
1 Loops and renormalization

Tree-level processes are fully specified by the Lagrangian. Loop corrections to tree-level
processes arise at higher orders of perturbation theory. For instance, the graph in Fig. 1
is an example of a loop correction to fermion pair production.

Figure 1: Loop correction to fermion pair production.

The part of the theory that deals with loop effects is renormalization. This note gives
an introduction to the idea of renormalization and its physical implications.

1.1 Basic ideas and examples

In this section we introduce general principles of renormalization and describe two specific
examples, the renormalization of the electric charge and the electron’s anomalous magnetic
moment. In the next section we extend the discussion by introducing the renormalization
group.

1.1.1 General principles

While the Lagrangian specifies interaction processes at tree level, the method of renor-
malization is required to treat processes including loops.

A symptom that renormalization is required is that Feynman graphs with loops may
give rise to integrals containing divergences from high-momentum regions. Renormaliza-
tion allows one to give meaning to the occurrence of these ultraviolet divergences.

Ultraviolet power counting provides the basic approach to renormalization. For a
Feynman graph involving a loop integral of the form

∫
d4k

N(k)

M(k)
, (1)
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consider the superficial degree of divergence defined as

D = (powers of k in N + 4) − (powers of k in M) . (2)

If D ≥ 0, the integral is ultraviolet divergent. A first way of characterizing a theory as
“renormalizable” is that the number of ultraviolet divergent amplitudes is finite. This is
the case for instance with QED. There are 3 ultraviolet divergent amplitudes in QED,
depicted in Fig. 2. QCD has a few more, due to the more complex structure of the strong
interactions, but still a finite number. In a renormalizable theory there can of course be
infinitely many Feynman graphs that are ultraviolet divergent, but they are so because
they contain one of the few primitively divergent amplitudes as a subgraph.

(a)

(c)

(b)

Figure 2: Ultraviolet divergent amplitudes in QED: (a) photon self-energy; (b) electron
self-energy; (a) electron-photon vertex.

The main point about renormalizability is that it implies that all the ultraviolet di-
vergences can be absorbed, according to a well-prescribed procedure specified below, into
rescalings of the parameters and wave functions in the theory. For a given quantity φ,
the rescaling is of the form

φ→ φ0 = Z φ , (3)

where φ0 and φ are respectively the unrenormalized and renormalized quantities, and
Z is a calculable constant, into which the divergence can be absorbed. Here Z is the
renormalization constant, possibly divergent but unobservable. Once the rescalings are
done and the predictions of the theory are expressed in terms of renormalized quantities,
all physical observables are finite and free of divergences.

This leads to a characterization of the renormalization program which we can formulate
as a sequence of steps as follows.
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• Compute the divergent amplitudes, by prescribing a “regularization method”. Ex-
amples of regularization methods are a cut-off Λ on the ultraviolet integration region,
where the result diverges as we let Λ → ∞, or, as we will see in explicit calculations
later, dimensional regularization.

• Assign parameter and wave-function rescalings to eliminate divergences. In the case
of QED, these involve the electromagnetic potential A, the electron wave function
ψ and mass m, and the coupling e. Using traditional notation for the QED renor-
malization constants Zi, the rescalings can be written as

A→ A0 =
√
Z3 A ,

ψ → ψ0 =
√
Z2 ψ ,

m→ m0 =
Zm

Z2

m ,

e→ e0 =
Z1

Z2

√
Z3

e . (4)

Here Z3 and Z2 are the respectively the renormalization constants for the photon
and electron wave function, Z1 is the vertex renormalization constant and Zm is the
electron mass renormalization constant.

• Once the rescalings are done, all physical observables are calculable, i.e., unambigu-
ously defined in terms of renormalized quantities, and free of divergences.

Theories for which this program succeeds in giving finite predictions for physical quantities
are renormalizable theories. Non-renormalizable theories are theories in which one cannot
absorb all divergences in a finite number of Z: for instance, as we go to higher orders new
divergences appear and an infinite number of Z is needed.

The above program, while it appears quite abstract at first, gives in fact testable,
measurable effects. In the next few subsections we see specific examples of this.

A further, general point is that gauge invariance places strong constraints on renor-
malization, implying relations among the divergent amplitudes of the theory, and thus
among the renormalization constants. Here is an example for the case of QED. Gauge
invariance establishes the following relation between the electron-photon vertex Γµ dotted
into the photon momentum qµ and the electron propagators S,

qµΓµ = S−1(p+ q)− S−1(p) . (5)

Eq. (5), pictured in Fig. 3, is referred to as the Ward identity and is valid to all orders.
Using the renormalization constants Z1 and Z2 defined by the rescalings in Eq. (4),

Γµ =
1

Z1

γµ + . . . , S(p) =
Z2

/p −m
+ . . . , (6)
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we have
1

Z1

/q =
1

Z2

[(/p + /q −m)− (/p −m)] . (7)

Thus in the abelian case
Z1 = Z2 (QED) . (8)

As a result, the rescaling relation in Eq. (4) defining the renormalized coupling in QED
becomes

e2 = Z3e
2
0 . (9)

That is, the renormalization of the electric charge is entirely determined by the renormal-
ization constant Z3, associated with the photon wave function, and does not depend on
any other quantity related to the electron.

p
q = −

p p+q

q

p+q

Figure 3: Relation between electron-photon vertex and electron propagators.

In the non-abelian case the relation (8) does not apply. However, it is still valid that
non-abelian gauge invariance sets constraints on renormalization, leading to other, more
complex relations among the renormalization constants. We will see examples of this in
Sec. 1.2.3.

In the rest of this section we describe specific calculations of renormalization at one
loop.

1.1.2 The gauge boson self-energy

Let us consider the gauge boson self-energy. This is one of the divergent amplitudes shown
in Fig. 2. The Feynman graphs contributing to the self-energy through one loop are given
in Fig. 4 for the photon and gluon cases. In the photon case one has the fermion loop
graph only, while in the gluon case one has in addition gluon loop and ghost loop graphs.

Because of the relations (8),(9), in the QED case the calculation of the gauge boson
self-energy is all that is needed to determine the renormalization of the coupling. So the
result of this subsection will be used in Subsec. 1.1.3 to discuss the renormalized electric
charge.
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Figure 4: (top) Photon and (bottom) gluon self-energy through one loop.

We now compute the fermion loop graph in Fig. 5. As shown in Fig. 4, in the QED
case the fermion loop is all that contributes to the self-energy, while in the QCD case this
gives one of the required contributions.

ν
q k

q+k
aµ, bν,

πi ( q )=
a b

µ

Figure 5: Fermion loop contribution to the gauge boson self-energy.

The graph in Fig. 5 is given by

iπab
µν(q) = −g2 Tr(T aT b)

∫ d4k

(2π)4
Tr[γµ(/k + /q +m)γν(/k +m)]

(k2 −m2 + i0+)((k + q)2 −m2 + i0+)
. (10)

This expression is written in general for the non-abelian case. In this case the color-charge
factor equals

Tr(T aT b) =
1

2
δab . (11)

The QED case is obtained from Eq. (10) by taking

g2 −→ e2 = 4πα ,

Tr(T aT b) −→ 1 . (12)

5



The integral in Eq. (10) is ultraviolet divergent. By superficial power counting in the loop
momentum k, the divergence is quadratic. Gauge invariance however requires that πµν
be proportional to the transverse projector gµνq

2 − qµqν , that is,

πµν =
(
gµνq

2 − qµqν
)
Π(q2) . (13)

This reduces the degree of divergence by two powers of momentum. As a result, the
divergence in Eq. (10) is not quadratic but logarithmic.

We need a regularization method to calculate the integral (10) and parameterize the
divergence. We take the method of dimensional regularization. This consists of continuing
the integral from 4 to d = 4− 2ε dimensions by introducing the dimensionful mass-scale
parameter µ so that

g2
d4k

(2π)4
−→ g2(µ2)ε

d4−2εk

(2π)4−2ε
. (14)

In dimensional regularization a logarithmic divergence d4k/k4 appears as a pole at ε = 0
(i.e., d = 4). We thus identify ultraviolet divergences in the integral (10) by identifying
poles in 1/ε.

By carrying out the calculation in dimensional regularization, the result for πµν is

πab
µν(q) = −

(
gµνq

2 − qµqν
)
Tr(T aT b)

g2

4π2
Γ(ε)

∫ 1

0
dx

(
4πµ2

m2 − x(1− x)q2

)ε

2x(1− x)

≡
(
gµνq

2 − qµqν
)
Π(q2) . (15)

We can interpret the different factors in this result. As mentioned above, the first factor
on the right hand side, consistent with the gauge-invariance requirement (13), implies
that the gauge boson self-energy is purely transverse,

(
gµνq

2 − qµqν
)
qµ =

(
gµνq

2 − qµqν
)
qν = 0 . (16)

Owing to the transversality of the self-energy, loop corrections do not give mass to gauge
bosons in QED and QCD. The factor Tr(T aT b) in Eq. (15) is the non-abelian charge
factor, which just reduces to 1 in the QED case according to Eq. (12). Next, g2/(4π2)
is the coupling factor, which becomes e2/(4π2) = α/π in the QED case (12). The Euler
gamma function Γ(ε) contains the logarithmic divergence, i.e., the pole at ε = 0 (d = 4)
in dimensional regularization:

Γ(ε) =
1

ε
− CE +O(ε) , CE ≃ .5772 . (17)

The first factor in the integrand of Eq. (15) results from the regularization method, de-
pending on the ratio between the dimensional-regularization scale µ2 and a linear combi-
nation of the physical mass scales m2 and q2. The last factor in the integrand, 2x(1− x),
depends on the details of the calculated Feynman graph.
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We can extract the ultraviolet divergent part of the self-energy by computing the
integral in Eq. (15) at q2 = 0. Higher q2 powers in the expansion of Π(q2) give finite
contributions. We have

Π(0) = −Tr(T aT b)
g2

4π2
Γ(ε)

∫ 1

0
dx

(
4πµ2

m2

)ε

2x(1− x)

≃ −Tr(T aT b)
g2

4π

1

3π

1

ε
+ . . . , (18)

where in the last line we have used the expansion (17) of the gamma function and com-
puted the integral in dx. Specializing to the QED case according to Eq. (12) gives

Π(0) ≃ − α

3π

1

ε
+ . . . (QED) . (19)

We will next use the results in Eqs. (15),(19) to discuss the renormalization of the elec-
tromagnetic coupling.

1.1.3 Renormalization of the electromagnetic coupling

Suppose we consider a physical process occurring via photon exchange, and ask what the
effect is of the renormalization on the photon propagator. Fig. 6 illustrates this effect by
multiple insertions of the photon self-energy,

D0 → D = D0 +D0πD0 +D0πD0πD0 + . . . , (20)

where D0 is the photon propagator and π is the photon self-energy computed in Eq. (15).
We can sum the series in Eq. (20) by applying repeatedly the transverse projector in π
and using that longitudinal contributions vanish by gauge invariance, and we get

D0 → D = D0
1

1 + Π(q2)
. (21)

Then the effect of renormalization in the photon exchange process amounts to

e20
q2

−→ e20
q2

1

1− Π(q2)
, (22)

where q is the photon momentum.

Let us now rewrite the denominator on the right hand side of Eq. (22) by separating
the divergent part and the finite part in Π. According to the discussion around Eq. (18),
this can be achieved by

1− Π(q2) = [1− Π(0)]
[
1−

(
Π(q2)− Π(0)

)]
+O(α2) . (23)
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Figure 6: Effect of renormalization in a photon exchange process.

Therefore Eq. (22) gives

e20
q2

−→ e20
q2

1

1− Π(q2)

≃ 1

q2
e20

1− Π(0)︸ ︷︷ ︸
e2≡Z3e20

1

1− [Π(q2)− Π(0)]︸ ︷︷ ︸
q2−dependence

. (24)

In the last line of Eq. (24) we have underlined two distinct effects in the result we
obtain from renormalization. The first is that the strength of the coupling is modified to

e20
1− Π(0)

≡ e2 , (25)

from which, by comparison with Eq. (9), we identify the renormalization constant Z3:

Z3 ≃ 1 + Π(0)

= 1− α

3π

1

ε
+ . . . , (26)

where in the last line we have used the explicit result for Π(0) in Eq. (19). The coupling
e in Eq. (25) is the physical coupling, that is, the renormalized coupling. This is obtained
from the unrenormalized one, e0, via a divergent, but unobservable, rescaling, according
to the general procedure outlined below Eq. (3).

The second effect in Eq. (24) is that the coupling acquires a dependence on the mo-
mentum transfer q2, controlled by the finite part of the self-energy, Π(q2) − Π(0). This
dependence is free of divergences and observable. The q2-dependence of the electromag-
netic coupling is a new physical effect due to loop corrections. Using the explicit expression
for Π in Eq. (15), we obtain that for low q2

Π(q2)− Π(0) → 0 for q2 → 0 , (27)
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and for high q2

Π(q2)− Π(0) ≃ α

3π
ln

q2

m2
for q2 ≫ m2 . (28)

Thus e2 in Eq. (25) is the value of the coupling at q2 = 0; the coupling increases as q2

increases. Substituting Eqs. (25),(28) into Eq. (24) and rewriting it in terms of the fine
structure, we have for large momenta

α(q2) =
α

1− (α/(3π)) ln(q2/m2)
. (29)

The q2-dependence of the coupling is referred to as running coupling. We will discuss
this topic further in Sec. 1.2.

The result for the electromagnetic coupling that we have just found can be viewed as
summing a series of perturbative large logarithms for q2 ≫ m2. By expanding Eq. (29)
in powers of α, we have

α(q2) =
α

1− (α/(3π)) ln(q2/m2)

= α

(
1 +

α

3π
ln

q2

m2
+ . . .+

αn

(3π)n
lnn q2

m2
+ . . .

)
. (30)

This is the simplest example of a conceptual framework referred to as resummation in
QED and QCD. The point is that if the result (24) for the physical process is expressed
in terms of an expansion in powers of α, as in Eq. (30), perturbative coefficients to higher
orders are affected by large logarithmic corrections. On the other hand, one obtains a
well-behaved perturbation series, without large higher-order coefficients, if the result is
expressed in terms of the effective charge α(q2).

1.1.4 Vertex correction and anomalous magnetic moment

In this section we study the one-loop vertex correction of Fig. 7. In particular we compute
its contribution to the electron’s magnetic moment,

µ = g
e

2m
S , (31)

where S is the spin operator and g is the gyromagnetic ratio. This computation gives

g = gDirac +
α

π
+O(α2) , gDirac = 2 , (32)
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p

q

p

Figure 7: One-loop vertex correction in QED.

where gDirac = 2 is the prediction from the Dirac equation and α/π is the correction from
the graph in Fig. 7. Higher order corrections arise from multi-loop graphs. The deviations
from the Dirac value are referred to as the electron’s anomalous magnetic moment.

Let us consider first the Dirac equation coupled to electromagnetism,

(i/∂ − e /A−m)ψ = 0 , (33)

and write the magnetic interaction term explicitly. We can recast Eq. (33) in two-
component notation, including the electromagnetic coupling, as

E
(
χ
φ

)
=
(

m σ · (p− eA)
σ · (p− eA) −m

) (
χ
φ

)
. (34)

Now substitute the bottom equation in (34) into the top equation, use the Pauli σ matrix
relation

σ · a σ · b = a · b+ i σ · a ∧ b , (35)

and take the nonrelativistic limit E ≃ m, in which φ ≪ χ. We then obtain that the
action of the hamiltonian on the spinor ψ can be written as

Hψ ≃
(
(p− eA)2 − e

2m
B · 2S

)
ψ , (36)

where B = ∇ ∧A is the magnetic field and S is the spin operator given in terms of the
σ matrices,

S =
1

2
Σ =

1

2

(
σ 0
0 σ

)
. (37)

We recognize that the second term in the right hand side of Eq. (36) is the magnetic
interaction

−µ ·B , with µ =
e

2m
2S . (38)

That is, the Dirac equation prediction for the gyromagnetic ratio g in Eq. (31) is

gDirac = 2 . (39)
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Let us consider now the vertex function Γν(p, p′) represented at one loop in Fig. 7. We
can determine the general structure of the vertex function based on relativistic invariance
and gauge invariance. Because Γν(p, p′) transforms like a Lorentz vector, we can write it
as a linear combination of γν , pν , p′ν , or equivalently

Γν(p, p′) = A γν +B(p+ p′)ν + C(p− p′)ν , (40)

where A, B and C are scalar functions of q2 only (q = p′ − p).

Gauge invariance requires
qνΓ

ν = 0 . (41)

By dotting qν into Eq. (40), the term in B gives zero, and the term in A gives zero once
it is sandwiched between ū(p′) and u(p). Thus C = 0. We can further show that the
following identity holds,

ū(p′)γνu(p) =
1

2m
ū(p′)(p+ p′)νu(p) +

i

m
ū(p′) Σνρ qρ u(p) , (42)

where Σνρ ≡ (i/4) [γν , γρ]. This implies that the term in (p + p′)ν in Eq. (40) can be
traded for a linear combination of a term in γν and a term in Σνρqρ. Therefore the vertex
function can be decomposed in general as

Γν(p, p′) = F1(q
2) γν +

i

m
F2(q

2) Σνρ qρ , (43)

where the scalar functions F1(q
2) and F2(q

2) are the electron’s electric and magnetic
form factors. At tree level, Γν = γν , thus F1 = 1 and F2 = 0. In general, F1 and F2

receive radiative corrections from loop graphs and are related to the electron’s charge and
magnetic moment,

F1(0) = Q , (44)

F2(0) =
g − 2

2
, (45)

where Q is the electron’s charge in units of e and g is the electron’s magnetic moment in
units of (e/(2m))S where S is the electron spin. F1(0) is 1 to all orders, that is, radiative
corrections to F1 vanish at q2 = 0. We next compute the correction to F2(0) at one loop.

To this end, consider the one-loop graph in Fig. 7. This is given by

ū(p′)ieΓνu(p) = e3
∫ d4k

(2π)4
ū(p′) γλ (/k + /q +m) γν (/k +m) γλ u(p)

[(k + q)2 −m2 + iε] [k2 −m2 + iε] [(p− k)2 + iε]
. (46)
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The integral in Eq. (46) can be handled starting with the following Feynman’s parame-
terization of the three denominators in the integrand,

1

[(k + q)2 −m2 + iε] [k2 −m2 + iε] [(p− k)2 + iε]

=
∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

2 δ(x1 + x2 + x3 − 1)

[x1 ((k + q)2 −m2) + x2 (k2 −m2) + x3 (p− k)2 + iε]3

=
∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

2 δ(x1 + x2 + x3 − 1)

(k̃2 −K + iε)3
, (47)

where in the last line we have set k̃ = k + x1q − x3p, K = m2(1− x3)
2 − q2x1x2.

Next change integration variable k → k̃ in Eq. (46), and note that the numerator in
the integrand can be rewritten according to

γλ (/k + /q +m) γν (/k +m) γλ (48)

= γν [k̃2 − 2q2(1− x1)(1− x2) + 2m2(4x3 − 1− x23)]− 4miΣνρqρx3(1− x3) .

Then Eq. (46) can be recast in the form

ū(p′)Γνu(p) = −ie2ū(p′)
∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3 2 δ(x1 + x2 + x3 − 1)

×
∫ d4k̃

(2π)4

[
γν

k̃2 − 2q2(1− x1)(1− x2)− 2m2(1− 4x3 + x23)

[k̃2 −K]3

+
i

m
Σνρqρ

−4m2x3(1− x3)

[k̃2 −K]3

]
u(p) . (49)

Comparing Eq. (49) with the general decomposition in Eq. (43), we see that the two
terms in the second and third line of Eq. (49) give one-loop integral representations for,
respectively, the form factors F1(q

2) and F2(q
2). Let us concentrate on the calculation of

F2:

F2(q
2) = −ie2

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3 2 δ(x1 + x2 + x3 − 1)

×
∫ d4k̃

(2π)4
−4m2x3(1− x3)

[k̃2 −K]3
. (50)

While the integral for F1 in Eq. (49) has divergences that need regularization, the integral
(50) for F2 is finite. Let us compute the result for q2 = 0.

The integration over the four-momentum k̃ in Eq. (50) can be done by using the
transformation of variables k̃0 → −eiπ/2k̃0 in the integral over the time component of the

12



momentum. This yields the result

∫ d4k̃

(2π)4
1

[k̃2 −K]3
= − i

32π2K
. (51)

Then we have (e2 = 4πα)

F2(0) =
α

π

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3 δ(x1 + x2 + x3 − 1)

m2x3(1− x3)

(1− x3)2m2

=
α

π

∫ 1

0
dx3

∫ 1−x3

0
dx2

x3
1− x3

=
α

π

∫ 1

0
dx3(1− x3)

x3
1− x3

=
α

2π
. (52)

We thus obtain that the one-loop contribution to the electron’s anomalous magnetic
moment g − 2 = 2F2(0) is given by

g − 2 = 2F2(0) =
α

π
. (53)

1.2 Renormalization group

We next discuss renormalization from the standpoint of the renormalization group. We
have seen that renormalization introduces dependence on a renormalization scale µ in
loop calculations. As the value of µ is arbitrary, physics must be invariant under changes
in this scale. This invariance is expressed in a precise manner by the renormalization
group. We will see that by studying the dependence on the renormalization scale µ we
gain insight into the asymptotic behavior of the theory at short distances.

1.2.1 Renormalization scale dependence and evolution equations

In this section we illustrate how the relation between renormalized and unrenormalized
quantities, applied to a given physical quantity G, can be used to to study the dependence
on the renormalization scale µ and to obtain renormalization group evolution equations.

Renormalizability implies that the divergent dependence in the unrenormalized quan-
tity G0 can be factored out in the renormalization constant Z, provided we re-express
renormalized G in terms of the renormalized coupling and renormalization scale µ,

G0(pi, α0) = ZG(pi, α, µ) . (54)
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Here pi is the set of physical momenta on which G depends, α is the renormalized coupling
and α0 is the unrenormalized coupling. Because the left hand side in Eq. (54) does not
depend on µ,

d

d lnµ2
G0 = 0 , (55)

we have

d

d lnµ2
(ZG) = 0 =⇒ ∂G

∂ lnµ2
+
∂G

∂α

∂α

∂ lnµ2
+
∂ lnZ

∂ lnµ2
G = 0 . (56)

By defining

β(α) =
∂α

∂ lnµ2
, (57)

γ(α) =
∂ lnZ

∂ lnµ2
, (58)

we can rewrite Eq. (56) as
[

∂

∂ lnµ2
+ β(α)

∂

∂α
+ γ(α)

]
G(pi, α, µ) = 0 , (59)

where β(α) and γ(α) are calculable functions of α.

Suppose we measure G at a physical mass-scale Q. Let us rescale by Q the arguments
in G and set

G(pi, α, µ) = F (xi, t, α) , (60)

where

xi =
pi
Q

, t = ln
Q2

µ2
. (61)

In this notation Eq. (59) can be written as
[
− ∂

∂t
+ β(α)

∂

∂α
+ γ(α)

]
F (t, α) = 0 , (62)

where from now on we will not write explicitly the dependence on the rescaled physical
momenta xi in F .

Eq. (62) is the renormalization group evolution equation, which we can solve with
boundary condition F (0, α) at t = 0, i.e., µ = Q. To do this, we first write the solution
for the case γ = 0 and then generalize this solution to any γ.

For γ = 0 we have
[
− ∂

∂t
+ β(α)

∂

∂α

]
F (t, α) = 0 (γ = 0) . (63)
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Now observe that if we construct α(t) such that

t =
∫ α(t)

α

dα′

β(α′)
, (64)

then any F of the form
F (t, α) = F (0, α(t)) (65)

satisfies the equation and the boundary condition.

Eq. (64) defines α(t) as an implicit function. To verify that Eq. (65) is solution, note
first that the boundary condition at t = 0 is

t = 0 , α(0) = α =⇒ F = F (0, α) . (66)

Next evaluate the derivative of Eq. (64) with respect to t,

1 =
1

β(α(t))

∂α(t)

∂t
, (67)

and with respect to α,

0 =
1

β(α(t))

∂α(t)

∂α
− 1

β(α)
. (68)

Then the differential operator in Eq. (63) applied to F (0, α(t)) gives
[
− ∂

∂t
+ β(α)

∂

∂α

]
F (0, α(t))

= − ∂F

∂α(t)



∂α(t)

∂t︸ ︷︷ ︸
β(α(t))

− β(α)
∂α(t)

∂α︸ ︷︷ ︸
β(α(t))/β(α)


 = 0 , (69)

where in the last line we have used Eqs. (67),(68).

In the general case γ 6= 0, the solution to Eq. (62) is obtained from the γ = 0 answer
(65) by multiplication by the exponential of a γ integral, as follows

F (t, α) = F (0, α(t)) exp

[∫ α(t)

α
dα′

γ(α′)

β(α′)

]

= F (0, α(t)) exp
[∫ t

0
dt′ γ(α(t′))

]
. (70)

In the second line in Eq. (70) we have made the integration variable transformation using
Eq. (64). We can verify that Eq. (70) is solution by a method similar to that employed
above for the case γ = 0.
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Eq. (70) indicates that once ultraviolet divergences are removed through renormal-
ization, all effects of varying the scale in F from µ to Q can be taken into account by
i) replacing α by α(t), and ii) including the t-dependence given by the exponential fac-
tor in γ. The latter factor breaks scaling in t, modifying the “engineering” dimensions
of F by γ-dependent terms. For this reason γ is referred to as anomalous dimension.
By expanding the exponential factor in powers of the coupling, we see that this factor
sums terms of the type (αt)n to all orders in perturbation theory. Eq. (70) thus provides
a second example, besides that seen in Eq. (30) for the electric charge, of perturbative
resummation of logarithmic corrections to all orders in the coupling, giving rise to an
improved perturbation expansion, in which coefficients of higher order are free of large
logarithms.

In QCD the e+e− annihilation cross section σ(e+e− → hadrons) is an example of the
γ = 0 case in Eq. (65), while deep-inelastic scattering structure functions are an example
of the γ 6= 0 case in Eq. (70).

1.2.2 RG interpretation of the photon self-energy

Let us revisit the analysis of the photon self-energy in Sec. 1 from the viewpoint of the
renormalization group. The divergent part of the renormalization constant Z3 computed
in Eq. (26) determines the QED β function at one loop.

According to Eq. (57), the variation of the coupling α with the energy scale µ is
governed by the β function, calculable as a function of α. In dimensional regularization,
from

α
(
µ2
)ε

= Z3 α0 , (71)

by using Eq. (26) we have

∂α

∂ lnµ2
= −ε

(
1− α

3π

1

ε

)
α0

(
µ2
)
−ε

=
1

3π
α2 . (72)

The leading term of the QED β function at small coupling is given by (Fig. 8),

β(α) = bα2 +O(α3) ,

b =
1

3π
. (73)

Inserting the result (73) into Eq. (57) gives the differential equation

∂α

∂ lnµ2
= bα2 . (74)
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This can be solved by

dα

α2
= b

dµ2

µ2
=⇒ − 1

α(q2)
+

1

α
= b ln

q2

q20
, (75)

which gives

α(q2) =
α

1− bα ln(q2/q20)
, b = 1/(3π) , (76)

that is, the result (29) derived directly in Subsec. 1.1.3.

α

β

Figure 8: Small-coupling approximation to the β function in QED.

To sum up, we have found from the analysis of electric charge renormalization in
Sec. 1.1.3 and in this section that as a result of loop graphs the electromagnetic coupling
is energy-dependent. We can regard this result as illustrating the breaking of scale invari-
ance as an effect of the quantum corrections taken into account by renormalization. We
start at tree level with a coupling that is scale invariant. Then we include loops. This
implies introducing an unphysical mass scale, such as the renormalization scale µ, to treat
quantum fluctuations at short distances, or high momenta. At the end of the calculation
in the renormalized theory, the unphysical mass scale disappears from physical quantities.
But an observable, physical effect from including loop corrections remains in the fact that
scale invariance is broken. The physical coupling depends on the energy scale at which we
probe the interaction. The renormalization group provides the appropriate framework to
describe this phenomenon, in which the rescalings (4) of the couplings and wave functions,
necessary to compensate variations in the arbitrary renormalization scale, are governed
by universal functions, respectively the β and γ functions (57),(58) of the theory.

1.2.3 QCD β function at one loop

We now extend the discussion to the case of renormalization in QCD at one loop, and
determine the one-loop β function.
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In the QCD case we assign rescaling relations analogous to those in Eq. (4) for the
abelian theory. For wave function and mass renormalization we set

A→ A0 =
√
Z3 A ,

ψ → ψ0 =
√
Z2 ψ ,

c→ c0 =
√
Z̃3 c ,

m→ m0 =
Zm

Z2

m . (77)

where, in addition to the renormalization constants of the abelian case, we introduce Z̃3

for ghost renormalization. For renormalization of quark-gluon, ghost-gluon and gluon
self-coupling vertices we set

Z2

√
Z3g0 = Z1 g ,

Z̃3

√
Z3g0 = Z̃1 g ,

Z
3/2
3 g0 = Z1,3 g ,

Z2
3g

2
0 = Z1,4 g . (78)

Non-abelian gauge invariance requires that the vertices have equal couplings. This implies
relations among the different Z in Eq. (78), as follows

Z̃1

Z̃3

=
Z1

Z2

=
Z1,3

Z3

=

√
Z1,4

Z3

. (79)

In the non-abelian theory, unlike QED, in general one has Z1 6= Z2. The relations in
Eq. (79) can be seen as non-abelian generalizations of the QED result Z1 = Z2 given in
Eq. (8).

We can define the renormalized coupling from the quark-gluon vertex. The analogue
of Eq. (71) for the QCD case is

αs

(
µ2
)ε

=
Z2

2

Z2
1

Z3 αs0 . (80)

Each of the renormalization constants Zi has a perturbation series expansion, with the
coefficients of the expansion being ultraviolet divergent. In dimensional regularization the
ultraviolet divergences appear as poles at ε = 0, so that the Zi have the form

Zi = 1 + αs
1

ε
ci + finite , (81)
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where the coefficients ci of the divergent terms are to be calculated. By using Eqs. (80)
and (81), the β function is given by

β(αs) =
∂αs

∂ lnµ2

= −εαB

(
µ2
)
−ε

[1− 2(Z1 − 1) + 2(Z2 − 1) + (Z3 − 1)]

= 2α2
s(c1 − c2 −

1

2
c3) . (82)

(3)

(1)

(2)

Figure 9: One-loop corrections to (1) quark-gluon vertex; (2) quark self-energy; (3) gluon
self-energy.

The Feynman graphs contributing to c1, c2 and c3 are the one-loop graphs for, respec-
tively, the quark-gluon vertex renormalization, quark self-energy renormalization, and
gluon self-energy renormalization, and they are shown in Fig. 9. The calculation of these
graphs proceeds similarly to the calculation done in Sec. 1.1.2 for the fermion loop con-
tribution. By computing these graphs, working in Feynman gauge ξ = 1, we obtain the
results for the renormalization constants Zi,

Z1 = 1− αs

4π

1

ε
(CF + CA) , (83)

Z2 = 1− αs

4π

1

ε
CF , (84)

Z3 = 1 +
αs

4π

1

ε
(
5

3
CA − 4

3
NfTF ) , (85)
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where Nf is the number of quark flavors and the color charge factors are

CA = N = 3 , CF =
N2 − 1

2N
=

4

3
, TF =

1

2
. (86)

Note from the expression for Z3 that the second term in the bracket in Eq. (85) is the
term computed in Sec. 1.1.2 from the fermion loop graph, which, in the abelian limit
NfTF → 1, gives the QED contribution −α/(3πε) of Eq. (26).

From Eqs. (83)-(85) we read the coefficients ci to be put into Eq. (82) to determine
the β function. We obtain

β(αs) = 2α2
s(c1 − c2 −

1

2
c3) = 2

α2
s

4π

(
−CF − CA + CF − 1

2

5

3
CA +

1

2

4

3
NfTF

)

=
α2
s

4π

(
−11

3
CA +

4

3
NfTF

)
= − α2

s

12π
(11N − 2Nf ) . (87)

Eq. (87) shows that for Nf < 11N/2 the β function in the non-abelian case has negative
sign at small coupling (Fig. 10),

β(αs) = −β0α2
s +O(α3

s) , (88)

where

β0 =
1

12π
(11N − 2Nf ) . (89)

This behavior of the β function is opposite to the behavior of the β function in QED,
Eq. (73) (Fig. 8).

α

β

Figure 10: Small-coupling approximation to the β function in QCD.

The behavior of the β function in Eqs. (88),(89) implies that QCD is asymptotically
free, i.e., weakly coupled at short distances. By inserting Eq. (88) into the renormalization
group evolution equation,

∂αs

∂ lnµ2
= β(αs) ≃ −β0α2

s , (90)
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and solving Eq. (90), we obtain

αs(q
2) =

αs(µ
2)

1 + β0 αs(µ2) ln q2/µ2
, (91)

where β0 is given in Eq. (89). Eq. (91) expresses the q2-dependence of the QCD running
coupling at one loop. The QCD coupling decreases logarithmically as the momentum
scale q2 increases. This property is the basis for the perturbative calculability of scattering
processes due to strong interactions at large momentum transfers.

1.2.4 The QCD scale Λ

From Eq. (91) we also see that QCD becomes strongly coupled in the infrared, low-
momentum region. This behavior is opposite to that in QED. In the QED case, taking
q0 ∼ m in Eq. (76), with m the electron mass, we have strong coupling in the ultraviolet
region for

q2 ∼ m2e3π/α , (92)

corresponding to enormously high energies.

In the QCD case, calling Λ the mass scale at which the denominator in Eq. (91)
vanishes, we have

1 + β0 αs(µ
2) ln

Λ2

µ2
= 0 =⇒ Λ2 = µ2e−1/(β0αs(µ2)) . (93)

In QED and QCD we thus get the different pictures in Fig. 11 for the scale, referred to
as the Landau pole, at which the coupling becomes strong.

(b)

q22

α α

q

(a)

Figure 11: Landau pole pictures in (a) QCD and (b) QED.
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The scale Λ in Eq. (93) is renormalization-group invariant, i.e., it is independent of µ.
Under transformations

µ2 −→ µ′2 = µ2et ,

αs(µ
2) −→ αs(µ

′2) =
αs(µ

2)

1 + β0αs(µ2)t
, (94)

we have

Λ2 −→ µ′2e−1/(β0αs(µ′2)) ,

= µ2ete−(1+β0αs(µ2)t)/(β0αs(µ2)) = µ2ete−1/(β0αs(µ2))e−t = Λ2 . (95)

The scale Λ is a physical mass scale of the theory of strong interaction. Its measured
value is about 200 MeV.

(b)

α α

β β

(a)

Figure 12: (a) Trivial and (b) nontrivial ultraviolet fixed points of the β function.

The running coupling (91) can be equivalently expressed in terms of Λ,

αs(q
2) =

αs(µ
2)

1 + β0 αs(µ2) [ln(q2/Λ2)− 1/(β0 αs(µ2))]

=
1

β0 ln(q2/Λ2)
. (96)

The rewriting (96) of Eq. (91) makes it manifest that the running coupling αs does not
depend on the choice of the renormalization scale µ.

Remark. The zero of the QCD β function at the origin, sketched in Fig. 12a, is respon-
sible for the theory being weakly coupled at short distances. This behavior is referred to
as a trivial ultraviolet fixed point. A behavior such as that in Fig. 12b (nontrivial ultra-
violet fixed point), leading to strong coupling at short distances, is in principle possible
but not realized in nature as far as we know. This is the reason why renormalization
can be understood perturbatively and Feynman graphs provide a very effective method
to investigate physical theories of fundamental interactions.
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