crostate) of one of the models introduced above. Its enargywen by the Hamiltoniaf{. When the system is
in equilibrium with a heat bath at temperatdfe then writing3 = 1/kgT, wherekg is Boltzmann’s constant,
the probability for it to adopt a particular microstate i®portional to the Boltzmann factexp(—S#H). The
normalisation constant for these probabilities is theip@ntfunction

Z=) e FH (3.9)

states

Here, the sum on states indicates literally a sum on disstates for the Ising and Potts models, and multiple
integrals on spin orientations at each site for the laffideand Heisenberg models, while for continuum models it
denotes a functional integral over field configurations. Webe concerned with thermal averages of observables:
averages over configurations, weighted with the Boltzmawtof. We use the notation

(Ly=271 Y e (3.10)

states

where. . . stands for the observable. One example is the internal grigrthe average energy of the system, which
can be calculated from the partition function via

0
E=(H)= ~ 98 In(2). (3.11)
Other thermodynamic quantities can also be obtained frap#rtition function. In particular, the (Helmholtz)
free energy is
F=—kgTIn(2) (3.12)

and the entropy is

(3.13)
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When we come to develop intuition about the behaviour of nwiestatistical mechanics, it is useful to
remember the expression for the entropy of a system in theogaanonical ensemble, willy’ accessible states:
S = kg In(W). In addition, it is helpful to recall that free energyis minimised for a system in equilibrium.

To characterise the behaviour of interacting systems, Wéwiparticularly concerned with thermal averages
of products of microscopic variables. For example, for gird model we are interested in the magnetisatifin
and the two-point correlation functiof$;S;). The partition function, viewed as a function of externakig, is
the generating function for these correlation functionsyled we allow the external field to take independent
valuesh; at each site. In particular, for the Ising model we have

10 1 02

Moreover, the magnetisation and the magnetic susceptibilitycan be obtained from derivatives with respect to
the strength of an external field that is uniform: for a syst#nv sites

(S;) In(2). (3.14)

N
m=2SVs =~ 2z and 8—7: :% S°1(SiS5) — (S:)(5)] - (3.15)

i=1 i,j=1

In a similar way, for the continuum theories we have intragtjcwe allow the external field to be a function
of position, h(z), so that the partition function is a functional, and thenctional derivatives give correlation
functions, as in Chapter 1.

The dependence of the two-point correlation function oresson provides a measure of the influence of
interactions on the behaviour of the system. In the high exatpre limit 3 — 0) all configurations are weighted
equally in a thermal average, spins fluctuate independeh#gch site, and the correlation function is short range,
meaning that it falls to zero at large separation (in facthis limit (S;S;)=0 unlessi=j). In the opposite limit
of zero temperature3( — oo), the system is in its ground state: as we have seen, all #p@msadopt the same
configuration and the correlation function is infinite-radgWe would like to understand in detail how behaviour
interpolates between these two limiting cases as temperaduies.

3.4 Transfer matrix method

The transfer matrix method provides a general formalisnsfdving one-dimensional models with short range
interactions in classical statistical mechanics. It cao dle formulated for systems in higher dimensions, but
is then tractable only in special cases. We will describ@iitd general system, but using the notation of the
one-dimensional Ising model, Eqg. (3.1).

A first step is to divide the one-dimensional system into &seof slices, analogous to the time steps used
in the path integral formulation of quantum mechanics. Tlees must be chosen long enough that interactions
couple only degrees of freedom in neighbouring slices. Wetiethe degrees of freedom in thth slice byS;
and write the Hamiltonian as a sum of terms, each involvirlg tre degrees of freedom in adjacent slices:

H=> H(Si Si1).

The Boltzmann factor, being the exponential of this sum,psaaluct of terms:

e T = HT(Szv Si+1) with T(S;, Sipr) = e PHEeSe) (3.16)

K2

Because interactions couple only adjacent slices, onlytéwas in this product depend on a giveén 7'(S;_1, .S;)
andT'(S;, S;+1). Moverover, summation of; acts just like matrix multiplication. This leads us to defthe
transfer matrixXT': for the case in whicl$; takes)M values (/=2 for the one-dimensional Ising model with only
nearest-neighbour interactions) it is &h x M matrix with rows and columns labelled by the possible vahfes
S; and S;;1, and matrix element'(S;, S;+1) as defined in Eq. (3.16). For a systemMfslices and periodic
boundary conditions (so thatuns from1 to V), the partition function is simply the matrix trace

Z=TrTV.

Alternatively, with fixed configurations fof; and .Sy, and without periodic boundary conditions, the partition
function is the matrix element
Z=TN"1(S,,SN).
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The advantage of the transfer matrix approach is that ithiscalculations are reduced to study ofnx M
matrix, independent of system si2& We will assume for simplicity thak/(.S;, Si+1)=H(Si+1,.5;) S0 thatT is
symmetric and its eigenvectos) can be chosen to form a complete, orthonormal set. We oréeaigbociated
eigenvalues by magnitude (the first is in fact necessarigjitipe and non-degenerate)y > |A1| > ... [Ap—1],
with

Tjo) = ala),  (alf)=dap and  T=)|a)dalal.

Using this notation, it is simple to write down a power of thenisfer matrix: we have
TV = " |e)AN (al.
The free energy per slice with periodic boundary conditigrtkerefore

F kT ksT
In

M-1
= _Tm(z) = —kpT'In(Xo) — ~ <1 + O; [Aa/Ao]N) :

In the thermodynamic limitly — 00), [Ao/Xo]¥ — 0for o > 1, and so the free energy densjty: limy o F/N
is simply
f=—kgTIn(X). (3.17)

Clearly, we can obtain other thermodynamic quantitiesuiog the energy densit¢’/N, the entropy density
S/N, the magnetisatiom and magnetic susceptibility by this route.

To determine correlation functions, one might imagine waLdth first evaluate a generating function dependent
on field valuesh; at each site. Within the transfer matrix apporach, howewés,is not convenient quantity to
consider, because if field values vary at different sitestithnsfer matrices are different for each slice and transfe
matrix products no longer have simple expressions in tefrpewers of the eigenvalues. Instead, we extend the
transfer matrix formalism by defining diagonal matri€g@svith diagonal element§'(.;, .S;) that are functions of
the degrees of freedom within a slice, chosen to reprodwecestijuired correlation function. For example, for the
one-dimensional Ising model witN sites and periodic boundary conditions, tak@#gs;, S;) = S; we have

T [T'CTV ]

Tr [T'CT*CTVN 7]
(Si) Tr [TV] :

and <S1S1+x> = Tr [TN]

As happened for the free energy density, these expressimpdifg greatly in the thermodynamic limit when
written in terms of the eigenvalues and eigenvectors ofrdmesfer matrix: they reduce to
Tr [T'CTN ]

and
. Tr [T'CT*CTN—~7] Ao \”
Jim Y] = (0[Cla)(alC]0) <A—O) : (3.19)

(e

In summary, diagonalisation of the transfer matrix prosidgath to calculating all quantities of physical interest.

3.5 Transfer Matrix solution of the Ising model in one dimenson

Let's illustrate these ideas by using the transfer matrpraach to solve the one-dimensional Ising model, Eq. (3.1).
We take the Hamiltonian for a single slice to be

h
/H(Sz, Si+1) = *JSZ'Si+1 — E(Sz + SiJrl) .

Note that there was an element of choice here: we have usedraeatyic form for the Zeeman energy, which will
in turn ensure that the transfer matrix is symmetric. Thesfer matrix is

_ ( exp(B[J+h])  exp(—BJ)
T < exp(=BJ)  exp(B[J — h)) > - (3.20)
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For simplicity, we will seth=0. Then the eigenvalues avg = 2cosh(5J) andA; = 2sinh(8J), and the
eigenvectors ar) = 2-1/2(1,1)" and|1) = 27/2(1, —1)T. The matrix representing the spin operator is

10
=0 5),

and its matrix elements in the basis of eigenstates®@€@|0) = (1|C|1) = 0 and(0|C|1) = (1|C|0) = 1.
We are now in a position to write down some results. From Eq.7(3 the free energy density is

f = —ksTIn(2cosh(8J)).

As a check, we should examine its behaviour in the high anddowperature limits. At high temperature  0),
f ~ —ksTIn(2). This is as expected from the relation between free enengygg and entropy, Eq. (3.13): in the
high-temperature limit neighbouring spins are equallglijkto be parallel or antiparallel, and so the entropy per
spin (from the general formulé = kg In(W), with W the number of accessible statesyis- kg In(2), while the
average energy i§H)=0. Conversely, at low temperaturg (& o), f = —J, which arises because in this limit
the system is in a ground state, with neighboring spins |ghrab that() = —N.J andS = 0. Beyond these
checks, the most interesting and important feature of aulréor the free energy density is that it is analytic in
temperature for all’ > 0. As we will discuss later in the course, phase transitioasasociated with singularities
in the free energy density as a function of temperature, aatyticity of f in the one-dimensional Ising model
reflects the absence of a finite-temperature phase tramsitlee model in fact has a critical point&t= 0, and f
is non-analytic there (compare the limifts— 0+ andT — 07).

What happens in the model at low temperatures is most cleardaled by the form of the correlation functions,
although for this we have to go to the two-point function. Bme-point function, or magnetisation is trivial:

(Si) = (0[C|0) = 0,

which is a consequence of symmetrytat= 0 under global spin reversal. The two-point correlation tiorc
between spins separated by a distanée

A\ _ 1
(SiSitz) = <)\—1> = exp(—|z|/¢) with €= In[coth(BJ)] .
0
We see that correlations decay exponentially with segaratiith a lengthscal€. This lengthscale, termed the
correlation length, increases monotonically with dedreagemperature and diverges s— 0. Its asymptotic
form at low temperaturedJ > 1) is
1 1 1 545

= In[coth(B8J)] - In[1 4 2e—2587] ~ee (3.21)

Useful physical insight into this result comes from a simpileture of typical states at low temperature. It is
clear that they consist of long sequences of parallel spiith,occasional reversals in orientation, as in Fig. 3.1.
In these circumstances it is natural to focus on the revgrsalled domain walls or kinks, as the elementary
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Figure 3.1: A typical low-temperature configuration of threeedimensional Ising model.

excitations in the system. Their average spacing sets tirelation length. Moreover, each domain wall costs
an energyJ, the difference between the two possible valued 6f5;,1. It also has an entropy associated with
it, since it can be placed between any oneXfl /¢) neighbouring pairs of spins, without disrupting the ovieral
arrangement of irregularly spaced kinks. An estimate oftbe energy for a chain df sites is therefore

F~ 2J§ - kBT§ In(¢). (3.22)

The actual value of ¢ at a given temperature can be estimated as the one that reé@siriq. (3.22), yielding
& ~ exp(248J) for BJ > 1, in reasonable agreement with our earlier, detailed céitomua
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3.6 Statistical mechanics in one dimension and quantum meahics

There is a general relationship between the statisticahar@cs of a classical systemdnt 1 dimensions at finite
temperature, and the (Euclidean-time) quantum theory adyAbody system id dimensions at zero temperature.
Under this mapping, thermal fluctuations in the classicatesy become zero-point fluctuations in the quantum
system. We will examine this relationship as it applies t® ¢ime-dimensional, classical statistical-mechanical
systems we have met in this chapter. For these examples,&iric=1, we haved=0, meaning that the quantum
theory is particularly simple: rather than being a theonydanany-body quantum system in a finite number of
dimensions, it involves just a single particle. In this wiy, d=0 we map the statistical-mechanical problem to
a problem in quantum mechanics, while 60 we would arrive at a problem in quantum field theory. In the
following, we establish three different variants of thisiocection. All are based on viewing the spatial dimension
of the statistical-mechanical system as the imaginary tirection for a corresponding quantum system.

3.6.1 Ising model and spin in a transverse field

Consider the transfer matri¥' for the one-dimensional Ising model. We want to view this las imaginary
time evolution operatoexp(—7Hgq/h) for a quantum system with Hamiltonigkiq, wherer is the duration in
imaginary time equivalent to the distance in the Ising mbeglveen neighbouring sites. Sirifas a2 x 2 matrix,
so mustl{q be. That suggests we should regatg as the Hamiltonian for a single spin of magnitusie= 1/2,
for which the Pauli matrices .., o, ando . provide a complete set of operators. Anticipating the fiealit, note

that with
(01
2=\ 1 o

anda a constant, one hasp(ao,) = cosh(a)1 + sinh(«)o, . Matching this against Eq. (3.20) far= 0, we
find that
T =¢e1+e P o, = Ac®O=

with tanh(a) = e~2%/ andA = /2sinh(23.J). In this way we can read off the Hamiltonian for the equivalen
quantum system:Hq /h = —ao, + In(A). In addition, we see that the lowest eigenvalyef #Hq is related to
the largest eigenvalue of the transfer matrixvi@\;) = —7¢g/h. Also, the inverse correlation length (in units of
the lattice spacing) is related to the splitting betweergtteind state and first excited state eigenvalugsgf we
havet=! = 7(e; — €)/h = 2a.

3.6.2 Scalary®* and a particle in double-well potential

For the one-dimensional Ising model, the mapping we havesgtsout between classical statistical mechanics
and quantum mechanics takes us to a quantum problem withte dimiensional Hilbert space, since the number
of possible states for an Ising spin is finite. By contrasg-dimensional statistical mechanical problems with
continuous degrees of freedom map onto quantum problerhsifihite-dimensional Hilbert spaces. In particular,
one-dimensional statistical mechanics problems wittontinuous degrees of freedom at each point in space are
equivalent to quantum problems involving a single partioleving inn dimensions.

Let’s examine how this works for one-dimensiondltheory, starting from Eqg. (3.6). The partition functign
for a system of lengtlL with fixed valuesp(0) andp(L) for the field atz=0 andxz=L is given by the functional
integral

z = [ Dlptw)e

over functionsp(z) satisfying the boundary conditions. Referring back to E¢h87) and (1.88), we see tha#

in the classical statistical mechanics problem plays tineeseole as the Euclidean actigfys in a path integral
expression for the Boltzmann factor arising in a quantunblem: we usel{q to denote the Hamiltonian of the
guantum problem. The translation dictionary is as follows.

Classical statistical mechanics Quantum mechanics
position imaginary time

system lengthL imaginary time intervalgh
field ¢(x) particle coordinate
thermal energykpT’ Planck’s constant

exchange stiffness/ particle massm
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The action is that for a particle of magsmoving in a potential/ (z): reversing the steps of section 1.2.3, we can
read off the quantum Hamiltonian as
1 d?
Hog=——=-—+ V(o).
Knowledge of the eigenvalueg and eigenfunctioniy) of Hq, which satisfy#q|a) = €.|c), gives access to
thermodynamic quantities and correlation functions far ¢hassical system. In particular, for a classical system
extending overco < = < oo, the arguments leading to Eq. (3.19) also give

(p(z1)p(z2)) = Z<0|<p|a> {ar]¢|0) e Blea—co)|z1—zs]

[e3%

(3.23)

Now, although we cannot find the eigenfunctiong4y exactly, we know quite a lot about them for the case of
interest, in which/ () is a quartic double-well potential. In particular, sifcé—¢) = V (), all eigenfunctions
have definite parity. The ground state wavefunctigri)) has even partiy and is nodeless, while the first excited
state wavefunction{p|1), is odd, having a single node at = 0. From this it follows that(0|¢|0) = 0 and
(0]¢|1) # 0. The inverse correlation length, governing the corretafimction at large separatidm; — 2| is
thereforet =1 = B(e1 — o). At low temperatures, the form of the lowest and first excéigtnstates is as sketched
in Fig. 3.2. In the language of quantum mechanics, the sittetween eigenvalues — ¢, arises because of
tunneling through the barrier between the two minim& ¢p) and is exponentially small for smdll, which leads

to a correlation length exponentially largefnas for the Ising model, Eq. (3.21).
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Figure 3.2: Left: the potential’(¢) appearing intq, Eq. (3.23). Centre and right: form of the lowest two
eigenfunctions of{q, (¢|0) and(y|1), for smallT’

3.6.3 One-dimensionaKY model and the quantum rotor
An exactly parallel treatment can be applied to X3¢ chain, defined in Eq. (3.8). For this case we find

1 42

o= T 2p2 do2

subject to the condition that eigenfunctions are periodi¢with period27. The eigenfunctions and eigenvalues
are of course

(0n) = (2m) /2 exp(ind) and e, =n?/(26%J) with n=0,+1,....

The correlation functions we use to characterise behawbtine system should be constructed in a way that
respects the periodic nature of the coordinateAn obvious candidate ig??(*1)=0(=2)ly  As in our previous
examples, we can express this in terms of the eigenfunciiod®igenvalues dflq. We find

<ei[0(x1)—0(x2)]> — Z<O|e—i0|n> <n|ei9|0>e—,8(en—eo)|x1—x2| )

n

The correlation length for this model is therefare= [3(e; — €0)]™' = 2J/(kgT). As for the Ising model,
¢ diverges in the limit" — 0, which is expected since f&f = 0 the system adopts a ground state with)
indepndent ofc. The divergence of, howover, is much less rapid in t3&Y model than in the Ising model. The
reason for this is that, whereas excitations in the Ising@hodst a minimum energy, the kink energy, long
wavelength twists of («) in theXY model can have arbitrarily low energy. As a consequenceytilexcitations
are more effective in disordering tB€Y model at low temperature than for the Ising model, leading shorter
correlation length in th&Y model.
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3.7 Further reading

e K. Huanglntroduction to Statistical Physi¢g€RC Press). A good review of ideas from statistical medasni
that form the background for this chapter.

¢ J. M. YeomansStatistical Mechanics of Phase Transitiadi@3UP). Chapters 2 and 5 give an introduction to
lattice models and transfer matrix methods.

e J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. NewmEme Theory of Critical Phenomeri@UP).
Chapter 3 gives a self-contained introduction to modelstarichnsfer matrix methods.
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Chapter 4

Classical Field Theory

In this chapter, we will develop the Lagrangian approacth&dlassical theory of fields, focusing on field the-

ories with scalar and vector fields. Our discussion will dalate in the discussion of scalar electrodymanics, a
theory which couples Maxwell's theory of electrodymanicstalar fields. As we will see, symmetries play an

important role in constructing all these theories. Traditilly, symmetries of physical theories have often been
identified only after a proper mathematical formulationtod theory. For example, the fact that Maxwell’s the-

ory of electrodynamics is covariant under Lorentz transitions was only discovered significantly after its the

first formulation. In modern theoretical physics, this it@hal relation between theories and their symmetries
is frequently reversed. One starts by identifying the symni@® of the given physical situation and then writes

down the (most general) theory compatible with these symiaset This approach has been immensely fruitful

and has played a major role, for example, in constructingthedard model of particle physics. It is, therefore,

crucial to understand the relevant symmetries (or groupddathematical language) and the objects they act on
(representations, in Mathematical language) first.

4.1 Symmetries

4.1.1 Definition of groups and some examples

The word "symmetry” in Physics usually (although not alwaefers to the Mathematical structure of@up, so
we begin with the following definition.

Definition A groupG is a set with a map: G x G — G ("multiplication”) satisfying the three conditions
1) g1-(g92-93) = (91 - g2) - g3 forall g1, g, g3 € G (associativity)

2) There exists an € GG such thay - ¢ = g for all ¢ € G (neutral element)

3) For eachy € G there existg~! € G suchthaty - g~ ! = e (inverse element)

It is easy to prove from the above axioms that the neutral etmis unique, that it is also the neutral element
when acting from the left, thatis- g = g for all g € G, that the right-inversg~! is uniquely defined for each
g € G and that itis also the left-inverse, thagis! - ¢ = e. If, in addition to the three axions abovg, g2 = g2- g1
is satisfied for ally,, go € G the group is called\belian

Well-known groups are the integers with respect to addiiod the real and complex numbers with respect to
addition and multiplication. All these groups are Abeliklere are some more interesting groups which will play
a role in our field theory constructions. Consider first theupZ = {0,1,--- , N — 1} with "multiplication”
defined byn, - no = (n1 + n2) mod N. This group is obviously finite (that is, it has a finite numbg&elements)
and Abelian. Another Abelian example is given by the complembers of unitlengthi/ (1) = {z € C||z| = 1},
with group multiplication the ordinary multiplication obmplex numbers. Not only is this group infinite but, as
it corresponds to the unit circle in the complex plane, itls&dcontinuous” and one-dimensional. Examples for
non-Abelian groups are provided by the unitary gro8pgn) which consist of all complex x n matricesU
satisfyingUTU = 1 anddet(U) = 1, with ordinary matrix multiplication as the group multigdition and the unit
matrix as the neutral element. Matrix multiplication doegéeneral not "commute” which causes the non-Abelian
character of the unitary groups. The simplest non-triviaineple of a unitary group on which we will focus later
is SU(2). Solving the unitary condition§ U = 1 anddet(U) = 1 by inserting an arbitrarg x 2 matrix with

39
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complex entries it is easy to show tt#f (2) can be written as

SU(2) = {( L J ) | a,8 €Cand|af’ + |8 = 1} . 4.1)
This shows that we can think &fU(2) as the unit sphere in four-dimensional Euklidean space feenie, that
it is a three-dimensional continuous group. Such contiswgroups are also calldde groupsin Mathematical
parlance and we will discuss some of their elementary pt@sein due course. We can solve the constrainion
andgin Eqg. (4.1) by settingy = /1 — |B]2¢'” and8 = — 32 + i/3; which leads to the explicit parameterization

B2 + i1 1—|[B]2e~ )7 .

of SU(2) in terms of31, 52 ando.

4.1.2 Representations of groups

Let us denote byzl(n) the group of invertible: x n matrices with real (or complex) entries. We can think of
these matrices as linear transformations acting on-dimensional real (or complex) vector spdée~ R"™ (or
V ~C").

Definition A representatiot of a groupG is a mapR : G — GL(n) which satisfiesR(g1 - g2) = R(g1)R(g2).

In other words, a representation assigns to each elemergrofug a matrix such that these matrices multiply "in
the same way” as the associated group elements. In this tnaygroup is realised or "represented” as a set of
matrices. Given a representationty n matrices we can also think of the group as acting omtiémensional
vector spac&’, via the representation matricB$g) € Gl(n). The dimensiom of this vector space is also referred
to as thadimension of the representatiolm a physics context, the elements of this vector space edahdught of

as the fields (more precisely, the fields at each fixed poirgace-time) and, hence, group representations provide
the appropriate mathematical structure to describe synesedcting on fields. The mathematical problem of
finding all representations of a given group then translatesthe physics problem of finding all fields on which
the symmetry can act and, hence, amounts to a classificatial possible objects from which a field theory
which respects the symmetry can be "built up”. We will discagplicit examples of this later on. For now, let us
present a few simple examples of representations. Thaltrepresentation which exists for all groups is given by
R(g) = 1, forall g € G, so each group element is represented by the unit matrix imem glimension. For the
groupZy and each integer we can write down the representation

[ cos(2mgn/N)  sin(2mgn/N)
Ry(n) = ( —sin(2wgn/N)  cos(2mqn/N) ) ’ (4.3)

by real two-dimensional rotation matrices over the vectcgV = R?, wheren = 0,..., N — 1. We can
restrict the value of q to the randge..., N — 1 (as two values of; which differ by N lead to the same set
of matrices) and this provides, in fact, a complete list gfresentations foZ,. Equivalently, we can write
down the same representations over a one-dimensional esnapttor spac& = C where they take the form
R,(n) = exp(2mign/N). If, for a given representatioR,, we denote elements of the vector spéte- C by &
then the group acts on them &s— R,(n)® = exp(2mign/N)®. In this case® is said to have "charge™q in
physics language.
Representation®, for U(1) (onV = C) are just as easily obtained by writing

Rq(ei“) = el (4.4)

wherea € [0, 27]. For R, to be continuous when going around the cirgleust be an integer, however, unlike in
theZy case it is not otherwise restricted. The above representafl, for ¢ an arbitrary integer, in fact, provide
all (continuous) representations &f(1). As before, a (complex) field transforming @s— R, (e’*)® is said
to have charge-q. Also note that charge = 0 corresponds to the trivial representation. The grotigén)
are already given by matrices, so we can think about thempsgenting themselves. This representation-is
complex dimensional and is also called thedamental representatio®n a complex vectob = (¢1,...,¢,) IS
acts asb — U®, whereU € SU(n). However, this is by no means the only representatidiififz), in fact, there
is an infinite number of them, as we will see.
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There are a number of general ways of constructing new reptatons from old ones which should be men-
tioned. For a representatidd: G — Gl(n) of a groupG there is acomplex conjugate representati®t defined
by R*(g) = R(g)*, that is, each group element is now represented by the caneplgugate of the original
representation matrix. Applying this &lU(n) leads to thecomplex conjugate of the fundamental representation
U — U™*. For two representations; and R, of a groupG with dimensions:; andn, one can consider thdirect
sum representatioR; & Ry with dimensionm; + n. defined by the block-diagonal matrices

Ri(g) 0
Ri®R = . 4.5
(mom)e) = (L0 @5)
A representation such as this is calteducibleand, conversely, a representation which cannot be sydisimialler
blocks as in (4.5) is calledreducible For example, the direct sum representation

R(e™) = diag(e'™, e ™) (4.6)

of U(1) consisting of a charge-1 and —1 representation realises an explicit embeddindg/éf) into SU(2).
Another, less trivial way of combining the two represemtasi?; andRs to a new one is theensor representation
R1 ® Ry with dimensionnny defined by(R; ® R2)(g9) = Ri(g) x Ra(g) L. In general, a tensor representation
R1 x Rs is not irreducible and decomposes into a sum of irreducépeasentation®(¥), so one can write

Ry @ Ry = PRV (4.7)
This is also referred to a&lebsch-Gordon decomposition

4.1.3 Lie groups and Lie algebras

To understand representations of Lie groups we should lothe# structure more closely. The matrickkof a

Lie group form a continuous (differentiable) family = M (t) wheret = (¢!, ..., t™) arem real parameters and

we adopt the convention thaf (0) = 1. An example for such a parametrisation for the cas8ldf2) has been

given in Eq. (4.2), where the three parameters(&rgt?; t3) = (81, 52, 0). Let us now look in more detail at the

neighbourhood of the identity element, corresponding talbmalues of the parametetswhere we can expand
oM

M(t) =1+ ZtiTi +O(t?), with T; = 5 (0). (4.8)

The matricesT; are called thegeneratorsof the Lie group and the vector spagéG) = {t'T;} spanned by
these matrices is referred to big algebra In the case o8U(2), the generators are given bytimes) the Pauli
matrices, as differentiating Eq. (4.2) shows. In genehalé is a theorem which states that the group (or, rather, a
neighbourhood of the identity of the group) can be recoestdifrom the Lie algebra by thexponential map

M(t) = exp(t'T) . (4.9)
Now consider two matriced/ (t) andM (s) and the product
M) M(s) T M(§)M(s) = 1+ >t [T, Ty] + - (4.10)
i.J
where[-, -] is the ordinary matrix commutator. Since the product on thiSlof Eq. (4.10) is an element of the
group, we conclude that the commutatfifs 7;] must be elements of the Lie algebra and can, hence, be written

as
[T, T5] = fi;" Tk . (4.12)

The coef‘ficientg“ij’C are called thestructure constantsf the Lie algebraC(G). More accurately, the Lie-algebra
L(G) is then the vector spac(G) = {t"T;} together with the commutator bracket:]. The concept of a
representation can now also be defined at the level of thelgébea.

Definition A representatiom of a Lie algebral is a linear map which assigns to elemefte £ matricesr(T)
such thafr(7),r(S)] = r([T, S]) forall T, S € L.

1For two matrices\ andN the productM x N can be thought of as the matrix obtained by replacing eack gni/ by a block consisting
of that entry timesV. A useful property of this product &1 x N1)(M2 x N2) = (M1 Msz) X (N1N2).
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Note this is equivalent to saying that the representatiomices(7;) commute in the same way as the generators
T;, so[r(T;),r(Ty)] = fij"”’r(Tk), with the same structure constarﬂ§"”’ as in Eq. (4.11). Itis usually easier to
find representations of Lie algebras than representatiar®aps. However, once a Lie-algebra representation has
been found the associated group representation can bestected using the exponential map (4.9). Concretely,
for a Lie-algebra representatidn — r(7;) the corresponding group representation’ig: — ¢*'7(7:), Recall

that the dimension of the representatiois defined to be the dimension of the vector space on whichethier
sentation matrices(7") (or the associated group elements obtained after expatiegl act, that is, it is given by
the size of the matriceqT"). This dimension of the representatioiis not to be confused with the dimension of
the Lie-algebra itself, the latter being the dimension efltie algebral(G) as a vector space of matrices.

Example SU(2)

Let us see how all this works for our prime examglé(2). Consider arSU(2) matrix U close to the identity
matrix and writ€ U = 1 +4T + ..., whereT is a Lie algebra element. Then, evaluating the conditiéhs = 1
anddet(U) = 1 at linear level inT, one finds the constrainfE’ = 7 andtr(T) = 0. In other words, the
Lie algebral(SU(2)) of SU(2) consists of all traceless, hermitian< 2 matrices. Note that this space is three-
dimensional. A convenient basis of generatgr®r this Lie algebra is obtained from the Pauli matriegsRecall
that they satisfy the useful identities

005 = 51j1 + iEiijk y [O’i, O'j] = 2Z.€ijko—k y tI‘(O’l'O'j) = 251] . (412)

Hence, the Lie algebra &U(2) is spanned by the generators
1 . )
Ti = 50 with 7, 7] = €67k , (4.13)

and the structure constants are simply given by the Levit&Ciensor. While the dimension of the Lie algebra
L(SU(2)) is 3 (as it is spanned by three Pauli matrices), the dimensionesf(2) representation defined by the
Pauli matrices i€ (since they ar@ x 2 matrices).

Finite SU(2) matrices are then obtained by exponentiating

U = exp(it'n;) = exp(it'c;/2) . (4.14)

Note that the generatag corresponds to th& (1) subgroup (4.6) o8U(2). The commutation relations (4.13) of
theSU(2) Lie algebra are identical to the commutation relations efahgular momentum operators in quantum
mechanics. Hence, we already know that the finite-dimeasi@presentations of this algebra can be labelled
by a "spin” j, that is an integer or half-integer numbes= 0,1/2,1,3/2,.... For a givenj the dimension of the
representation i2j + 1 and the representation space is spanned by gjateswherem = —j, —j+1,...,5—1,.
The two-dimensional representation foe 1/2 of course corresponds to the explicit representation céliebra
in terms of Pauli matrices which we have written down abovge Tomplex conjugate of the fundamental is also
a two-dimensional representation and, on purely dimemsigrounds, must also be identified with the= 1/2
representation.

We also know from quantum mechanics that the tensor prodiaioorepresentations characterisedjpyand
j= decomposes into the irreducible representations yviththe rangej; — ja|, |j1 — j2| + 1,...,41 + j2. This
is an explicit example of a Clebsch-Gordon decompositidris tustomary to refer to representations by their
dimensions, that is, write for example, thie= 1/2 representation a2 (or 2 for the conjugate) and thg = 1
representation &. With this notation, examples 8fU(2) Clebsch-Gordon decompositions are

202=163, 203=264. (4.15)

Actions should be invariant under a symmetry group and, &eibés of particular importance to understand the
singlets which occur in a Clebsch-Gordan decompositiorey™ill tell us about the invariant terms which are
allowed in an action. For example, if we have a fi@dvhich transforms as a doublet und#d(2), the first of
Egs. (4.15) tells us that we should be able to write a quadtetim in®, corresponding to the direction of the
singlet on the right-hand side.

Example SO(3)
Another important Lie group iISO(3), the group of three-dimensional rotations, consistingeaf3 x 3 matrices

2In the physics literature it is conventional to include adaof : in front of the generatorg'.
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det(A) | A% name| contains| given by
T T

+1 >1 | Ll |14 Ll

+1 <-1|rt [pr PTLL

—1 >1 [t |pP pPLL

—1 <-1|L* |T TLL

Table 4.1: The four disconnected components of the Lorenizy The union., = L1 U Lﬁr is also called the
proper Lorentz group anbl’ = LTFULT, is called the orthochronos Lorentz group (as it consistsofsformations
preserving the direction of timeLl is called the proper orthochronos Lorentz group.

O satisfyingO” O = 1 anddet(O) = 1. Writing O = 1 + 4T with (purely imaginary) generatofs, the relation
OTO = 1 impliesT = T and, hence, that the Lie-algebras(3) consists of} x 3 anti-symmetric matrices
(multiplied by3). A basis for this Lie algebra is provided by the three masit; defined by

(Ti)jk = —ieijk N (4.16)

which satisfy the commutation relations
(T3, T;] = ey Tk - (4.17)

These are the same commutation relations as in Eq. (4.13hande, th€’; form a three-dimensional (irreducible)
representation of (the Lie algebra &f)J(2). This representation must fit into the above classificatif1@(2)
representations by an integer or half-integer numend, simply on dimensional grounds, it has to be identified
with thej = 1 representation.

4.1.4 The Lorentz group

The Lorentz group is of fundamental importance for the amesion of field theories. Itis the symmetry associated
to four-dimensional Lorentz space-time and should be egdoy field theories formulated in Lorentz space-time.
Let us begin by formally defining the Lorentz group. With treréntz metrie) = diag(1, —1, —1, —1) the Lorentz
groupL consists of real x 4 matricesA satisfying

ATpA =1, (4.18)

Special Lorentz transformations are the identityparity P = diag(1, —1, —1, —1), time inversiol” = diag(—1,1,1,1)
and the producPT = —1,. We note that the four matricdd4, P, T, PT} form a finite sub-group of the Lorentz
group. By taking the determinant of the defining relatiori®.we immediately learn thatet(A) = +1 for all

Lorentz transformations. Further, if we write out Eq. (4.®8h indices
nuuAupAua = Tpo (419)

and focus on the componept= ¢ = 0 we conclude thatA%)? = 1 + >°,(A%)? > 1, so eitherA% > 1
or A% < —1. This sign choice fon\’;, combined with the choice fatet(A) leads to four classes of Lorentz
transformations which are summarised in Table 4.1. Alse et the Lorentz group contains three-dimensional
rotations since matrices of the form
1 0
A= ( 0 0 ) (4.20)

satisfy the relation (4.18) and are hence special Loreatisformations as long @3 satisfiesO? O = 13.
To find the Lie algebra of the Lorentz group we wilte= 1,4 i7"+ . .. with purely imaginaryl x 4 generators
T. The defining relation (4.18) then implies for the genemtbatT = —nT7y, soT must be anti-symmetric
in the space-space components and symmetric in the spaeetimponents. The space of such matrices is six-
dimensional and spanned by

0 00 00 i 0 00 0 i
0 0 i 000 0000 0000

l_(o Ti)’Kl_ o000 | ®=liooo]| ® o000 #D
0000 0000 i 000
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Jyd—) dimension| name symbol

(

(0,0) 1 scalar 0
(1/2,0) 2 left-handed Weyl spinor | x,
(0,1/2) 2 right-handed Weyl spinof xr
(1/2,0)® (0,1/2) | 4 Dirac spinor P
(1/2,1/2) 4 vector A,

Table 4.2: Low-dimensional representations of the Lorgnbzip.

whereT; are the generators (4.16) of the rotation group. Given thieegltling (4.20) of the rotation group into
the Lorentz group the appearance of fieshould not come as a surprise. It is straightforward to warktbe
commutation relations

[Ji, JJ] = ’L'Giijk 5 [Ki, Kj] = —’L'Giijk 5 [Ji, Kj] = ieiijk . (422)

The above matrices can also be written in a four-dimensiomalriant form by introducing six x 4 matricess ..,
labelled by two anti-symmetric four-indices and defined by

(o)’ o = 1Mo — Nuoml) - (4.23)

By explicit computation one finds that = %eijkajk andK; = oy;. Introducing six independent parametefs,
labelled by an anti-symmetric pair of indices, a Lorentngfarmation close to the identity can be written as

=05+ €lg;. (4.24)

APy~ 6P, — %e””(aw)po

The commutation relations (4.22) for the Lorentz group aey/¢lose to the ones f&U(2) in Eq. (4.13). This
analogy can be made even more explicit by introducing a nesis lod generators

1
JE = E(Ji +iK;) . (4.25)

In terms of these generators, the algebra (4.22) takes the fo
[T, T =degndis, 1,071 =0, (4.26)

thatis, precisely the form of two copies (a direct sum) of 81(2) Lie-algebras. Irreducible representations of the
Lorentz group can therefore be labelled by a pair, j—) of two spins and the dimension of these representations
is(2j++1)(2j-+1). Alist of a few low-dimensional Lorentz-group represeiutas is provided in Table 4.2. Field
theories in Minkowski space usually require Lorentz ingage and, hence, the Lorentz group is of fundamental
importance for such theories. Since it is related to the sgtrigs of space-time it is often also referreceaternal
symmetryof the theory. The classification of Lorentz group represgms in Table 4.2 provides us with objects
which transform in a definite way under Lorentz transformadi and, hence, are the main building blocks of
such field theories. In these lectures, we will not consigémas in any more detail but focus on scalar fields
¢, transforming as singlets) — ¢ under the Lorentz group, and vector fields, transforming as vectors,
A, — ANJSA,.

4.2 General classical field theory

4.2.1 Lagrangians and Hamiltonians in classical field theor

In this subsection, we develop the general Lagrangian amdilkbemian formalism for classical field theories.
This formalism is in many ways analogous to the Lagrangiahtdamiltonian formulation of classical mechan-
ics. In classical mechanics the main objects are the gésedatoordinates; = ¢;(¢) which depend on time
only. Here, we will instead be dealing with fields, that is dtians of four-dimensional coordinates= (z*)

on Minkowski space. Lorentz indicgsv,--- = 0,1,2,3 are lowered and raised with the Minkowski metric
(Nu) = diag(l, —1,—1,—1) and its inversey"”. For now we will work with a generic set of fields, = ¢, (z)
before discussing scalar and vector fields in more detailetibsequent sections. Recall that the Lagrangian in
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classical mechanics is a function of the generalised coatds and their first (time) derivatives. Analogously, we
start with a field theory.agrangian density. = L(¢4, 9,,¢,) Which is a function of the fields, and their first
space-time derivative3, ¢,. The field theory action can then be written as

S = /d‘*z,c(gba(z),ama(x)) , (4.27)

where the integration ranges over all of Minkowski spacer. st task is to derive the Euler-Lagrange equations
for such a general field theory by applying the variationaigple to the above action. One finds

= 05 6 i @) 0un@) = [ {8_5 Son(d) L 50.0(%)
0 = S = M@(m)/d xﬁ(‘bb(:ﬂ)vauﬁbb(x))f/d T | oo 50n@ T 00 Soeta) |42
_ an [OL 0L }6¢b(§:)<a_ﬁ oL >
/ o {5% 8“5(%«51)) 0da(r)  \O¢q a“a(aﬂ%) (2) (4.29)
where we have used the generalisation of Eq. (1.17)
0u(Z) _ <4 -
5¢a(x) 030%(w — 7) (4.30)

in the last step. Further, we have assumed that the bourgfanywthich arises from the partial integration in the
second last step vanishes due to a vanishing variation aitynfHence, the Euler-Lagrange equations for general

field theories take the form or or
0y———— —=0. 4.31
H 3(Opda) 00 (4-31)

With the conjugate momentdefined by
oL
¢ = 4.32
3(000) @32

theHamiltonian density{ and theHamiltonian H can, in analogy with classical mechanics, be written as

H=r"0ps— L, H= / BrH . (4.33)

4.2.2 Noether's theorem

In classical mechanic®oether’s theoremelates symmetries and conserved quantities of a theorywiiVaow
derive the field theory version of this theorem. Let us stdthwa general set of infinitesimal transformations
parameterised by small, continuous paramet&i@nd acting an the fields by

ba (1) = ¢ (x) = Pa(x) + Poo(x)e™ , (4.34)

where®,, () are functions which encode the particular type of symmaettipa. We assume that these transfor-
mations leave the action (4.27) invariant and, hence, ch#rgLagrangian density by total derivatives only. This
means the transformation of the Lagrangian density is ofadha

L— L+ e 9,A (), (4.35)

with certain functions\# (z) which can be computed for each type of symmetry action. Letowscompare this
variation of £ with the one induced by transformation (4.34) of the fieldse@nds

oL . oc .

L — L+ %éaae + m&u@aae (436)
oL oL oL

= L+€%0 (7(1),1&) —” <8 _— — > Do 4.37

“\ 90,0 " 90u00) 00, (@37

The last term vanishes thanks to the Euler-Lagrange equsattb31) and equating the remaining variation of
with the one in Eq. (4.35) it follows that

oL
Oujh =0 where jh=_——F—=0s — AL

A Ondrn) b (4.38)
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Hence, for each symmetry generat6rwe obtain aconserved currenj#, that is, a current with vanishing diver-
gence. Each such current can be used to defommaerved charg€,, by

Qu = / ) (4.39)
Using Eq. (4.38) and assuming that fields fall off sufficigmépidly at infinity it follows that
Qoz = /d3$ 80]2 = /dswaijai =0 ’ (440)

and, hence, that the charg@s are indeed time-independent.

4.2.3 Translation invariance and energy-momentum tensor

Let us apply Noether’s theorem to the case of translatiospate-time, acting on the fields as
¢a() = o + a) = ¢ (x) + a” Oy pa () . (4.41)

The role of the symmetry parametefsis here played by the infinitesimal translatiarts Therefore, the index
which appears in the general equations above becomes atipadedexv. Under a translation the Lagrangian
density changes as

L—L+ad"0,L=L~+a"0,(d8L) . (4.42)

Comparing the last two equations with the general formu#a®4) and (4.35) we learn that,, = 0,¢, and
A¥ = §H L. Inserting this into the general result (4.38) leads to faurentsr’*, = j# given by

oL
T, = Oypa — L . 4.43
D Oe) ¢ (4.43)

For a translation-invariant theory they are conserved,ishthey satisfyd, T*, = 0. The tensofl'*, is called the
energy-momentutensor and its associated charges

P, = / I’z T’ (4.44)

represent the conserved energy and momentum of the systguarticular, the conserved enerfly is explicitly

given by
P—/d%( oL a¢—£)—/d3xH—H (4.45)
’ 2(Doda) ’ '

that is, by the Hamiltonian (4.33).

4.2.4 How to construct classical field theories

Before we move on to examples, it may be useful to presentc@piefor how to construct explicit field theories.
The standard steps involved are:

e Choose a group which corresponds to the symmetries of tleeythBlormally, the symmetries include the
external symmetrythat is Lorentz symmetry. In addition, there mayibternal symmetriesvhich do not
act on space-time indices but internal indices. (We will egglicit examples of such internal symmetries
shortly.)

e Choose a set of representations of the symmetry group. s fhe field content of the theory and the
transformation properties of the fields.

e Write down the most general action invariant under the chegenmetry (with at most two derivatives in
each term) for the fields selected in the previous step. Niynmaly polynomial terms in the fields are
considered and an upper bound on the degree of the polyrimiahposed (for example by requiring that
the theory does not contain (coupling) constants with neganergy dimension).
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4.3 Scalar field theory

4.3.1 Asingle real scalar field

Lagrangian and equations of motion

In a Lorentz invariant field theory, the simplest choice dfffieontent is that of a single real scalar figld= ¢(x),
which corresponds to a single representation of the Lomgmozp with(j+, - ) = (0,0). The Lagrangian density
for this theory is given by

£= 10,000 - V(6). (4.46)

where the first term is referred to &metic energyandV = V(¢) is the scalar potential Let us discuss the
dimensions of the various objects in this Lagrangian. Theddrd convention in particle physicsisto ket ¢ =

1, so that both time and space are measured in terms of inuegsgyeunits and the action has to be dimension-less.
With this convention, the measuwiéz has—4 energy units and hence, for the action to be dimensionlessged
each term in the Lagrangian densfiyo be of energy dimension4. Given that the derivatives, have dimension
one, the scalar field must have dimension one as well, sohkdtihetic energy term has overall dimensian
Then, for a monomial term,,¢™ with coupling\,, in the scalar potential to be of dimensiadrthe couplingh,,
must have dimensiofi— n. If we want to avoid couplings with negative energy dimensi¢which normally cause
problems in the associated quantum theory) we need toatestd 4 and, hence, the scalar potential has the form

_ 1 2,2 1 3 1 4
V= omPe? 4+ ghad® + 50t (4.47)

(A possible linear term irp can be removed through a re-definitiongby a shift.) Note thain and A3 have
dimensionl and X is dimensionless. The quadratic termlinis called amass termwith massm and the other
terms represent couplings. Applying the Euler-Lagrangeaéqgns (4.31) to the above Lagrangian leads to the
equation of motion

Op+V'(¢) =0 (4.48)

for ¢, whered = 0,,0" and the prime denotes the derivative with respeet tBor non-vanishings or A solutions
to this equation are not easy to find.

The free equation of motion and its general solution
In the free case, that is for couplings = A = 0, the equation of motion reduces to the so-caléein-Gordon
equation

(O+m*)¢p=0, (4.49)

for which a general solution can be written down. To do thismgert the Fourier transform
o(x) = / dk e p(k) (4.50)
of ¢ into the Klein-Gordon equation, resulting in
(O+m?)¢ = —/d4:z: e R (k2 —m?)p(k) = 0. (4.51)

Since the Fourier transform can be inverted we conclude (tat- m?)p(k) = 0 and, hence, thab can be
written in the forma¢(k) = §(k? — m?)@(k) for some functionp. Inserting this result for into the Fourier
transform (4.50) and usiny

§(k* —m?) L (0(ko —wy) + 0(ko +wy)) , wx = VKk?+m? (4.52)

- 2wk

one finds, after integrating ovég, that

o(x) = /d?’l; (a+(kz)e_”“” + ai(k)eik”“') . (4.53)

$This follows from the well-known delta-function identisy(f () = 3=, . f (z0)=0 m&x — x0).
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where we have defined the measure .
-~ d°k
Pk = —— 4.54
(27)3 2wk ( )

which is Lorentz invariant as a consequence of Eq. (4.52)thEy the coefficients are defined as(k) =
(27)3@(wy, k) anda_(k) = (27)33(—wk, k)* and the four-vectok in the exponents is now understood as
(ku) = (wk, k). We note from Eq. (4.54) that

2unc 3 (k — q) . (4.55)

is Lorentz invariant as well and can be viewed as a covariargion of the three-dimensional delta function. Up
to this point we have, effectively, solved the Klein-Gordmuation for a complex scalar field. However, imposing
a reality condition on the solutions is easy and leads;t¢k) = a_ (k) = a(k). The final result for the general
solution of the Klein-Gordon equation for a real scalar fitlein reads

o(z) = / Pk (a(k)e™™ + a*(k)e'™) . (4.56)

Hamiltonian, symmetries and conserved currents
We now return to the development of the general formalisranEq. (4.32) the conjugate momentunis given

by
7= Oooh (4.57)

and, using Eg. (4.33), this implies the Hamiltonian density

H= %772 + %(qu)Q +V. (4.58)

For the stress energy tensor we find by inserting into Eq3{4.4

1
T,uu = u¢av¢ - §nuvap¢ap¢ =+ UWV . (459)

In accordance with the general formula (4.45) we thereforflor the energy
1 1
Py = /d3xT00 = /d% (§w2 + 5(qu)2 +V) = /d%%. (4.60)

Our theory is also invariant under Lorentz transformatiand from Noether’s theorem we expect associated con-
served currents which we will now derive. First, recall fr&. (4.24) that an infinitesimal Lorentz transformation
onz* can be written ag* — 2* + €, z” wheree,,, is anti-symmetric. On the field this transformation acts as

o) = ¢(z —ex) = d(x) + 2,0, 0(x) (4.61)
and a similar transformation law holds for the Lagrangiamsity
L—=L+e"0,(00x,.L) . (4.62)

Comparing with Eqgs. (4.34) and (4.35) we learn that the sytnmparameters® are here given by*”, so we
have to replace the indexin our general equations with an anti-symmetric pair of sptime indices. Further,
we have®,,, = 2z(,0,j¢ andAf,, = 2:1:[H65]L‘. Inserting this into Eq. (4.38) we find the conserved cus@if,
given by

M), =z, T —x, T, (4.63)

with the energy momentum tensor for a scalar field theory ddfin Eq. (4.59). From Noether’s theorem we know
that these currents are divergence-ftegy//;, = 0, and imply the existence of conserved charges

My = [ sl = [dieo,10 —nry). (4.60)

They can be interpreted as the conserved angular momenttira tifeory.
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The Z, symmetric theory and spontaneous symmetry breaking

So far, we have only imposed external symmetries on thersitald theory. An internal symmetry which may be
considered is &, symmetry which acts ag(z) — —¢(x). This transformation leaves all terms except the cubic
one in the Lagrangian (4.46), (4.47) invariant. Hence, ifimpose this symmetry on our theory the cubic termin
the scalar potential has to be dropped for the Lagrangiae tovariant and we are left with

1 1
V=V + §m2¢>2 + Ew‘ . (4.65)

In the following, we assume invariance under thissymmetry and work with the scalar potential (4.65).
Let us discuss the simplest type of solutions to the theamely solutions for whichy(xz) = v takes on a
constant value, independent of space-time. From Eq. (4.48) such constdsfsolve the equation of motion if

V'(v) =0, (4.66)

so we are instructed to look at extrema of the scalar potekitian fact, to minimise the energy (4.60) we should
be focusing on minima of the scalar potenfial We will also refer to such a solution of the classical theasy
avacuum If the quartic coupling\ is negative the scalar potential is unbounded from belowthaenergy of a
constant field configuration tends to minus infinity for lafigéd values. To avoid such an unphysical situation we
assume thak > 0 in the following. Then we should distinguish two cases whidh illustrated in Fig. 4.1.

e m? > 0: In this case there is a single minimumgat= v = 0. This solution is mapped into itself under the
actiong — —¢ of theZ, symmetry and we say that the symmetry is unbroken in thiswacu

e m? < 0: Inthis casegp = 0 is a maximum of the potential and there are two minima at

*677’12

A

Neither minimum is left invariant under tt#&, action¢ — —¢ (in fact the two minima are mapped into each
other undefZ,) and we say that the symmetryspontaneously brokerin general, spontaneous breaking
of a symmetry refers to a situation where a symmetry of a theopartially or fully broken by a vacuum
solution of the theory. The potential value at the minimaigg by

p=v==

(4.67)

1 1
Vv)=Vo+ Zm2v2 =V - ﬂw . (4.68)

Just as the constamf, which we have included earlier, the potential value at theima does not affect
any of the physics discussed so far. However, if we coupleteory to gravity, it turns out that (v) acts
like a cosmological constant in the Einstein equations. Cosmological constraints telthatA cannot

be much bigger tha®(meV*). On the other hand, there is no obvious constraint’gn). Unless there

is a cancellation of the two terms in Eq. (4.68), one wouldeetp’(v) to be of the order of the symmetry
breaking scale to the fourth power. Electroweak symmetry is broken sposasly by a mechanism similar
to the above (and we will study a model related to this in $ecf#.3.4)) at a scale af ~ TeV. Hence,
the "natural” cosmological constant which arises at e@etrak symmetry breaking is aboi@ orders of
magnitude larger than the observational limit. So, we haxessume that the two terms in Eq. (4.68) cancel
each other to a precision 60 digits. This enormous "fine tuning” is one of the manifestas of what is
referred to as theosmological constant problerfihe question of why the cosmological constant is as small
as it is is one of the most important unresolved problems idenophysics.

4.3.2 Complex scalar field withU(1) symmetry

Lagrangian and equations of motion

The next simplest scalar field theory is one for two real sdadds ¢; and¢,. In this case, a more interesting
symmetry can be imposed on the theory, namelg@rf2) symmetry under which the doublgt;, ¢-) transforms
with the chargey representation as

()= (it e ) (2) (@59

“4For our subsequent discussion, we add a condfaio the potential. This constant does not affectdhequations of motion.
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Figure 4.1: Shape of scalar potential (4.65)/fot > 0 (solid line) andn? < 0 (dashed line). In the latter case the
positionv of the minima is given by Eq. (4.67).

Such a symmetry, which does not act on space-time indicestinternal indices is also called arternal symme-
try. For now, we will study the case gfobal internal symmetrieghat is symmetries for which the transformation
is the same everywhere in space-time. This means the graamptera € [0, 27] is independent of the space-
time coordinates*. To discuss the two-scalar field theory with this gloB@l(2) symmetry and scalar charge
explicitly it proves convenient to arrange the two real acsinto a single complex one

1

V2

On this complex scalar, tH&#(2) symmetry acts via the chargeepresentation (4.4) df(1), that is

¢ (p1 +ig2) . (4.70)

¢ — exp(—iqa)d . (4.71)

The complex conjugaté* transforms as* — exp(iqa)¢* and, hence, corresponds to a representation with
charge—q. Allowed terms in the Lagrangian density have tolb@ ) invariant which is equivalent to saying that
their total charge needs to be zero. For example, the ¢érhvas total chargq and cannot appear while the term
¢*¢ has charge zero and is allowed. In general, we can only abowg with the same number gfand ¢*, so
that the generdl/(1) invariant Lagrangian density reads

L= 060"~ V(6.6") . V= Vot m?6"o+ 2 (6"6)". (4.72)

Note that it is essential for the invariance of the kinetiortghat the group parameteris space-time indepen-
dent, that is, that the symmetry is global. For the equatiomation for ¢ we find from the Euler-Lagrange
equation (4.31)

oV
Op*
For A = 0 this is the Klein-Gordan equation for a complex scalar fieltbse general solution has already been
obtained in Eqg. (4.53).

O¢ + =0¢ +m?¢p + %(qﬁ*qﬁ)qS: 0. (4.73)

Hamiltonian and conserved currents
For the conjugate momenta one finds

oL oL
= =00, T =7 =00. 4.74
T BT v B @74
and, hence, the Hamiltonian density reads
H =100 + T 0¢* — L =11+ V" - Vo+ V(p,¢"). (4.75)

Being translation and Lorentz invariant the above theosdumserved energy-momentum and angular momentum
tensors which can be obtained in complete analogy with tigdesscalar field case in sub-section 4.3.1. In addition,
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the presence of the interndl(1) symmetry leads to a new type of conserved current which wienaw derive.
From Eq. (4.71), infinitesimdl'(1) transformations are given by

O — ¢ —iqaop, ¢ — ¢" +iqad” . (4.76)
Comparing with the general transformation (4.34) we cotelthata plays the role of the (single) symmetry
parameter an® = —ig¢, ®* = igé*. Since the Lagrangian density is invariant untiét ) the total derivative

terms in Eq. (4.35) vanish and we can Aétto zero. Inserting this into the general formula (4.38) far tonserved
current we find

Ju = iq(¢” W@ — ¢6u¢*) . (4.77)
Spontaneous symmetry breaking
As we did before, we would now like to discuss the vacua of tleoty, that is solutions to the equation of
motion (4.73) with¢ = v = const. Form? > 0 there is a single minimum gt = 0. This solution is left invariant
by the transformations (4.71) and, hence, tH&) symmetry is unbroken in this case. Fa? < 0 the shape of
the potential is shown in Fig. (4.2). In this case, there idale circle of minima

Figure 4.2: Shape of scalar potential (4.72)#ot < 0.

1 ,

v = Evoe“’ , vy =4/——, (4.78)
wherev is an arbitrary phase. The existence of this one-dimenbitsggenerate space of vacua is not an accident
but originates from the invariance of the scalar potentialarU(1) transformations

V(9,0") = V(e'""¢,e7"1%¢") . (4.79)

Indeed, this invariance implies that for every minimgrof V' alsoe’® ¢ is a minimum for arbitraryv. Every par-
ticular choice of minimum transforms non-trivially unddr71) and, hence, tHé(1) symmetry is spontaneously
broken. Let us, for convenience, choose the minimum ongihaxis (setting the phase = 0) so¢ = vy /v/2.
Around this point we expand the field as

1
= —(vo + @1 +ig2) , 4.80
¢ \/5( 0+ 1 +ip2) (4.80)
wherep; andy, are small. Inserting this into the potential (4.72) we find
1
V= Vo + gmPug — 2m*ot + O(1, 63) - (4.81)

This shows that in this vacuupy is massive with mas&n andyp, is massless. This could have been expected as
o corresponds to the direction along the circle of minima,levii, is perpendicular to it. It is, therefore, clear
that the appearance of the massless mads directly related to the existence of a circle of minima g@rmehce, to

the spontaneous break-down of i€l ) symmetry. The appearance of massless scalars for spootipbéooken
global symmetries is a general feature knowraddstone’s theorerand the corresponding massless scalars are
also calledGoldstone bosondVe will now study this phenomenon in a more general setting.
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4.3.3 Spontaneously broken global symmetries and Goldsteis theorem

Let us consider a general scalar field theory with a set ofasd@lds¢ = (¢*) = (¢',...,¢") and scalar
potentiall” = V(¢). Consider a minimun = (vy, ..., v,) of V, that is a solution oi%(v) = 0. Around such

a minimum we can expand the potential as
1
1/:xqu+§ﬂgwﬂ¢b+cx¢%, (4.82)

wherep = ¢ — v and themass matrix\{,; is defined by

0*V

= S0 (4.83)

ab
The eigenvalues of the mass mathikare the mass squares of the fields around the vasuuxow let us assume
that our scalar field theory is invariant under a continugusrsetry group and that the scalar fields transform
as¢ — R(g)¢ under the representatiddof G. In particular, this means the scalar potential is invdritmat is

Vig) = V(R(9)9) (4.84)

for all g € G. The vacuunv will in general not respect the full symmetry groGpbut will spontaneously break
it to a sub-groupf C G, so thatR(g)v = v for g € H andR(g)v # v for g ¢ H. Now introduce infinitesimal
transformations(g) ~ 1 + it/ T; with generatofl; (in the representatioR) and small parameters. We can
split these generators into two se{d;;} = {H;, S,}, whereH; are the generators of the unbroken sub-group
H andS, are the remaining generators corresponding to the brokemptne group. Hence, these two types of
generators can be characterised by

Hv=0, S,v#0. (4.85)

Now, write down the infinitesimal version of Eq. (4.84)

. oV A\

Vo) = V(o - it'Tig) = V(g) ~ it' (550) Tio. (4.86
differentiate one more time with respectgoand evaluate the result ét= v using thatg(;fl (v) = 0. This leads
to

MTv =0, (4.87)

whereM is the mass matrix defined above. Every broken geneftaatisfiesS, v # 0 and, hence, leads to an
eigenvector of the mass matrix with eigenvalue zero. Inrotfeeds, every broken generator leads to one massless
scalar which is precisely the statement of Goldstone’srémao

4.3.4 Scalar field theory with symmetrySU(2) x U(1)

It may be usefult to illustrate Goldstone’s theorem with sslérivial example based on the symmeiiy(2) x
Uy (1). Consider a scalar field theory with 8%/ (2) doublet¢ of complex scalar fields which, in addition, carry
chargel /2 under aU(1) symmetry. A generébU(2) x Uy (1) transformation of the scalar fieldl can then be
written as

¢ — e 2T T o (1, —iaY —it'n) ¢ (4.88)
with generators
1 1
=50, V=3l (4.89)

The general invariant Lagrangian density is
L=0,8'0"¢-V(¢), V=V+m’¢'¢+Ao'¢). (4.90)

Note that the invariance of this Lagrangian density ursd&2) is due to the appearance of a singlet in the Clebsch-
Gordan decompositioR ® 2 = 1 + 3. Provided thatn? < 0, the scalar potential is minimised for

¢lp=ut =~ (4.91)
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and a particularly simple choice of minimum is provided by

¢:V:(0 ) (4.92)
Vo
Clearly, for this choice is follows that

'v#£0, 40, (PP-Y)W#0, (*4+Y)v=0. (4.93)

Hence, three of the four generatorsSdf(2) x Uy (1) are broken, while the generatot + Y remains unbroken.
This last generator corresponds to a combination ofttie c SU(2) and the additionally (1) and defines the
unbrokenU(1) subgroup. So the induced breaking pattern can be summassed

SU(2) x Uy (1) = U(1) . (4.94)

This is precisely the symmetry breaking pattern which arisghe electro-weak sector of the standard model of
particle physics. Ther&U(2) x Uy (1) is the electro-weak (gauge) symmetry and the unbrak@n corresponds

to electromagnetism. In the present case we are workingavifltobal symmetry and Goldstone’s theorem tells
us that we should have three massless scalars from the trokenbgenerators. In the case of the electro-weak
theory, theSU(2) x Uy (1) symmetry is actually promoted tolacal (or gauge) symmetryhere the symmetry
parameters are allowed to depend on space-time. In thisicasens out that the Goldstone bosons are absorbed
by three vector bosons which receive masses from symmedakhitg. This phenomenon is also called khiggs
effectand to investigate this in more detail we need to introductordields and gauge symmetries.

4.4 \ector fields, gauge symmetry and scalar electrodynansc

4.4.1 Lagrangian formulation of Maxwell’s theory

Covariant electro-magnetism flashback
We know that Maxwell's equations can be formulated in terma @ector potentiald,, with associated field
strength tensor

F., =0,A, —0,A,, (4.95)

to which the electric and magnetic fielllsandB are related by
1
Ei = F()l' , Bl = §€iijjk . (496)

Under Lorentz transformations},, transforms like a vector, that is},, — A,”A,, and consequently, from
Eq. (4.95),F),, transforms like a tenso#,, — A,”A,°F,,. Since it isF,,, which is directly associated to
the physical fields it is not surprising that the vector ptt#m,, contains some unphysical degrees of freedom.
Formally, this is expressed by the fact thajauge transformation

A, — Ay +0,A (4.97)

on A, parameterized by an arbitrary functiém. = A(z), leaves the field strength tensby, unchanged (as
can be easily seen by transforming the RHS of Eq. (4.95)).uketow write down the most general Lagrangian
density for4,, (up to second order in derivatives) which is Lorentz invairiand invariant under gauge transfor-
mations (4.97). Gauge invariance implies that the Lagamghould depend a#,, only through the field strength
F and, sinceF’ contains one derivative the most we should consider is gtiaderms inF'. In addition, Lorentz
invariance means all indices should be contractefl.iBasically, this leaves only one allowed tefymamely

1
L= —1Fu ", (4.98)

where we think off’,, as being given by Eqg. (4.95). One finds

oL 1 (0,Ay — 0,A,) 1 oL
I e Q%P0 T 9o ) oo (gugy _grgv) = —prv . 92 g 4.99
9(0,4,) 2 9(0,4,) R 177 (005 = 9507) ' 04, (4.99)

5Not to be confused with a Lorentz transformation!
5The term e#¥P° F,, F,» is also consistent with all stated requirements. Howevercan be written as the total derivative
40, (e"*P? A, 0, As) and, hence, does not effect the equations of motion.
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Inserting this into the Euler-Lagrange equation (4.31)liegp

BF" =0, 8,F,; =0, (4.100)

plivp

where the second equation is a trivial consequence of theitilafi (4.95). These are the free Maxwell’s equations
in covariant form. Splitting indices up into space and timenponents and inserting Eqgs. (4.96) they can be easily
shown to be equivalent to the better-known version in terfrth@ electric and magnetic fields andB. This
example illustrates the power of the Lagrangian formutatibfield theories. Starting with a simple set of assump-
tions about the symmetries (Lorentz symmetry and gaugeianee in the present case) and the field content (a
single vector field4,) one is led to the correct theory by writing down the most gahkagrangian consistent
with the symmetries.

Gauge choice and general solution to equations of motion
In terms ofA4,,, the free Maxwell theory can be expressed by the single &quat

DA, — 0,0,A" =0, (4.101)

which follows from the first Eq. (4.100) after inserting thefidition (4.95) (Note that the second equation (4.100)
is automatically satisfied ondg,,, is written in terms of4,,). This equation can be further simplified by exploiting
the gauge symmetry (4.97). Gauge invariance allows ondrafidformation with an appropriate gauge parameter
A, to impose agauge conditioron 4,,. There are several possibilities for such gauge conditzomshere we
consider the_orentz gaugelefined by

0 A" =0. (4.102)

This condition has the obvious benefit of being covarianlikenfor example, the so-calleéédmporal gaugevhich
requiresd, = 0) and it simplifies the equation of motion fe,, to

0A, =0. (4.103)

Note, however, that the Lorentz gauge does not fix the gaugengjyry completely but leavesrasidual gauge
freedomwith gauge parameters satisfying
OA=0. (4.104)

Eq. (4.103) is a massless Klein-Gordon equation for a vdigtiorand, hence, can be easily solved using our earlier
result (4.56) with an additional index attached. This leads to

5 (ke (4.105)

Au(x) = / Bk (au(k)e™ ™ +a
wherewy = |k| and(k,) = (wx, k). In addition, the Lorentz gauge condition demands that tedficentsa,,
satisfy

kta,(k)=0. (4.106)

To exploit this constraint in detail it is useful to introdkia set of polarisation vecto&;%v) (k), wherea = 0,1, 2, 3,
with the following properties. The vector§) (k) ande(?) (k) are orthogonal to both and a vector. with n? = 1
andngy > 0 in the time direction and they satisfy

(k) N (k) = -5 for o, d =1,2. (4.107)

Further,¢(®) (k) is chosen to be in thén, k) plane, orthogonal ta. and normalised, that is; - ¢(*) (k) = 0 and
(®)(k))? = —1. Finally, we set(®) = n. With these conventions we have an orthogonal set of vesttisfying
(@) . (o) o’ (4.108)

forall o, ¢’ = 0,1,2,3. They can be used to writg, (k) as

3
au(k) = a® (k) (k) , (4.109)
a=0

wherea(®) (k) are four expansion coefficients. The idea of introducing thasis of polarisation vectors is to
separate the directions transversat taorresponding te*) (k) ande(? (k), from the other two directions® (k)
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ande® (k). As an example, if we choose a spatial momenkupointing in thez-direction, the above vectors are
explicitly given by

1 0 0 0
_ |0 m_ |1 @_| 0 @_| 0
‘ 0 ¢ 0 € 1 ¢ 0 (4.110)
0 0 0 1
Returning to the general case, it is easy to see that the eclypice fore®) (k) is
1 1
(k) = 7ok —m. sothat ¢ O 1 ) = = ok (4.111)

Let us now return to the gauge condition (4.106) and inserettpansion (4.109). The two transverse directions
¢ (k) ande® (k) drop out of the equation, so that

0= k'a, (k) = (k- €9 (k)a® (k) + (k- € (k)a® (k) = ko(aD(k) — a® (k) . (4.112)

Here we have used that
E-e® k)= —k-eO®%k) = —ko , (4.113)

in the last step. We conclude that) (k) = a®) (k) in order to satisfy the gauge condition (4.106) and that the
expansion (4.109) can be written as

a®(k

2
au(k) = Z )el (k (4.114)

Hence, we are left with the two transversal polarisatiorts @fongitudinal one along the direction bf Recall
that we still have a residual gauge freedom from gauge paeaefesatisfying the Klein-Gordon equation (4.104).
The most general such parameters can be written as

Az) = / Bk (A(k)e™™ ™ 4 \*(k)e™ ™) . (4.115)

A gauge transformation (4.97) with of this residual form changes the expansion coefficients) for the vector
field as
au(k) = a, (k) = a,(k) — ik A(k) . (4.116)

Comparing with Eq. (4.114), it is clear that we can use thisdeal gauge freedom to remove the longitudinal
degree of freedom in, (k). We are then left with the two transversal polarisationy @rd we conclude that
the number of physical degrees of freedom for a vector fietdids This reduction from four apparent degrees of
freedom to two is directly related to the gauge invarianctneftheory.

Massive vector field
Itis instructive to perform a similar analysis for a massreetor field, that is a vector field,, with the additional

term %QA#A“ added to the Lagrangian density (4.98). Clearly, gaugeimnee is explicitly broken for such a
massive vector field. The equation of motion reads

O, F" +m?AY =0. (4.117)

Applying 9, to this equation we conclude th@t A¥ = 0 and, hence, that Eq. (4.117) can equivalently be written
as
(O+m*HA, =0, 9,A"=0. (4.118)

The first of these equations is a massive Klein-Gordon eguatith general solution given by Eq. (4.105) but
now with £ = m? instead oft*> = 0. To also satisfy the second equation above we ri¢eed (k) = 0 which
reduces the number of degrees from four to three. Since gaugeance is not available in this case, no further
reduction occurs and we conclude that the number of phydézgiees of freedom of a massive vector field is three.

Including a source
Let us return to the massless theory and ask how can we inalsdarce/, into this Lagrangian formulation of
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Maxwells’ theory. This current should appear linearly ie #tguations of motion (and therefore in the Lagrangian
density), so the obvious generalisation of Eq. (4.98) is

1
L= —ZFWF“” — A" (4.119)
The additional term depends a¥), explicitly which leads to a non-trivial gauge variation
S — 8- / d*z 9,AJ" = S + / d*z AO,J" | (4.120)

of the action. This apparent breaking of the gauge invadarfthe theory can be avoided if we require that
OuJ" =0, (4.121)

that is, if the current/,, is conserved. Witha%u = —J* and the first Eq. (4.99) we find from the Euler-Lagrange
equations
B F™ = JV | 9uF,, =0, (4.122)

which are indeed Maxwell's equations in the presence of acsol),. In a fundamental theory, the curreft
should arise from fields, rather than being put in "by handaaxternal source. We will now study an example
for such a theory in which vector fields are coupled to scalars

4.4.2 Scalar electrodynamics and the Higgs mechanism

Our goal is to write down a theory with a vector fielt, and a complex scalas = (¢1 + i¢2)/+/2. We have
already seen individual Lagrangians for these two fields\eig Eq. (4.98) for the vector field and Eq. (4.72) for the
scalar field. There is nothing wrong with adding those tworlaagians, but this leads to a somewhat uninteresting
theory where the vector and the scalar are decoupled (thtiieee are no terms in this Lagrangian containing
both types of fields and consequently their equations ofenadire decoupled from one another). Again, the key
to constructing a more interesting theory comes from tmiglabout symmetries. Both the gauge symmetry of
electromagnetism and the glol&(1) symmetry of the complex scalar field theory are parameteiigea single
parameter. Let us identify those two parameters with onéhanathat is we sett = A in Eq. (4.71), and, hence,
transform the scalar as

P(x) = e () (4.123)

along with the transformation (4.97) of the vector field. Tiesv feature we have introduced in this way is that the
formerly global transformation (4.71) of the scalar field mow become local. The scalar potential fois still
invariant under these loc&l(1) transformations, however, there is a problem with the kirtetm for ¢, since the
derivatived,, now acts on the local group parametdt:). Explicitly, 0,,¢ transforms as

D — e (9, —igd, ) . (4.124)

The additional term proportional #@,A in this transformation is reminiscent of the transformatiaw (4.97) for
the gauge field and,, can indeed be used to cancel this term. Definecthariant derivative

D, =8, +iqA, . (4.125)
Then the covariant derivative gftransforms as
D¢ — e "N g (4.126)

and the modified kinetic teriD,,¢)* D" ¢ is gauge invariant. With this modification, we can now conebin
Egs. (4.72) and (4.98) to obtain the gauge invariant Lageemdensity

1

A
4FWFW . V=Vo+m?¢* o+ Z(<;5*q>)2 (4.127)

L= (Dug)"D"¢—V(¢,¢") -
This is the Lagrangian foscalar electrodynamicsit shows the gauge field,, in a new role, facilitating the
invariance of the scalar field theory under local symmetapg¢formations. In fact, had we started with just the
globally symmetric scalar field theory (4.72) with the tagKinding a locallyU(1) invariant version we would
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have been led to introducing a gauge fidld. We also note that the covariant derivative in (4.127) hasduced
a non-trivial coupling between the scalar field and the vefiedd.

We will now use scalar electrodynamics as a toy model to sspdytaneous breaking of a loda{1) symme-
try. The scalar potential is unchanged from the globally syatric model and, hence, we can apply the results of
Sec. 4.3.2. Fom? > 0 the minimum is atp = 0 and the symmetry is unbroken. Therefore, we focus on the case
m? < 0 where the potential has a "Mexican hat” shape as in Fig. #.thi$ case, there is a circle of minima given
by Eq. (4.78). Instead of choosing the parameterisatid@0j4or ¢ around the minimum on thg, axis it proves
more useful in the present contéxb use

1 :
= —(vg + H)e™ 4,128
wherey = x(z) is the Goldstone mode arfd = H(x) is the massive mode. Next we perform a gauge transfor-
mation with parametek = /¢, thatis,
—i 1 1
p—¢ =e X¢ZE(U0+H), AM%A;:AM—’—aaHX' (4.129)
We can now write the Lagrangian density (4.127) in terms efttansformed fields (this leaves the action un-
changed) and then insert the explicit expressiongfofrom the previous equation. One finds for the covariant
derivative

1 )
D¢ = E(8MH +ig(vo + H)Aj,) . (4.130)
and inserting into Eq. (4.127) then leads to
1 1 L1
L = §8MH(’)“H ~V(H) - ZF/WF’“ + §q2A;A’“(U§ + 2u0H + H?) (4.131)
1 A
VH) = Vo+ Zm%g —m?H? + E(4UOH3 +HY) . (4.132)

The most striking feature about this result is that the Golds modey has completely disappeared from the
Lagrangian and we are left with just the real, massive sddland the vector fieldl),. However, the vector field
is now massive with mass

m(A") = qug , (4.133)

end, hence, has three degrees of freedom as opposed to qukirt& massless vector field. This explains the
disappearance of the scalar It has been "absorbed” by, to provide the additional (longitudinal) degree of
freedom necessary for a massive vector field. This can alsedr@from the transformation df,, in Eq. (4.129).
Hence, we have learned that a spontaneously broken locaheym leads to a mass for the associated vector
boson and the conversion of the Goldstone field into the tadgial mode of the vector. This is also called the
Higgs effect The same phenomenon but in its generalisation to non-AMbegluge groups occurs in the breaking
of the electro-weal8U(2) x Uy (1) — U(1) gauge group tdJ(1) of electromagnetism. The thré&* and Z
vector bosons of the broken part of the electro-weak synymeteive a mass (4.133) proportional to the symmetry
breaking scale, and absorb the three Goldstone bosons (see Section 4.3¢h arise. A detailed discussion of
electro-weak symmetry breaking requires introducing Atielian gauge symmetries which is beyond the scope
of this lecture.

4.5 Further reading

e Group theory and its application to physics is discussed i@ BMybourneClassical Groups for Physicists
and T.-P. Cheng, L.-F. LiGauge theory of elementary particle physiChapter 4.

e The material on classical field theory covered in this chapé®m be found in most quantum field theory
books, including D. Bailin and A. Lovéntroduction to Gauge Theorghapter 3 and 13; P. Ramorideld
Theory: A Modern PrimerChapter 1; M. E. Peskin and D. V. Schroedan, Introduction to Quantum Field
Theory Chapter 2.

As usual, be warned that these references were not writttruntergraduate readers in mind.

“One can think of Eq. (4.80) as a linearized version of the raooairate parameterization (4.128).
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Chapter 5

Canonical Quantization

5.1 The general starting point

We have seen in Chapter 1 how to formulate quantum mechaniesrs of path integrals . This has led to an
intuitive picture of the transition between classical amémfum physics. Later, we will show how to apply path
integrals to the quantisation of field theories. In this dbgpve will to focus on the more traditional method of
canonical quantizationLet us first recall how canonical quantization works foissiaal mechanics.

Start with a system in classical machanics, described f senonical coordinateg®; (t), ¢;(t) } and a Hamil-
tonian H = H(p;,q;). The prescription on how to perform the transition to thenasged quantum mechanics
consists of, firstly, replacing the canonical coordinatesperators, that isp; (t) — p;(t) andg;(t) — §;(t), and
then imposing theanonical commutation relatiorfs

[G:(t), ;)] = [pi(t), p;(1)] = 0, [pi(t), ¢ ()] = —idij - (5.1)

The dymanics of this system is governed by the operatorarediHamilton’s equations

WO g ao), PO <) 52)
How can we transfer this quantization procedure to field tff2¢dConsider a classical field theory with a generic
set of fieldsp, = ¢,(z), conjugate momenta, (z), Hamiltonian densityZ and Hamiltoniand = [ d*z H, as
introduced in Section 4.2.1. On a discrete space consisfilgtice points{x;}, these fields can be represented
by sets of canonical coordinates;(t) = ¢, (t,x;) andr,;(t) = m.(t,x;). On these we can simply impose the
canonical commutation relations (5.1) which leads to

[Dia (1), o (0] = [rai (), 7oy ()] = 0, [ai (1), Po (£)] = —i6asSis - (5.3)

The continuum version of these equations is obtained byacapyi — x, j — y, di; — °(x —y), ¢ai(t) —

¢(t,x) and similarly for the conjugate momenta. This results in

[Ba(t, %), G(t,y)] = [7%(t, %), 70 (8, y)] = 0, [7(t,%), do(t,¥)] = —i6;8%(x —y) (5.4)

Note that these commutators are taken at equal time but a&rggndifferent points in space. The canonical
commutation relations (5.4) together with the continuumsica

oda(t,x) = i[H, da(t,x)], 007 (t,x) = i[H,7(t,x)] (5.5)

of Hamilton’s equations (5.2) provide the starting point flee canonical quantization of field theories. We will
now investigate the consequences of this quantizationegiire for the simplest case, a single real, free scalar
field. To avoid cluttering the notation, we will drop hats goesators from now on. It will usually be clear from
the context whether we refer to a classical object or itsatpenversion.

1We are using operators in the Heisenberg picture.
2More formally, the transition between classical and quantoechanics can also be understood as a replacement of canconrdinates
with operators and Poisson brackets with commutator btacke

59



60 CHAPTER 5. CANONICAL QUANTIZATION

5.2 Canonical quantization of a real, free scalar field

Recap of theory and canonical quantisation conditions
From Sec. 4.3.1, the Lagrange dendityHamiltonian density{ and the conjugate momentumfor a free real
scalar fieldp with massm are given by

1 1 oL
— wio 2.2 _ - 2 2 2.2 — —
L=3 (0u00"¢ —m?¢®) , M 5 (72 4+ (Vo) + m*¢?)) , ) ¢ - (5.6)
and the associated equation of motion is the Klein-Gordamatgn
O¢+m?¢p=0. (5.7)

It should now be thought of as an operator equation for thd fipleratorp. The canonical commutation rela-
tions (5.4) in this case read

[¢(t7x)a ¢(ﬁaY)] = [W(tax)vﬂ-(ﬁayn =0, [W(ﬁax)v ¢(t7y)] = _263()( - y) . (5.8)

Oscillator expansion of general solution

We can solve the free scalar field theory by writing down thesthgeneral solution of the operator Klein-Gordon
equation. This can be done by starting with the generalicissolution (4.56) and by promoting the coefficients
a(k) to operators. Hence, we have

o(z) = / &k (a(k)e ™ +al(k)e™) |, 7(z) = fi/dgif wi (a(k)e™ ™ —al (k)e™) . (5.9)

What do the canonical commutation relationsgandr imply for the commutators of(k) anda’(k)? To answer
this question, we would like to expregsk) in terms ofé(x) andn(z) by inverting the above relations. We start
by applying2wq [ d3z e~ to the equation fop(z). After carrying out the integration ovér? one finds

qu/d3x e~ 1% () = a(q)e” ™t 4 af (—q)e™at (5.10)
Analogously, applyin@i [ d*z e~*4* to the equation forr(z) results in
2i/d3x e~ % () = a(q)e” "t — af (—q)e™at (5.11)
Adding the last two equations we find the desired expressiod(f) and its conjugate

@) = [ doe(ugola) +in() . dllg) = [ o T wgso) ~ine) . (612

Combining these results and the canonical commutatiotiork(5.8) one finds for the commutatorsadfy) and

a¥(q)
[a(k),a(q)] = [a'(k).a"(@)] =0, [a(k),a'(q)] = 27)*2w5*(k — q) . (5.13)

For eachk = ¢ these equations are reminiscent of the commutation rekatior the creation and annihila-
tion operators of a harmonic oscillator. This should not eams a surprise given a single plain wave Ansatz
b(t,x) = ¢ (t)e’™ > turns the Hamiltonian (5.6) (or, more precisely, as the Ansa complex, its complex
counterpart (4.75)) into the Hamiltonigky, = nZ + wi¢i for a single harmonic oscillator with frequency
wx = vVm?2 + k2. We should, therefore, think of the free scalar field as amiteficollection of (decoupled)
harmonic oscillators labelled by three-momentkimnd with frequencyuy.

The Fock space
The interpretation of," (k) anda(k) as creation and annihilation operators also suggests aochéth the con-
struction of the space of states for this theory, the sed&bck spaceln close analogy with the simple harmonic
oscillator, we first define the vacuujfi), with normalisation{0|0) = 1, as the state which is annihilated by all
a(k), thatis

a(k)|0) =0. (5.14)

3Recall thatf d3z ¢!~ > = (27)35%(k — q).
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Single particle statelg) are obtained by acting on this vacuum state with a singldioreaperator, so that
k) = af(K)|0) . (5.15)

Using the commutation relations (5.13) and Eq. (5.14), angsffor their normalization

(klg) = (0la(k)a’()|0) = (0][a(k),a’()]|0) = (27)*2uxd®(k — q) - (5.16)
We note that the RHS of this relation is the "covariant deltaction” (4.55). A basis set of states is provided by
all n particle state$ks, . . ., k, ), obtained by acting on the the vacuum witlcreation operators
ki, k) = al(k1)...af(kn)|0) . (5.17)

The number operator
Thenumber operatoiV is defined by

N = /d%aT(k)a(k) , (5.18)

and from the commutation relations (5.13) one finds

IV, al (q)] = / @k ol (kK)a(k), o' (q)] = / @kl (k)[a(k), ol (¢)] = / @ at (k) (27205 (k—q) = a' (g) -

(5.19)

On ann-particle state the number operator acts as
Nlki,....ky) = Na'(ki)...al(k,)[0) = {a'(k1)N + [N,a'(k1)]} a' (k2) ... (kn)[0)  (5.20)
= al(k)Nal(kz)...al(kn)|0) + [k, k) . (5.21)

We can repeat this procedure and commdtewith all creation operators, picking up at each step the term
|k1, ..., Ekn). Inthe last step we us¥|0) = 0 and find

Nlkiy... kn) =nlky, ... k) . (5.22)
Hence,N indeed counts the number of particles in a state.

Four-momentum and normal ordering

We should now compute the conserved four-momentum (4.44thfabove solution of the free scalar theory.
From the stress energy tensor (4.59) with= %m2¢2 we find (in the case oF, after a partial integration and
using the Klein-Gordon equation)

H=P= %/dgx (7% — ¢pom), P = /dgz Vo . (5.23)

Inserting Egs. (5.9) results in
H = %/ Bad®kd’G [—wiwg (a(k)e™ ™ — al(k)e™™)(a(q)e™""" — al(g)e™™") (5.24)
i (a(k)e ™ + al (K)e)(alg)e " +al (@)e*))]  (5.25)
= %/d?’i} wi [al (k)a(k) + a(k)a' (k)] , (5.26)

and

P = - /de Pk d®Gquy (a(kz)e_”” - aT(k)eik”“') (a(g)e " — aT(q)eiq”“') (5.27)
= %/d%k [af(k)a(k) + a(k)a' (k)] . (5.28)

The above Hamiltonian corresponds to an integral over haitrascillator Hamiltonians with frequeneg, and
labelled by three-momenia This is in line with our interpretation of the free scalaldi@s a collection of de-
coupled harmonic oscillators. When trying to write the grend in Eq. (5.26) in the standard harmonic oscillator
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form Hyx = wk(al(k)a(k) + %) using the commutator (5.13) one encounters an infinite zeirt pnergy, propor-
tional to52(0), which can be interpreted as the energy of the vacuum tat@his is one of the many infinities
in quantum field theory and it should not come as a surpriseer/4dl, we are summing over an infinite number
of harmonic oscillators each with finite zero-point enetgy/2. To deal with this infinity, we define the concept
of normal orderingof operators. The normal ordered versio® : of an operatol© is obtained by writing all
creation operators to the left of all annihilation operat@®o, for example,a(k)a'(q) : = af(q)a(k). An operator
and its normal-ordered counterpart differ by a (usuallynitd) number, often referred to agaumber With this
definition we have

T H:= /d%wk af(k)ak), :P:= /d?'/%kaT(k;)a(k;) or P, = /d%kzu af(k)a(k) .  (5.29)
A short calculation shows that
Pl 0] = [ @000 @ala)a 0] = [ Pg.al @8- @) =kalh). (630
For a single particle staté) this implies
cH k) =wl|k), :P:|k)=klk), (5.31)

and, hence, these states are eigenstatespf with energywy and spatial momentuik. Likewise, multi-particle
stategki, ..., k,) are eigenstates ofP, : with eigenvalueZ?:1 k;,,. To summarise, we have constructed a basis
of Fock space for the free real scalar field and, by lookingataction of conserved operators on these states, we
have found an interpretation of this basisigsarticle states with definite four-momentum.

Commutation of field operators and micro causality

Finally, we should look at the commutation properties of fietd operators)(z) and¢(z’). From the canonical
commutation relations we certainly know that these two afes commute for equal timeé,= ¢’. However, the
unequal time commutatdé(z), ¢(«’)] does not vanish. From the oscillator expansion (5.8) weigatie that this
commutator is given by a c-number and, hence, we can ite), p(2’)] = (0|[¢(z), ¢(x’)]|0). By replacinge
with Eqg. (5.9) we find

[6(x), ¢(a")]

(0lfé(a). o(=")]0)
= O [ @RPe{(eme ™ +a Be) (ale ™ +al (@) ~ (@ o )} o)
= O [ @ g{laal @l ~ @ o 2} 0

_ / P {e—iwk(t—t/)eik(x—x’) B eiwk(t—t/)eik(x—x')}

= . d4k —ik(z—az")
= / (2r)2un {6(ko — wic) + 6(ko + wic) } e(ko)e

/ d*k 2 2 —ik(z—2') — /
= o) 0(k* —m=)e(ko)e =A(x—1'), (5.32)

wheree(kg) = ko/|ko|. All elements in the final integral are Lorentz invariant egtfor the functiore(k).
However, if we restrict to Lorentz transformatiafsvhich preserve the sign of the time-component of four vector
(these are the orthochronos Lorentz transformations, abke B.1) there(kq) remains unchanged and we have
A(x) = A(Az). We already know thafA (0, x) = 0 since this corresponds to an equal-time commutator. Now
consider a space-like vector that isz? < 0. With a suitable orthochronos Lorentz transformatiothis vector
can be written in the form: = A(0,y) for some vectoy and, henceA(z) = A(A(0,y)) = A(0,y) = 0. We
conclude thatA(x) vanishes for all space-like vectars This means that the commutatexx), ¢(z")] vanishes
whenever: andz’ are space-like separated. This fact is also referred mia® causality Two field operators at
points with space-like separation should not be able toathusffect one another and one would, therefore, expect
their commutator vanishes. We have just shown that thigiedd the case.

This concludes the canonical quantization of the free realas field and we move on to the next, more
complicated case, the free complex scalar field.
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5.3 Canonical quantization of the free complex scalar field

Recap of theory and canonical quantisation conditions

In Sec. (4.3.2) we have introduced a complex scalar fieldrtheith a globalU(1) symmetry. We would now like

to quantise the free version of this theory following the sateps as for the free real scalar in the previous section.
The field content of this theory consists of two real scadgrand¢» which are combined into a complex scalar
é = (¢1 +i¢o)/v/2. Recall that the Lagrangian density, Hamiltonian dengity @onjugate momentum are given

by

L=0,00,0—m*¢'¢p, H=7ln+Ve'Vo+m?¢Top, m= a(ng)) = oo (5.33)
0
and the field equation is the Klein-Gordon equation
O¢ 4+ m?p=0. (5.34)

Canonical quantisation of this system can be performedhplgiimposing the general commutation relations (5.4)
on the two real scalarg; and¢, and their associated conjugate momenta= dy¢1 andmrs = Jdy¢o. The only
non-zero commutation relations are then

[7T1 (ta X)v P1 (ta Y)] = —id” (X - Y) ) [WQ (ta X)v b2 (tv Y)] = —id” (X - Y) . (5.35)

Using¢ = (¢1 + i¢2)/v2 andr = (m + im)/+/2 they can be easily translated to the complex field and its
conjugate with the only non-zero commutation relations

[n(t, %), ¢(t,y)] = [r1(t,x), ¢! (t,y)] = —id(x —y) . (5.36)

Oscillator expansion and Fock space
The general classical solution to the Klein-Gordon equefiis a complex scalar field has already been given in
Eq. (4.53). The operator version of this solution reads

b(z) = / PF (ap (e +al () | o (x) = / PR (a- (ke +al () . (5.37)

As for the real scalar field below, we can invert these retetiand compute the commutatorsiaf(k) andal, (k)
from the canonical commutation relations (5.36). The omlg-zero commutators one finds in this way are

[ax(k), al(q)] = (27)*2wid® (k — q) . (5.38)

This shows that we have two se} (k), a4 (k)} and{al (k),a_(k)}, of creation and annihilation operators
and, hence, two different types of one-particle states

|(k,+)) = al. (®)]0) , (K, ) = al ()0 . (5.39)
As usual, the vacuum) is defined by 1 (k)|0) = 0 and(0|0) = 1. Multi-particle state$(k1, €1), ..., (kn,€n)) =

al (k1)...al (kn)|0) are now labelled by, momentak; and, in additionp signse; € {-+1, —1} to distinguish
the two types of quanta.

Number operators and four-momentum
For each type of quanta we can introduce a number operator

Ny = / Pk al (k)ax (k) . (5.40)
Itis easy to show from the commutation relations (5.38) that

[Ny, ak (k)] =al(k), [Ny al(k)]=0. (5.41)

HenceN. (IN_) acting on a multi-particle state counts the number of cuanht+ type (— type). The (normal-
ordered) conserved four-momentum can be computed as foedhecalar field and one finds

P, ::/dgl%k# (al(k)a+(k)+ai(k)a,(k)) : (5.42)
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whereky = wy, as usual. The relation
[P al (k)] = kyal (k) (5.43)

shows that(k, €)) can be interpreted as a state with four-momentynrrespective ok and that a multi-particle
state|(k1,€1),. . ., (kn, €,)) has total four-momentu’_, k;,,.

ConservedU(1) charge

So far, the structure has been in complete analogy with tedarthe real scalar field. However, the free complex
scalar theory has one additional feature, namely the ceed&r(1) current (4.77). The operator version of the
associated charge can be written as

Q=iq / B (op'nt — 7o) . (5.44)

Inserting the expansions (5.37) one finds after some cdicola
Q= q/d% (ai(k)w(k) - aT_(k)a,(k)) —g(Ny —N_). (5.45)

In particular, this shows that the staték, +)) have charge-q and the stategk, —)) have charge-q. Therefore,

it is sensible to identify- states with particles and states with anti-particles. With this terminology, we sesf
Eq. (5.37) thaty(z) annihilates a particle or creates an anti-particle whiler) creates a particle or annihilates an
anti-particle.

5.4 Time-ordered products, propagators and Wick’s theorem(again)

Time-order products of operators

In this section we will develop some of the tools necessargeal with interacting fields. While the methods
presented apply to all types of fields (subject to straightéwd modifications) we will concentrate on the real scalar
field, for simplicity. We have seen that a field operator sueimd&q. (5.9) can be thought of as a superposition of
creation and annihilation operators. Later, we will sed ihiraction processes can be understood as sequences
of such creation and annihilation operations and can, thexebe quantitatively described by products of field
operators. More precisely, the operator products invohredrdered in time reflecting the time-line of the physical
process. We are, therefore, interested intiime-ordered produatf field operators defined by

T (d’(tl; Xl) s ¢(t’n7 Xn)) = ¢(tin ) X’in) cee ¢(tl1 ) X’i1) where ti1 < t’i2 <---< t’Ln . (546)

and their vacuum expectation values. The above equationsrtegae orderingl’ rearranges fields operators so
that time increases from the right to the left.

The Feynman propagator
Of particular importance is the vacuum expectation valug tihe ordered product of two field operators which is
called theFeynman propagatoA . From this definition the Feynman propagator can we writgen a

Ap(z —y) = (0T (¢(z)d(y))|0) = 0(zo — y0)(0lp(x)d(y)|0) + O(yo — =0)(0]é(y)P(x)[0) , (5.47)

where the Heaviside functichis defined byd(z¢) = 1 for g > 0 andé(zy) = 0 for zp < 0. To compute the
Feynman propagator we first evaluate the above expressithefoaser, > yo. Inserting the field expansion (5.9)
we have

Ap(z—y) = (0l¢(z)d(y)|0) (5.48)
= (0] [ @®kd®q (a(k)e™™ ™ + al(k)e™) (a(q)e ™ + al(q)e'?) |0) (5.49)
— / BT g [a(k), ot (g)) e —ikw|0) = / P e—ha=v) | (5.50)

Analogously, we find for the case, < yo thatAp(z — y) = [d*ke*@—¥). Combining this, the Feynman
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propagator can be written as

dgk —twyk (xog— 1wy (xo— k- (x—
AF(«T — y) = / m {g(wo _ yo)e k(zo—yo0) + 9(90 _ 1’0)6 k(Zo yo)} etk (x—y) (5_51)
d*k i el
= —ik(z—y) 5.52
/ (2m)* (ko — wie + i8) (ko + wic — i) (5:52)
©dYk i "
= —ik(z=y) 5.53
/ (2m)* k2 —m? + ic" (5-53)

The small quantity > 0 in the second integral is to indicate that the poléat= wy — i is slightly below the
real ky axis and the pole d, = —wy + i€ is slightly above (The quantity > 0 in the final integral serves the
same purpose). With this understanding about the positidheopoles the equality of the first and second line
above can be shown by a contour integration as indicatedjing=1. The above result provides us with a simple
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Figure 5.1: Location of poles for the Feynman propagatoramours to prove the equality between Egs. (5.51)
and (5.52). Fory > yo the integration along the re&j axis can be closed fdin(ky) < 0 since the real part
of the exponent in Eq. (5.52) is negative in this case. Ordypble atky = wy — i€ constributes and leads to the
first term in Eq. (5.51). Analogously, fary < yo the contour can be closed fbm(ky) > 0. Only the pole at

ko = —wyg + i€ contributes and leads to the second term in Eq. (5.51)

representation of the Feynman propagator and tells ustth@oirier transforn - is given by

< i

Ap(k) = ———— . 5.54
r (k) k2 —m?2 + ie ( )

The Feynman propagator, particularly in the momentum sfaece (5.54), is central in the formulation of Feyn-

man rules for the perturbation theory of interacting fielslsve will see later.

Propagators as solutions to Klein-Gordon equation
Another interesting property of the Feynman propagatdrasit solves the Klein-Gordon equation

(O, + mA)Ap(z —y) = —id*(xz —vy) . (5.55)

with a delta-function source. Functions with this propextg also calledreen functionsThere are other Green
functions of the Klein-Gordon equation which are given byirgegral such as in Eqg. (5.53) but with the poles in
a different position relative to the rek$ axis. For example, the case where both poles are below théyeaxis
leads to the so-calle@tarded Green functiant vanishes for:y < yo since the upper contour in Fig. 5.1 contains
no poles in this case.
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Let us now prove Eq. (5.55). From Eq. (5.47) we have

aa—ngF(x —y) = i = {0(z0 = 5o){0l[#(=), (¥)1|0) + O[T ( (), &())I0)}
= 5(350 —0) {0l (), (1)]|0) + (O0IT(35 (), ¢(y))I0)
= —id'(z —y) + (0T (D5 (), 6(y))10) ,

(
where we used thagf—e (x0) = 6(x0) andd(zg — y0){0|[P(x), d(y)]|0) = §(x0 — yo)A(0,x —y) = 0 (see the
discussion at the end of Section 5. 2). It follows that

(O + m)Ap(z—y) = (aa—xo S m2> Ar(z—y) (5.56)
= 8 — )+ {OIT (T + m2)0()0()) [0) (5.57)

The fieldg(z) satisfies the (free) Klein-Gordon equation and, hence ebersd term vanishes. This completes the
proof.

Evaluating time-ordered operator products, Wick’s theorem

We would now like to understand how to evaluate time-ordereducts and their vacuum expectation values more
generally. To do so itis useful to split the fieldx) into its positive and negative frequency pafis(x) and¢_ ()

as

$(x) = dy(z) + 6 (), y(x) = / Clak)e™™ , ¢_(z) = / Pkal(k)e™ . (5.58)

Sinceg (z) only contains annihilation operators it is clear that(z)|0) = 0. Likewise,{0|¢_ (z) = 0. We begin
with the time ordered product of two fieldgx) and¢(y) for the casery > yo and write

T (¢(x)d(y) = ¢+(x)d+ (y)+¢+( )o—(y) + d—(2)d+(y) + o—(2)d—(y)
= 04(2)d+(y) + - (2)d+ (y) + o—(2)d+ (y) + - (2)d—(y) + [¢+(2), 9 (y)]
= 1 ¢(z)d(y) : +{0[[¢4(2), 9 (9)]|0)
= 1 ¢(x)o(y) : +(0[¢(x)o(y)[0)

The point about introducing the commutator in the secoralifinhat the first four terms have the creation operators
to the left of the annihilation operators and, hence, cpoead to the normal ordering of the field product. A similar
calculation for the casgey < yo leads toT (¢(z)¢p(y)) =: ¢(z)p(y) : +(0|¢(y)P(x)|0). Combining these two
results we have

T (9(x)p(y)) =: ¢(x)d(y) + Ap(z —y) : . (5.59)

Hence, we see that time and normal ordering are related végiankan propagator. When two field operators in a
time-ordered product are combined into a Feynman propagsato the above equation they are said to have been
contracted With this terminology we can formulai®%ick’s theorenas

T(p(z1) ... d(xn)) =: ¢(z1) ... ¢(zy) + all possible contractions (5.60)

By "all possible contraction” we refer to all possible waylspairing up the field operatorg(zy), ..., é(x,)
into Feynman propagators, including partial pairings. Wheking the vacuum expectation value of the above
equation the first term and all partially contracted termsista due to normal ordering. This shows that the
vacuum expectation of an odd number of time-ordered fieldésh@s. For an even number of fields we are left
with

OIT (B(x1) .- d@n)) [0) = Y Ap(wi, —a5) .. Ap(wi, , —xi,) (5.61)

pairings p

where the sum runs over all pairings= { (41, ¢2), ..., (in—1,4,)} Of the numberg, ... n. This is precisely the
same structure as the one we encountered in the contexpoint functions for Gaussian multiple integrals and

Gaussian functional integrals. This is of course not andeetiand the precise relation will become clear when we
discuss the path integral quantisation of field theories.

Sketch of proof for Wick's theorem
We still need to prove Wick’s theoremin its general form (§.6-or the case of two fields, = 2, we have already
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done this in Eq. (5.59). The general case can be proven byfiotuin n. Rather than presenting this general
argument it is probably more instructive to consider thengxle forn = 3. After a suitable relabelling we can
arrange that; > t, > t3. With the short-hand notatiopy, = ¢(x;) andA;; = Ap(z; — x;) we have

T (p1¢2¢3) = P102¢3 = ¢1 @ Pagp3 + Aoz :

(P14 + P1-) : P21 P3y + Pa—P3y + P3-P2r + P23 + Aoz :

= 1 Q1-0203 + Q1+ P24 P34 + P2— P14 P34 + P3- P14 P24+ + P2 P3— P14 + Aoz :
+HP14, P2 |d3+ + (P14, P3-] P2t + [P+, P2— 3]
D P1P203 + Atz + A1zdoy + Arada_ + Aqzdo_ + Aoy

= 1 P1P203 + A12¢3 + A3y + Aoz :

In the first line we have simply used Wick’s theorem (5.59)dqeroduct of two fields, applied 9, and¢s. In
the second line, we need to maye, and¢;_ into the normal ordering. This is easy for_ since it consists of
creation operators and, hence, has to be on the left of a pradyway. The annihilation patt ;. of the field, on
the other hand, has to be commuted to the right of any companen The key is that the commutators which
arise in this way precisely lead to the necessary contmstid ¢, with ¢ and¢s. The proof for generah is
analogous to the above calculation. It applies the indadcissumption (that is, the validity of Wick’s theorem
for n — 1 fields) to¢o, . .., ¢,. Then, movingp; into the normal ordering and commutig, with all negative
frequency partg),;_ generates all the missing contractiongefwith the other fields.

Time-ordered product of complex scalar fields

We should briefly discuss time-ordered products for a freedex scalar fields = (41 + i¢2)/v/2, described by
the Lagrangian density (4.72) with= 0. In terms of the two real fields,; and¢, the Lagrangian (4.72) splits into
a sum of Lagrangians for two free real scalars with the sanesmaHence, each ap; and¢- has an oscillator
expansions as in Eq. (5.9) and it immediately follows tfBT" (¢1(z)p1(y)) |0) = (0|T (p2(x)p2(y))|0) =
Ap(z —y) and{0|T (¢1(x)p2(y)) |0y = 0. This implies for the complex scalarthat

(OIT (6(2)0"(9)) 0) = Ar(z —y) . (0T (6()¢(y)) 0) = (OIT (¢'(x)¢' (1)) [0) = 0. (5.62)

For a product of operatogsand¢! Wick’s theorem can be applied straightforwardly, but thexaequations tell
us that only contractions af with ¢! need to be taken into account.

5.5 Canonical quantization of a vector field

Recap of theory and canonical quantisation conditions
We recall from Section 4.4.1 that the Lagrangian densityfeector field4,, with associated field strengi,, =
0. A, — 0, A, is given by

L= —EFWF“” , (5.63)
and that this Lagrangian is invariant under the gauge toanmsftions

A, — A, + 0N . (5.64)
From Eq. (4.99), the canonical momentaare

oL
= _——— _ = Fr0 5.65
9004 (669
To quantize this theory we interpret the fielg, as a collection of four scalar fields (which happen to be label
by a space-time index) and then follow the canonical quatitin procedure. We should then impose the canonical
commutation relations (5.4) which take the form

[T (t,x), Ay (t,y)] = —id6% (x — y) (5.66)

However, Eq. (5.65) implies that the canonical momenttinsanishes and this is inconsistent with fhe= v = 0

part of Eq. (5.66). Clearly, viewingl,, as four scalar fields is too simple. In fact, while typical diic terms

for four scalar fields4,, would be of the form)_  0,,A,0"* A, and, hence, depend on the symmetric and anti-
symmetric parts ob,A,, the Lagrangian (5.63) only depends on the anti-symmetit, phat is, on the field
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strengthF,,,,. This special form of the Maxwell Lagrangian is of coursegpassible for the existence of the gauge
symmetry (5.64) as well as for the vanishing of the conjugatenentumr® and it links these two features. In

essence, gauge symmetry is the crucial difference to tHardeeld theory. There are various viable methods to
guantise a gauge theory, but here we will follow the most obsiapproach of fixing a gauge before quantisation.

Gauge fixing

Since we would like to manifestly preserve covariance wethisé orentz gauge condition (4.102), which we im-
pose on the theory by means of a Lagrange multiplierhis means that, instead of the Maxwell Lagrangian (5.63),
we start with

1 A
L= FuF" - 5@/1“)2 , (5.67)
For the conjugate momenta we now find

oL
T = = PR 09, A7 5.68

and, hence, in particula® = —\d, A" is no longer zero. The equation of motion (4.101) fgris now modified
to
04, —(1—-X)0,0,A” =0, (5.69)

and, in addition, we have to impose the gauge condifipa’ = 0 (which formally arises from the action (5.67)
as the\ equation of motion). However, clearly we should not impdge tondition as an operator equation since
this would lead us back to a situation wher® = 0. Instead, it will later be imposed as a condition on physical
states. At any rate, the obstruction to imposing canonigahtjsation conditions has been removed and we require
the canonical commutation relations (5.66) fyr and the conjugate momenta (5.68).

Oscillator expansion

We should now solve the equation of motion (5.69) to work &t properties of the creation and annihilation
operators. While this can be done for arbitraryve adopt the so-calldeeynman gaugé A = 1, which simplifies
the equation of motion (5.67) ©0A,, = 0. The general solution to this equation has already beetewritown in
Section 4.4.1 and is given by

3 .
Au(z) =3 / ke (k) (a<a>(k)e*““ + a(a)T(k:)e“”) . (5.70)
a=0

Here, we have used the polarisation veckﬁj’%(k) defined before Eq. (4.109) and the four-momentum is given

by (k.) = (wk, k) with wx = |k|. We recall from our discussion in Section 4.4.1 that claﬂlsicsz‘)(k) for
«a = 1,2 are the two transversal, physical polarisations while theitwo polarisations can be removed through
gauge transformations.

Inserting Eq. (5.70) into Eq. (5.68) gives the expansiorttierconjugate momenta. Similar to the scalar field
case (see below Eq. (5.9)), we can now invert these expatsi@xpress the oscillatog§*) (k) and their hermitian
conjugates in terms of the field,, and the momenta*. As for scalar fields, these results can be inserted into
the quantisation condition (5.66) to determine the comtiartaelations of the oscillators. After a straightforward
(but slightly lengthy) calculation one finds that

[0 (k), ) (@)] = [T (k),a V(@) = 0, [a! (k). (q)] = = (27m)°2u1c6” (k —q)  (5.71)

The Fock space

As comparison with Eqg. (5.13) shows the above commutatitatioas are very similar to the one for four real
scalar fields, however with one crucial difference: The cartator[a(?) (k), ()t (¢)] has the opposite sign to that
in Eqg. (5.13). Naively, the Fock space of this theory is spahlny states created from the vaculirhby acting
with any combination and any number of operatot¥(k), wherea = 0,1,2, 3. Let us call this spac&,. In
particular,F, contains the statgk, 0)) = a(?)(k)|0) which satisfies

((k,0)|(k,0)) = (0][a"® (k),a T (k)]0) <0, (5.72)

4Although common terminology this is somewhat misleadimgsithe choice of is clearly not a gauge choice in the usual sense. We also
remark that independence of the quantisation procedurkeochoice of\ can be explicitly demonstrated.
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and, hence, has negative norm. Clearly this is physicakycoeptable and indicates that the spagstill contains
unphysical states and cannot be the proper Fock space dfabeyt A related problem emerges when looking at
the conserved four-momentum. Calculating the four-monnmarfor the theory (5.67) from the general formalism
in Section 4.2.3 and inserting the field expansion (5.70)fons after some calculation

3
), 1= / Pkk, lz a(k)a ) (k) — a O ()a @ (k)| . (5.73)
a=1

The negative sign in front of the last term means that the §ta0)) has "negative energy”.

The existence of unphysical states is not at all surprisivgrgthat we have not yet imposed the Lorentz gauge
condition. We have seen above that requiring the operatat&Emno,, A* = 0 is too strong and leads to problems
with quantisation. Instead we define a sp&gec Fy of physical states on which the gauge condition is satisfied,
that is we require

(D)0, A"|D) =0 . (5.74)

between two physical statgB), |®) € F,. To guarantee this condition is satsified it is sufficient fag A*)(+) | ) =
0 where the annihilation paf®,, A*)(+) of 9, A* is proportional to

/ &F ko (a(o)(k) - a(3)(k)) e~ike (5.75)

To obtain this last result, we have taken thederivative of the first term in Eq. (5.70) and used th‘atff) (k)=0
for o = 1,2 andk*e (k) = —ke'P) (k) = ko (see Section 4.4.1). This means physical stalése F; are
defined by the condition

b_(k)|®)=0. (5.76)

where we have defined a new basigk) = (a® (k) £ a(?)(k))/v/2 for the non-transversal operators. Clearly
all transversal states, that is, states created from theumady acting only with transversal creation operators
a1 (k), wherea = 1,2 along with their linear combinations, satisfy the condit{6.76) and, hence, are elements
of F;. It would be nice ifF; consisted of such states only but things are not quite solsinifp analyse the
condition (5.76) for non-transversal states we note that

[b- (k)b (9)] =0, (5.77)

while [b_(k), bL(Q)] # 0. This means, in addition to(®)(k), wherea = 1,2, physical states can also contain
b (k) but notbl(k:). This meansF; is spanned by states created from the vacuum acting with amper of

operators. (™) (k), wherea = 1,2 andb! (k). Note that the commutators of these operators with thegcased
annihilation operators are all non-negative and, henceatates with negative norm are left.if . However, if a
state contains at least one operaﬂ:ofk) its norm vanishes, as is clear from the vanishing of the cotatau(5.77).
Physically, we should discard such zero norm states anatheaf way of doing this is to identify each two states
in 7 if their difference has zero norm. In this way, we obtain theger Fock spac&,, whose elements are the
classes of states obtained from this identification. Inipalgr, in each class there is a "representative” with only
transverse oscillators. In conclusion, we see that thegrBpck spacé, can be thought of as spanned by states
of the form|(ki, 1), ..., (kn, o)) = a®DT(k1)...al®)T(k,)|0), wherea; = 1,2 are transverse oscillators
only.

Independence of physical quantities on Fock space represgtive

One remaining point which needs checking is that physicahtjties are independent on which representative for
a class inF; is being used. Let us verify this for the case of the four-miotam (5.73) which can also be written
in the form

/ Phk, lz (@t ) (k) + bl (k)b— (k) + b (k)b (k) | (5.78)

Taken between a physical stafe) € 77, thatis(®| : P, : |®), the last two terms in Eq. (5.78) do not contribute
(using that allz type operators commutate with altype operators as well as Egs. (5.76), (5.77)). This means

(®] : cI>|/d3k:k Zaa” (k)|®) . (5.79)
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This shows that the four-momentum only depends on the temasymodes and, since every clas§jrhas exactly
one representative with transverse modes only, the ddasideggendence on the choice of representative.

Feynman propagator

Finally, we should look at the Feynman propagator for a v, defined, as usual, as the vacuum expectation
value(0|T(A.(x)A.(y))|0) of a time-ordered product of two fields. Inserting the fielp@xsion (5.70) and using
the commutation relations (5.71) we can perform a calcutatiompletely analogous to the one in Section 5.4 to
obtain the vector field propagator in Feynman gauge, 1. This leads to

Dpw(x —y) = 0T (Au(2) Ay (9))[0) = =N Aro(r —y) , (5.80)

whereAr  is the scalar field Feynman propagator (5.53)fot= 0.

5.6 Further reading

Canonical quantisation is covered in most standard textdoo quantum field theory, including
e J. D. Bjorken and S. D. DrelRelativistic Quantum Fieldwol 2, chapters 11, 12, 14.
e C. Itzykson and J.-B. ZubeQuantum Field Fieldschapters 3.1, 3.2.
e M. E. Peskin and D. V. Schroedém Introduction to Quantum Field Theqrghapter 2.



Chapter 6

Interacting Quantum Fields

In this chapter, we will develop the formalism for pertutibaly interacting quantum field theory. The main goal
is to derive the Feynman rules for bosonic field theories ffivgt principles and show how to calculate matrix
elements and cross sections. To do this we will first intredile S-matrix and then show how cross sections
and decay rates are expressed in terms of S-matrix elem@f@shen need to understand how to compute S-
matrix elements from field theory. The first step is to derlve teduction formula which shows how to compute
S-matrix elements from vacuum expectation values of timiex@d products of interacting fields. These products
of interacting fields are then re-written in terms of freed#elsing the evolution operator. From there, Wick’s
theorem will lead to the Feynman rules. Whenever the fosmalheeds to be developed with reference to a
particular theory we will first focus on the real scalar fihgdry (4.47) with\¢* interaction for simplicity and
subsequently generalise to more complicated theories.

6.1 The S-matrix

Consider an interacting field theotywith field ¢(x), where(z) = (¢,x). We would like to describe a scattering
process, that is a process where interactions are only baqtofor a finite time around ~ 0 and the fielde
asymptotically approaches free fields in the lintitss +oo. Fort — —oo we denote the free-field limit af
by ¢;, and fort — +oo by ¢ous. TO these asymptotically free fields we can associate oreatid annihilation
operatorsiy,, dout andafn, Imt in the way discussed in the previous chapter and define "id™ant” states as

b1y kn)in = al (k1) . .oal (Ba)0) ) 1krs . Endous = by (k) .. al (K )]0) (6.1)
Given an initial statéi)i, = |k1,..., k)i With n particles and momenta, ..., k, and a final stat¢f)ou: =
lg1, - - ., gm) With m particles and momenta, . . ., ¢,,, we are interested in computing the amplitude
out {f1%)in (6.2)
which provides the probability for a transition frg)i,, to | f)out. With the operatof defined by
|q17---an>out :ST|q1;---7Qm>in (63)
this amplitude can be written as
sz = in<f|S|i>in = out<f|i>in . (64)

The matrixSy; is called theS-matrixand it encodes the basic physical information we wish toutate. Assuming
that both the in stateg);, and the out statel),.,+ form a complete set of states on the Fock space we have

1= Zlf out out (f| = ZS 1Fin (]S = STS (6.5)

and, hence, thé matrix is unitary. We also require that the vacuum stateviariant and unique so that

0)in = |0)out = |0) (6.6)

IFor simplicity we consider a single field but the generaitisato multiple fields should be obvious.

71
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Itis customary to write the S-matrix as
S=1+T (6.7)

where the unit operator corresponds to the free evolutiom fiin” to "out” states andl” encodes the non-trivial
scattering. In a theory which conserves four-momentum thgirelements of” take the general form

Tf’L = in<f|T|i>in = (27)454(]{:1 - Qf)M(Z - f) ’ (68)

wherek; andq; are the total four-momenta of the initial and final state ards theinvariant matrix elementWe
need to understand how to compui¢ from the underlying field theory and, to make contact withexkpentally
measurable quantities, we need to express cross sectidmieaay rates in terms gf1. We start with the latter.

6.2 Cross sections and decay rates

Wave packets and transition probability
The incoming state in a scattering experiment is of cours@n@xact momentum eigenstate. More realistically,
ann particle incoming state can be described by a wave packet

|z>in = / <H dgﬁa fa(pa>> |p1; cee 7pn>in 5 fa(z) = / dgﬁ ]Ea(p)eiiprC ’ (69)
a=1

wherep, = wp in the second integral, so th#(z) are solutions of the Klein-Gordon equation. By writing
fa(z) = e~ *a® F, () with slowly varying functionsF’, (z) we ensure that these solutions are "close” to momen-
tum eigenstates with momenta. The probability currentg,,, for these solutions are given by the usual formula
in relativistic quantum mechanics

Jap = 0 (f3(2)0 fa(@) = fa(@)0ufa(@)) = 2kapl fa(@)]* . (6.10)
They provide us with expressions for the number of partiplersvolume and the flux per volume which will be
needed in the calculation of the cross section.
In a first instance, we are interested in the transition podiba

W@ — f) = [in(f1S)n]* (6.11)

from the initial statdi);, as defined above to some final stafg, ;. Inserting Egs. (6.7), (6.8) and (6.9) into this
expressiort and keeping only the non-trivial scattering part, relatethe7” matrix, one finds

Wi—f) = (2n)° / (Hd%f;(pa)) (Hd%ﬁ(p;)) §* (Zpa2p2> (6.12)
b=1 a b

a=1

x 8! <Qf - Zm) M(p1,...spn = [ M@, = f) (6.13)

The wave functiond, are peaked around momeritaand we can, hence, approximaté(p1,...,pn — f) ~
M@y, .ol = f) 2 M(k1, ..., k, — f)inthe above integral. Together with the integral represtaom

(2m)*6* (Zpa —~ Z%) = / d*z exp (w <Zp; - Zm)) (6.14)
of the delta function this implies

Wi—f)= (27r)4/d4x (H |fa(x)|2> &t <qf - Zka> Mk, .. ke — )2 (6.15)

2When doing this, we have to keep in mind that the "in” staigs, in the definition (6.8) of the matrix element are the exact rantam
eigenstate$k1, . . ., k1)in, Whereas the "in” statel§);,, which enter the transition probability (6.11) are the wasekets (6.9).
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We have obtained our first important result, the transitimybpbility from statg?);,, to state| f)out per unit time
and volume

% <H|fa ) <Qf2k>|./\/l (kiy .o — P2 (6.16)

Decay rate

Let us now be more specific and first consider a single pantidte mass)M, momentumk = (M, 0) and wave
function f(z) in the initial state, that is, we study the decay of a partatleest. Let us define the decay rate
I'(k — f) as the transition probability per unit time and volume (§.d&ided by the number density of initial
particles and integrated over the momeqta. . ., ¢, of the final statd f),.+ with energy resolutiom\. From
Eg. (6.10), the number density of initial particles is gisn2M | f(z)|* and, hence, from Eq. (6.16) we find for
the decay rate inten particles

L(k— f) = ﬁ /A (H d%) (2m)*8* (k — q7) IM(k — f)|*. (6.17)
b=1

Cross section for two-particle scattering

As the next example, we discuss the scattering of two pestialith momentg; andk, and masses:; and

me in the initial state. For simplicity, we consider particleistype 2 at rest in the laboratory frame, that is we
consider them as target particles, and particles of typetheaicident ones. We then define the cross section
o(k1,k2 — f) as the transition probability per unit time and volume (§.d&ided by the number density of
target particles, divided by the incident flux density anggmnated over the momenda, . . ., ¢,,, of the final state

| f)out With energy resolutio!d. From Eq. (6.10) the number density of target particle®iis | f-(z)|? and the
incident flux density i2|k: || f1(z)|?. Dividing Eq. (6.16) by these densities and integratingrdie final state
momenta the cross section foR a—» m scattering turns out to be

1
4/ (k1 - k2)?

Here, we have re-written the original kinematical pre-dadt/ (4m2|k;|) in a covariant way using the identity

O'(kl, k2 — f) = m m / <H dgqb> 27T 54 (kl + k2 — Qf) |M(l€1,l€2 — f)| . (618)
2

’I’I’L2|k1| = mg\/k}%O — m% = \/(k/’l . k2)2 — m%m% . (619)

In this way, the above expression for the cross section isfesly covariant.

Cross section for2 — 2 scattering

We would now like to specialise this result somewhat furtbea two particle final state with momenaandgs,
thatis, we consider 2 — 2 scattering. We carry out the discussion in tieater of mass framé¢he frame in which

the total initial three-momentum vanishes, thakis+ ko = 0. Three-momentum conservation of course then
implies thatq; + q2 = 0. The kinematic situation faz — 2 scattering in the center of mass frame is summarised
in Fig. 6.1. For simplicity, we also assume that the massedl &bur particles are equal ta, so in particular we
havek; - ko = ¢1 - ¢2. This means the kinematical pre-factor in Eq. (6.18) carebenitten as

V(k1 k)2 —mt = /(g1 - q2)? —m* = \/(Q1OQ20 +ai)® — (¢fo — a?) (g5 —ai) = Elas| . (6.20)

whereE = k19 + koo = q10 + g20 i the totalcenter of mass energyVe write the integral in Eq. (6.18) as

Paq dqy
PG d3Ge (2m)* 04 (ky + k2 — q1 — = / 2m)46(E — q10 — qo0)6°
/A Q1d°Ge (2m)°0% (k1 + k2 — 1 — q2) 272410 (2ﬂ)32q20( ™) 0(E — qio — g20)0” (a1 + q2)
1 dQ|Q1|2d|Q1|
= O(E — — 6.21
1672 /A 410920 ( 410 ~ g20) (6.21)

where we have carried out thg integral in the last step, so th@ty = g0 = /m? + q2. Also dS) = sin 0 df d¢
is the solid-angle differential fagj; . Since

E
laaf | Jauf _ Jau (6.22)

d
(q10 + q20) =
| | q10 420 d10920

dlqx
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q,= (@0, -9)

Ky = (Kyp , K)

9=0q,,- 9

Figure 6.1: Kinematics o — 2 scattering in the center of mass frame. The total center gsraaergy is given
by E = k1o + k20 = q10 + g20-

we can use the delta function to replace the integral ygrin Eq. (6.21) by the inverse of this factor. Inserting
Eq. (6.21) in this form together with Eg. (6.20) into Eq. @).nd assuming good angular resolution, so that the
integral [, can be dropped we have

do(ki, ks — q1,q2) 1

dQ - 6472 B2 |M(k15 k2 — q17q2)|2 . (623)

To summarise, this expression provides the different@dssection for @ — 2 scattering where all four particles
have the same mass. Note tliais the total center of mass energy. Since we have integratati® delta-function
in Eq. (6.18) the matrix element should be evaluated for enmesl four-momentum.

6.3 The reduction formula

Removing a particle from the in state

Having expressed decay rates and cross sections in termsafr& elements we now need to understand how to
compute these S-matrix elements from quantum field thedvg.fifst step is to derive the so-calle8Z reduction
formula (after Lehmann, Symanzik and Zimmermann) which allows onexpress S-matrix element in terms of
vacuum expectation values of (time-ordered) field openatoducts. Focusing on a real scalar fieldwe now
derive this formula for an initial state, k);,, with a particle of momenturh and an arbitrary set of other particles,
collectively denoted ag and a final statgf). The relevant S-matrix element can then be written as

out (fli, K)in = out<f|a;fn(k)|i> = out <f|alut(k)|i>in + out <f|(ajn(k) - alut(k)>|i>in (6.24)
out (f = Kli)in — 0ut<f|i/d3x e_ikwb_g(@n(x) — ¢out () 9)in (6.25)

The creation operators have been expressed in terms ofrith"@ut” fields by means of Eq. (5.12) which can also
be written in the form

; —1 ZE<—>
a?n/out(kj) = _Z/dgme k aO(bin/out(m)a (626)

wherek, = wy, as usual. Here, we have used the short-hand notﬁ(@rﬁg(t} = f(t)D:g(t) — Ocf (t)g(2).
The state|f — k)ous refers to the "out” statéf),.+ with a particle of momentunk removed (or zero if there
is no such particle inf)out). Hence, the first term in Eq. (6.25) either vanishes or spweds to a forward
scattering contribution where one of the momenta has netgdth We will usually drop this term in the subsequent
calculation since we are interested in the non-trivialtecatg part of the amplitude. Taking time limitg — +oo
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we can convert the "in” and "out” fields above into a full ireting fieldy by writing

0ut<f|i; k>in = 0ut<f| ( h£>n - 1_1>H_1 ) 'L/dgl' eilkxgg(b(iﬂ)h)m (627)
— ol [ dtn (e B 0(w)) i (6.29)
= outlfli / d*z (e"™0gp(x) — Oge”*d(x)) [i)in (6.29)

The wave functior =% (with k, = wy) satisfies the Klein-Gordon equation, so tig¢ ~*** = (V2 —m?2)e~ ik,
Using this in the second term in Eq. (6.29) and subsequanttgriating by parts in the spatial directions one finds

out (f|is K)in = i/d4x e~ (O, + m?) oue (flo(2)]i)in - (6.30)

Hence, we have succeeded in removing one particle from tifestate of our S-matrix element and replacing it
by a field operatop(z). The idea is to now repeat this process until all particleth from the "in” and the "out”
state are removed and one is left with a vacuum expectatioe v field operators.

Removing one particle from the out state

To further illustrate this we perform one more step exglicitamely the reduction of a particle with momentygm
from the "out” state which we write a¥)out = |f, ¢)out. FOr the S-matrix element which appears in Eq. (6.30)
this leads to

OUt<fa qlo(x)]i)in = out<f|aout(Q)¢(z)|i>in = out<f|¢(x)|l — Q)in + out<f| (aout(9)9(7) — ¢(x)ain(q)) |i)in -
(6.31)
As before, we discard the forward scattering term and reglesannihilation operators with fields using Eq. (6.26).
Taking into account that

out (] (Gout (1) () — B(2)in (¥)) [i)in = ( lim — lim )om<f|T<¢(y)¢<x)> 1)in (6.32)

Yo — 00 Yo—>—00

we find following the same steps as before that

out(f alo()|i) = i/d4y ' (Ty +m?) out (fIT ($(y)$()) [)in (6.33)

This is precisely the same structure as in the first redu¢Ba30) apart from the opposite sign in the exponent
e'?9. This sign difference arises because we have reduced alpantithe "out” state as opposed to a particle in
the "in” state. In addition, we learn that products of fielceagtors which arise in this way arrange themselves into
time-ordered products.

The general reduction formula for real scalar fields
We can now iterate Egs. (6.30) and Eq. (6.33) and elimin&eaaticles from an "in” statéky, . .., k)i, @and an

"out” state|qi, . .., gm)out- If We assume that; # g¢; for all  andj, then forward scattering terms are absent and
we have
out <q17 o lekh o k/,ﬂ)ﬁ] _ im-ﬁ-n/ <H d4$a €_ikaIG(Dza + m2)> (H d4yb einyb(Dyb + m2)>
a=1 b=1
x (O[T (d(y1) - - d(ym)d(x1) - - - d(20)) 0) (6.34)

The vacuum expectation values of time-ordered productstwaiise in the above formula are also referred to as
N-point Green functions
GM (21, 2n) = (0|T(p(21) - .. p(2n))]0) . (6.35)

Eq. (6.34) shows that the Green functions determine the tBxngdements and are the crucial objects we need to
calculate. It also displays a remarkable property, theadleacrossing symmetnAll that changes in Eq. (6.34) if

a particle with momenturh is shifted from the "in” to the "out” state is the sign of the mentumk in the wave
functione="*. This means, for example, thaa— 2 scattering and a — 3 decay related by transferring one
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"in” particle to an "out” particle are described by the sarartpoint Green functiog (4.

Reduction formula for complex scalar fields
We should now briefly discuss the reduction formula for ottyges of fields, starting with a complex scalar
field ¢ = (¢ + id2)/v/2. In the free-field case, it is easy to see (by comparing Eq9) @énd (5.37)) that

al (k) = (al(k) —ial(k))/v2 andal (k) = (al (k) + iad(k))/v2. Applying Eq. (6.26) tog; and ¢, and
forming appropriate linear combinations this implies

[ —1 :c<_> - —1 :c<_>
aiyin/out(kz) = —Z/dgxe k2 0o (bjn/out(x), a:’in/out(k) = fz/dgxe 2 0o Pin fout (T) - (6.36)

The reduction formula for a complex scalar can now be deredttly as above. This leads to Eq. (6.34) with one
modification: Positively charged "in” particle, generateﬁai)in(k), lead to an operatas’ in the time-ordered
product, while negatively charged "in” states, generalyedbin(k), lead tog. For "out” states the situation is
reversed, with operatorsfor positive particles and operataps for negative particles.

Reduction formula for vector fields
Finally, for gauge fields, the above calculation can be regakasing the expansion (5.70) for a free gauge field
and its inversion in terms of creation operataf8)t(k). Again, the result is very similar to the previous one,

except that the polarisatimﬁo‘)(k) of the photon must be taken into account. For a photon with ergomék and
polarisatiorEL“)(k) in the "in” state|, (k, &) );, one finds in analogy with Eq. (6.30) that

out (f1i, (k, @))in =i / dz e (k)e™ ™ 0y oue (F1A* (2)])in (6.37)
while for a photon with momentumand polarisatioraff) (k) in the "out” state we have in analogy with Eq. (6.33)

out <f7 (Qa O‘)|Z.>in = 7// d4$ 6;(;1) (q)eiqux out <f|A'u ($)|i>in . (638)

Repeated reduction leads to time-ordered operator pradufdr scalar fields. It should also be clear that for
theories with different types of fields, for example for thHee with scalar and vector fields, the various reduction
formulae above can be combined and applied successivahaliiparticles are reduced.

6.4 Perturbative evaluation of Green functions and the evaltion operator

Schrodinger, Heisenberg and interaction pictures

We have managed to write S-matrix elements in terms of Greectibns, that is, vacuum expectation values of
time ordered products of interacting fields. We do know hoemaluate time-ordered products of free fields using
Wick’s theorem but this method does not apply to interacfialgls so easily. What we need to do is to express
interacting fields and Green functions in terms of free-fiedd that Wick’s theorem can be applied. We begin by
splitting up the full HamiltoniarH of a field theory as

H= /d%?—[ = Hy + H, (6.39)

whereH, is the free Hamiltonian (quadratic in the fields and conjagabmenta) andi; = | d*zH, contains
the interactions. For example, for our simple toy modelz sealar fieldp, we have

L=z (0,¢0"¢ —m?*¢*) — %& ., H = /d%?—tl = %/d% o(x)* . (6.40)

N =

So far, we have worked in tHdeisenberg picturevhere the field operata#(x) is time-dependent and Fock space
states|a) are time-independent. In tHgchidinger picture on the other hand, the field operatiy(x) is time-
independent while the corresponding Fock space sfatés; are time-dependent. The two pictures are related by
the time-evolution operataf* in the usual way

os(x) = eith¢(t,x)eth , la,t)s = eith|a> . (6.41)
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For the purpose of perturbation theory it is useful to introel a third picture, the interaction picture, with fields
and states denoted k¥ (z) and|a, t);. It is intermediate between the two previous pictures artti bperators
and states depend on time. In terms of the Schrodingerrpidtus defined through time evolution with the free
HamiltonionHy, that is

o1t x) = eiHOtgbs(X)e*iH“t ,  la,t)r = eiH“t|a,t>s . (6.42)

Definition of the evolution operator
Combining the above relations it is clear that interactind Bleisenberg picture are related by

o1(t,x) = U(t,0)p(t,x)U " (t,0) , |a,t)1 = U(t,0)|a), (6.43)

where
U(t,0) = eflotet 1t (6.44)

is called theevolution operator It encodes the difference in time evolution between irtéoa and Heisenberg
picture due to the interaction Hamiltonidi;. More generally, we can define the evolution operdfdt, t,)
between two times, andt by |a,t)1 = U(t,t0)|a, to)1. This means from Eq. (6.43) that

Ul(t,to) = U(t,0)U*(to,0), (6.45)

so, in particularl/ ~1(t, o) = U(to,t) andU (to, to) = 1. For the composition of two evolution operators we have
the rule

Ut, YU t) = Ut,0)0 ULt ,0)U(t',0)U " (tg,0) = U(t,0)U " (to,0) = U(t, o) . (6.46)

From Egs. (6.45) and (6.44), the time derivative of the etmfuoperator is given by
i%U(t, to) =i (%U(t, 0)> U~ (t,0) = (e"o!Hem ot — [,) U(t,to) (6.47)
and, hencel/ (¢, ty) satisfies the simple differential equation

i%U(t, to) = Hy1(t)U(t,tg) where Hy = etHol[[ e~ Hot (6.48)
Note thatH, 1, the interaction Hamiltonian written in the interactiofpire, has the same form &5 but with ¢
replaced byy;.

Perturbative solution for evolution operator

Let us pause for a moment and see what we have achieved. Tdeffieel the interaction picture evolves with
the free Hamiltonion, as is clear from Eq. (6.42), and we fthdwence, think of it as a free field. The evolution
operator relates this free field to the full, interactingdiglin the Heisenberg picture via Eq. (6.43). Therefore, if
we can find an explicit expression for the evolution operat@have succeeded in writing the interacting field in
terms of a free field. To do this, we need to solve the difféateguation (6.48) subject to the initial condition
U (to,to) = 1. It turns out that the solution is given by

Ul(t,to) =T exp (—i/t dty HM(zfl)) =1+ i () /t d*zy /t d*z, T (Hi1(w1) ... Hig(zp)) -

to p! to to
(6.49)
The exponential form of this solution is as expected for &edétial equation of the form (6.48) and the initial
condition is obviously satisfied. However, the appeararfctn® time-ordering operator is perhaps somewhat
surprising. To verify the precise form of this solution, weetis on the terms up to second ordefdn;. This
will be sufficient to illustrate the main idea and justify thppearance of the time-ordering. While the term linear
in #, 1 in Eq. (6.49) contains a single integrﬁi dt; and is easy to differentiate with respectttthe situation

is more complicated for the quadratic term which contains im{egralsf:0 dtq ft’; dto. We re-write this double-
integral by splitting the integration region into two parfer ¢t; > ¢, and¢; < t3, SO thatftt0 dtq ft’; dty =
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t t t t
fto dty tol dty + fto dts t02 dt1. Then we have

i%U(t,to) = gt<1z/tdt1H11(t1 *—/ dtl/ dby T(Hy 1(t)Hy1(t2)) + O(3 ))

to

= Hul) - 55 ( / dt, /tldtgHH(tl)Hlth / dt, /”dtlzfll(tz)ﬂn(tl)w( ))

Hyq(t) — 5HLI(zf) (/t dts Hy1(t2) +/ dty Hi1(t1) + 0(2))

t[) t[)

Hia(t) (1 _ i/.t dt, Hl,l(tl)) +O®3) = Hu®U (1) + O(3)

to

The main point is that the order of the interaction Hamiléons in the two integrals in the second line is reversed as
a consequence of time-ordering. This allows us, afterifféating in the third line, to factal; 1(¢) to the left for
both terms in the bracket. Without time-orderiHg 1 (¢) would have been to the left of the first term in the bracket
and to the right of the second. Since interaction Hamiltosiat different times do not necessarily commute this
would have been a problem. The general proof is a straigh#iar generalisation of the above calculation to all
orders.

Perturbative calculation of Green functions
Armed with this solution for the evolution operator, we na@turn to our original problem, the perturbative calcu-
lation of Green functions. Using Egs. (6.43) and (6.46) carewrite

GM (21, ozm) = (OT (¢(21) ... d(zn)) [0) = (O|T (U™ (£,0)¢1(21) - . . ¢1(2n)U (£, 0)) |0)
= (0T (U™ (,0)¢1(21) . .. ¢1(2n)U(t, —t)U(~t,0)) |0)
=l (0[U™(£,0)T (du(x1) ... dr(wn)U (t, —1)) U(~,0)[0) . (6.50)

The vacuum should be invariant under the action of the elaolperator up to a constant so we have

U(=t,0)[0) = -[0) ,  U(t,0)|0) = 5+]0), (6.51)

for complex numberg... They can be determined as

BLB- (01U (—£,0)[0)(0]U (£, 0)[0) = > _(0]U(—¢,0)|a)(alU (¢, 0)0)

a

= {0|U(=t,0)U(t,0)[0) = (0[U (¢, £)|0) = ({0]U(t, ~1)[0)) ™" (6.52)

so we finally find for the Green function

GM (2, zx) = lim (OIT (¢n(21) - 1(zn)U (£, —1)) [0)

tr00 (0|U(t, —1)|0) (6-53)

We can now insert the explicit solution (6.49) for the evimintoperator in the Taylor expanded form into this
result. This leads to a formula for the Green functions winioly depends on vacuum expectation values of time-
ordered free-field operator product, each of which can bliated using Wick’s theorem. As in Section 1.1.4 each
term which arises in this way can be represented by a Feyniagragh. Feynman diagrams which arise form the
numerator of Eq. (6.53) haw¥ external legs, Feynman diagrams from the denominator aneuva bubbles. It
turns out that the denominator in Eq. (6.53) precisely clBnak Feynman diagrams from the numerator which
contain disconnected vacuum bubbles. In fact, we have seergicit example of this in Eq. (1.79). With this
additional information we can write

GM (2, ... Z ol /d4y1 d*yp (O|T (¢1(21) - - - d1(28) Lint (Y1) - - - Lint (Up)) [0)no bubbles

p=0
(6.54)
with the interaction Lagrangiafi,; = —7#1 1. The interaction Lagrangian is proportional to a couplingstant
(X in the case of our scalar field theory example), so the aboweessgion for the Green functions can be seen as
an expansion in this coupling constant. If its value is sigfidly small it should be a good approximation to only



6.5. FEYNMAN RULES AND EXAMPLES 79

compute a finite humber of terms up to a certain power in the@loog. Only in this case is Eq. (6.54) of direct
practical use. In the above derivation we have used notappnopriate for scalar field theory but it is clear that
the basic structure of Eq. (6.54) remains valid for othees/pf fields. To summarise, combining the reduction
formula (6.34) (and its generalisations to other types ddgjewith the perturbation expansion (6.54) and Wick’s
theorem provides us with a practical way of calculating Srma&lements and, via Eqgs. (6.17) and (6.18) decay
rates and cross sections, in terms of Feynman diagrams.

Green functions in momentum space
For practical calculations, it is more convenient to foratalFeyman rules in momentum space and to this end we
introduce the Fourier transforngé™¥) of Green functions by

N
@2m)* 5t (pr+ -+ )G (p1,- .. pN) = / (H d*z4 e_ip“z“> G (z1,...,2n) , (6.55)

A=1

where we denote "in” momenta, and "out” momentay, collectively by(pa) = (ka, —¢»). To see where this
leads we should rewrite the LSZ reduction formula (see EG4(%

out{q1s- -y qmlk1, .-, kn)in = iN/Hdzlee*pAzA(DZA + m2)g<N> (#1,.-+,2N) (6.56)
in momentum space, using the inversion

M (a1, on /Hd Q8 10025 (97)164(Qy + -+ QNN (@1, ..., Qn)  (6.57)

of Eq. (6.55). Inserting this into the LSZ formula (6.56) wancexplicitly carry out th€C.., + m?) operations
which now only act on the exponentials in Eq. (6.57) and peedactors—:/Ar(Q ) of inverse Feynman prop-
agators, one for each external leg of the Green functions, Ithierefore, useful to introdu@mputated Green
functions

M (p1,...,pN)
[T, Ar(pa)

which are related to the ordinary Green functions by rengpthie propagators for the external legs. The remaining
integerations over 4, and(@ g can then trivially be carried out and we remain with

G (p1,...,pn) = (6.58)

out @1y s Gmlkrs - n)in = (2 (Zk qu> G (ke —a1, .., —Gm) - (6.59)

Comparison with Eq. (6.8) shows that for real scalar fielestimputated Green function equals the matrix element
M. For other types of fields there are slight modifications. damplex scalar fields, we have to consider Green
functions defined with the appropriate number of fiefdand their conjugates’, depending on the number of
particles and anti-particles in the "in” and "out” state. &pfrom this the above formulae remain valid. For each
vector particle with momenturh and polarisatior* (k) in the "in” or "out” state, the Green function carries a
Lorentz indexu and from Eqgs. (6.37) and (6.38) this should be contractemtim corresponding polarisation
vectore#(k) to obtain the matrix elememt4. With this small modification, the above formulae also apioly
vector fields.

6.5 Feynman rules and examples

What remains to be done is to explicitly derive the Feynmaasréor calculating the amputated Green functions
by applying Wick’s theorem to the perturbative expansiab4¥.

6.5.1 The real scalar field

Four-point function
As usual, we begin with the real scalar field with Lagrangiangity (6.40) and interaction Lagrangian dengity

3For simplicity of notation, we drop the subscrifit from hereon and assume that fields are in the interactiotungic
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Figure 6.2: Feynman diagram féspoint function in real scalar field theory withy? /4! interaction to ordeA.
Line = —A¢*/4!. Let us first calculate some examples before formulatingytreeral Feynman rules. We start
with the 4-point function to orded. Dropping disconnected parts, we have from Eq. (6.54)

i\
4l

= —M/d49 Ar(z1 —y)Ar(z2 —y)Ar(23 — y)Ar (24 — y)

d*y (0| (p(z1)¢(22)B(23)P(24)d(y)*) |0)

g(4) (zla 22, 23, 24)

. d*ky d*ks 4, iy(k1+--+ka) ,—i(k1z1++kaza) A A
= —iA dyey 1 e 1=l 44AF1{31...AF1{34
(2m)* - (2m)*

. d*k d*k e
= —z)\(27r)4/ (27T)14 (2ﬂ)4454(k1 ot Rae (k1214 +kazs)

xAp(k1) ... Ap(ks) (6.60)

From the first to the second line we have used Wick’s theoreimhmvbnly leads to one type of term (although
with multiplicity 24) which can be represented by the Feynman diagram in Fig. Bli&n we have used the
representation (5.53) of the Feynman propagator to res\iré expression in momentum space. From this form it
is easy to see that the amputated momentum space Greerofuiscti

Gl (p1,... pa) = —iX. (6.61)
Inserting this into Eq. (6.23) we find the cross sectiorfer 2 scattering

do A2 A2
= __2 = 6.62
aQ ~ 64m2E? 0 7T 16mE2” (6.62)
whereF is the total center of mass energy.

Two-point function

Next, we discuss th2-point function to ordei. From Eq. (6.54) we have
G (o1, 22) = (0T (6(21)0(22)) [0) = o7

= Ap(z1 —22) — %AF(O) / d'y Ap(z1 — y)Ap(z2 —y) + O(N\?)

/ dty (OIT (6(21)6(z2)6(y)") [0) + O(2)

The two corresponding Feynman diagrams are depicted irbE3g It is straightforward to Fourier transform this
expression (introducing integration variables- z; — 29 andz = (21 + 22)/2 in the firstterm and; = 2 — y
andz, = zo — y in the second term). Dividing by the external propagatoestben finds for the amputated Green
function

- N i\
G2p.=p) = Ar(p)™ = TAR0) +O(N)

\ .
= —i {pQ —m?+ 5 /d4k ﬁ +0(\?) (6.63)

—m?2 4+ e
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Figure 6.3: Feynman diagrams foipoint function in real scalar field theory witky* /4! interaction to ordea.

The diagram at ordex is a loop diagram and, as a result, we have to carry out anratteg over the internal loop
momentumk in Eq. (6.63).

Feynman rules

Before we discuss this result, we would like to summarisessperience so far and formulate the Feynman rules
for the amputated Green functions in real scalar field theory

e For the (connected part of th&) point function at ordeA? draw all possible (connected) Feynman graphs
with N external legs and four-vertices. Assign a directed momentum to each line a@s¢hFeyman graphs
such that momentum is conserved at each vertex. Then, togeaph associate an expression obtained by:

e writing down a Feynman propagatdr (k) for each internal line with momentufn
e writing down—:\ for each vertex

e writing down an integral’ d*k /(2x)* for each momenturh which is not fixed by momentum conservation
at the vertices

o dividing the expression by a symmetry factor which equatsitimber of permutations of internal lines one
can make for fixed vertices.

The first two of these rules are obvious from Eq. (6.54) andd4fitheorem. The fact that momentum needs to be
conserved at each vertex can be seen from Eq. (6.60): Thelatida which led to this result would be exactly
the same for a single vertex within a larger Feynman diagieime. appearance of the delta function in Eq. (6.60)
then signals momentum conservation at this vertex. Oultr@61) for the amputated-point function shows
that —i\ is the correct factor to include for a vertex. Finally, thegse symmetry factor for each graph follows
from the number of pairings which arise in Wick’s theorem.

Discussion of two-point function, regularisation and renemalization

Let us now return to a discussion of tBepoint function. To carry out the integral in Eq. (6.63) weab the
position of the poles in the Feynman propagator as indidatedy. 5.1. We deform the contour of integration by a
90 degrees counter-clockwise rotation from the real to thegimary &, axis so that we are not crossing any poles.
Then, the integration goes over the imagin&gyaxis and to convert this back to an integration over a rea axi
from —oco to +o0o we introduce the "Euklidean momenturh”= (ko,k) = (—iko,k) and denote its Euklidean
length byx. The integral in Eq. (6.63) can then be re-written as

/d4k;—/dﬂ /Oodﬁmig—QﬂQ/oodﬁL (6.64)
k2 —m?2 +ie 3 0 K2 +m?2 0 K2 +m? '

Clearly, the last integral is quadratically divergentsas+ oo. Recall that in the context of free field theory we
have found infinities due to summing up an infinite humber obz®int energies. This problem was resolved
by the process of "normal ordering”. Here we encounter agroimd more serious type of singularity in field
theories. They arise from loops in Feynman diagrams at higlmemtum and are, therefore, also referred to as
ultraviolet singularities Their appearance is of course unphysical as, for examadd, ef the external legs of the
4-point function can acquire an additional loop at ordér This would make the-point function and, hence, the
associated cross section for— 2 scattering infinite. Dealing with and removing such singitikss is difficult
and discussing the full procedure is beyond the scope ofebiare. Here, we would just like to outline the main
idea. It turns out that in certain classes of theories, sled¢atnormalizable theoriesonly a finite number of
different types of such singularities arise. For renoreadie theories, these singularities can then be absorbed
into (infinite) redefinitions of the parameters (masses angplings), of the theory. Once physical quantities are
expressed in terms of these redefined parameters they tutmloifinite. A useful rule of thumb is that a theory is
renormalizable when it does not contain any parametersneigiative mass dimension. From this criterion, the real
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scalar field theory withh¢? interaction should be renormalizable and this is indeed#se. Let us briefly discuss
how one might go about dealing with the above singularitye fitst step is twegularisethe amplitude. This refers
to some sort of prescription which allows one to assign adfivélue to the diverging integral in question. There
are many different ways of doing this but perhaps the sinipled most intuitive one is to introducecat-off, that

is, to modify the upper limit of the integral (6.64) to a finitalueA. If we do this we find

G2 (p,—p) = —i |[p?> —m? + ™A (A —=m*In(1 4+ A*/m?))| . (6.65)

amp 2
We can now define a "renormalized” mass; by

2
my =m? — % (A* = m*In(1 4+ A*/m?)) . (6.66)
The main idea is that expressed in terms of this mass (andttiee cemormalized parameters of the theory)
physical quantities are finite provided the theory is reralirable.

Eq. (6.66) reveals another interesting feature which isasttaristic for renormalizable scalar field theories:
the appearance of divergencigsadraticin the cut-off A. It turns out that in renormalizable theories without
scalar fields divergencies are at most logarithmic. Quaddatergencies in scalar field theory lead to a serious
"naturalness” problem called thgerarchy problem Physically, we can think about the cut-dffas the energy
scale above which the theory in question ceases to be valichew physics becomes relevant. Assume that we
have a theory with a very high cut-off scalebut a small physical scalar massg. Then Eq. (6.66) requires
a very precise cancelation between the two terms on the-higihdl side. For example, in the standard model of
particle physics, a theory shown to be renormalizable, taesmf the Higgs particle should be of the order of
the electroweak symmetry breaking scale, so a few hundr&tl IGihe standard model was valid all the way up
to the Planck scaley 10'® GeV, this would require &2 digit cancellation in Eq. (6.66). The hierarchy problem
may, therefore, be seen as a reason for why we should expsgimesics not far above the electroweak scale.
Supersymmetry is one of the main candidates for such phggidst is indeed capable of resolving the hierarchy
problem.

/ \
P / \ q // \\ // \\
/ \

Figure 6.4: Vertices for scalar electrodynamics. From tieftight the corresponding vertex Feynman rules are
—ie(pu + qu), 2iq* N, and—i.

6.5.2 Scalar electrodynamics

From Eq. (4.127) we recall that the Lagrangian density ofassedectrodynamics (plus gauge fixing term in Feyn-
man gauge) for a complex scalawith chargee under a vector fieldi,, is given by

L= BB — @A 1 (0 +ieA)d]| (0% +ieA®)s) —m*6o — J(610)? . (667)

so we have for the interaction Lagrangian
A
Ling = ieA* (p0,0" — ¢10,0) + €A, At ¢T¢ — Z(Q%)Q : (6.68)

So, in addition to a quartic scalar field vertex similar to Wva have encountered in real scalar field theory, we
expect a triple vertex coupling a vector field to two scalard another quartic vertex coupling two vectors to two
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scalars. To find the Feynman rules for these vertices let ogpuate the appropriate Green functions. Using the
first, cubic interaction in Eq. (6.68) we find for tBepoint function

G\ (21,20, 23) = —e /'d4y<0|T(¢><zl>¢*(zz)A#(z@A”(y)w(y)M(y)fw(y)am(y))) |0)

dp d*q d*%k .
- —ie(2 4 54 - k —i(pz1—qzotkzs)
ie(2m) /(%)4 @)t @) (p—q+ke

< Ap(p)Ar(q)Apo(k)(pu + ) (6.69)

whereAr (k) = i/(k? + ie) is the Feynman propagator for zero mass. For the amputatsghGunction this
means

G& (. —a, k) = —ie(p + qu) (6.70)
and this is precisely the expression for the triple vertawnfra very similar calculation using two external vector
fields, two external scalars and the second interactionite($168) one finds

G{8 (D1, D2, D3, Pa) = 20Ny, . (6.71)

Finally, the quartic scalar field interaction from the lamtm in (6.68) comes with a vertex facteti ), just as in
the case of a real scalar field. These Feynman rules for temttions in scalar electrodynamics are summarised
in Fig. 6.4. Finally, the propagators for internal scalad &actor field lines are

< 1 ~ —1

Ap(k) = 2 _mZ i’ Dp(k)u = L (6.72)

Space-time indices on internal vector field propagators\aartices have to be contracted in the obvious way.
This completes the Feynman rules for the amputated Greestidms in scalar electrodynamics. To obtain the
matrix element the, index for each external photon with momentirand polarisatiom has to be contracted into
(o)

en (k).

6.6 Further reading

Perturbation theory in the canonical formalism is coverechbst standard text books on quantum field theory,
including

e J. D. Bjorken and S. D. DrelRelativistic Quantum Fieldwol 2, chapters 16,17.
e C. Itzykson and J.-B. ZubeQuantum Fieldschapters 5.1, 6.1.

e M. E. Peskin and D. V. Schroedém Introduction to Quantum Field Theqrghapter 4.
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Chapter 7

Path Integrals in Quantum Field Theory

In the previous chapters we have followed the "traditionakinonical approach to quantise field theories. We
would now like to show how field theories can be quantisedualnty in a more elegant way, by using path
integrals. We begin by recalling some features of path nalegn quantum mechanics.

7.1 Quantum mechanics flashback

We have shown in Section 1.2 how quantum mechanics can beifated in terms of path integrals. In particular,
we have found the expression (1.86)

¢
(z,t|a’ 1) = (x]e O |2) ~ /Dmexp {z/ dTE(ac,a'c)} (7.1)
t/

for the matrix element between two position eigenstateseHe, t) = ¢'f*|z)s are Heisenberg picture states
which coincide with Schrodinger picture statest))s at a given, fixed timeg. The central objects to compute
in quantum field theory are vacuum expectation values of-tintkered field operator product. The analogous
quantities in quantum mechanics, for simplicity written fiest two operators, are(x s, ¢ ;|T(3(t1)2(t2))|z:, ti)-
Focusing on the cagg > ¢, and inserting complete sets of states we have

(wr, | T(@(t)3(E2)) |25 ) = (wple HETWggemH i) ggemHE 710 |4,

= / drydey (xple” TG |0 (@) |Ege ™ H O 8|30 ) (o] 2 ge ™ H 2710 | 1))

Usingz|x) = x|z), replacing every expectation value by Eq. (7.1) and combittie three path integrals, together
with the integrations over; andzs into a single path integral this can be written as

'tf
(g, tr|T(&(t1)&(t2)) i, ti) ~ /Dx x(t1)z(t2) exp {z/ dr E(x,j:)} . (7.2)
ti
Fort, > t; the result is actually the same: time-ordering is automiatigath integrals. It is also clear that the
above argument can be repeated for a product of an arbittemper of operator$(¢). Further, it can be shown
thatlime, oo t; oo (@, LT (2(t1) ... 2(tN)) |7, ti) ~ (O|T(2(t1) - .. 2(tn))[0), SO we have the final result

O|T(&(t1) ... &(tn))]0) ~ / Dra(ty)... z(ty)e (7.3)

7.2 Basics of field theory path integrals

As in previous sections, we focus on the simple toy exampla odal scalar field> with Lagrangian density
L = L(8,¢,¢) and actionS = [ d*z L although the formalism applies more generally. As disaissethe
previous chapter, the central objects in quantum field thedwich carry all the relevant physical information are
the Green functions

¢ (z1,...,an) = (O|T(d(z1) ... p(xn))|0) . (7.4)

1In this chapter, we will use hats to distinghuish operatoosiftheir classical counterparts which appear in the patgial.
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In analogy with Eq. (7.3) we can now express these Greenifureein terms of a path integral as
G (21,...,aN) ZN/D¢¢(5U1) P )ell (7.5)

where\ is a normalization to be fixed shortly. Analogous to what wetidiChapter 1, it is useful to introduce a
generating functional

Wil =7 [ Do exp{i [ ata 1£60,0.0) + Sa)ota] | (7.6)
for the Green functions such that

SNWJ]

ZNg(N)(:rlv '7$N) =

. (7.7)
J=0

To fix the normalization\ we require thatV[J]| ;=0 = (0|0) = 1. For the purpose of explicit calculations
it is useful to introduce a Eulkidean &Vick rotatedversion of the generating functional. To do this we define
Euklidean four-vectors by = (zo,x) = (izo, x), associated derivatives, = % and a Euklidean version of
the Lagrangian densit¢z = Lz (0,9, $). We can then re-write the generating functiotial./] and obtain its
Euklidean counterpart

Welt) = [ Do { [ s [£e@,0.0)+ @6 (7.8)
and associated Euklidean Green functions
N
(N)/~ o S WelJ] 79
gE (:rlvv:rN)*éJ(jl)éj(jN) o ()
In analogy with Chapter 1 (see Eqg. (1.81) we also define thergéing functionalZ[.J] by
W[J] = 4] (7.10)
and its associated Green functions
SNZ1J]
NG (24, ... = 7.11
PG @ aN) = S T o (7.11)

which correspond to connected Feynman diagrams. We wil tefG(") asconnected Green functiormsd to
Z|J] as the generating functional for connected Green functions

The full information about the quantum field theory is noweahed in the generating functional, so this is the
primary object to compute. We begin by doing this in the sesptase, the free theory.

7.3 Generating functional and Green functions for free fiel&

The Lagrangian density of a free, real scalar field is give£ by %(auqb@“qb — m?2¢?) and the Euklidean version
readsCy = —1(9,00,¢ + m>$*). We write the kinetic term as

[ 28,00 = [ daatyols) (055" @ - p)o@) . (7.12)
so that the Euklidean generating functional takes the form
Weld] =& [ Doexp {—% [dadgomamaow + [ da J(m)qb(w)} - (7.13)

with the operator o

A(g,z) = (8407 +m?) 6*(z — 7)) . (7.14)
This is a Gaussian path integral with a souttef precisely the type we have discussed in Section 1. From
Eq. (1.42) we find

WelJ] = N exp {% / A7 d'5 J(§) An(i — J:)J(m)) (7.15)
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with the inverseAg (5 — z) = A=(y, %) and a swtable normalizatiok. How do we compute the inverse of the
operatorA? With the representatla% T — f Gy ¢*(@=7) of the delta function, we writel as a Fourier
transform
A(g, ) = / Ok 1 (B? 4 m?)eHe=D) (7.16)
’ (2m)4 ' '
Then, we invertA by taking the inverse inside the Fourier transform, that is
Ap(j—%) = /ﬂeik(w—y); (7.17)
BV = | n)t K2 +m2 '

Now, we would like to revert to Minkowski space with coordiese: andy. To obtain a Minkowski product in the
exponentin Eq. (7.17) we also need to introduce the Minkowsknentumk = (ko, k) = (iko, k). By inserting
all this into Eq. (7.15) we find for the generating functioimMinkowski space

W[J] exp{%/d4zd4yJ(x)AF(xy)J(y)} , (7.18)

whereAr is the Feynman propagator precisely as introduces easberq. (5.53). We have also chogén= 1

so thatW[J]| ;=0 = 1. Eq. (7.18) is the general result for the generating fumetiof the free scalar field theory.
All the free Green functions can now be calculated from EdZ)(@nd we already know from Chapter 1 that the
result can be obtained by applying Wick’s theorem. In patéic we have for the-point function

S2W1J]

G® (x,y) = — m J=0

=Ap(z—vy). (7.19)

Wick’s theorem appears both in the context of canonical tisation (see Eq. (5.61)) and path integral quantisation.
Applying it in either case shows that both types of Green fions are indeed identical, at least for the case of free
fields. This confirms that canonical and path integral qsatiiin are equivalent.

For later reference, we note that from Eqgs. (7.18) and (ZHyenerating functiona for free fields is given
by

ZlJ) = %/d‘*m dy J(2)Ar(z —y)J(y) . (7.20)

7.4 The effective action

In Chapter 1 we have seen that the path integral formalisighes an intuitive picture for the transition between
guantum and classical physics. We will now study this tri@msin more detail for the case of field theories. To
this end we define the classical field by

0Z[J)

pe(x) = 57(0) (7.21)
Then, from the definition (7.10) of the generating functioave have
bo(z) = —— SWIJ] _ {0[¢(x)]0)s (7.22)

WiJ 6J(x) (0o, 7

where we have suggestively defined the vacuum expectatioes/a|0) ; = W[.J] and(0]|¢(z)|0); = —idW [J]/6J (z)
in the presence of the sourde Eq. (7.22) shows that. is the suitably normalised vacuum expectation value of
the field operato, so its interpretation as a classical field is sensible. Mg, is a function of the source
J. From Eq. (7.10), the generating functiorfalis "on the same footing” as the exponential in the path irgkegr
and can, hence, be seen as some sort of effective action. vdgvitestill contains the effect of the source term
J(x)¢(x) in Eq. (7.6). To remove this source term we define the effecitionl’ by a Legendre transform

Niod) = 200] - [ dte J(@)ou(a) (7.23)

Differentiating the left-hand side of this equation &4 J(y) and using the definition (7.21) of the classical field
it follows thatI" is independent of the sourck as the notation suggests.
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To see that these definitions conform with our intuition,usffirst discuss free fields. In Eq. (7.20) we have
calculated the generating functioriafor free fields and inserting this into Eq. (7.21) we find foe tHassical field

bolz) = i / dhy Ap(z — )T (y) (7.24)

Since the Feynman propagator satisfies the equétion m?)Ar(z) = —id*(x) (see Eq. (5.55)) we find for the
above classical field that

(0 +m?)pe() = J(x) (7.25)
so itis a solution to the Klein-Gordon equation with soud¢e ), as one would expect for a classical field coupled
to a source/. Inserting (7.20) and (7.24) into the effective action 8j.& follows

1
2

1 1

/d4:1: be(2)J (1) = / d*z ¢o(2) (O + m?)ge(x) = 5 /d4:1: (0000 e —m>¢2]  (7.26)

F[¢c] = - 2

and, hence, the effective action coincides with the classiction as one would expect for a free theory.
For interacting theories, the generating functional canafrse not be calculated exactly. However, we can
proceed to evaluate the path integral

W1J] :N/D¢exp {iS[qb] +z’/d4m J(x)¢(x)} (7.27)

in the saddle point approximation as discussed in Chapt€hé.solutiong, to the classical equations of motion
is determined from the classical equations of motion

0S
W[éf’o] =—J(z). (7.28)

Then, to leading order in the saddle point approximation we fi

W[J]Nexp{is[%]‘i‘i / d4wJ<x>¢o<w>}, 210 =Sl + [ dzI@in(e) . (7:29)

With this result forZ and Egs. (7.21), (7.23) and (7.28) we immediately conclbdes. = ¢¢ andl'[¢.] = S[o.)-
Hence, in the lowest order saddle point approximation tfecte actiornl” is simply the classical action. Beyond
this leading order, the effective action of course recedasections due to quantum effects and differs from the
classical action. This leads to a systematic approach tulea these quantum corrections to the effective action
the details of which are beyond the scope of the lecture.

The above formalism also sheds light on another point whiethawve glossed over so far. Our discussion of
spontaneous symmetry breaking in Chapter 4 has been caritieel context of classical fields and it has not been
obvious what its status should be in the quantum theory. Bpeous symmetry breaking of a quantum theory
should be analysed using the above effective action (orempcisely, the effective potential, which is the scalar
potential of the effective action). Hence, we see that talte of Chapter 4 make sense in quantum theory, but
have to be viewed as a leading order approximation.

7.5 Feynman diagrams from path integrals
To develop perturbation theory in the path integral forsraliwe split the Lagrangian density As= Ly + Lint

into the free Lagrangiafy and the interaction piecé;,;. The free generating functional associated withis
denoted by, [.J] and the full generating functional By [.J]. We have

W{J]

N/m) exp {i/d% (Lo + Lint + J(ac)(b(ac)}

= Nexp {z/ d*a Ling (z%@)) } WolJ] .

=P ) )
N 1 +p§1 17 /d4y1 e d4yp £int (—Zm) .. -Eint (—Zm)] Wo[J] , (730)
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N~t= exp{z'/d‘*xcim (—z%@)) } WolJ]

to ensure thatV[J]| ;=0 = 1. This is a perturbative series for the full generating fiowal in terms of the free
one,Wy[J]. We recall from Eq. (7.18) that the free generating functias given by

where
(7.31)

J=0

Wols] =exp{ 5 [ dteatya@are - I} (7.32)

so all the functional differentiations in Eq. (7.30) can laeried out explicitly and lead to Feynman propagators.
The Green functions (7.7) can then written as

) )

iy 5 5
1+ —/d4 cdMyy Lin (—),c (—) WolJ
;p! Y1 Yp t ZCSJ(yl) t Z5J(yp) 0[ ] ]70

We know from Chapter 1 (see Eq. (1.76) that this expressionbeaworked out using Wick’s theorem. The
result is a sum over products of Feynman propagators, $yiitalegrated, and each term can be associated to a
Feynman diagram. This is precisely the same structure dedquerturbative Green function (6.54) obtained from
canonical quantization (after diagrams with disconnegtium bubbles are cancelled due to the normalization
factor N'). We have, therefore, explicitly verified that canonicatl grath integral approach lead to the same
perturbative Green functions. From hereon, working ouGheen functions explicitly and calculating decay rates
and cross sections works exactly like in the canonical fdisma We calculate the space-time Green functions
from the above formula and then derive the Fourier transéorand amputated Green functions from Egs. (6.55)
and (6.58), respectively. Is is clear that this also leadfi¢osame set of Feynman rules, so there is no need to
repeat their derivation. Compared to the hard work in th@naral approach it is remarkable how relatively easily
the path integral formalism delivers the same results.

Q(N)(zl,.. .,ZN)

X

7.6 Further reading

Path integrals in quantum field theory and path integral tipation of the scalar field theory are covered in most
standard text books on quantum field theory, including

e P. RamondField Theory: A Modern Primer
e D. Bailin and A. Loventroduction to Gauge Field Theory

e S. WeinbergThe Quantum Theory of Fieldegol. 1
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Chapter 8

Many-Particle Quantum Systems

There are two routes which take us to problems in many-paigigantum physics. One is to start from classical
field theory and quantise, as in Chapter 5 of these notes. fhlee is to start from one-body or few-body quantum
mechanics, and consider the special aspects which becopogtant when many particles are involved. Clearly,
the first route is the natural one to take if, for example, watta begin with Maxwell’s equations and arrive at
a description of photons. Equally, the second route is tipecpiate one if, for instance, we want to begin with
a model for liquid*He and arrive at an understanding of superfluidity. In thiaptar we will set out the second
approach and illustrate it using applications from conddmmatter physics. Although the problems we cover
can all be formulated using functional integrals, we wikkd$amiltonians, operators and operator transformations
instead. This choice is made partly for simplicity, and lydrt order to introduce a useful set of techniques.

8.1 Identical particles in quantum mechanics

Many-particle quantum systems are always made up of riceemyical particles possibly of several different kinds.
Symmetry under exchange of identical particles has verpiapt consequences in quantum mechanics, and the
formalism of many-particle quantum mechanics is desigodulitld these consequences properly into the theory.
We start by reviewing these ideas.

Consider a system @¥ identical particles with coordinates, . ..ry described by a wavefunctiaf(r; ...ry).
For illustration, suppose that the Hamiltonian has the form

& -
H:_%;vf-ygv(ri)—i—zlf(ri—rj)-

i<j

Here there are three contributions to the energy: the kieergy of each particl&f? operates on the coordinates
r;); the one-body potential enerdi(r); and the two-particle interaction potentfa(r; —r;). To discuss symmetry
under exchange of particles, we define the exchange opé?gtura its action on wavefunctions:

’Pijz/)(...ri...rj...):w(...rj...ri...).

Since[H, P;;] = 0, we can find states that are simultaneous eigenstatgsasfd?;;. Moreover, a system that

is initially in an eigenstate dP;; will remain in one under time evolution with. For these reasons we examine
the eigenvalues oP;;. Since(P;;)? = 1, these aret1 and—1. Now, it is an observational fact (explained in
relativistic quantum field theory by the spin-statisticedlem) that particles come in two kinds and that particles
of a given kind are always associated with the same eigeenadlthe exchange operatot:1 for bosons and-1

for fermions.

8.1.1 Many particle basis states

In a discussion of many-particle quantum systems we shestdct ourselves to wavefunctions with the appropri-
ate symmetry under particle exchange. We can do this by asseg of basis states that has the required symmetry.
As a starting point, suppose that we have a complete, orthmalset of single-particle states (r), ¢2(r). . ..

91
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Next we would like to write down a wavefunction representmgV-particle system with one particle in stdte
one in statd, and so on. The choice

d)ll (r)d)b (I‘) s d)lN (I‘)

is clearly unsatisfactory because for genéral, . . . it has no particular exchange symmetry. Instead we take

Yrron) =N Y (ED ek (1) . Gy () - (8.1)

distinct perms.

Several aspects of the notation in Eq. (8.1) require commehe sign inside the brackets {#-1)” is +1 for
bosons and-1 for fermions. The set of labelg:; . .. ky } is a permutation of the sét; ... Iy }. The permutation
is calledevenfit can be produced by an even number of exchanges of adjpa@s of labels, and isddotherwise;
the integerP is even or odd accordingly. The sum is overdifitinctpermutations of the labels. This means that
if two or more of the labels,, are the same, then permutations amongst equal labels dppeamas multiple
contributions to the sum. Finallyy is a normalisation, which we determine next.

To normalise the wavefunction, we must evaluate

/ddrl.../dder*(rl...rN)z/J (rl...rN) .

Substituting from Eq. (8.1), we obtain a double sum (ovenpéationsk; ... kxy andh; ... hy) of terms of the
form

/ dlry 6, (F) by, (r1) - . / dlry 67, (0)6n, (1)

These terms are zero unlgss= h1, ks = ho, and. .. ky = hy, in which case they are unity. Therefore only the
diagonal terms in the double sum contribute, and we have

. |
[ [l = 32 @ =P

dist. perms. o

where theny, no . .. are the numbers of times that each distinct orbital appeat®iset{/; ...Iy}, and the ratio
of factorials is simply the number of distinct permutatiortéence we normalise the wavefunction to unity by

taking
Lngl ..\ /2
N = (”17) _
N!

8.1.2 Slater determinants

For fermion wavefunctions we can get the correct signs mkihg of Eq. (8.1) as a determinant

o 1 ¢, (r1) o i (rN) 62
rv...rny)=— . .
VL g(v1) o iy (en)

Note that this determinant is zero either if two orbitals Hve same{ = [;) or if two coordinates coincide
(r; = r;), so the Pauli exclusion principle is correctly built in. fd@lso that, since the sign of the determinant is
changed if we exchange two adjacent rows, it is necessargdp k mind a definite ordering convention for the
single particle orbitalg, (r) to fix the phase of the wavefunction.

For bosons, we should use an object similar to a determibabtaving all terms combined with a positive
sign: this is known as permanent

8.1.3 Occupation numbers

We can specify the basis states we have constructed by dhvéngumber of particles; in each orbital. Clearly,
for fermionsn; = 0 or 1, while for bosons,; = 0, 1, . ... These occupation numbers are used within Dirac notation
as labels for a statén, no, . . .).
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8.1.4 Fock space

Combining state$n, no, . . .) with all possible values of the occupation numbers, we hasshrectors for states
with any number of particles. This vector space is knowir@sk space Using it, we can discuss processes in
which particles are created or annihilated, as well as oritbsfixed particle number, described by wavefunctions
of the formy(ry ... rn).

8.1.5 The vacuum state

It is worth noting that one of the states in Fock space is tloeiwen: the wavefunction for the quantum system
when it contains no particles, written @5. Clearly, in recognising this as a quantum state we have come
way from the notation of single-body and few-body quantuntinamics, with wavefunctions written as functions
of particle coordinates. Of courg@) is different from0, and in particulag0|0) = 1.

8.1.6 Creation and annihilation operators

Many of the calculations we will want to do are carried out tafciently by introducing creation operators, which
add particles when they act to the right on states from Foekesp Their Hermitian conjugates are annihilation
operators, which remove particles. Their definition restshe set of single particle orbitals from which we built
Fock spaceclT adds particles to the orbitg} (r). More formally, we define

CLCL . csz|0) = (ni!ng! .. )% |ny,ng ) (8.3)

to be the state with coordinate wavefunction
1
—— > (D) ek (r1) . Gy (T) (8.4)
N! all perms

A detail to note is that the sum in Eq. (8.4) is over all perrtiates, while that in Eq. (8.1) included only distinct
permutations. The difference (which is significant only bmsons, since it is only for bosons that we can have
n; > 1), is the reason for the factdn;!no! ...)'/? appearing on the right of Eq. (8.3). This choice anticipates
what is necessary in order for boson creation and annibilatperators to have convenient commutation relations.
Annihilation operators appear when we take the Hermitiarjugate of Eq. (8.3), obtainin@®| ¢;,, . . . ci,ci, -
Let’'s examine the effect of creation and annihilation ofesawhen they act on various states. Sinhé> is the
state with coordinate wavefunctian(r), we know that(0|c, clT|O> = 1, but for any choice of the state) other
than the vacuum:j|¢>> contains more than one particle and heffije, clT|q§> = 0. From this we can conclude that

G CHO) = |0> )

demonstrating that the effect of is to remove a particle from the stdtg=1) = clT|0). We also have for anjy)
the inner product$0|clT|¢) = (¢|c,|0) = 0, and so we can conclude that

¢10) = (0] = 0.

8.1.7 Commutation and anticommutation relations
Recalling the factor of+1)” in Eq. (8.4), we have for anly)

cjeh o) = £cf,cf19)

where the upper sign is for bosons and the lower one for fermid-rom this we conclude that boson creation
operators commute, and fermion creation operators antiaaet that is, for bosons

[ el =0

and for fermions
{cf.chy =0,
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where we use the standard notation for an anticommutatarmbperatorsi andB: {A, B} = AB+ BA. Taking
Hermitian conjugates of these two equations, we have fooims

[ci,em] =0
and for fermions
{ci,em} =0.

Note for fermions we can conclude tk(a;)Q:(clT)Q:O, which illustrates again how the Pauli exclusion principle
is built into our approach.

Finally, one can check that to reproduce the values of inratycts of states appearing in Eq. (8.3), we require
for bosons

e Cjn] = Oim

and for fermions
{cl,cin} = O1m -

To illustrate the correctness of these relations, consatea single boson orbital the value [fct)™|0)]|2. From
Eq. (8.3) we have{(c")"|0)]|2 = n!. Let's recover the same result by manipulating commutateeshave

(I ()"10) = {0l(e)" (fesf] + cle)(e)" o)
= m{0|(e)" ()10} + (0] ()" el () () o)
= n{0](e)" ™ ()"0} + (0l¢! ()" (") [0)
= nn-1)...(n— Z)<0|(CT)H*I(C)n7Z|O>
= nl(0]0).
Of course, manipulations like these are familiar from theotly of raising and lowering operators for the harmonic

oscillator.

8.1.8 Number operators
From Eq. (8.4) as the defining equation for the action of @eaiperators in Fock space we have
clng.ong. ) = (D)™ T g g 1.
or zero for fermions if2;=1. Similarly, by considering the Hermitian conjugate of aismequation, we have
alng..ong. )y = (FD)M T ngng oo — 1)
or zero for both bosons and fermiongif=0. In this way we have
cjcl|...nl...> =nl...ng...)

where the possible valuesof aren;=0, 1,2. .. for bosons ane,;=0, 1 for fermions. Thus the combinati(mflcl ,
which we will also write agi;, is the number operator and counts particles in the orbjtal

8.1.9 Transformations between bases

In the context of single-particle quantum mechanics it iemtonvenient to make transformations between differ-
ent bases. Since we used a particular set of basis functiang idefinition of creation and annihilation operators,
we should understand what such transformations imply imaipelanguage.

Suppose we have two complete, orthonormal sets of singlésieebasis functions,¢; (r) } and{p.(r)}. Then
we can expand one in terms of the other, writing

Pa(r) = Z ¢ (r)Va (8.5)
1
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with U, = (¢1|pa). Note thatU is a unitary matrix, since

(UUT)ml = Z<¢m|pa><pa|¢l>

(03

= (mlér)  since ) |pa)(pal =1

- 5ml .

Now let clT create a particle in orbitab;(r), and letd], create a particle in orbital, (r). We can read off from
Eq. (8.5) an expression faf, in terms ofclT:

df, => U .
l

From the Hermitian conjugate of this equation we also have

do =Y Uine, = (U, .
l

l

Effect of transformations on commutation relations

We should verify that such transformations preserve coratiout relations. For example, suppose tzha.iamdclT

are fermion operators, obeyidg, , ¢}, } = &;,. Then

{do.di} = Ui U,g{e; ch} = (UTU)ap = dag -

lm

Similarly, for boson operators commutation relations assprved under unitary transformations.

8.1.10 General single-particle operators in second-quaised form

To continue our programme of formulating many-particlerfuen mechanics in terms of creation and annihilation

operators, we need to understand how to transcribe opefeton coordinate representation or first-quantised form
to so-called second-quantised form. In the first instanesgxamine how to do this for one-body operators — those
which involve the coordinates of one particle at a time. Aaraple is the kinetic energy operator. Suppose in

general thatd(r) represents such a quantity for a single-particle systemenThbr a system ofV particles in

first-quantised notation we have
N

A:ZA(ri).

We want to represemt using creation and annihilation operators. As a first stepcan characterisé(r) by
its matrix elements, writing

Aim :/ (bf(r)A(r)(bm(r)ddr.

Then
A(®)bm (r) =D di(r) Au - (8.6)

l
The second-quantised representation is
A=Y Apche, . (8.7)
pq

To justify this, we should verify that reproduces the correatrix elements between all states from the Fock space.
We will simply check the action ofl on single particles states. We have

Algm) = Apgche,eh,10)
pq

Now, taking as an example bosons,

chegchnl0) = ch(legs ch] + chue,)10) = chdgml0)

qr—m
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SO

A|¢m> = Z |¢p>Apm y
p

reproducing Eq. (8.6), as required.

8.1.11 Two-particle operators in second-quantised form

Itis important to make this transcription for two-body ogtars as well. Such operators depend on the coordinates
of a pair of particles, an example being the two-body po&tirti an interacting system. Writing the operator in
first-quantised form ad(r1, r2), it has matrix elements which carry four labels:

Atmpq = /@* (r1) ¢y, (r2) A(r1,12)0, (r2) ¢, (r1)dr1d s .

Its second-quantised form is
A= Z (ri,rj) Z Almpqcl cmcpcq . (8.8)

iJ Impq

Again, to justify this one should check matrix elements @& #econd-quantised form between all states in Fock
space. We will content ourselves with matrix elements far-particle states, evaluating

(A) = (0]c,c, Ackc]|0)

by two routes. In a first-quantised calculation withsigns for bosons and fermions, we have

(4) = //‘ (1)} (r2) % 62 (r2)6 (11)] - [A(r1, v2) + Alva,11)] - [0,(11)6 (12) £ &, (r2)6 (r1)]dr1drs

= 2 [Amyba =+ Amyab + Ayzab =+ Ayzba + Amyba =+ Amyab + Ayzab =+ Ayzba]
= (Axyba + Aymab) + (Axyab + Aymba) . (89)

Using the proposed second-quantised form4owe have
Z Almpq 0|Cy T l mcpcqca b|0>
lmpq

We can simplify the vacuum expectation value of productseétion and annihilation operators such as the one
appearing here by using the appropriate commutation oc@ntnutation relation to move annihilation operators
to the right, or creation operators to the left, whereupdimgon the vacuum they give zero. In particular

CquCaCb|0> = (8ag0bp £ daplng)|0)

and
<0|cycxcztcin = (0] (Oym Ozt £ Oy10zm,) -

Combining these, we recover Eq. (8.9).

8.2 Diagonalisation of quadratic Hamiltonians

If a Hamiltonian is quadratic (or, more precisely, bilingarcreation and annihilation operators we can diagonalise
it, meaning we can reduce it to a form involving only numbeemgors. This is an approach that applies directly

to Hamiltonians for non-interacting systems, and also tmhtanians for interacting systems when interactions

are treated within a mean field approximation.
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8.2.1 Number-conserving quadratic Hamiltonians
Such Hamiltonians have the form
H = Z Hijalaj .
ij

Note that in order for the operatéf to be Hermitian, we require the matrikto be Hermitian. Since the matrix
H is Hermitian, it can be diagonalised by unitary transfoiorat Denote this unitary matrix b{J and let the
eigenvalues off bee,,. The same transformation applied to the creation and datidn operators will diagonalise
‘H. The details of this procedure are as follows. Let

ozg = Z(IIUH .
i

Inverting this, we have

> af (U, =adl

E Ujlozl =aj .
l

Substituting fora!'s anda’s in terms ofaf’s anda’s, we find

H= Zaj(UTHU)lmam = analan = anﬁn .

lm

and taking a Hermitian conjugate

Thus the eigenstates &f are the occupation number eigenstates in the basis gethiénatbe creation operators
T
Q.

8.2.2 Mixing creation and annihilation operators: Bogolitbov transformations

There are a number of physically important systems whictemtheated approximately, have bilinear Hamiltoni-
ans that include terms with two creation operators, andrstivéh two annihilation operators. Examples include
superconductors, superfluids and antiferromagnets. THa@sgltonians can be diagonalised by what are known as
Bogoliubov transformationsvhich mix creation and annihilation operators, but, asagisy preserve commutation
relations. We now illustrate these transformations, dising fermions and bosons separately.

Fermions

Consider for fermion operators the Hamiltonian
_ T T ToT
H = e(cieg + cyep) + A(ciey + cocq)

which arises in the BCS theory of superconductivity. Notat th must be real forH to be Hermitian (more
generally, with complex the second term o, would readiccl + A*¢,c,). Note as well the opposite ordering
of labels in the terms{ ¢} andc,¢,, which is also a requirement of Hermiticity.

The fermionic Bogoliubov transformation is

CI = udIJrde
b = udl—vd, (8.10)

whereu andv arec-numbers, which we can in fact take to be real, because wereatricted ourselves to real
. The transformation is useful only if fermionic anticommtibn relations apply to both sets of operators. Let us
suppose they apply to the operatdrandd’, and check the properties of the operatoasidct. The coefficients

of the transformation have been chosen to ensure{tfiat}} = 0, while

{CL ey = UQ{dJ{v di} + U2{d£a dy}

and so we must requir€’ + v? = 1, suggesting the parameterisatior- cos , v = sin 6.
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The remaining step is to substitutefinfor ¢’ andc in terms ofd" andd, and pickd so that terms imlidg +dyd,
have vanishing coefficient. The calculation is perhapsreltavhen it is set out using matrix notation. First, we
can writeH as

€ A 0 0 1

1 A —€ O 0 ol

_ - i i 2
H*Q(Cl Cy Gy C1) 0 0 e —)\ e te

0 0 -\ —e CI

where we have used the anticommutator to make substituticthe typecfc = 1 — ccf.
For conciseness, consider just the upper block

and write the Bogoliubov transformation also in matrix foam

()( )i )
(50 o) (520 )=(5 %)

wheree = v/¢€2 + A\2. Including the othe? x 2 block of H, we conclude that

sin 6
cosf

cosf
—sinf

We pick# so that

sin 6
cosf

cos
—sinf

—sind
cosf

H = &(dld, + dbdy) + ¢ —¢.

Bosons

The Bogoliubov transformation for a bosonic system is @imih principle to what we have just set out, but
different in detail. We are concerned with a Hamiltoniantef same form, but now written using boson creation
and annihilation operators:

H= E(C]{Cl + 0502) + )‘(CICE +¢0q) -

We use a transformation of the form

¢}

2!

= ud]i + vd,
= udg +vd, .

Note that one sign has been chosen differently from its @patt in Eq. (8.10) in order to ensure that bosonic
commutation relations for the operatarandd’ imply the result[cI, cg] = 0. We also require

[Clvc“ = u2[d17d“ - v2[d27d£] =1

and hence:? — v? = 1. The bosonic Bogoliubov transformation may therefore raipeterised ag = cosh 6,

v = sinh 6.

We can introduce matrix notation much as before (but noteesomncial sign differences), with

e N0 O Cq

1 A e 00 el
7‘[:5(6'{ Co c; C1) 00 € A\ Cz —€,

0 0 X € CI

where for bosons we have used the commutator to wtite= ¢ ¢’ — 1. Again, we focus on on2 x 2 block

(s ()
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and write the Bogoliubov transformation also in matrix foam

()i )

Substituting forc andc! in terms ofd andd?, this block of the Hamiltonian becomes

e () (O () G-

In the fermionic case the matrix transformation was simplpeghogonal rotation. Here it is not, and so we should
examine it in more detail. We have

u v € A u v\ [ €u+v]+ 2 uv  2euv + Nu? + v?)
vou A € v ou )\ 2euv+ Au? + 02 eu +0%] 4+ 20w )

It is useful to recall the double angle formulag + v? = cosh 20 and2uv = sinh 20. Then, settinganh 20 =
—\/e we arrive at

H = &(dld, + dbdy) — e+ €.

E=Ve2— )\ (8.11)
Note that in the bosonic case the transformation requiresA: if this is not the caseH is not a Hamiltonian

for normal mode oscillations about a stable equilibriunt,ibstead represents a system at an unstable equilibrium
point.

with

8.3 Density correlations in ideal quantum gases

Having set up the machinery, we now apply it to some problefrghgsical interest. One of the simplest is a
calculation of particle correlations in an ideal quanturs.géhese correlations arise purely from quantum statjstics
since in an ideal gas there are no interactions betweerclgagrand therefore no correlations at all at a classical
level.

ConsiderN identical particles in a three-dimensional cubic box oksidwith periodic boundary conditions.
The single particle eigenstates are plane waves: we write

1 2
me‘k'” with k= Iir(l m,n), I,m,n integer.

Pk(r) =

Introducing creation operatoc§ for particles in these orbitals, the creation operator fpadicle at the point is

L3/2 Z e T

With particle coordinates denoted by, the density operator in first-quantised form is

N
r)Z(S(rfri) .

In second quantised form it is simply the number operatdneapbintr,
p(I‘) _ C L3 Zel(q k)-r T

as is confirmed by using Eq. (8.7).

We will calculate(p(r)) and{p(r)p(0)). As a prelude to the quantum calculation, it is worth consiggthe
problem classically. In a classical system the meaning®#ftleragé. . .) is a normalised multiple integral of all
particle coordinates over the volume of the box. Hence

(o)) = 75 [ dPeise —x) = 7
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and
((r)p(0) = T [ deise —ro(e:) +

b + 35 [o0 - |

w / / dryd3r; 5(r — 1,)3(x))

In the large volume limit we have simply

(p(r)p(0)) = (p(r))* + {p(x))(r) . (8.12)
Now we move to the quantum calculation, taking the average to mean an expectation value in number
eigenstates for the orbitajs (r), weighted by Boltzmann factors at finite temperature. Tduata(p(r)) we need
(chcq) = Okalnu) .
whereny is the number operator for the orbital(r). Since) ", (nk) = N, we find

(o(r)) = 1%

as for a classical system. The two-point correlation furcis more interesting. To evaluate(r)p(0)) we need
averages of the forrfthqcIcp>. These are non-zero in two cases:Ki¥ q andl = p; or (i) k = p andl = q,

with q # p to prevent double-counting of terms included under (i).hit# q we have(dlcqci,cp) = (ngnp),

and(cfc clic,) = (np(1 £ nq)), where the upper sign is for bosons and the lower one for fersiiFrom this
1 i(q—k)r
(p)p(0)) = 75 D T (cleqelep)
kqlp

= e S lnalmp) + 75 P 0y (1 ng)
e S ) — ) — ) (1 ()]
k

The final term is negligible in the limik — oo with N/L? fixed, and we discard it. In this limit we can also make

the replacement
1
52 o [
P

1
(2m)?
so that we obtain finally

2

(p(£)p(0)) = {p(x))? + (ple))o(x) ] (6.13)

The final term on the right-hand side of Eg. (8.13) is the adioa to our earlier classical result, Eq. (8.12), and
represents the consequences of quantum statistics. #isedefiorm as a function of depends on the momentum
distribution of particles, but the most important featuage quite general: there is an enhancement in density
correlations for bosons and a suppression for fermions)emgahscale of ordgt/Ap, whereAp is a characteristic
momentum for the gas. In summary: bosons bunch and fermiahsde.

8.4 Spin waves in a ferromagnet

We move now to a problem that illustrates how one can makeoappations in order to obtain a simple description
of excitations in an interacting system. The model we stsdphé quantum Heisenberg ferromagnet in the limit
where the spin magnitudg is large. It represents an insulating ferromagnetic malteén which magnetic ions
with well-defined magnetic moments occupy the sites of &katt
The three components of spin at sitare represented by operatéfs, SY andS?. Their commutation relations
are the standard ones, and witk= 1 take the form
[SZ Sj ] = i6r1,r2€ijksfl .

ri’Mrg
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We reproduce them in order to emphasise two points: firsy #me more complicated than those for creation
and annihilation operators, since the commutator is imetither operator and not a number; and second, spin
operators acting at different sites commute. We will als&enase of spin raising and lowering operators, defined
in the usual way as+ = S 4 iSY andS— = S* —iSY.

The Heisenberg Hamiltonian with nearest neighbour fergmetic exchange interactions of strendtis

=—JY S Sp=-J) {SZ Z s*s +5:85)| - (8.14)
(rr’) (rr’)

Herez<”,> denotes a sum over neighbouring pairs of sites on the lattiite each pair counted once. Thinking
of the spins as classical, three component vectors withthefigthe lowest energy states are ones in which all
spins are parallel. The model is simple enough that we cate Wdwn the exact quantum ground states as well:
for the case in which the spins are aligned along the positizeis, the ground stat®) is defined by the property
SZ10) = S|0) for all r. Other ground states can be obtained by a global rotatiopiofdirection. Individual
ground states in both the classical and quantum descrgpbogak the rotational symmetry of the Hamiltonian,
and so we expect excitations which are Goldstone modes aneftine gapless. There are known as spin waves or
magnons. Eigenstates with a single magnon excitation catirbe found exactly, but in general to go further we
need to make approximations. As a next step, we set out onexpyation scheme.

8.4.1 Holstein Primakoff transformation

This transformation expresses spin operators in termssafiboperators. It provides an obvious way to build in the
fact that spin operators at different sites commute. In alivaar form it also reproduces exactly the commutation
relations between two spin operators associated with time ste, but we will use a linearised version of the
transformation which is approximate. At a single site weettlle eigenvector 05~ with eigenvalueS to be the
boson vacuum, and associate each unit reductiéit with the addition of a boson. Then

S*=5S—1b'p.

From this we might guesS™ o b andS~  bf. In an attempt to identify the proportionality constants ve
compare the commutat@$*, S~] = 25 with [b,b'] = 1. Since the commutator is an operator in the first case
and a number in the second, our guessed proportionalityotdoenexact, but within states for whigl$*) ~ S
(meaning(S*#) — S < S, which can be satisfied only § > 1) we can take

St (282 and ST~ (29)Y%'. (8.15)
In an exact treatment, corrections to these expressiomsdaeries in powers éfb/S. Using this transformation

and omitting the higher order terms, the Hamiltonian maydveritten approximately as

H*fJZSQ JSZ[bH, blb, — b, — blb,| . (8.16)

(rr’)

8.4.2 Approximate diagonalisation of Hamiltonian

Applying the approach of Section 8.2.1, we can diagonaligg & 16) by a unitary transformation of the creation
and annihilation operators. In a translationally invarisystem this is simply a Fourier transformation. Suppose
the sites form a simple cubic lattice with unit spacing. T#ie system to be a cube with with sideand apply
periodic boundary conditions. The number of lattice sitethenN = L? and allowed wavevectors are

2w

k:f(l,m,n) with [,m,n integer and 1<I{,m,n<0L.

Boson operators in real space and reciprocal space areddigat
b= —— d e by and b= L > ekl
r \/N - r \/N - k

We use these transformations, and introduce the notdtfonvectors from a site to its nearest neighbours, and
z for the coordination number of the lattice (the number ofheoburs to a site: six for the simple cubic lattice), to
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obtain
1 ir-(k— id-
H = —JWNz—JSE:E:Ne<k®@dQ—u@@
rd kq
= —JS’Nz—JS> eqblbg
q
where

€q = 2J5(3 — cos gy — cosqy — cosq.) .

In this way we have approximated the original Heisenberg #Hamnian, involving spin operators, by one that is
guadratic in boson creation and annihilation operatorsdiBgonalising this we obtain an approximate description
of the low-lying excitations of the system as independesbins. The most important feature of the result is the
form of the dispersion a small wavevectors. gox 1 we havee, = JSq? + O(q?), illustrating that excitations
are indeed gapless. The fact that dispersion is quadraticnat linear as it is, for example for phonons, reflects
broken time-reversal symmetry in the ground state of thefeagnet.

8.5 Weakly interacting Bose gas

As a final example, we present a treatment of excitations iosseBas with repulsive interactions between particles,
using an approximation that is accurate if interactionsvagak. There is good reason for wanting to understand
this problem in connection with the phenomenon of supeiiirithe flow of Bose liquids without viscosity below

a transition temperature, as first observed below 2.1 K indigHe. Indeed, an argument due to Landau connects
the existence of superfluidity with the form of the excitatgpectrum, and we summarise this argument next.

8.5.1 Critical superfluid velocity: Landau argument

Consider superfluid of mas® flowing with velocity v, and examine whether friction can arise by generation
of excitations, characterised by a wavevedtcand an energy(k). Suppose production of one such excitation
reduces the bulk velocity te — Av. From conservation of momentum

Mv = Mv — MAv + Rk

and from conservation of energy

%M& _ %M|v AV +e(k) .

From these conditions we find at lardé thatk, v ande(k) should satisfyiik - v = e(k). The left hand side

of this equation can be made arbitrarily close to zero by shngk to be almost perpendicular ig but it has a
maximum for a giverk, obtained by taking parallel tov. If hkv < e(k) for all k£ then the equality cannot be
satisfied and frictional processes of this type are formdddis suggests that there should be a critical velagity
for superfluid flow, given by. = ming[e(k)/k]. Foruv. to be non-zero, we require a real, interacting Bose liquid
to behave quite differently from the non-interacting gascs without interactions the excitation energies are just
those of individual particles, giving k) = h%k?/2m for bosons of mass:, and hence, = 0. Reassuringly, we
find from the following calculation that interactions hawe trequired effect. For completeness, we should note
also that while a critical velocity of the magnitude thesguanents suggest is observed in appropriate experiments,
in others there can be additional sources of friction thad f® much lower values af,.

8.5.2 Model for weakly interacting bosons

There are two contributions to the Hamiltonian of an intérecBose gas: the single particle kinetic enefgiyr
and the interparticle potential energ,;. We introduce boson creation and annihilation operatarplime wave
states in a box with sidé, as in Section 8.3. Then

Rk
HKE = ? %ckck .
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Short range repulsive interactions of strength paranssteétbyu are represented in first-quantised form by

u
Hint = 526(1’1 —I‘J) .
i#£]

Using Eq. (8.8) this can be written as

Hint = 575 Z CiCpCqCiip—q -
kpq

With this, our model is complete, with a Hamiltonigh= Hxg + Hint.

8.5.3 Approximate diagonalisation of Hamiltonian

In order to apply the techniques set out in Section 8.2.1 walshapproximaté{ by a quadratic Hamiltonian. The
approach to take is suggested by recalling the ground staite mon-interacting Bose gas, in which all particles
occupy thek = 0 state. It is natural to suppose that the occupation of thigalremains macroscopic for small
u, so that the ground state expectation valifg:,) takes a valueV, which is of the same order a¥, the total
number of particles. In this case we can approximate theedxplesr:f, andc, by thec-number,/N, and expand{

in decreasing powers df,. We find

uNZ  uN,
-0 0

Hint = 97,3 97,3

Z {QCLck +2¢ e Hotel + CkC_k:| + O([No]?) .
kA0

At this stageN, is unknown, but we can write an operator expression for it, as

No=N — chck .
k0

Itis also useful to introduce notation for the average nundieesityp = N/L3. Substituting forN, we obtain

u u
Hine = 9N + 2 3 [+l e i+ el i+ ae ] + O(N)°)

k0
and hence
1
H=LN+ 53 [B0) (ca+ o) +up (el aes)] +-o (8.17)
k0
with
h2k2
Ek) = .
(k) 5 T up

At this order we have a quadratic Hamiltonian, which we cagdnalise using the Bogoliubov transformation for
bosons set out in Section 8.2.2. From Eq. (8.11), we find teadlispersion relation for excitations in the Bose gas

IS
(k) = [(Z Lt up)2 - <up>2]

At largek (h2k?/2m > up), this reduces to the dispersion relation for free paricheit in the opposite limit it
has the form

1/2

e(k) ~ hvk with v=4/-L.
m
In this way we obtain a critical velocity for superfluid flowhieh is proportional to the interaction strength

illustrating how interactions can lead to behaviour quifeedent from that in a non-interacting system.
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8.6 Further Reading

e R. P. Feynmarstatistical MechanicgAddison Wesley). Chapter 6 provides a straightforwarcbihtiction
to the use of particle creation and annihilation operators.

e A. Altland and B. D. Simon€ondensed Matter Field Theof@€UP). Chapters 1 and 2 offer a good overview
of the material covered in this part of the course.

e J-P Blaizot and G. Ripk®uantum Theory of Finite SysterfIT Press) is a useful, clear and complete
advanced reference book.



Chapter 9

Phase Transitions

In this chapter we will examine how the statistical mechamit phase transitions can be formulated using the
language of field theory. As in relativistic applicationgysnetry will be an important guide, but since phenomena
in a condensed matter setting are not constrained by Loirerggdiance, we encounter a variety of new possibilities.

9.1 Introduction
To provide a context, we start by summarising some basis &mut phase transitions. Take first a substance such

as water, that can exist as a solid, liquid or vapour. Comsidg@hase diagram in the plane of temperature and
pressure, as sketched in Fig. 9.1. The solid is separatedfoth liquid and vapour by phase boundaries, and one

L P

solid

vapour T

Figure 9.1: Schematic phase diagram in temperafuaad pressurg for a material with solid, liquid and vapour
phases. Line denote phase boundaries; the liquid-vapitieatpoint has coordinatgd, p.).

cannot get from the solid to one of these other phases wittroasing the phase boundary. By contrast, the liquid-
vapour phase boundary ends at a critical point, and whileeguaths between the liquid and vapour cross this phase
boundary, others do not. On crossing a phase boundary iphhie diagram, the system undergoes a discontinuous
phase transition: properties such as density change disaonsly and there is a latent heat. On the other hand,
if one follows a path between liquid and vapour that avoidsghase boundary by going around the critical point,
properties vary smoothly along the path. As an intermediate, we can consider a path between liquid and
vapour that goes through the critical point. This turns auintolve a continuous (but sharp) phase transition,
and it is partly behaviour at such critical points that wil fiocus of this chapter. To emphasise the distinction
between discontinuous, or first order, transitions andiocanus ones, it is useful to compare the behaviour of the
heat capacity as a function of temperature in each caseetshekl in Fig. 9.2. At a first order transition there is a

105
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latent heat, represented ag-&unction spike in the heat capacity, while at a continueasdition there is no latent
heat, but the heat capacity shows either a cusp or a divezgdepending on the specific example.

AC AC

T T

e f

Figure 9.2: Schematic dependence of heat capacity on teper at a pressune < p. (left); and atp = p.
(right).

An alternative way of viewing the liquid-vapour transitimto examine behaviour as a function of density
rather than pressure. A phase diagram of this kind is showigin9.3. From this viewpoint the consequence of
the first-order transition is that at temperatures< 7. there is intermediate range of densities which the system
can attain only as a mixture of two distinct, coexisting @sasOne of these phases is the liquid, which has a
higher density than that of the system on average, and tle wththe vapour, with lower density than average.
As the critical point is approached, the density differeheeveen liquid and vapour reduces. Near the critical
point, as the two phases become more similar, microscopisiyefluctuations grow in size: roughly speaking,
such fluctuations involve microscopic regions of vapouregsimg within the liquid, or vice-versa. The correlation
length represents the maximum size of such fluctuationsgivedges at the critical point. Sufficiently close to the
critical point it is larger than the wavelength of light, aimdthese circumstance density fluctuations scatter light
strongly, leading to a phenomenon knowrtetical opalescencea cloudiness that appears in fluids close to their
critical point.

A p liquid

vapour T
| -

T

c

Figure 9.3: Phase diagram in the density-temperature pldie region of two-phase coexistence is shaded;
elsewhere the system exists in a single phase.

9.1.1 Paramagnet-ferromagnet transition

An important feature of our understanding of phase tramsstis that there are close parallels between different
examples. To illustrate this we next examine the transhietwveen the paramagnetic and ferromagnetic phases of a
magnetic material. The counterpart to the liquid-vapowgghdiagram is shown in Fig. 9.4 (left), where we display
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behaviour as a function of magnetic field (in place of pressand temperature. The properties of the system,
including most importantly its magnetisation, vary smdptwith applied field above the critical temperature.
Below the critical temperature, and neglecting hystereffiscts, there is a discontinuous change on sweeping
applied field through zero, represented by a first-ordergohaandary in the figure. In this case there is a symmetry
under reversal of field and magnetisation that was not evifterthe liquid vapour transition. Also shown in
Fig. 9.4 are the two-phase coexistence region (centre)anoghaviour of the magnetic susceptibility (right). The
latter diverges at the critical point: the divergence agafiects the presence of large fluctuations in the critical
region, which are readily polarised by an applied field.

M

i

Te

Figure 9.4: Left: phase diagram for a ferromagnet in the @lainfield H vs temperaturd’, with 7, the critical
point. Centre: the region of two-phase coexistence, in taagpof magnetisatiod/ vs temperature. Right:
behaviour of magnetic susceptibilify

9.1.2 Other examples of phase transitions

Other examples of continuous phase transitions includedheal to superfluid transition in liquitHe, and the
superconducting transition in many metals and alloys. girexample, in which the transition is (for reasons we
will examine in due course) first order, occurs in liquid ¢ays consisting of rod-like molecules. In their isotropic
phase, these molecules are randomly orientated, whileciméimatic phase they acquire an average orientation,
despite remaining liquid and therefore positionally disred.

9.1.3 Common features

The most important common feature of these phase transiisaihe occurrence of spontaneous symmetry break-
ing. This is rather obscured in the case of the liquid-vapgmnsition, but is clear in our other examples. For
instance, the ferromagnet might equally well acquire a retigation parallel or antiparallel to a given axis in the
sample, and the two possibilities are related by time-salesymmetry. In superfluids and superconductors, the
condensate has a definite quantum-mechanical phase, walogerelative to that of another condensate can be
probed if two condensates are coupled. And in a nematicdignystal the spontaneous choice of an orientation
axis for molecules breaks the rotational symmetry displdye the isotropic phase. We characterise symmetry
breaking, both in magnitude and (in a generalised sensejtation using an order parameter. For the ferromag-
net, this is simply the magnetisatian, For the superfluid, it can be taken to be the condensate tani@l. And
for the liquid-vapour transition, we take it to be the diffacedp = p — p. in densityp from its valuep. at the
critical point.

A second feature common to continuous transitions is thetexce of a lengthscale, the correlation length
that diverges as the critical point is approached. For eXanap the liquid-vapour transition density fluctuations
are correlated over distances of ordemd the correlation functiofdp(0)dp(r)) falls to zero forr > &.

9.1.4 Critical behaviour

As a critical point is approached, many physical quant&heswv power-law behaviour that can be characterised by
giving values of critical exponents. Their values turn aubeuniversalin the sense that they are determined by
symmetries and a few other features of the system, but agasitive to many microscopic details. The symbols
used for the exponents are established by convention, amdwéntroduce them using the transition from param-
agnet to a ferromagnet as an example. It is convenient tagidoehaviour as a function of reduced temperature,
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defined as

The cusp or divergence in the heat capacitis represented by the exponentvia C ~ [¢t|*. The way in
which the order parameter decreases as the critical point is approached is descripdaebexponent;, with
m ~ [t|® for t < 0, while the divergences in the susceptibiliyand the correlation length are represented as
X ~ [t|77 and¢ ~ |t|7¥. Finally, at the critical temperature, the variation in treler parameter with field is
written asm ~ |h|'/?.

9.2 Field theory for phase transitions

There is a general approach to writing down a field theoryomtiouum description, of a phase transitions. The
first step is to identify an order parameter that charaestise nature of symmetry breaking at the transition. The
value of the order parameter is determined by an averagexaystem as a whole. We introduce a field, defined as
a function of position within the sample, that takes valuethe order parameter space, and write the free energy
density of the system as an expansion in powers of this fialdtargradients, including all terms allowed by the
symmetries of the high symmetry phase. We calculate theeneegy associated with the degrees of freedom
involved in the transition as a functional integral overfidld configurations.

More explicitly, writing the order parameter field at poinds¢(r), and the free energy density &%¢), we
define a partition function

Z:/Dsp effF(‘P)ddr

and obtain the free energy for the sample from this partifimction in the usual way, askgT' In Z. To take a
specific example, consider again the paramagnet-ferroetaigmsition, with a real, scalar order parameter field
©(r) that represents the local magnetisation (which we take ¥e baentations only parallel or antiparallel to
a preferred crystal axis). Time-reversal tak€s) to —o(r), and we expect this and also spatial inversion to be
symmetries. As a result, an expansion of the free energyitsiest®uld contain only even powers ofr) (apart
from a linear coupling to an applied magnetic figldand only even order derivatives ofr). Hence we have

F(p) = 262 4 20t + 292 4 ... — b (9.1)
2 4 2

What can we say about the coefficientd, ... that appear in this expansion? First, if it makes sense tw#te

the expansion at order*, we must havé > 0, so thatF'() is bounded below. (Alternatively, if < 0, we would

need to include a term ip®.) Secondly, we note that the minimumBf ) is aty = 0 for a > 0, and at non-zero

@ for a < 0. This suggests that, to describe a phase transitigmould vary with temperature and change sign

in the vicinity of the critical point. We therefore postudahata = At¢, with ¢ the reduced temperature addan

unimportant coefficient.

9.2.1 Mean field theory: the saddle-point approximation

Next, we should face the problem of evaluating the functiamagral over field configurations. In general this
is difficult and one can only hope to make progress by usingaqapations. The simplest approximation is a

saddle-point one, which turns out to be equivalent to medd fieeory. Starting from Eq. (9.1), we have from

% = 0 the saddlepoint equation

—V2p(r) + ap(r) + bp(r) —h =0. (9.2)

Unless boundary conditions impose a spatially-varyingtsoh, we expec to be independent af. Then with

h = 0 Eq. (9.2) has the solutions
p=20 and p ==£4/ %a .

The first is the minimum of’(y) for a > 0 and a maximum foz < 0; the other solutions are real only fer< 0
when they are minima. From this we can conclude that the qralemeter varies as

@ o |t[1/? for t<0.
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Thus the critical exponertt takes the valug = 1/2. At the critical pointy is non-zero only for non-zerb, with
the dependence

@ o |h|Y3
From this we recognise the critical exponent vadue 3. To evaluate the susceptibility = d¢/0h we should
consider Eq. (9.2) for non-zefo Rather than attempting to find the solution foexplicitly as a function ot it
is more convenient to differentiate the equation direcfiying

dp

o
oh

(a + 3bg02)

and hence
1
o t>0
X = .

Thus the exponent takes the valug = 1.

9.2.2 Correlation function

To evaluate the correlation functidp(0)y(r)) we need to go beyond the saddle-point treatment. We willidens
fluctuations within a Gaussian approximation, taking- 0 for simplicity. Within this approximation, we would
like to evaluate

[ D p(0)p(r) e~ J d'r5e™ +51Vel
T [ Dpe [9REHINGP

(¢(0)p(r))

We do so by diagonalising the quadratic form in the argumétiteoexponentials: since our system is translation-
invariant, this is done by Fourier transform. To be expladibut the Fourier transforms, we consider a system
of linear sizeL in each direction with periodic boundary conditions. Thes ean introduce wavevectoks =

2% (14, ... 1g) with I;'s integer, and write

1 ik-r 1 d...—ik-r
@(r):m¥wke and (,Dk:m/d re .
In these terms we have
/ddr ()= xpk  and /ddr IVe(r)]* = K oxe i -
k k

Also, we note from the definition apx thaty; = ¢_k, So that, as independent quantities we can take the real
and imaginary parts gy for one half of all wavevectors — say those with comporignt 0. This means we can
write the functional integration as multiple integrals pjtest these components, with

/D(p: H /dRegak/dImgpk.
k1>0

This leads us to the result )
=5 -
<80k50q> k+q,0 (a+k2) )

and hence

1 eik»r 1 eik»r
(p(0)¢(r)) = 7d zk: (a+ k2) ~ (27)d /ddk(a+ k2)

For generall one finds that this correlation function falls off on a scadélsy the correlation length given by
€72 = a. Ind = 3 the integral gives
o,
(p(0)p(r)) = 5—e7"/%.

T oy

Since we have made the connectior ¢~ /2, we have obtained the value for another critical exporert:1/2.
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9.2.3 Consequences of symmetry

Without symmetry to exclude odd powers of the order parametwould have an expression for the free energy

density of the form
a5 ¢ g b4 1 2
F(p) = 5¢" + 39" + 70" + 5Vl +.. (9.3)
where we have omitted a linear term by choosing to expandarauminimum, but must allow all higher powers.
In this case, the transition is generically a discontinumus, as is seen most easily by considering the graphs of

F(p) shownin Fig. 9.5.
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Figure 9.5: Sketch of Eq. (9.3). Left: farlarge and positive. Right: far small and positive. The minimum of
F(¢) jumps discontinuously fron» = 0 to a finite value ofp asa is reduced, representing a first-order transition.

9.2.4 Other examples of phase transitions

It is instructive to examine how one identifies an order pat@mand constructs the continuum theory appropriate
for other examples of phase transitions.

Liquid crystals: the isotropic-nematic transition

Liquid crystals are fluids of rod-like molecules. As fluidsetpositions of the molecules are not ordered, and in
the isotropic phase their orientations are also disordéneithe nematic phase, however, molecules spontaneously
align along a common axis. To describe the transition batwleese two states we should identify a suitable order
parameter and write down a free energy expansion using thesyry of the isotropic phases to guide us. Suppose
71 is a unit vector aligned with a molecule. It is tempting to tseaveragén) itself as an order parameter, as we
might if it were magnetisation. For the liquid crystal, hawg this would not be correct, since the molecules are
invariant under inversion, which takégo —n. To construct something frorthat has the same invariance under
inversion as the molecule itself, we first consider the temso;. This is still not quite ideal, since it is non-zero
for an isotropically distributed, (taking the valugn;n;) = %61-]-). Our final choice for an order parameter is
therefore the tensor )

Qij = (ninj) — 504 -
We expect it to vanish in the isotropic phase. By contrashafecules are fully aligned, say along thdirection,
then

f% 0
Q= o -1

0 0
The isotropic phase is symmetric under rotations of the oudds, with translates to rotations of the ten€pr
Thus the free energy densify(Q) should be invarianQ — RQR ™!, a property of traces of all powers 6§.
We therefore expect

who O O

F(Q) = gTr[QQ] + gTr[Q3] + ZTr[Q‘*] o

A significant feature of this expression is that it contairtsibic term. As a consequence, we expect the isotropic-
nematic transition to be first-order, as it indeed is experitally. It is a significant achievement to have reached
an understanding of the nature of this transition, using @alsymmetries.
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The superfluid transition

To describe the transition (in, for example, liquitle) between the normal and superfluid states, we use the
condensate wavefunction amplitudeas an order parameter. It is a complex scalar, ) should be invariant
under changes in its phase:— ¢4, with 6 real. Thus we have

b 1
F() = SR+ It + IV + ..

The superconducting transition

The transition between the normal and superconductingsstifta metal can also be described using a complex
scalar order parameter that represents a condensatewdeplit this case, however, the condensate is charged, and
this means that we should consider how our expression ferdnergy varies under gauge transformations. Fol-
lowing arguments similar to those developed in Chapter 4amsige (with some suggestive notation for constants
that are in fact phenomenological) at what is known as Lar@ezburg theory:

b
F(y) = glwl2 + ZW - ﬁw*(—ihv — gAY+ ... .

9.3 Consequences of fluctuations

It is important to understand to what extent our treatmerthe$e free energy densities, using mean field theory
in the form of a saddle-point approximation to the functioingegral, is correct. In fact, the approach can go
wrong at two different levels, and behaviour depends on theedsionalityd of the system. The most dramatic
possibility, which applies in low dimensions, is that fluations are so strong the system is disordered at any
non-zero temperature. A less acute failing would be thaktiea transition, but with critical behaviour that is
not captured by mean field theory. Two borderline values ofedision, known as the lower and upper critical
dimensionsd{; andd,,) separate these alternatives: fox d;, there is no finite-temperature phase transition; for
d; < d < d, there is a transition but critical behaviour is not well-ciéised by mean field theory; and fdy, < d,
critical properties follow mean field predictions.

9.3.1 The lower critical dimension

We have already seen from our discussion of statistical ard@ch in one dimension (see Chapter 3) that one-
dimensional systems with short range interactions do ne¢ Bpontaneously broken symmetry at non-zero tem-
perature. For the one-dimensional Ising model we arrivedigatesult both by an exact calculation, using transfer
matrices, and more intuitively, by considering the enemgyy antropy associated with kinks or domain walls sepa-
rating regions of parallel spins. We now examine the coyateto this argument in two dimensions.

Systems with discrete broken symmetry: the Peierls argumen

Consider a low-temperature configuration of a two-dimemalidsing model, as sketched in Fig. 9.6. We would
like to find how frequent are domains of reversed spins, byneging the free energy associated with the domain
walls or boundaries separating spins of opposite oriemtatSince with ferromagnetic exchange interactions of
strengthJ, a pair of parallel spins has energy/, and an antiparallel pair an energy/, it costs an energ®JL

to introduce a domain wall of length into the ground state. Such a domain wall may have many caafigas.
Counting these configurations exactly is a difficult exer@gce domain walls should not intersect themselves,
but we can make a reasonable estimate by considering a rawdtnon the square lattice that is constrained at
each step not to turn back on itself. These means that theesghjildies are open at each step (continuing straight
ahead, turning left, or turning right), and the total numtifesonfigurations aftef, steps (ignoring the requirement
for the domain wall to close on itself) &, implying an entropy ofg L In 3. The free energy of the domain wall
is hence

F, = L(2J — kgTn3) .

Crucially, this is positive fofl’ < 2J/(kg In 3), and so domain walls are rare and long-range order is stalde a
temperature.



112 CHAPTER 9. PHASE TRANSITIONS

+ + +

Figure 9.6: Typical low-temperature configuration of a tdimensional Ising model. The system has positive
magnetisation, but domains of spins with the opposite taieon appear as thermal excitations.

Systems with continuous broken symmetry: Goldstone modes

Our conclusions about order in the Ising model in fact alg@yao other systems in which the broken symmetry is
discrete. Systems with a continuous broken symmetry befiffeeently, however: their low energy excitations are
long-wavelength Goldstone modes, which are more effeatigisrupting long-range order than are sharp domain
walls in the Ising model. To understand the effect of Goldstmodes on long-range order, we should calculate
the correlation function for fluctuations(r) in the order parameter. A calculation similar to the one s¢tbove

in Section 9.2.2 leads to the result

ik-r
(pl00(8)) ~ 57 [ kG ©4)

If the notion that the system has long range order is to becesi§istent, fluctuations should be small. In particular
a divergence if{¢?(0) would signal an instability. The integral on the right-haide of Eq. (9.4) is divergent at
smallk in one and two dimensions, and this indicates the absengmataneously broken symmetry at non-zero
temperature in one and two-dimensional systems. (Theraitegdivergent at largg is two and more dimensions,
but this divergence does not have the same physical sigmifichecause in a condensed matter system there is
always an upper limit to wavevectors, set by the inverse etspacing.)

Summarising, we have found that the value of the lower @alititmension isi; = 1 for systems with discrete
symmetry, andl; = 2 for systems with continuous symmetry.

9.3.2 The upper critical dimension

For systems which are above their lower critical dimensiwhso have an ordering transition, we can ask whether
it is reasonable to neglect fluctuations, by comparing thelidmde of fluctuations in the order parameter with
its mean value. The approach leads to what is known as theb@igzriterion for the validity of mean field
theory. Specifically, in a system with an order parameted figlr), we compare its mean square fluctuation
([p(r) — (p)]?)¢, averaged over a region of linear size set by the correldgiogth, with (¢)?, the square of the
order parameter itself. We have

o)~ (o) = & [ ae [ ah [(ote)e) — (o))

d

= / dr [(p(0)¢(r) — (o)?]
&% (9.5)
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The last equality in Eq. (9.5) follows from the definition efsseptibility, which gives

0 0
0

0 Kl fD(P s0(0) efFJrhftp(r)
=g oy = 5

heo fDSO e~ F+h [ o(r)

- /ddr [(#(0)ip(r)) = {£(0)){p(r))] -

We are now in a position to express both the mean square fticrtgeand the order parameter in terms of the
reduced temperatuteand the critical exponents. We hage®y ~ [t|%~7 and(p)? ~ [t|?8. If fluctuations close
to the critical point are to be small compared to the mean ageire

D~ [T < ) ~
for |¢t| small. This is the case ifd — v > 2, which is to say

28+
o=

d > 4

where the ratio of exponents has been evaluated using thksre$ mean field theory presented earlier in this
chapter. Our conclusion, then, is that while mean field th@oovides a qualitatively correct treatment of phase
transitions, for systems in three dimensions it is not gitetively accurate to neglect fluctuations. In fact, acteira
calculations of exponent values for systems in fewer tham émensions require a more serious treatment of
interactions in field theory, using renormalisation grougtinods.

9.4 Further Reading

e J. M. YeomanssStatistical Mechanics of Phase Transitiogf@UP). Chapters 1 and 4 provide a straightfor-
ward introduction to the material covered in these lectures

e P. M. Chaiken and T. C. Lubenskiprinciples of Condensed Matter PhysigGUP). Chapters 1, 3 and 4
cover similar material to that in these lectures.

¢ N. Goldenfeldectures on Phase Transitions and The Renormalization faddison Wesley) Chapter 5
covers the same material as these lectures. The book alss affeadable introduction to more advanced
ideas.



