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1. Introduction

In the cold plasma waves notes, we treated the simplest case possible: a homogeneous,
steady state plasma. In these notes we consider waves in a steady state, slightly inho-
mogeneous plasma, i.e. the background density and magnetic field depend on position
but not on time. We assume that the characteristic length of variation of the background
density and magnetic field,

L~ |Vinng '~ B|VB|™, (1.1)
is much longer than the wavelength of the waves,
kL > 1. (1.2)

We use the WKB approximation to solve this problem.

2. WKB approximation for cold plasma waves

In the cold plasma waves notes, we assumed that the electromagnetic fields of the wave
were of the form

OE = Eexp(ik - r — iwt),
0B = Bexp(ik - r — iwt). (2.1)

In an inhomogeneous, steady state plasma, we cannot assume that the dependence on r
is simply exp(ik - r). Instead of the form in (2.1), we use

OE = E(r) exp(iS(r) — iwt),

6B = B(r) exp(iS(r) — iwt). (2.2)
We assume that the eikonal function S and the coefficients E and B have characteristic
lengths of the order of L,

VS| IVE| |VB| 1

= = , 2.3
S B Bl L (2
but the function S(r) is large,
S(r) ~kL>1, (2.4)
giving
1
VS|~ k> —. (2.5)

L
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We have not generalized the time dependence in equation (2.2) because we are considering
a plasma background independent of time. The frequency of the wave is set by the antenna
that launches it.

Using equation (2.2), we can repeat the derivation in the notes on cold plasma waves
by replacing ikE by iVS E + VE,

ikE — iVSE + VE. (2.6)

We find

2

E(k—iV)x[(k—iV)><133]+e-1?::0, (2.7)
where we have defined the local wave vector as

k=VS. (2.8)
The terms with —iV are small in (kL)™' < 1, and the electric field E can be expanded
in (kL)™' <« 1,
E=Ey+ E1 +... (2.9)

—
~(kL)"1Eo<Eg

To lowest order in (kL)™' < 1, equation (2.7) becomes
Ak .. -

which is the cold plasma dispersion relation. As we have seen in the notes on the cold

plasma dispersion relation, equation (2.10) gives k and the direction of E, if the direction
of the wave vector, k, is known. Thus, we write Eq as an amplitude A(r) and a polarization

e(r),

Eo(r) = A(r)e(r). (2.11)
The polarization e is the only piece of Eq that is determined by the dispersion relation,
Ak .

In general, there are two solutions for k: the fast and the slow wave, with wavenumbers
k; and ks, and polarizations ey and e,. For example, for propagation perpendicular to
the magnetic field line, k-b= 0, we have the ordinary and extraordinary mode solutions
with wavenumbers

w2 — w2
w pe
ko= —eg=+—— 2.13
0= e p (2.13)
and
w 2w w2 — w?)(w? — w?
iy =2 fe, — 2 (2 QL)(z g) , (2.14)
er o\ (W —wiy)(w? —wiy)
and polarizations
eo=b (2.15)
and
ex = igk + e k x b. (2.16)

Since equation (2.7) is linear, the total solution is a linear combination of the waves
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Waveguides

FIGURE 1. Sketch of the boundary conditions by an antenna.

that are solutions to equation (2.12). As an example, we can can consider two waves with
the same frequency,

0E = A, (r)eq(r) exp(iSq(r) —iwt) + Ap(r)ep(r) exp(iSy(r) — iwt). (2.17)

This example is useful because in general, an antenna that emits waves at a given fre-
quency will launch two different waves. However, note that for some frequencies there
might be only one or even no wave that propagates; for example, the ordinary mode
does not propagate for w < wpe. We need to determine the functions A, (r), eq(r), Su(r),
Ap(r), ep(r) and Sp(r). We first discuss how these functions are determined at certain
locations by the antenna, and we then calculate them at every point.

We consider the schematic antenna in figure 1. We know the boundary conditions for
O0E and /B at the surface of the antenna, 3,,¢. In the near-field region (within a few
wavelengths of the antenna), the electromagnetic field is not of the form (2.2). Instead,
we use the more general assumption

OE = E(r) exp(—iwt),
B = B(r) exp(—iwt). (2.18)

Repeating the derivation in the notes on cold plasma waves with this form for the fields,
we obtain the equation

2
c
—EVX(ng)—i—e-S:O. (2.19)

Since we are assuming kL > 1, the tensor € can be assumed to be constant in the
near-field region, and we can solve equation (2.19) with the boundary conditions at the
antenna surface, ¥,,¢, and outgoing-wave boundary conditions on a surface Xpp that is
several wavelengths away from the antenna. Here the subscript FF stands for far-field. If
we locate the surface Ypp sufficiently far from the antenna, the solution will be sufficiently
close to the solution (2.17) that we can determine k, = VS,/|VS,|, ky = VS,/|VSy|,
A, and A from the value of £ at Ygp. Note that k, = |[VS,|, ks = |V.Sp|, e, and e, are
determined by the plasma dispersion relation (2.12) once k, and k;, are known.
From here on, we consider only a pure wave with a given polarization e,

O0E = A(r)e(r) exp(iS(r) — iwt). (2.20)

Solutions with two or more waves can be constructed by summing over all the waves.
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3. Ray tracing

To calculate the eikonal function S(r) in (2.20), we need to solve equations such as
(2.13) or (2.14), derived from (2.12). These equations are of the form

k% .

D(VS,w,r)=e"- (kk —1I)+ €| -e=0, (3.1)

2
where D(k,w,r) is the local dispersion relation for the polarization e. By solving for w,
we can write this equation as

w=w(VS,r). (3.2)

To obtain information about the direction of V.S, we take a gradient of (3.1) holding
the frequency w fixed,

VVS VD + VD =0. (3.3)
Using the definition of k in (2.8), we obtain VV.S = Vk, leading to
VD -Vk=-VD. (3.4)

Given that VV S is a symmetric tensor, we could have written this equation as Vk-Vy D =
—VD, but this latter form is not useful.

Equation (3.4) can be integrated following the characteristics, the lines parallel to the
vector Vi D. These lines are called rays, and for this reason, integrating equation (3.4)

(or some other version of this equation) is known as ray tracing. To make physical sense
of (3.4), we use the group velocity

VD
dD/ow’
where the first definition of v, assumes that we have written the dispersion relation in

the form (3.2), whereas the second definition is based on a dispersion relation of the form
(3.1). Using the definition of v, in (3.5), equation (3.4) becomes

vy Vk= —— = —Vuw. (3.6)

Thus, the rays follow the group velocity vg4, and k can be found along the ray by inte-
grating (3.6). Once k is known, we can integrate V.S = k to obtain S.

As an example of ray tracing, we consider the configuration shown in figure 2: a plasma
with electron density n.(x) and uniform magnetic field B = Bz. The density gradient is

such that dn./dz > 0. We launch an ordinary wave (e = b), which according to (2.13)
satisfies the dispersion relation

w? = wge + k2% (3.7)
The group velocity of this wave is
kc?

As a result, the ray tracing equation (3.6) gives

2
Wpe

k. Vk = —
w w

Vwpe. (3.9)

Since On./dx > 0 and 9n./dy = 0, we find

 Wpe Owpe
2 Ox

k- Vk, = <0 (3.10)
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FIGURE 2. Ray for an ordinary wave in a plasma with electron density n.(z) and uniform
magnetic field B = Bz. The unit vector z is pointing out of the paper.

and
k-Vk, =0. (3.11)
Thus k, is constant. Due to the symmetry of the system, we expect k; to depend only
on x, giving
Ok,  Wpe Owpe

The solution to this equation is

2 _ 2,2 2
w;%e(mant) - w%e(l‘) 4 \/w kyc o"Ype(x)
2 B C

ky(z) = :t\/k%(mant) +

where & = x,,; is the location of the antenna. Note that (3.13) could have been deduced
from (3.7) and the fact that &, is a constant. Using (3.8) and (3.13), we find the equation
for the = component of the group velocity,

v2 (Tan w2 (Tant) — w2 (x
ng(:c)::tc\/ 9””(0; D, el ti2 pel®) (3.14)

p , (3.13)

The y component of the group velocity is constant, vgy(z) = vgy(Tant). These two com-
ponents of the group velocity give the ray shown in figure 2. Note that for a sufficiently
large density increase, there exists a position « for which vy, (x) = 0 and the ray reflects.

4. Equation for the amplitude A

Once S is known everywhere, the polarization of the wave is known because it is
deduced from (2.12), but we still need to find the spatial dependence of the magnitude
of Eg, A(r) in (2.20). To determine A we need to expand to first order in (kL)™' < 1.
The first order terms of equation (2.7) are

ic? - ic? - c2k? .. -
—EVX(kXEo)—ﬁkX(VXEo)—F 7(1{1{—1)—"-6 E1:0 (41)

To eliminate the term that contains E;, we pre-multiply this equation by the complex
conjugate of the polarization tensor e (recall that € is Hermitian),

e" [Vx (Ak x e)] +e* - {k x [V x (4e)]} = 0. (4.2)
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Using V x (Ak x e) = VA x (k x €) + AV x (k x e) and k x [V x (4de)] =k x (VA x
e) + Ak x (V x e), we find

[e" x(kxe)+(e"xk)xel-VInA=e" -[Vx(kxe)]+(e"xk) (Vxe) (4.3)

Here it is important to point out that the dispersion relation (2.12) determines e up to a
complex multiplier, that is, given a polarization e (a solution to equation (2.12)), we can
find another valid polarization e simply by multiplying it by any complex function T'(r) =
|T|(r) exp(it(r)), e = Te. We should find that the complex function A(r) “corrects”
for any choices that we make when determining e. Thus, if A is the amplitude that
corresponds to e and A the amplitude that corresponds to e, we expect Ae = A e, giving
A =TA. This property is satisfied by equation (4.3) by construction.

To solve equation (4.3), we use the polar form of A, A = |A|exp(ia)). Then, VIn A =
Vin|A| 4+ iVa, and we can get independent equations for |A| and « by splitting equa-
tion (4.3) into its real and imaginary parts. Using the fact that e* x (k x e) + (e* x k) x e
is a real vector, we find that the real part of equation (4.3) is

e x (kxe)+(e" x k) x el Vin|4| = Re(e* IV x (kx )]+ (e* x k) - (V x e)). (4.4)
and the imaginary part is

[e* x (k x e) + (e* x k) xe].va:hn(e*.[vX (k x e)] + (e* xk)-(Vxe)). (4.5)
We proceed to simplify these two equations.

4.1. Equation for |A|: energy conservation

Using the relations
Re((e* x k) - (V x e)) - Re([(e k) - (V x e*)]*) - Re((e k) - (V x e*)) (4.6)

and
e [Vx(kxe)+(exk) (Vxe)=-V-[e x(kxe), (4.7)

we can rewrite equation (4.4) as
le* x (kx e) + (e* x k) x e| - VIn|A| = -V - [Re(e* % (k x e))]
= —%V ‘le*x(kxe)+(e" xk)xe]l. (4.8)
Multiplying this equation by 2|A|?, we find the useful expression
V~{[e*><(k><e)+(e* ><k)><e]|A|2}:0. (4.9)

Equation (4.9) can be expressed in a more physical form that can be deduced from the
dispersion relation (3.1) multiplied by w?,

w?(k,r)D(k,w(k,r),r) = c’e*(k,r) - [k x (k x e(k,1))]

+w?(k,r)e*(k,r) - e(k,w(k,r),r) - ek, r) = 0. (4.10)
Differentiating this expression with respect to k holding r fixed, we find
0
—’le* x (k x e) + (e* x k) x €] + Viwe* - a—(aﬂe) e =0, (4.11)
w

where the derivatives with respect to k of e and e* do not appear because [k x (k x
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e)] +w?e-e =0 = c?[(e* x k) x k] +w?e* - €. Using equation (4.11), we can rewrite (4.9)
as

. 0
V- [e : %(w%) -eA|2vg] =0, (4.12)

where we have used the definition of the group velocity v, = Viw.
Result (4.12) is related to energy conservation. Poynting’s electromagnetic energy con-
servation equation is

9 (eEP B2 1
= =0 (—ExB)=-J-E. 4.1
5 < 5 + 2o +V o X J (4.13)

We perturb this equation using the electric field, magnetic field and current density of a
single wave,

. 2 2
g (GOE-(5E+B °B + ©lOE| + 98] ) +V- i(5E><B—}-iE><5B
ot o 2 210 Ho Ho
+ L 5B 5B> — 6J-E—J-0E—0J-6E. (4.14)
Ho
Here

OE = Re(E(r) exp(iS(r) — iwt)),
B = Re (k(r)ZE(r) exp(iS(r) — iwt)) , (4.15)

3 = Re (U(r) CE(r) exp(iS(r) — iwt)) ,

and o is the conductivity tensor. Note that we only consider the real part of the WKB

form. Averaging equation (4.14) over a period of the wave, (. ..); = (w/2m) tt+27r/w(. L) dt,
we find

1
Ho
Using (4.15), we find
1 €0 -, o |
—(0ExéB); = —[E* x (k x E)+ E x (k x E")] (4.17)
Ho dw
and
1~ -
(03 - 0B), = B (o + a’)-E. (4.18)
Since the cold plasma wave conductivity tensor is anti-Hermitian, o' = —¢&, the term

(6J - 0E); vanishes, (§J - dE); = 0. Then, equation (4.16) becomes
1
V- <<6E x 5B>t> = 0. (4.19)
Ho

This equation gives A. Indeed, using E ~ Eq = Ae in (4.17), we find that the time
averaged Poynting vector becomes

1 eoc?| Al?
Ho
Note that equations (4.19) and (4.20) are the same as equation (4.9) but for a few

(0E x 0B), = [e" x (k x e) + (" x k) x €]. (4.20)
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constants. Due to its relation to energy conservation, it is common to see equation (4.12)
written as

1
V- (,u<5E X 5B>t) =V (WyaveVy) = 0, (4.21)
0
where the energy density of the wave is
_ €0|A‘2 * 8 2
Wave = Ao € Ow (W 6) €. (422)

4.2. Fquation for a

Using equation (4.11), we rewrite equation (4.5) as

-1
v, Vo = 0—12e* : %(uﬂe) ~e] Im(e* [V x (kx e)] + (e* x k) - (V x e)). (4.23)
The phase a corrects for the phase that we have chosen for the polarization vector e. As
explained after equation (4.3), if we had chosen e = eexp(—ia), we would have found
a phase a = 0. In other words, it is always possible to choose the phase of e such that
Im(e* - [V x (k x e)] + (e* x k) - (V x e)) = 0. With this choice, the phase « is constant.
Finally, it is often useful to rewrite equation (4.23) in a different form. Using e*-[V x (kx
e)] = e-Vk-e*+(e* k)(V-e)—|e|?V-k—k-Ve-e* and (e* xk)-(Vxe) = e*-Ve-.k—k-Ve-e*,
we can rewrite equation (4.23) as
1 * 6 2 - * * * *
vy -Va = LQe 8—w(w €) -e} Im(e-Vk~e +(e*-k)(V-e)+e"-Ve-k—2k-Ve-e )
(4.24)
Note that k = V.S, and hence Im(e - Vk - €*) = Im(e - VVS - €*) = 0 because VVS is
symmetric. Thus, equation (4.24) becomes

~1
vy -Va= [;e*-ai(oﬂe)-e] Im((e*-k)(V~e)+e*-Ve-k—2k~Ve-e*). (4.25)

The phase « only depends on the gradient of the polarization e.

4.3. Ezample

To see how equations (4.21) and (4.25) determine the amplitude A, we consider the
simple case in figure 2. For the ordinary mode, we can choose e = b. Since the magnetic
field is constant, Ve = 0 and equation (4.25) becomes v, - Va = 0 for our choice of e.
Then, a = a(xant) everywhere. Equation (4.21) gives

60‘A|25. 0 60|A|2i _ 60|A‘2

_ 92— 2
Wwave = o 50 (w e) b % B (o.) eH) 5 (4.26)
and then equation (4.21) becomes
0 6062 2
L0 A2k, ) = 0. 4.2
ox ( 2w Al 0 (427)
The final result for A = |A|exp(ia) is
k (zunt) kQ(Iant)C2 14
A = A(xan —T A — A(xay z , 4.2
)= Mz [ = Me) (e =) 0

where we have used the result in (3.13). Note that the amplitude of the wave diverges
when k, vanishes. The reason for this divergence is that vy, vanishes, and as a result
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Wyave must go to infinity to make vy, Wiave finite and equal to the energy flux coming
from the antenna. To avoid this divergence, we need to treat carefully the region where
A becomes large, as we do in the next section.

5. Cutoffs and resonances

There will be regions in the plasma where the solution to the local dispersion relation
in (2.12) gives k? < 0, or where the square of one of the components of k is negative
(for example, k2 < 0). A plasma wave cannot propagate into this region. At the surfaces
limiting these forbidden regions, k% or the square of one of the components of k, k7, may
have vanished (this is the case for w = wy, in (2.13), or w = wyr,wg in (2.14)), or it may
have diverged (for example, w = wy g, wr g in (2.14)). These limiting surfaces are cutoffs
and resonances.

5.1. Cutoffs

When k% = 0 or k? = 0, the plasma wave reflects. This result is intuitively shown in
figure 2. To show that the wave reflects, and to calculate the phase between the incoming
wave and the outgoing wave, the region near the cutoff must be treated carefully. In this
region, k? — 0, and the assumption k;L > 1 is not satisfied. The characteristic length
[ of the region in which the assumption k;L > 1 is not valid is determined by k;l ~ 1.
Since the cold plasma wave dispersion relation gives k? = F(r), near the cut-off where
k? =0, k? ~ I|VF|. Thus, k;l ~ 1 leads to 1*/2\/][VF| ~ 1, and we obtain

1 L
IVE[/3 (kL)

l s < L, (5.1)
where we have used the order of magnitude estimate |VF| ~ k?/L. At a distance [ from
the cutoff, the behavior of the wave is described by the Airy equation. To illustrate the
procedure needed to resolve the cut-off, we consider the case shown in figure 2.

The cutoff location x. in figure 2 is determined by the equation

wge(scc) = w? — k,flcz. (5.2)

At a distance [ from the cutoff, the WKB form that we have assumed, given in (2.2),
fails, as demonstrated by the fact that the amplitude diverges at the cutoff. Thus, we use
the more general solution

OE = E.(z)bexp(ik,y — iwt). (5.3)

Note that we have already included the direction of the polarization that is of interest
to us. Repeating the derivation in the notes on cold plasma waves with this form for the
electric field, we obtain

d?E. w? —w? () )
2 + < = —k, | E.=0. (5.4)
Since we are only interested in a region x — x. ~ [ < L, we can Taylor expand wge(m)
around ¢, w2, (z) ~ wl,(xc)[1 + (dInn./dz)(x — z.)]. Using this Taylor expansion and
equation (5.2), equation (5.4) becomes

?E.  wi.(zc)dnn,
dz? c? dz

(x —z.)E. = 0. (5.5)
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To solve this equation, we use the normalized spatial variable
T — X

l )
where the characteristic length [ for this problem is

—-1/3
[ wpe(ze) dInn, / (5.7)
o 2 dx ' '

C

z =

Note the connection with equation (5.1). Using the normalized variable z, equation (5.5)
becomes the Airy equation,
d?E,
dz2
We need to impose boundary conditions for E, at large |z| ~ |z — x.|/l. For negative
x — z, and |z — x| > [, the solution should contain the incoming wave

—zE. =0. (5.8)

A(z)bexp (1/ |ky (2| da’ + ikyy — iwt) , (5.9)
with kg (z) given in equation (3.13) and A given in equation (4.28). We also expect a
reflected or outgoing wave that according to the ray tracing equations should be of the
form

R(x)bexp <—i/ by (2')| da” + ikyy — iwt) , (5.10)
where k, also satisfies equation (3.13), and R satisfies an equation similar to (4.28),
kw (l‘ant)
R(z) = R(zant)y| ——F——- (5.11)
N Tk (@)
Since we are interested in |z — z.| < L, we can Taylor expand k, around z. to find
wie(ze) dlnn (—2)Y/?
~ pe e _
ky(z) ~ i\/— 2 o (x —xz.) == i (5.12)
and hence [ |ky(a)[d2’ = [ |ky ()| d2’ — [ [kp(2')|da’ =~ [T [ky(2')|da’ —

(2/3)(—2)?/2. Then, the solution in the region | < z. — x < L is

Vi (Zan )l A(zant) exp (i /: ko ()] da” — 21(2)3/2>

EC(Z) = (_2)1/4 3

ant

o[ 2i .
+R(Tant) exp (1 / |k (2)] dz’ + 3(2)3/2) ] (5.13)
Lant
This solution is consistent with the solutions of equation (5.8) at 2 — —oo. We also need
to impose a boundary condition for positive x — x. or, equivalently, for positive z. The
solutions of equation (5.8) at z — oo are

1 2 4
E.(z) x i3 OXP (:EBZ . (5.14)
One of the solutions diverges, and we do not expect that solution to be physical, so we
choose the other one by requiring that E.(z) — 0 for z — +o0.

Note that the boundary conditions imply that E. vanishes for z — +o0. Thus, to solve
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FIGURE 3. Graph of the Airy function. The location of the cut-off is indicated as a dashed line.

equation (5.8), we can Fourier transform E,, E,( = [%_ E.(2) exp(—isz) dz. Fourier
transforming equation (5.8), we obtain

dE,
ds

The solution to this equation is E, = K exp(is® /3), where K is a constant of integration.
Using the inverse of the Fourier transform, we obtain the solution

E.(z) = K Ai(z), (5.16)

—s?E, —i =0. (5.15)

where
Ai(z) ! /OC e is” +isz | ds (5.17)
= —_— X —_— .
21 J_ o P 3

is the Airy function (see figure 3 for a graph of the Airy function). This solution decays
exponentially for z — 400, as expected. For negative and large z, the behavior of Ai(z)
can be calculated using the method of stationary phase (see Appendix A),

Ai(z) ~ 2\“1 7 {exp (231( 2)3/2 4 4>+exp<§( 2)3/212)]. (5.18)

Using this approximation, we can match the solution (5.16) with the boundary condi-
tion (5.13), finding

K 4) e
e};I\)/IiT/ \/ xant A xant €xXp ( / |kr($/)| d$/> ’

Kexg\}m/él V ko (Tant LR (T ant) €xp (—1/ |km(m’)|d:r’>. (5.19)

Thus, the cutoff region solution that does not diverge for x > x. imposes

‘ant

Rzan) = A(Zans) exp (21/; Voo ()| da’ — 1;) (5.20)

ant

All the energy is reflected at the cutoff (A(x) and R(x) have the same magnitude), and
the reflected wave has an added phase of —m/2.

5.2. Resonance

When k? — oo, the wave resonates with the plasma, and usually the wave is absorbed.
In the region of the plasma where k2 is large, the cold plasma condition kv; /w < 1 is not
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satisfied, and we have to start considering thermal effects. These effects will in general
lead to resonances and absorption, but in some cases they can give rise to instabilities.
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Appendix A. Airy function for large negative argument

For negative z and |z| > 1, the integral in (5.17) is dominated by the values of s
around the maxima and minima of the phase s%/3+ sz, that is, by the values of s around
v/—z and —y/—z. To obtain the integral, we follow the stationary phase method (Bender
& Orszag 1999). Taylor expanding the exponent of the integrand of (5.17), we find that

pr§%qm):@m(_ﬁpﬁﬁﬂ+hﬁ¢@—vi@ﬁ (A1)
around s = =% and
exp (1533 + isz) ~ exp <éi(—z)3/2 —iv—z(s + \/—7)2> (A2)

around s = —/—z. For |s—+/—z| > 1/(—2)"/* and |s++/—2| > 1/(—2)'/4, the integrand
exp(is®/3 + isz) is highly oscillatory and it does not contribute much to the integral in
(5.17), as we will show below.

For —z > 1, we write

[ is®
Ai(z) = %/ exp (L; + isz) ds

1 —V=z+A/ (=)' 2%
~ — exp ((—2)3/2 —iv—z(s + \/—z)2> ds
2w —V—z—A/(—z)t/4 3

1 V=z+A/(=2)/* 9%
ex (—3(—2)3/2 +iv—z(s — \/—2)2) ds

2 Jy=E- Ao

1 is
+ — exp | — +1isz | ds, (A3)
27 rest 3

where A is a large positive number that satisfies
1< A< (=2)%4 (A4)

We have assumed that A < (—2)3/4 to ensure that the Taylor expansions (A 1) and (A 2)
are valid. We will show that the exact value of A is not important. The last integral in
(A 3) (the integral over the “rest”) is the integral over what is left after subtracting
the intervals [—v/—2z — A/(=2)Y4, —v/=2 + A/(=2)"*] and [/—2z — A/(=2)"/*, /=2 +
Af(=2)1],

is3 —V=z—A/(—2)"/* ig3
/ exp (3 + isz) ds = / exp <3 + isz) ds
rest —00

V=z—A/(=)'/* is3 oo i3
+/ exp ( + isz) ds —|—/ exp ( + isz) ds.
—VTEA/(=2)1/4 3 VA (=) 3

(A5)

We will show at the end of this appendix that these integrals are negligible.

To calculate the first two integrals in equation (A 3), we use the complex plane. The
first integral in (A 3) is equal to the integrals over the paths shown in figure 4(a): C (the
straight line through s = —v/—z at a —m/4 angle with respect to the real axis), C_.
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and Cy, (the two circumference sectors at large |s + +/—z|). Thus,

1 —V=2+A/(—2)V/* (21
exp

2 )y ay s 5(_'2)3/2_1 et _Z)Q) o=

o [ (R vt v

1 2i
+— exp (31(—2')3/2 —ivV—2(s+ \/—2)2) ds
T
1 21 3/2 . 2
+— exp | = (—2)"" —ivV—z(s+vV—2)° ) ds. (A6)
21 Coo 3
The integral over C' dominates. We calculate this integral using the new integration

variable s = —/—2 + t exp(—im/4)/(—2)/4,

1 2i

_ @exp (?(—z)?’/? _ ID /: exp(—12) dt. (AT)

Since we have chosen A > 1, we find fle exp(—t?)dt ~ [*_exp(—t?)dt = /7, leading
to

= [ exp (?(—2)3/2 iR (s + \/—7)2) ds = Wiz)wlexp (21(—@3/2 - ”T)
(A8)

We proceed to show that the integrals over C'_ ., and C, are negligible. For the integral
over C_o, we use s = —/—2 + [A/(—2)/*] exp(i(7 — 0)),

! exp <2l(z)3/2 —i=z(s+ v z)2> ds
2T C_ o 3
. . /4
= —271-(11)1/4 exp (?(—2)3/2) /0 exp (—1A% exp(—2i0) +i(r — 0)) df. (A9)
Using that in the interval 0 < § < /4,
. 42 . . 9 . 4A?
|exp (—iA% exp(—2i0) +i(m — 0))| = exp (—A%sin26) <exp ( ——0 ], (A10)
™
we find
1

2

/C e (231(—2)3/2 W \/—7)2> ds

A w/4 4A2 1 1
<— = AT _ .
< 27r(_2)1/4/0 exp< - 9) do =0 <A(—z)1/4> < ()i (A11)

Thus, the integral over the path C_. is negligible compared to (A 8). Using a similar
method, we can show that the integral over C, is negligible as well, leaving

1 —V=z+ A/ (—2)M (21
— exp | 3

(—2)32 —iy/=z(s + vV=2)?) ds
21 o =m-a) (=2
1

2i g im
~ W exp (3(—2)3/ — 4) . (A12)
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FIGURE 4. Contours in the complex plane used to take the integrals in equation (A 3).

We can calculate the second integral in (A 3) using the path shown in figure 4(b). Fol-
lowing the procedure that we used to obtain (A 12), we find

1 V=zZ+A/(—2)/* 9%
— ex (—(—2)3/2 +ivV—z(s— v —z)2> ds
VTR A/ (=) 3

2 , im
Q\f( )1/4ep< 3( 2)¥ "‘4)- (A13)

Adding the integrals in (A 12) and (A 13), we find equation (5.18).

We finish by arguing that the integrals in (A 5) are negligible. We can prove it by
integrating by parts. We show the procedure for the first integral in the right side of
(A5). Integrating by parts this integral, we find

— —Z— —Z 1/
/—\/—z—A/(—z)l/4 is® iexp(is3/3+isz) V AJ(—2)'/*
exp| — +isz | ds = —
_ 3 s2 4z

oo —00

—V=Z—A/ (=)' * ig3 d 1
+1/—oo exp <3 +1sz> 1 (.92+z) ds. (A14)

In the first term of this equation, the limit s = —/—2 — A/(—2)'/* dominates, giving

~ [iexp(is®/3 + isz) e oL (A15)
524z _ B A(=z)V/4 )"

o0

The second integral in the right side of (A 14) can be bounded. The integrand of the
second integral in the right side of (A 14) diverges as 1/v/—z(s++/—2)? for s near —/—z.
Thus, we will find its maximum value in this region. Taking this into consideration, in
the interval (—oo, —v/—z — A/(—2)'/%], there is a constant K ~ 1 such that

s +i 4 L < K (A16)
FP T T ) s\ )| S V=z(s+/—2)%’




16 Feliz 1. Parra

leading to
_ —V=z—A[(=2)"/* is3 d 1
1_0O exp ?—i—lsz &\ ds
—V=z=A/(=2)"/* K 1
< ————ds=0| — | . Al17
/. ey =0 (amm) .

This bound is not very accurate, and it can be made better by integrating by parts again.
However, to prove that the integral is negligible, this bound is sufficient. Estimates (A 15)
and (A 17) give

—V=z—A/(=2)"/* is3 1 1

— 00

Thus, this integral is much smaller than the main contribution (5.18). All the integrals
in (A5) are of the same order, that is, the integrals in (A 5) are negligible,

/e ﬁJr'.s ds=0 ! < ! (A19)
et P\3 )T Ay ) S (A




