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“If quantum mechanics hasn’t profoundly shocked you,
you haven’t understood it yet.”
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SOME GENERAL REMARKS:
These notes aim to be self-contained. Homework questions are are placed at appropriate positions in

the text, i.e. to work them out you will require only the preceeding material. Questions marked by a
star are optional. Asides give details on derivations we don’t have time to go through in the lectures, or
present material that goes beyond the core of the course. In some cases this material will be very useful for
particular homework problems. FEzercises are small problems that should be worked out after the lecture
they pertain to. They are meant to ensure that you are continuously engaged with the course and not only
the days immediately preceeding a tutorial.

This course aims to give an introduction to Quantum Mechanics. Let us start with some general context.

e QM is arguably humanity’s greatest achievement. Actually, forget about the “arguably” part...



e Its understanding is the basis of much of our technological progress over the last 80 years.
e QM is intellectually challenging and only a minute fraction of humanity has any idea what it is about.

e We don’t have an intuitive understanding of QM. As Richard Feyman famously said “Nobody under-
stands quantum mechanics”. An important addendum to this statement is that one naturally can not
understand QM on a multitude of different levels, and the ultimate aim of this course is to elevate
your ununderstanding to levels beyond your wildest imagination. Your ultimate goal should of course
be to reach Feynman’s level of ununderstanding...

Figure 1: Richard Feynman (Nobel Prize in Physics 1965).

Part 1
THE MATHEMATICAL STRUCTURE OF QUANTUM
MECHANICS

avewpeT pnTwC undetl eLottw INSCRIPTION ON PLATO’S DOOR.

QM is fundamentally different from Classical Mechanics in several ways:

e It does aim to provide a description of physical reality, but merely to make predictions for measure-
ments. It is by its very design a theory of measurement.

e It accounts for the fact that measurements disturb the system; if the latter is small this is a large
effect!

e QM is inherently probabilistic in nature: in general it cannot predict the outcome of a particular
measurement exactly, but it rather provides a probability distribution for a set of possible outcomes.

Examples of quantities that can be measured are energy, momentum, position, angular momentum.
These are called observables. Measuring an observable can in general have many possible outcomes.
These can be either discrete or continuous: position measurements will typically result in an outcome
that various continuously in some interval [a, b], but measuring energy will often result in a “quantized”
set of outcomes F1, Fo, ... Note that here and in the following we think of measurements in a rather
abstract way and are not concerned with questions of experimental inaccuracies.



The aim of QM is to provide probability distributions associated with measurements of observables

P(E,), P(Es),... ZP(Ej) =1. (1)

These distributions give us a statistical understanding of what happens if we repeat a given experiment
many times.

1 PROBABILITY AMPLITUDES AND QUANTUM STATES

1.1 PROBABILITY AMPLITUDES

A key aspect of QM is that probability enters in an unusual way. To stress this point let’s recall that
“classical” probabilities fulfil rules like

e If A B are independent events with probabilities P(A) and P(B), then the probability for A and B is
P(A and B)= P(A)P(B).

e If A B are exclusive events with probabilities P(A) and P(B), then the probability for A or B is P(A
or B)= P(A)+P(B).

QM works differently by construction. To understand why we follow Master Quantum Mechanic Richard
Feynman’s exquisite discussion (Feynman Lectures on Physics Vol 3) of double-slit thought experiments,
which, incidentally, in German is of course a single word “Doppelspaltgedankenexperimente” — don’t you
just love it!

Feynman first considers the double-slit experiment for classical bullets. These can go through either slit,

MOVABLE
DETECTOR
S R fa
et _di X
P ot T~
GUN _‘:_:;_-_E___* N 1
< 2
4 R
WALL BACKSTOP
0 Re=R +F,
(@ b ©

Figure 2: A double-slit experiment with indestructable bullets.

and the probability Pja(z) of bullets arriving at position x on the detector screen is simply the sum of the
probabilities Pj(x) and P»(z) obtained by closing holes 2 and 1 respectively, i.e.

P12 = P1 —+ PQ. (2)

So for classical bullets we are dealing with classical probabilities.

Quantum mechanics works completely differently, as can be seen by repeating the double-slit experiment
for electrons. What one observes is that electrons still reach the detector in “lumps”, but now Pia(z) #
Pi(z) + Py(z). Moreover, the observed probability distribution looks suspiciously like the interference
pattern we would observe when conducting the experiment with waves! For waves we understand perfectly
that intensities do not add, but instead we have

L= m?, L=lhlf, @Ly=|h+h*, (3)
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Figure 3: A double-slit experiment with (a) electrons and (b) waves.

where hi o are the amplitudes of the waves. What the Doppelspaltgedankenexperiment shows is that elec-
trons in some way behave like particles (lumpiness at detector) and in some ways like waves (interference)!
This is called particle-wave duality.

The way to encode the baflling interference phenomenon into the fabric of QM is to postulate that the
fundamental objects in QM are not probabilities, but probability amplitudes A.

Postulate 1: Probabilities from Probability Amplitudes

Probability amplitudes are complex numbers associated with the outcomes of measurements. The
corresponding probabilities are obtained as

P(4) = |AP. (4)

If there are several ways of arriving at a particular measurement outcome the associated probability
amplitudes add.

This postulate allows us to understand why there is an interference pattern in out double-slit experiment
for electrons. By Postulate 1 we have

P(z) = |Probability amplitude to go from the electron gun to x|? . (5)

Clearly there are two paths from the gun G to position x on the screen. The electron could travel via slit 1
or via slit 2. Denoting the associated probability amplitudes by A(1) and A(2) respectively we have by our

postulate
P(z) = [A(1) + A(2)]? , (6)

because probability amplitudes add. Working this out we have

P(z) = [AL)]” + [A@2)P + 2Re [A(1) A" (2)]. (7)

“Interference term”

Expressing the complex amplitudes in terms of their magnitudes and phases A(1) = /P(1)e’*) we can

rewrite this as

P(z) = P(1) + P(2) + 2,/P(1)P(2) cos (¢(1) — ¢(2)). (8)
This is clearly very different from the “classical” rule for adding probabilities for exclusive events! For x = 0
we have P(1) ~ P(2) and therefore

P(x)~2P(1) [1 + cos ((;5(1) - ¢(2)] . (9)



The “classical” result would simply be 2P(1), while QM predicts a probability distribution that oscillates
between 0 and 4P(1) as a consequence of “QM interference”. Before we take leave of our double-slit
experiments there is one more variation we need to consider. Now we position a light source behind the double
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Figure 4: Double-slit experiments with electrons where we measure through which slit the electrons go.

slit, which allows us to measure through which slit the individual electrons go. In this experimental setup
the interference disappears and probabilities add! If this does not give you goosebumps there is something
seriously wrong with you! Our framework for QM will have to account for this bizarre interference-killing
effect as well.

The fundamental idea in QM is to associate probability amplitudes with measurement outcomes of
given observables.

e Example 1: Let Ey, E1,... be the possible outcomes of an energy measurement. With each energy
we associate a complex probability amplitude A(E;) such that the probability for measuring E; is
P(Ej) = |A(E;)|* and

> P(E;) =1. (10)
J

e Example 2: Consider a position measurement in one dimension (like the one above). The possible
outcomes are then real numbers in some interval x € [a,b]. With each position x we associate a
complex probability amplitude 1 (z) such that P(x) = | (z)|? and

b
/ dz P(z) = 1. (11)
a
In this case the set of probability amplitudes can be viewed as a complex valued function.

1.2 COMPLETE SETS OF AMPLITUDES AND QUANTUM STATES

Knowing all amplitudes A(E;) provides us with a probabilistic description of repeated energy measurements
in the following sense.

e Set up an experiment in a particular way. This fixes a particular set of probability amplitudes

{A(Ey), A(Er), ... }.

e Measure the energy. The result is £/; Write the result down.



e Repeat the experiment many times (we imagine that we can set things up in precisely the same way
each time). The ultimate result of our efforts is a histogram that gives probabilities P(E;) for the
various observed measurement outcomes Ej. QM asserts that P(E;) = |A(E;)|?.

e Changing our experimental setup would result in a different set of amplitudes {A'(Ep), A'(E1),...}.
So far so good. The next step is a crucial one.

Definition 1 A key aspect of QM is that specifying amplitudes for e.g. an energy measurement can provide
enough information to obtain probabilistic descriptions of measurement outcomes of any other observable.
Such sets of amplitudes are called complete.

An efficient way of encoding the information contained in a complete set of amplitudes {A(Ep), A(E1),...}
is to combine them into a vector

) = (A(Eo), A(En), - . .)- (12)

We call this a state or ket-state using a terminology (and very clever notation) invented by P.A.M. Dirac.

Paul A.M. Dirac (Nobel Prize in Physics 1933).

“If you are receptive and humble, mathematics will
lead you by the hand”.

1.3 DIRAC NOTATION FOR COMPLEX LINEAR VECTOR SPACES

It is easy to see that ket states form a complex linear vector space V. Addition of two kets is defined in
terms of addition of the associated amplitudes

[¥) + |9) = (A(Eo) + A'(Eo), A(Er) + A/(Ev),...) (13)
while multiplication by complex numbers is defined as
clp) = (cA(Ep), cA(Er), ... ). (14)

The vector space structure makes it clear that there are special states such that all amplitudes are zero except
A(E;) = 1. We denote these states by |E;). By construction they are such that an energy measurement in
a system described by the ket |E;) returns the result E; with probability 1. In other words they are states
of definite energy. If {A(E;)} is a complete set of amplitudes these form a basis of V: any ket |¢) can be
expressed as a linear combination

) = |E;) , ;€C. (15)
J



1.3.1 DuAL (“BRA”) STATES

Given a state [1)) we want a quick way for extracting individual amplitudes. Mathematically speaking we
are searching for linear maps

Vv — C
) — ¥ (16)

such that «o|y) + S|¢) maps to arp; + B¢;. For finite dimensional linear vector spaces such maps form a
linear vector space V*, the dual space, of the same dimension as V. Dirac notations provide us with a very
neat way of constructing a basis of V*:

e Start with an orthonormal basis B = {|j)} of V.

e Define corresponding “bra” states (j| € V* by specifying their action on B

(n|j) = dn;, “bra-ket” — Dirac’s only joke. (17)
e Extend this to general states [¢) = >_,1;(j) by the rule
=> 45 (il - (18)
J

In this way (|¢) turns into the usual scalar product for complex linear vector spaces

(W|¢) = Z%@ (lv))* (19)

and

(Wl) =) |;> >0 “Length” of |). (20)
J

he length of state vectors in QM must always be 1, because probabilities must add up to 1.

1.4 ... AND BACK TO MEASUREMENTS

To describe the measurement of an observable A we express the ket 1) that describes our system as a linear
combination of basis states that correspond to definite outcomes a;

U) =Y wlag) b= (a;le) ZI%!Z (21)
J

The probability to obtain a; in our measurement is
sl? = a2 “Born’s rule.” (22)

An important question is what “state” a quantum mechanical system is in just after a particular observable

has been measured. As QM deals with very small things measurements can greatly disturb the QM system,
i.e. change its QM state. What should we expect? To be more precise let’s start with a QM system described
by the state |¢), then measure the observable A and obtain the result a;.



Figure 5: Max Born (Nobel Prize in Physics 1954) ... and his more famous granddaughter. Born is said to
have thought that the Copenhagen interpretation of QM should really be called the Géttingen interpretation.
He has a point...

Postulate 2: Projective nature of measurements

We expect that if we measure A again straight away, we will obtain the result a; with certainty.
This is only possible if the first measurement leaves the system in the state |a;) — meaning that
measurements are projective:

|t) — measure A, obtain result a; = system left in the state |a;).

(23)

1.5 ARBITRARINESS OF THE OVERALL PHASE

Let us now consider the two states |1) and |[¢/) = €*¥|y)) where « is an arbitrary phase. According to the
rules we have presented, there is no way of telling these two states apart through any quantum mechanical
measurement! Indeed we have

[9') = e"y) = Zem<aj|¢> |aj)- (24)

Hence the possible measurement outcomes are again given by the set {a;} and the corresponding probabilities
are

[(a;[9") |2 = 1€ (al)* = [(as|0)]*. (25)
This tells us that |¢)) and e'®|¢)) describe the same quantum mechanical state. In the mathematical literature
the states e’“|y)), a € R are called a ray. In practice we will always fix the overall phase of quantum states
in a convenient way.

1. QM systems are described by quantum “ket” states |1)). These correspond to different ways
of experimentally “setting up” the system. States that differ only by an overall phase factor




describe the same physical situation and are to be identified.
2. Kets form a complex linear vector space V.

3. To each state |¢)) we can associate a complex valued linear map (¢|. These “bra-vectors” form
a linear vector space V* of the same dimension as V.

4. To describe a measurement of an observable A we express the state [1)) describing our system

as a linear superposition of basis states that correspond to definite measurement outcomes a;
for A

[¥) = Z%’\%? W = (a;]Y) , Z ;)% = 1. (26)
d i
The probability to obtain a; in our measurement is
03 = (g2 “Borm’s rule.” oD

5. After the measurement the system is left in the state |a;) (if the outcome of the measurement
was a;).

Homework 1: PROBABILITY AMPLITUDES, PROBABILITIES AND DIRAC NOTATION

1.1 What physical phenomenon requires us to work with probability amplitudes rather than with
probabilities?

1.2 Given that [1) = e"™/5|a) 4 €"™/4|b), express ()| as a linear combination of (a| and (b|.

1.3 An electron can be in one of two potential wells that are so close that it can ‘tunnel’ from one to
the other. Its state vector can be written

) = a|4) +0|B), (28)

where |A) is the state of being in the first well and | B) is the state of being in the second well and all
kets are correctly normalised. What is the probability of finding the particle in the first well given
that: (a) a =14/2; (b) b=¢€"; (c) b= 1 +1i/V2?

1.4 An electron can “tunnel” between potential wells that form a linear chain, so its state vector can

be written as
o0

)= anln), (29)

n=—oo
where |n) is the state of being in the n'" well, where n increases from left to right. Let

[n]

an = \}5 (;Z) 7 i (30)

(a) What is the probability of finding the electron in the n'" well?
(b) What is the probability of finding the electron in well 0 or anywhere to the right of it?

2 OPERATORS AND OBSERVABLES

In the lab we (i.e. our experimental colleagues) can manipulate quantum states, i.e. devise protocols that
map states to other states. In our mathematical framework this is described by considering linear operators

10



acting on V

O V —V
) — Oly) , (31)

where O(aly) + Bl¢)) = aO|) + SO|¢). Dirac notation provides us with a very useful way of expressing
operators. A general operator can be expressed in terms of basis states |j) and their dual states (j| as
follows:

e The object |7)(k| is a linear operator.
Proof:

|k><j|(a|¢> +5|w>) ~ k) (a<j|¢> +5<j|¢>) = a(il) [K) + B IR (32)

eC

e The identity operator is

1= 3 L)l (3)

Proof: Act with 1 on a general state |¢) =Y, ¥|k):
[;mmw =S = Sk = ) en

e A general operator A can be written in the form

A=) (jlAlk) 15) (k]

Jk

the complex numbers (j|A|k) are called matriz elements of A in the basis {|j)}.
Proof:

A=141= (D" 1HGNAO k) E]) - (36)
7 k

For finite dimensional linear vector spaces linear operators correspond to square matrices.

Like for matrices, a very useful way to characterize an operator is through its eigenvalues and eigenvectors
(“eigenstates”). The eigenvalue equation for an operator O is

Oloj) = oj]05).

(37)

The eigenvalues {o;} form the spectrum of the operator O. The most important operator in QM is the
Hamiltonian, or energy operator. It is defined by

H =Y Ej|E;)(E),
J

(38)

where |E;) are the quantum states introduced above that give result E; with probability one when the
energy is measured.The Hamiltonian fulfils by construction

H|E;) = Ej|Ej). (39)

11



Hence the spectrum of the Hamiltonian is equal to the set of possible outcomes of energy measurements.
This generalizes to other observables: with each observable we can associate an operator by

A= "ajla;){ay] , (40)
J

where {|a;)} is a complete set of states that return the result a; with probability one when the observable
under consideration is measured. As the outcomes of the measurements we have in mind (energy, momentum,
position etc) are real numbers the operators representing observables must be special.

2.1 HERMITIAN OPERATORS

In QM observables are represented by Hermitian operators

A Hermitian < ((6|A[))" = (4|Al) .

(41)
Hermitian operators have three crucial properties that we will use constantly in the following:
(H1) Their eigenvalues are real.
(H2) Eigenstates corresponding to different eigenvalues are orthogonal
(ajlag) =0 if aj # ay. (42)

(H3) One can always construct an orthonormal basis of V' from the eigenstates of a Hermitian operator.

Aside 1: HERMITIAN OPERATORS

You have already seen this in your Linear Algebra course, but in order to be self-contained and to
get you fluent in Dirac notations the proofs of these statements are summarized below. Let A be a
Hermitian operator with eigenvalue equation

Alag) = ag|ag). (43)

As A is Hermitian we have
((ak|Alag))* = (ar Alag) - (44)

Using the eigenvalue equation this implies aj(ax|ar)* = ar(aclar) and using that (ax|ar)* = (as|ar)
we have

(a; — ag)(aslar) =0 . (45)
o Setting k = ¢ gives
(a7 — ag){arlar) =0, (46)
which implies
ag = a; = (H1). (47)
e Taking ay # ay in (45) we have
(aclar) =0, (48)

which immediately implies (H2).

12



e For eigenstates with the same eigenvalue we can carry out a Gram-Schmidt orthogonalization
procedure. Together with (H2) this implies (H3).

Definition 2 The Hermitian conjugate BY of an operator B is defined by

(0| Bly) = (v1Bl#)" - (49)
Hermitian operators fulfil A = Af. The following rules for taking Hermitian conjugates will be useful:
(A+B)t = AT+ B, (50)
(cA)T = AT, (51)
(AB)! = BTAT. (52)

Aside 2: HERMITIAN CONJUGATION

The properties (52) are straightforward to establish and provide an excellent exercise in Dirac notation
(so make sure that you are happy with each of the steps!). The first property follows from considering

(@l(A+B)Tl) = (w|A+ Blo))* = (¥|A$)" + ((¥]Bl¢)* = (#|AT[y) + (¢ BTly).  (53)

The second property holds because

(l(cA) 1) = (¢leAlg))* = (c(vlAlg))* = c*(g]ATw) (54)

To establish the third property consider

(WI(AB)T|g) = ((#lABI9))* = (9|4 Y [k)(K| Bl))* = Y _({#lAIk))*({k|Blv))*
k k

1

= > (k|AY¢) (9| Bk) = (W|B" " |k)(k|AT|g) = (| BT Al|g). (55)
k

k

Homework 2: OPERATORS

1.5 Let @ be the operator of an observable and let [¢)) be the state of our system.

(a) What are the physical interpretations of (¢|Q[+)) and |{gy,|t/)|?, where |g,) is the n'P eigenket of
the observable Q and ¢, is the corresponding eigenvalue?

(b) What is the operator ) |¢n){(¢n|, where the sum is over all eigenkets of Q7 What is the operator

Zn @nlqn)(qn|?

1.6 Which of the following operators are Hermitian, given that A and B are Hermitian:

A+B; cfl; AB, AB +BA

Show that in one dimension, for functions which tend to zero as |z| — oo, the operator 9/dz is not
Hermitian, but —ihd/0z is. Is 9?/0z* Hermitian?

1.7 Given that A and B are Hermitian operators, show that i[fl, E] is a Hermitian operator.

13



1.8 Given that for any two operators (AB)" = BT AT, show that

(ABCDY = DICH BT AT,

2.2 COMMUTATORS AND COMPATIBLE OBSERVABLES
Definition 3 The commutator of two operators A and B is

[A, B = AB — BA. (56)
In QM commutators play an important role because of the following theorem.

Theorem 1 Let A and B be two Hermitian operators. If [A, B] = 0 there exists a complete set of simulta-
neous eigenstates of the operators A and B, i.e.

Aluj) = ajlug) s Bluj) = bjluy), (57)
and {|u;)} form a basis of the LVS on which A and B act.

Proof: One direction is simple: if A and B have a complete set of simultaneous eigenstates |u;) we have
(u;[[A, Bllur) = (arbr, — brar){u;lux) = 0, (58)

which implies that the commutator is zero (because the |u;) form a basis). Let’s now turn to the other
direction of the proof, i.e. let’s assume [A, B] = 0 and show that this implies the existence of a complete set
of simultaneous eigenstates. As A is Hermitian we know that is has a complete set of orthogonal eigenstates

Alaj) = ajlaj) ,  (ajlak) = ;. (59)
Now consider the matrix elements of the commutator in this basis
0 = (a;|[A, Bllax) = (aj — ax)(a;| Bla) (60)

This tells us that if all eigenvalues a; are different, we have (a;|Blay) o 6, i.e. the eigenstates |a;) of
A are simultaneous eigenstates of B. The situation is a bit more complicated if some of the a; are equal.
Let us assume that n of the a; are equal and let’s label the eigenstates of A such they correspond to
apL=ay =+ =a, = a. Then

(i) Any linear combination » 7 aja;) is an eigenstate of A with eigenvalue a.

(ii) On the subspace spanned by {|a1),...,|an)} B is represented by Hermitian matrix Bj, = (a;|B|ag,).
Hence it can be diagonalized, i.e. we can construct eigenstates |uy) of B by taking appropriate linear
combinations of the [ug) = >0, ﬁ§k)]aj>. These are simultaneous eigenstates of A by (i).

This generalizes straightforwardly to the case where we have several “degenerate” eigenvalues.

Even though all this Linear Algebra is of course very interesting in itself, you may be asking yourselves at
this point what on earth this has to do with QM. As you may have guessed, it has to do with measurements!
Let us consider two Hermitian operators A and B that correspond to two observables in an experiment. We
know that the respective eigenstates of A and B can be used to construct an orthonormal basis of our linear
vector space of quantum states

Alai) = ailas),  Blb;) = bilbs) = [v) = > (ail) a;) =D (bilth) |by). (61)

7 3

Let us now make the following Gedankenexperiment: we first measure the observable corresponding to A,
and then straight away measure the observable corresponding to B (without re-initializing our experiment).
We want to compare this to the reverse order of measurements. Here we go:
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e Measure A, then B

) — measure A: a; with prob. |{a;|¥)|?, system in state |a;)
— measure B: b; with prob. |(b;]a;)|? . (62)

So the final outcome is a table of outcomes with associated probabilities

outcome (a;, b;) probability |(a;[¥)|* |(bj|a;)|? (63)

e Measure B, then A

) — measure B: b; with prob. |(b;|1)|?, system in state |b;)
— measure A: a; with prob. |(a;|b;)|* . (64)

So here the final outcome is a table

outcome (a;, b;) probability [(b;[y)|* |(a;|b;)|? (65)

Clearly, the tables of measurement outcomes we obtain in the two ways will generally be different! That. Is.
Deep. If the order of measurement does not matter, the observables corresponding to A and B are called
compatible. As the order of measurement for two compatible observables does not matter and we always
end up in a quantum state where both observables have a definite value, one could in principle set up an
experiment that measures both observables simultaneously.

Theorem 2 Two observables are compatible if and only if the commutator between the associated Hermitian
operators vanishes
[A, B] = 0. (66)

Proof: If [A, B] = 0 there exists a basis of simultaneous eigenstates of A and B. Using this basis in the
above consideration it is easy to see that the two outcomes are identical. On the other hand, if [A, B] # 0
there must be at least one eigenstate |a;) of A that is not an eigenstate of B. As the state [¢)) above is
arbitrary we can choose it to be |a;j). By considering the two sets of outcomes we see that they can only be
equal if |a;) is an eigenstate of B, giving a contradiction. This completes the proof.

Homework 3: COMMUTATORS

1.9 Show that if there is a complete set of mutual eigenkets of the Hermitian operators A and B,
then [A, B] = 0. Explain the physical significance of this result.

A~ A~

1.10 Does it always follow that if a system is an eigenstate of A and [A, B] = 0 then the system will
be in a eigenstate of B? If not, give a counterexample.

~

1.11 Show that ) -

(a) [AB,C] = A[B,C|+[A,C]1B

(b) [ABC, D] = AB[C, D] + A[B, D|C + [A, D] BC. Explain the similarity with the rule for differen-
tiating a product.

(c) [z™,p] = 1hna: -

(d) [f(2),p] = 1h = for any function f(x).
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1.12 Let A and B be two Hermitian operators. Prove that if [A, B] = 0 there exists a complete set
of simultaneous eigenstates of the operators A and B, i.e.

Aluj) = ajlug) . Blug) = bjlug), (67)
and {|u;)} form a basis of the LVS on which A and B act.

1.13 Prove that two observables are compatible if and only if the commutator between the associated
Hermitian operators vanishes.

1.14 What does it mean to say that two operators commute? What is the significance of two
observables having mutually commuting operators?
Given that the commutator [P, Q] # 0 for some observables P and @, does it follow that for all

) # 0 we have [P, Q][) # 07

2.3 EXPECTATION VALUES

Definition 4 The expectation value of an operator O in a quantum state |1) is defined as
(Y|Ol) . (68)

Expectation values are hugely important in QM. To see why let us consider a Hermitian operator A = Af
associated with some observable. Any state can be written as linear combination of the eigenstates of A
(why?)
[9) =D {ajl¥) laj). (69)
J

Hence

(Y|Alp) = Z%‘ %W

(70)

This expression has an important physical meaning: a; are the outcomes of measuring the observable to
which A corresponds, and |(a;|v)

|2 are the associated probabilities.

So the expectation value gives the average over many measurements of our observable when the
system is in the quantum state |¢)).

Let us now consider the expectation values

(Y[A™¢) = Za”! (ajl)? (71)

These are nothing but the moments of the probability distribution associated with measuring the observable
associated with A in the state |¢))! Nice.

3 PoOSITION AND MOMENTUM REPRESENTATIONS

All animals are equal, but some are more equal than others. George Orwell.

The basic objects in QM are quantum states. In order to work with them we usually express them in
some particular basis. Which choice is most convenient depends on the particular problem one is interested
in. Having said this, some choices of basis are of particular importance.
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3.1 PoOSITION REPRESENTATION

This is obtained by working with probability amplitudes ¥ (x) for finding a particle at position = (in 1
dimension). In Dirac notation

) = [ dz w(a) [o), (72
where |z) are quantum states in which a position measurement returns the result = with probability 1.
Definition 5 The probability amplitude 1(x) is called a wave function.

Now recall that we introduced bra-vectors to extract amplitudes from states. Here we want

@wozwwﬁz/ﬁmw@<ﬂm. (73)

This requires
(2 |z) = 6(x — ), (74)

where d(x) is the Dirac delta-function. Indeed, a defining property of the delta-function is that (for all
sufficiently well-behaved functions f(x))

/fdxﬂmau—xﬁzfu» (75)

At this point students usually feel somewhat uncomfortable, because the scalar product of bras and kets
involves a delta-function rather than a Kronecker delta. The reason for this is that x is a continuous
variable and the same situation arises for other observables where the outcome of measurements can vary
continuously. The resolution of the identity in terms of the states |z) reads

1- /d:c ) (a]. (76)

Check:
uwz/wmmwz/wwww. (77)

3.1.1 POSITION OPERATOR

Given a basis of states of definite position we can introduce the associated position operator

i = /dm 2 |2)(al.

By construction the position operator has eigenstates |x) with eigenvalues x

il = /dx o [2)(zl’) = /dm o |7) 6z — ') = 2'|). (79)

It acts on general states as
i) = [ doale)(olt = [ dozvia) o). (50)

i.e. it multiplies the wave function by x. By concatenating (79) we find

2"af) = (@)"|2'), (81)
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and therefore

V(@)la') = V(a')la') ,

(82)

where V(z) is a function that is to be understood in terms of its Taylor expansion around x = 0. For a QM
particle moving in one dimension V' (Z) would be the operator describing its potential energy. (Why?) We
note that

wla) = [ do fo()Par (85)
so (Y|2[) is the average position and (|#2[) — (|2[1p)? the variance if we look at the histogram of many
position measurements.

3.1.2 POSITION REPRESENTATION FOR OTHER OPERATORS

An important question is how other operators look like in the position representation. For a general operator
A we have

A=1A1= /dx dz’ |x){z'] (x| Al|z'). (84)

As usual in order to define the operator we require its matrix elements (z|Alz’). A particular important
operator is the momentum operator. It is defined (in one dimension) as

p= /dp p [p){pl, (85)

where |p) are states such that a momentum measurement returns the value p with certainty. In the position
representation (see below for some motivation) one has

(z|pla) = —ih% §(x — a').

This gives

(o) = [ ' wiple’) (') = —inZHE.

(87)

Aside 3: MOMENTUM OPERATOR

At this point we have simply asserted that the position representation of the momentum operator is
given by eqn (86). The justification will be given in Part III of the lectures, when we will consider
translations in QM. The logic that underlies the identification of the momentum operator goes as
follows. In classical mechanics momentum can be defined as the generator of translations. One then
defines the momentum operator in quantum mechanics as the generator of translations in QM. This
leads to (86).
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3.2 HEISENBERG UNCERTAINTY RELATION

Werner Heisenberg (Nobel Prize in Physics 1932).
“What we observe is not nature itself, but nature exposed to
our method of questioning.”

Heisenberg also gave an excellent definition of experts: “An
expert is someone who knows some of the worst mistakes
that can be made in their subject, and how to avoid them.”

Let us consider the commutator [z, p]

op(x) . 0 iy
oo ihg [1y(x)] = ih{zly). (88)

(z|[&, pl[Y) = (x|&p — p2lY) = —iha

As [¢)) is arbitrary this tells us that

[#,p] = ih.

(89)

So momentum and position are incompatible observables! Now consider the variances for position and
momentum measurements in the state |1)

W& = 20)*|¥) , (WD — po)|¥), (90)

where xg = (1|#1) and pg = (|p|y)). For general Hermitian operators A = AT and B = BT we have

20 Im(¢[AB|¢) = ([[A, Bl|¢). (91)

But the imaginary part of a complex number is always smaller than its magnitude and so

Im(p|AB|p) < [(|AB[Y)]. (92)

Next we use the Schwarz inequality, which in Dirac notations reads

[(d10")] < V/(gl) (¢']¢). (93)

In the usual vector notation and for real vector spaces this reads |@- b < ||@|| ||b]|, which is obviously true
because @-b = ||d|| ||b|| cos ¢, where ¢ is the angle between the two vectors. Applying the Schwarz inequality
to the states Bly) and A|y) on the rhight-hand-side of (92) and then using (91) we obtain

2 W14, Blly) < IIA00) WIB79). (94)

Finally we substitute A = & — x9, B = p — po and use [A, B] = ih to arrive at the Heisenberg uncertainty
relation

o | St

< VW@ — 20)2[¥) v/ (@|( — po)2[) -

AX AP
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The physical content of the Heisenberg uncertainty relation is that the product of the variances of the QM
probability distributions for position and momentum measurements must always be larger than (h/2)%. So
if the state |¢) is such that the variance of the position probability distribution is very small, i.e. we can
determine the position very precisely, the variance of the probability distribution of momentum must be
large enough to satisfy the inequality (95), i.e. very large. So, in a probabilistic sense, we can never know
both the position and the momentum of a particle very precisely.

3.3 MOMENTUM REPRESENTATION

Momentum eigenstates fulfil p|p) = p|p). We can work out the corresponding wave functions by considering

(alplp) = ~ih={zlp) = plalp). (96)

This is a first order ODE with solution

(zlp) = A efre.

(97)

So the wave function of momentum eigenstates are plane waves! As |{x|p)|*> = |AJ? is position independent
a particle in a momentum eigenstates is equally likely to be found anywhere in space when its position is
measured. The constant A is fixed by the normalization condition

(plp') =d(p -1, (98)

which ensures that the resolution of the identity has the form

1= / dp [p) (o, (99)

We have _
(plp') = /dw (plz)(z|p) = /dw |APer @' =P = | A2 21k §(p — p), (100)

so A = (27rh)*1/ 2. The momentum representation is obtained by expressing states and operators in terms
of a basis of momentum eigenstates

) = / T dp o) Ip) . O = / dp dp' (|O1Y') 1p) (] (101)

—0o0

Using |¢) = [%_dx (z[¢) |z) = [%_dp (p|l)) |p) we can relate the momentum and position representations

o) = [ o) = = [ o i) S (102)

This is precisely the (inverse) Fourier transformation of the wave function!

3.4 GENERALIZATION TO 3 DIMENSIONS

In three spatial dimensions we use a basis of quantum states |Z) of definite position ¥ = (z,y, z). These
states fulfil the normalization condition

@) = 6O (@ -1 = 6(x — 2oy — ' )o(z — 7). (103)

The resolution of the identity is

1- / 37 |7) (3. (104)



A general state can be written as a linear combination of these basis states

) = / P37 (T |7,
»(Z)

(105)
Now we can define operators corresponding to each of the three components of position
8 = /d%? z 3
i = [ézyima,
5 = /d%?z Z)(Z] . (106)
By the same kind of argument as in the 1D case we have
V(Z,9,2)|%) = V(z,y, 2)|T), (107)

where V (z,y, z) is to be understood in terms of its Taylor expansion around (0,0,0). In D=3 we also have
three components of momentum and can define the associated quantum states |p), which return the result
Pa With certainty when the a-component of momentum is measured (o = z,y, z). Their normalization is as
you may have already guessed

@) = 6B (7~ ) = 6(ps — )0 (py — 1)) 3 (P2 — L) (108)

Following our construction for D=1 we can define three Hermitian operators associated with the three
components of momentum by

ﬁa|}5‘> = pa|]3> s a=1Y,z (109)

In the position representation we have
(#|pal®) = —ihm—6@(F-7),  a=umzy,z (110)

This implies that

(@pal) = —ih ()

(111)

4 TiME EVOLUTION IN QUANTUM MECHANICS

Newtonian mechanics is about equations of motion for physical quantities. The analogue in QM is time
evolution of quantum states.

4.1 TIME DEPENDENT SCHRODINGER EQUATION AND EHRENFEST’S THEOREM
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Postulate 3

The time evolution of quantum states is described by the time-dependent Schrodinger equation

0
ihe (1)) = H|o (1)),
() = Hv(0) .

where H is the Hamiltonian of the system.

Erwin Schrodinger (Nobel Prize in Physics 1933).
“I insist upon the view that all is waves.”

“I knew of Heisenberg’s theory, of course, but I felt discour-
aged, not to say repelled, by the methods of transcendental
algebra, which appeared difficult to me, and by the lack of
visualizability.” (Schrédinger in 1926)

The more I think about the physical portion of Schrodinger’s
theory, the more repulsive I find it. What Schridinger
writes about the visualizability of his theory is probably not
quite right, in other words it’s crap (in German “Mist”).”
(Heisenberg, writing to Pauli in 1926).

The associated equation for the bra-state is

0
—ih— (Y ()] = (Y(t)|H.
ot (113)
The general rules are
* f

To see what the bra-state corresponding to A1) is we expand both the state and the operator in a basis

Wy =Y wli) . A= (KAL) k)] . (115)
j k.l

Using (l]j) = 6;; we then have
Al = (k[ A[l) y |E) . (116)

k,l
The associated bra state is

D (KAL) w0)* (k[ =D (KIAI)" of (k| =Y (UATIR) of (k| =YW AT [k) (k| = (¢lAT. (117)
k

k,l k,l k,l l

By combining the TDSEs for |¢(t)) and (1 (t)| we obtain the evolution equation for the expectation values
of (time-independent) operators

—iﬁ;W(t)!OW(t» = (()|[H, Oy (1)) -
(118)
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This is called Ehrenfest’s theorem. As a first application of this equation let us consider a free QM particle
with Hamiltonian H = p?/(2m), i.e. only kinetic energy. Then

0 1

il (W02 () = 5 - (W OI[F* 2l (1)) - (119)

2m

The commutator is worked out using a standard trick

[p?, &) = p°2 — pap + pip — ap° = pp, 2] + [p, 2|p = —2ihp. (120)

This tells us that 9
—(2) = (p). 121
mo () = (p) (121)

This is precisely what we would expect classically (and shows that our definition of momentum operator is
reasonable).

4.2 TIME INDEPENDENT SCHRODINGER EQUATION

The eigenvalue equation for the Hamiltonian is also known as the time-independent Schrédinger equation

(122)
As H is Hermitian we can obtain an orthonormal basis of energy eigenstates and hence write any state as

linear combination
= i) E) - (123)
J
Substituting this back into the TDSE we have

"2 201y) = S s By (124)

Extracting the amplitudes for |E,) by acting with (E,| we have

5 9n(t)
= Ep,pn(t) . 12
28 = Bua(t) (125)
This first order differential equation is easily solved
Yn(t) = o (0)e 7Bt (126)

In Dirac notations

() =Y (Ealtp(0)) e i Bt |E,) .

n

(127)
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Given the solutions of the time-independent Schrodinger equation we can construct the solutions to
the time-dependent Schrodinger equation for a given initial quantum state [1(0)) using (127). This
is why the study of the TISE is so important!

For energy eigenstates themselves we have

|Ep,t) = e" 7Bt |E,)

(128)

So energy eigenstates only acquire a phase under time evolution. As a result the probabilities |(x|E,,t)|?

to find a particle in an energy eigenstate at a given position x are time-independent. This is why energy
eigenstates are also known as stationary states.

4.3 SCHRODINGER EQUATION IN THE POSITION REPRESENTATION

A key point is that we can express the TDSE in the position representation

0
iho, (@l (t)) = (| H[(2))- (129)
This is very useful for Hamiltonians of the form
~2
_ r ;
H = o + V(z) . (130)
kineMergy potential energy
Given that Dl 1)
~ . Z,
(z|ply(t)) = —ZhaT (131)
we have
A A X 0 (', 1) 0% (x,t)
2 _ / / / _ 32 1Y o — _j2
@l (o) = [ do' Galple') o) = -1 [ d oo ) DD - D
This gives
h? 0% (z,t)
(x| H|p(t)) = “om o2 + V(z)(z,t) . (133)

Substituting this back into (129) we see that for Hamiltonians of the form (130) the TDSE can be represented
as a partial differential equation for the wave function

Cout) B OP(a,)

(134)

Now you are starting to see where Schrodinger’s view that “all is waves” comes from! The generalization to
3D is straightforward and we only quote the result

P& _ —ﬁﬁzw(f, t) + V(Z)p(d,t) .

ot 2m (135)
In the position representation the TISE reads
n? 02
T om 922 V(z)| ¥(x) = E(x) .
(136)

Here v () are the wave functions of energy eigenstates. Many QM text approach the subject using the
position representation on the Schrodinger equation as a starting point.
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4.4 PROBABILITY CURRENT

The probability density of finding a particle at position Z at time t is according to Born’s rule is

p(T, 1) = [Y(&,1)]* = (T, )" (7,1) . (137)
Taking the time derivative gives
Op(Z,t) . OP(Z, 1) O™ (Z,t)
- 1

o = () P e ) (138)

We now use the TDSE for the wave function (135) and its complex conjugate to rewrite the right-hand side
Op(Z,t th ¢, - -

LD L, V205 1) ()90 (,1)]. (139)

The right-hand side of this equation can be written as a divergence

9p(, t)
ot

= -V J(&1), (140)

-

where J(Z,t) is called probability current

ﬂ5¢y2£%Pﬂaoﬁ¢man—¢%@wﬁ¢@¢ﬂ. (141)

Eqn (140) takes the form of a continuity equation that expresses the conservation of probability. Its integral
form follows from the divergence theorem

d - I

— d%d@ﬂz—/ﬁfVJ@ﬁ:—fﬁfSJ@w, (142)
dt Jy 1% ov

where 0V is the boundary of the volume V. So the change in the probability for the particle to be found
inside V' is minus the integral over the volume’s bounding surface of the probability flux out of the volume.

Homework 4: TIME DEPENDENCE AND THE SCHRODINGER EQUATION

2.1 Write down the time-independent (TISE) and the time-dependent (TDSE) Schrédinger
equations. Is it necessary for the wavefunction of a system to satisfy the TDSE? Under what
circumstances does the wavefunction of a system satisfy the TISE?

2.2 Why is the TDSE first-order in time, rather than second-order like Newton’s equations of motion?

2.3 A particle is confined in a potential well such that its allowed energies are E, = n?£, where
n=1,2,...1s an integer and & a positive constant. The corresponding energy eigenstates are |1), |2),
..., |n),... At t = 0 the particle is in the state

|1(0)) = 0.2]1) + 0.3]2) + 0.4|3) + 0.8434).

(a) What is the probability, if the energy is measured at ¢t = 0, of finding a number smaller than 6E?
(b) What is the mean value and what is the rms deviation of the energy of the particle in the state

[%(0))?
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(c) Calculate the state vector |¢) at time t. Do the results found in (a) and (b) for time ¢ remain
valid for arbitrary time t7

(d) When the energy is measured it turns out to be 16£. After the measurement, what is the state
of the system? What result is obtained if the energy is measured again?

2.4 A particle moves in the potential V' (z) and is known to have energy E,. (a) Can it have well-
defined momentum for some particular V(x)? (b) Can the particle simultaneously have well-defined
energy and position?

2.5 Let ¢(z,t) be the correctly normalized wave function of a particle of mass m and potential energy
V(z). Write down the expressions for the expectation values of (a) #; (b) £2; (c) ps; (d) p2; (e) the

energy.
What is the probability that the particle will be found in the interval (z1,x2)?

2.6 Consider a quantum mechanical particle with Hamiltonian

ﬁZ
H=-— 7t
2m @)

operator @ fulfils the following evolution equations

that is initially prepared in a state [¢/(0)). Using the TDSE show that the expectation value of an

. d A .
th= (W(O)|Q1Y (1)) = WOI[Q, H][$(2))-
Consider the particular cases of the position and momentum operators and comment on the resulting
equations
Part 11

WAVE MECHANICS AND OSCILLATORS

Erwin with his psi can do
Calculations quite a few. ERICH HUCKEL, FREELY TRANSLATED BY FELIX BLOCH.

5 WAVE MECHANICS

5.1 FREE PARTICLE IN ONE DIMENSION

Let us start with the case where our QM particle only has kinetic energy. Then the Hamiltonian is

p
H=-—.
2m
The TISE reads
n? d?
o da? (z) = E(z) .
The solutions to this differential equation are the momentum eigenstates
1 i
up(x) = enP?
(7)==
where the energy is given by
2
p
E,=—.
P om

(143)

(144)

(145)

(146)



In this case the energy eigenvalues are not quantized. Given the energy eigenstates we are now is a position
to solve the time-dependent Schrédinger equation. We need to adjust our previous result

() = Y (Baltp(0))e” 1B E,,) (147)

because the energy eigenvalues are continuous rather than discrete here. Using that the energy eigenstates
are also momentum eigenstates we have

o _ v
i) = [ dp loo)e Falp). (145)
—00
The corresponding wave function is
(o) = vl t) = [ (plpo))e e (149)
’ —o00 V2Th .
Let us consider a state that at time ¢t = 0 corresponds to a Gaussian wave packet
1 _=2? i
Y(x,0) = (2[(0)) = ————e w2 T (150)
(2mo2)1

Going over to the momentum representation we have

0_2 i 2 9
1) = [ dz Gia)iatuo) = | 2] e (151)

This describes a superposition of momentum eigenstates with momenta centred around pg and probability
amplitudes that become very small when |p — pg| > g Substituting this back into (149) and carrying out
the integral (how?) we obtain

o 2 (z—pot/m)? iht
D= 0 @R TP PO (t) =0+ — . 152
6O = g , ()=t (152)
This describes a Gaussian wave packet moving with velocity pg/m that broadens in time as
nt\?
o(t) = o? + <2ma> . (153)

We can understand this by noting that initially there is an uncertainty in momentum (as at time ¢ = 0 we
are dealing with a superposition of momentum eigenstates), which translates into an increasing uncertainty
in position at later times.

5.2 INFINITE SQUARE WELL

Let us consider a QM particle moving in a one-dimensional potential well

0 f0<z<a

V(z) = { (154)

oo else.

The TISE for the wave function ¢ (z) reads

h? d?

 2m da?

As we are interested in finite F solutions the wave function must vanish at x < 0 and x > a. Continuity at
x = 0, a then imposes the boundary conditions

$(0) = 0 = ¥(a). (156)

() + V(e)p(z) = Ed(z) . (155)

27



In the interior of the potential we then have

h? d?
E i 157
o b(z) = B(z) (157)
The general solution is
h2k?
(x) = Acos(kx) + Bsin(kx) , E = vt (158)
m
Imposing the boundary conditions gives A = 0 and the wave number k gets quantized
ey = n=1,2,3,... (159)
a
The corresponding quantized energies are
1202n2
E, = . 160
" 2ma? (160)

Normalizing the wave functions by imposing
a
| dalwtap =1, (161)
0
we arrive at the following result for the energy eigenstates

bn(z) = \/gsin <Tx) (162)

We note that the overall phase of the wave functions is arbitrary and we fix it to be equal to one. The lowest
energy state is called the ground state. The wave functions v, (x) are either symmetric or antisymmetric

1.4 15 15
1.2 1.0 1.0 1.5

g 0.5 05 10

50'6 0.0 0.0 Z 05
' S 00
0. -05 -05 s

0.2 -10 -10 -05

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 -1.5%
x X x 0.0 02 04 06 08 10
a

Vays)

B
Vayax)

a da X/a

Figure 6: Wave functions for the 4 lowest energy states in the infinite square well potential.

under reflection around = = a/2.

5.3 FINITE SQUARE WELL

Let us now consider a particle moving in the potential

0 if
Vi ={0 Hhki<a (163
Vo if x| > a.
The TISE for the wave function ¢ (z) reads
h? d?
—%ﬁ@b(@ =[E-V(x)Y(z) . (164)

Let us first consider the case E < V{. In this case the solution of (164) is

Acos(kx) + Bsin(kz) if x| < a
P(x) = ¢ Ce " 4 (e ifz>a, (165)
Def* 4 Dle™h ifrx < —a,
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where

F=——=Vy— —. (166)
Now we impose

e Normalizability

/OO do (@) =1. (167)

—00

This sets C' = D’ = 0, i.e. imposes that the wave function vanishes at x — +oo.
e Continuity of ¢(z) at © = +a, i.e. lime ¥ (+a — €) = lime_,0 ¥ (+a + €)

Acos(ka) + Bsin(ka) = Ce ™",

Acos(ka) — Bsin(ka) = De " . (168)
e Continuity of ¢/(z) at z = +a
Bk cos(ka) — Aksin(ka) = —Crke ™,
Bk cos(ka) + Aksin(ka) = Drke "™ . (169)

Equations (168)and (169) have two types of solutions
(i) B=0,C =D and ktan(ka) = k, corresponding to symmetric wave functions ¥ (x) = (—x).
(i) A=0,C = —D and kcot(ka) = —k, corresponding to antisymmetric wave functions ¥ (z) = —¢(—z).

The (anti)symmetry of energy eigenstates is a result of a symmetry of the problem under reflection around
x =0, i.e. * — —zx. This symmetry is called parity. Symmetric solutions are said to be even under the
parity transformation (i.e. they map onto themselves), while antisymmetric solutions are odd under parity
(i.e. they map onto minus themselves). What remains to be done is to solve the remaining equations for
the wave numbers, e.g.

2mVy
ktan(ka) = k = 3 k2. (170)
We rewrite this slightly as
W2 2mVpa?
tan(ka) = W -1 y W = h2 . (171)

This equation does not have simple solutions, but we can understand the structure of solutions by plotting
the two sides of the equation as functions of ka. This is done in Fig. 7. We see that for W = 10 there
are 4 solutions to the equation. For larger values of W there will be more solutions, but there will always
be at least one! We call these states bound states, because |¢)(x)|?> drops off very quickly away from the
square well, which means that the particle is most likely to be found inside the well. So in one dimension a
potential well will always have at least one bound state, no matter how small V;y is. Note however that the
probability of finding the particle outside the well is not zero (as it would be classically for energies E < Vj)!
Let us now turn to the case E > V. Now the solutions to the TISE look like

Acos(kz) 4+ Bsin(kx) if |z| < a,
P(x) = ¢ Ccos(Kzx)+ C'sin(Kz) ifz>a, (172)
Dcos(Kz) + D'sin(Kz) ifz<-—a,
R’k? R2K?

FE = = — V. 1
2m 2m Vo (173)

In this case the wave functions will not vanish at + — 400 and the spectrum of energies will be continuous.
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ka

Figure 7: Solutions of eqn (171) for W = 10.

5.4 SPLIT INFINITE SQUARE WELL

Next we consider a potential of the form

Viz) = Voo(x) + Visw(z) ,

0 ifo
Visw(z) = {OO ;lse.< lz| < a/2 (174)
The TISE reads 2 de( )
T
9 da? + V(x)Y(z) = EY(x) . (175)

If Vo = 0 we are dealing with an infinite square well, which is now symmetric around z = 0. The
odd-parity energy eigenstates can be read off from our previous solution

Yo (x) = \/gsin <2an> , Esp = W . (176)

2ma?

As 19, (0) = 0 these wave functions also fulfil the TISE (175) in presence of the additional delta-function

potential!
Using that V' (z) vanishes away from = = 0 we conclude that the even-parity eigenstates must have wave

functions of the form

Aethr 4 Be=thT if 0 < 2 < a/2
b(x) = { / (ar)

Ae=#* 4 Beikz if —q/2 <z <0.
The free parameters are fixed by noting that

e The wave functions must vanish at +a/2 for finite energy eigenstates, i.e. 1(£a/2) = 0. This gives

B = —Aeike (178)

e The wave function must be continuous at = 0. Our Ansatz fulfils this requirement.

e The derivative of the wave function at x = 0 is determined by integrating the TISE around = = 0

/ " da {—W + Ved(@)i(z) — ()| = 0. (179)

—€
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Using that the wave function is continuous at zero and taking the limit ¢ — 0 we obtain /(0") —

P'(07) = 2722‘/017&(0), which in turn implies

. mVy
We see that the first derivative of the wave function is discontinuous at x = 0. This is a characteristic
feature of delta-function potentials. If we regularize the delta function, e.g. by

()7172/46
de(x) = = , 181
then the wave function and its derivative are continuous at © = 0. The discontinuity of the derivative
arises only in the limit ¢ — 0. Substituting (178) leaves us with a quantization condition for k

mVp

kcot(ka/2) = T (182)

The most interesting case is when Vj; becomes very large. Then the right hand side of (182) is very large
and k must be close to one of the singularities of cot(ka/2)

onw  2nw 2h2

a maVy’

k2n+1 ~ (183)

For large Vy our wave functions are thus approximately given by

2 . 2mn h2r2(2n)2
¢2n+1($) ~ \/;SID <a|$|) s E2n+1 ~ # . (184)

2ma?

The corrections to the wave functions and energies are proportional to 1/Vjy. This implies that at large Vp
there are pairs of eigenstates with almost degenerate energies but opposite parities. Let us now prepare our
system is the state corresponding to the wave function

U(x,0) = Pan () — w2n+1(96)' (185)

V2

The probability density to find the particle at position x is

4 - 2 2mn : a
Zsin® | 222y if —2<x<0
W (z,0)]> ~ ¢ < > S

0 else.

(186)

So to a very good approximation the particle is on the left hand side of the potential well. The time evolution
of the system is given by the time-dependent Schrédinger equation. Using our general result

(1) = Y (Ealtp(0))e 5 Ey) | (187)

n

and going over to the position representation we have

(20 () = D (Balt(0))e 75 (] Ey) . (188)
—— - ——
U (a,t) Yn(x)

For our particular choice of initial state this becomes

W 1) = o= [ Bt (@) — e Bty (a)] (159)

V2
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Consider now the probability density to find the particle at position x at time t* = wh/(E2, — Fop4+1). This
is a late time as the splitting between the two energy levels is small. We have

2 _ |7!)2n(x) + ¢2n+1(x)|2 ~ %SiHQ (QTLCC> if 0 << %
2

| W (z,t")| (190)

0 else.

To a very good approximation the particle is now in the right hand side of the well! This is a purely quantum
mechanical effect, which we refer to as tunnelling through a potential barrier.

5.5 SCATTERING OF FREE PARTICLES

Next we consider a potential step

if
V=40 e (101)
Vo if |z| < a.
The corresponding TISE
12 & (x)

is solved by considering the regions x < —a, |z| < a and = > a separately. For E' < Vj energy eigenstates
are of the form
Detke 4 re=ihr if ¢ < —q
() =< Ae " 4 Bef®  if |z| < a (193)
tetr 4 Ce= ™ if x> a
where k£ and k are related to the energy eigenvalue by

h2k? h%k?
E—%—V—%. (194)
We see that the wave functions do not vanish at oo and are not normalizable to one. We now specify
solutions such that C' = 0 and D = 1 as these have a nice physical interpretation. For C' = 0 there is
no left-moving wave at = > a', and the wave functions can be interpreted as an incident plane wave with
amplitude 1 that gets partially reflected by the barrier (re~***) and partially transmitted (te?**).
The free parameters in (193) are fixed by the four requirements that the wave function and its first
derivative are continuous at x = 4a. This gives the following four equations for the four unknowns A4, B, r,
and t

e—ika _|_,reika — Aena+Be—na ’
teika — Aegho _|_B€I€a ’
ik[e—ika o Teika] — K[*Aena +Be—mz] 7
ikte’*® = k[—Ae "% 4 Be". (195)
After some algebra we find
2ikke2ika

(k? — k?) sinh(2ka) + 2ikk cosh(2ka) ’

S e 2k (k2 + k?) sinh(2ka) (196)
(k%2 — k2)sinh(2ka) + 2ikk cosh(2ka)’

We note that
r|? + [t]* =1, (197)

. a2
Le*@ corresponds to a right-moving wave as can be seen by including the time dependence imposed by the TDSE: eibr—igit

The points of constant phase can be seen to move rightwards.
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which corresponds to the conservation of probability in the scattering interpretation mentioned above. A
simple way of seeing that |r|? + [t|> = 1 is to consider the probability currents for z < —a and z > a. We

have
hk

hk
Jocca=—[1=1r"],  Jusa=—[t]. (198)
m m

These must be equal by conservation of probability (consider the integral form (142) of the continuity
equation and take as the volume e.g. the interval [—2a,2a]). The transmission probability is

P 4K? K2

= . 199
4K2k2 4 (k2 + k2)2sinh?(2ka) (199)

Transmission includes the possibility that the incoming particle failed to interact with the potential barrier.
To isolate the possibility of scattering to occur we write the amplitude of the outgoing wave as t = 1+ T,
where the 1 corresponds to the possibility of passing through undisturbed and T representing actual forward
scattering. The total scattering cross section is defined as the sum of the probabilities for forwards and
backwards scattering

o= TP +|r)> =1 -t +|r]% (200)

This is a good point to elaborate a bit more on continuity conditions for the derivative of the wave function.
In our example the first derivative is continuous. Let us now however consider the limit a — 0, Vj — oo
such that 2aVy = Vjy is kept fixed. Let us denote this limit as limg. In this limit our potential is like a
delta-function and hence no longer “nice” at x = 0. The derivative of the wave functions behaves as

_ . Vs /h?
07) = ik limg(1—7) = — L0
VOT) = ik limg(l =) =
ik
o) = ik limgt = ——— 201
v(0") S = o Vs 12 (201)
So in the limit the first derivative is no longer continuous. Its jump at x = 0 is
_._ik(2mVs/R*)  2mV;
W(0*) —w/(07) = TEMIIE) _ 2bh ) (202

T ik—mVy/h2 h?

5.6 RESONANT SCATTERING

Scattering experiments are widely used to probe the internal structure of atomic nuclei and “elementary”
particles. We will now consider a toy model that explains how the structure of the scattering cross section
reflects the existence of long-lived bound states inside the nucleus. To that end we consider particles moving
in a one dimensional potential of the form

V(z) =Vs[d(x +a)+d(x—a)l. (203)

We aim to construct finite energy eigenstates of the form

ehT 4 pemike ifx<—a
Y(x) = < A’ + Be=™ if |2 < a (204)
tetke if z > a.
The energy of such a solution is
h2k?
E(k) = o (205)

Such solutions can be interpreted in terms of a right-moving wave with unit amplitude that scatters off the
potential and eventually generates a reflected left-moving wave at © < —a and a transmitted right-moving
wave at > a. The wave functions (204) must fulfil the following conditions

33



Continuity of the wave function at x = +a. This gives
e—ika + ,r_eika — Ae—ika + Beika
te*® = Ae™* 4 Be (206)
These can be cast in matrix form

e—ika eika A ika [T ika 1
(eika eika) <B> =€ F <t> +e g <0> (207)

—_——
My

Jump discontinuity of the first derivatives at the positions of the delta-functions. These conditions are
again obtained by integrating the TISE over infinitesimal intervals around =+a, e.g.

ate 2 72 T
/ dx [—;nd;/;g ) + Vso(z — a)y(x) — E@b(x)} =0. (208)

—€

This gives two equations
2m
YP'(a+0)—9'(a-0) = ﬁ%ib(a) )
2m
Y(-a+0)=¢/(-a=0) = Z5Vs¢(-a). (209)
These two equations can be written in matrix form as
(vg — ik)e™™*e  (vy 4 ik)e*®\ (A _oika (T o —ika (1
( (vo + ik)e*®  (vg —ik)e*e ) \B) ike t ke 0) "’ (210)

~~

M2

where we have defined

_ 2mVj

=" (211)

Eliminating A and B we can extract a system of equations for only r and ¢

() Y] ()= (a0 ) e

The solution of this system is

t = 4kt -
(2k + ivg)? + etikay
. vole™ 2 (vg — 2zk) — e%‘k“(vo + 2ik)] . (213)
(2k + ivg)? + e*ikay?
The total scattering cross section is defined as
o=t—17+[r>=2+ AR (AR — v cos(dka) + vp) (214)

8k* + k203 — v3 (vd — 4k?) cos(4ka) + 4kvd sin(4ka) + v

We see that at certain values of k£ (and hence at particular energies) the cross section is strongly enhanced.
To understand the origin of this phenomenon it is useful to consider the limit of an impenetrable delta-
function potential V5 — oo. In this case we have vga > 1 and the “resonances” occur at

™n

Fnam o n=123... (215)
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Figure 8: Left: Total scattering cross section ¢ as a function of ka for vga = 10. Right: Total scattering
cross section o as a function of energy E for voa = 10 (Ey = h%/(2ma?)).

These correspond to energies
h2k2 h2 2,2
By=ln 2T (216)
2m 8ma?

For very large values of V5 we basically have a infinite square well (as the wave functions must vanish at
+a). We already know that in the latter stationary states occur at energies, cf. (160)

gisw _ A R ()’

= = 21
2m(2a)? 8ma? '’ (217)

where we have taken into account that the width of the well is 2a. These are exactly the energies at which
the total cross section has spikes! The interpretation is now clear: for special energies the cross section is
large because the particle can get temporarily trapped between the barriers, until after some time it escapes
to the left or the right. We say that there is a long-lived bound state between the barriers at that energy.
So the structure of the total cross section tells us about the energy levels of such long-lived bound states.
Long-lived bound states are related to certain types of radioactive decay.

In the case where the peaks in the cross section are very narrow, it follows from our explicit expression
for o that they are approximately of the form

2(r/2)?
(I/2)> + (E — Er)*’

o(E ~ ERr) ~ const + (218)

where Ep is the energy at which the peak is centred. The form (218) is called Breit-Wigner cross section
and is used widely to fit experimental data. It can be shown that the parameter I' is inversely related to
the time it takes for the particle to escape from inside the well.
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Eugene Wigner (Nobel Prize in Physics 1963).
“Where in the Schrodinger equation do you put the joy of
being alive?”

Wigner is also known for not being given tenure at Prince-
ton University in the 1930ies.

Homework 5: WAVE MECHANICS

2.7 Particles move in the potential

0 f 0
V(a:): or r < .
Vo forz >0

Particles of mass m and energy E > Vj are incident from x = —oo. Show that the probability that a

particle is reflected is
k— K\
k+K) '’

where k = vV2mE /hand K = \/2m(E — Vp)/h. Show directly from the time-independent Schrédinger
equation that the probability of transmission is

4kK

(k+ K)?

and check that the flux of particles moving away from the origin is equal to the incident particle flux.

2.8 Show that the energies of bound, odd-parity stationary states of the square potential well
0 for |z| < a
Vi) = IS
Vo > 0 otherwise

are governed by

2 2 2
cot(ka):—”(ZVT)Q—l where WEH% and k* =2mE/h>.

Show that for a bound odd-parity state to exist, we require W > /2.

2.9 A free particle of energy E approaches a square, one-dimensional potential well of depth Vy and
width 2a. Show that the probability of being reflected by the well vanishes when Ka = nm/2, where
n is an integer and K = (2m(FE + Vj)/h?)'/2. Explain this phenomenon in physical terms.

2.10 A particle of energy E approaches from z < 0 a barrier in which the potential energy is
V(z) = Vso(x). Show that the probability of its passing the barrier is

1 2mE 2mVs
Pun = o oo TN h = 19 = T 19 -
= TRk There 12 72
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2.11 Given that the wavefunction is 1) = Ael*#=wt) 4 Be=i(k24+wl) where A and B are constants, show
that the probability current density is

J =v(]A]? - |B?) 2,
where v = hk/m. Interpret the result physically.

2.12 Consider a free particle in one dimension with Hamiltonian
~9
H= 2%. (219)
Let the wave function of the particle at time ¢ = 0 be a Gaussian wave packet
1 xz 3
P(2,0) = (|(0)) = ———e a7 TR (220)
(2mo2)1
Show that in the momentum representation we have
20’2 i _ﬁ( _ )2
o) = [ do platoluio) = | 255]"0” (221)

wh?

Comment on the relation between the forms of the state in the position and momentum representations
as a function of o. By solving the TDSE show that the probability distribution function at time ¢
can be written in the form

0_2
o G—W(I—pot/m)2 (222)

/27 h2|b(t) 2 ’

and derive the form of the function b(¢). Explain what happens physically to the particle as time
evolves.

[Pz, ) =

6 HARMONIC OSCILLATORS

The career of a young theoretical physicist consists of treating the harmonic oscillator in ever-increasing
levels of abstraction. SIDNEY COLEMAN.

Harmonic oscillations are ubiquitous in Physics as they describe small excursions from points of equilib-
rium. QM harmonic oscillators are extremely important as they are the basic building blocks of relativistic
Quantum Field Theories and the quantum theory of many-particle systems that describe solids.

The Hamiltonian for a one dimensional harmonic oscillator is

|
H=2 4 w22, (223)

The corresponding TISE in the position representation reads

h2 d2 2
S d@igx) + a2y x) = By(e). (224)

One way of approaching the QM harmonic oscillator is to solve this differential equation by the Frobenius
method. Here we will follow a different approach and employ operator methods. We start by introducing
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so called creation and annihilation operators by

al =

P b (225)

Here a' is the Hermitian conjugate operator to a. Creation/annihilation operators fulfil the following
commutation relations

P i

[a7 aT] =

(226)

The utility of these operators is that the Hamiltonian can be expressed in a simple way in terms of them.
We have

g = T2 L R P 29
R e (227)

which tells us that

1
H—M(GTQ—FQ)

(228)

Here

N =ata

(229)

is referred to as the number operator. In order to proceed we will require the commutation relations of the
creation/annihilation operators with the Hamiltonian (or equivalently the number operator)

[a,N]=a, [af,N]=—al. (230)
These are established as follows
[a,N] = aa'a — a'aa = [a,aa = a . (231)
Now assume that we know an eigenstate |F) of H
H|E) = E|E). (232)
We will now show that both a'|E) and a|E) are eigenstates of H as well. Consider
Hal|E) = ([H, al] + aTH) E) = (fwﬁ + aTE) |E) = (E + hw) d'|E). (233)
That’s a bingo: af|E) is an eigenstate with energy E + hw. Similarly we have
Ha|E) = ([H,a] + aH) |E) = (—hwa + aF) |E) = (E — hw) a|E). (234)

So a|E) is an eigenstate with energy E — hw. Finally we consider the “length” (E|a'a|E) of the ket vector
alE)

H 1 E 1
< (Ela'a|E) = (E|— — Z|F) = — — —. 2
0 < (Blala|B) = (B3 - J|B) = — — (235)
This tells us that the energy eigenvalues are bounded from below
hw
E > - (236)

This means that there is an eigenstate with lowest energy FEj, which we denote by |0). Using (234) we have

Hal0) = (Ey — hw)al0), (237)
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so either a|0) is an eigenstate with energy Ey — fw or a|0) = 0. The former is impossible because Ejy is by
construction to lowest energy eigenvalue, so we must have

al0) = 0. (238)
This is turn tell us that the ground state energy is

%yw Ny N (239)

HI|0) = .

This is the first interesting result: the ground state energy of the QM harmonic oscillator is not zero, but
Ey = % This is called the zero-point energy. Using (233) repeatedly we can construct eigenstates of the

form
m) = 5-(@)"10) (240)

where N,, is a normalization constant. The energy of the states (240) is E,, = Ey + nhw as each al adds an
energy hw by virtue of (233), i.e.
1
E, = hw (n + > .

2
(241)
We now observe that
[a,(@)"] = a(a")" = (a")"a = [a,a¥](a")" " + a'[a, a"](a")"7* + (aT)*[a, aT](aT)" 2 +- ..
— (el (242)
which implies that
aln) = aypln —1) . (243)
The constant «,, is most easily calculated by considering
(nfafaln) = |on[
= (n|N|n) = n. (244)
Using that we can choose our normalization constants to be real we thus have
aln) =+v/nln —1).
n) = Valn 1) 215)
The analogous relation for the creation operator is
1) —
a'ln) =vn+1n+1).
n) = V¥ Tn+ 1) 216)
It is established by noting that
afn) = Baln +1) (247)
and then calculating
(nlaa¥|n) = |8,1* = (n|N + [a,a")|n) =n = 1. (248)

Using (246) repeatedly we have

(a")"10) = Vnl|n) , (249)
which gives the normalization constant

No = Vnl. (250)

Nice.
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6.1 GROUND STATE OF THE QUANTUM HARMONIC OSCILLATOR

We now turn to a more detailed analysis of the ground state and its properties. Our starting point is the
fact the |0) is annihilated by a

mw ?
al0) =0= — T+ ——=p| |0). 251
o) =0= |/ | o) 251)

In the position representation this becomes

0 = (alalo) = (ol [\ 5o+ =i 0

- /d:z:’ (x] [\/WH \/Lﬁ} |2'){a’]0)
_ \F / i (i) (o) + / d’ Glil) @0)

355(5” ') —ih 15(:)3 z')
mw h d
_ 252
e+ et | ) (252)
Yo ()

This is a first order differential equation for the ground state wave function ¥y(x). Its normalized solution
is

1 2? h
Po(x) = e 4? =) —o.
o0 = rer):

(253)

We see that the ground state wave function is a Gaussian centred around zero. Its energy Ey = @ is larger
than zero, in contrast to the lowest energy configuration of a classical harmonic oscillator. The existence
of a zero-point energy is a direct consequence of the Heisenberg uncertainty relation. In order to have zero
energy our quantum mechanical particle would need to have neither potential energy, i.e. be localized at
x = 0, nor kinetic energy, i.e. have zero momentum. These two requirements cannot be met simultaneously
because of the uncertainty relation.

We now turn to the calculation of ground state expectation values. We have

01i10) = /5 {0la+allo) =0,
0pl0) = —iy/™ 0la —afl0) = 0. (254)

where we have used that a|0) = 0 = (0|a’. This means that on average the particle in the ground state of
our harmonic oscillator is located at x = 0 and has zero momentum. The variances are

OR210) = 5o (0l(a+atI0) = " (0laall0) = o (0]fa,al)j0) = 5
0%0) = " 0)(a— af?/0) = "2 0laaj0) = " (255)

Putting everything together we have

AxAp = g

(256)

This means that the ground state of the harmonic oscillator saturates the Heisenberg uncertainty relation,
i.e. it is a state of minimal uncertainty.
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6.2 EXCITED STATES OF THE QUANTUM HARMONIC OSCILLATOR

We now turn to the wave functions for excited states. For the first excited state we have

da(2) = (a]1) = (aal|0) <a:|[ mes i } 0)

- 2h \/2mwhp
T d
] @O
12
R (257)
(2me2)i £

1
n(@) = (2ln) = —=(xla’ln—1)
1 |z d
= —|=—{— —1). 258
Jn [25 d:c} fan—1) (258)
Pn—1(z)
Using this repeatedly we have
1 [z dl" 1
() = — | = —/— =—"fn , 2
wnle) = = |3 - | o) = = huerinte) (259)
where f,,(z) is some polynomial in . Substituting (259) into (258) we obtain a recurrence relation for f,(z)
x
Fal@) = & faa(@) — faa(@) , Jola) =1 (260)
Comparing this with the recurrence relation of the so-called Hermite polynomials Hy(z)
H,(2) =2zH,_1(z) — H),_1(2), Hp(z)=1, (261)
we conclude that )
x
() = ——H, [ -2 ). 262
ule) = gzt ) (262)

This gives our final result

x) = L H, < < ) x).
(@) = e Ha () (@) -
The first few Hermite polynomials are
Ho(z) =1, Hi(2) =2z, Hy(2)=42"—2, H;s(z)=8z"—-12z. (264)
From the properties of the Hermite polynomials it follows that
e 19, (x) are even under parity  — —z, i.e. o, (—x) = o, ().
e 9,11(x) are odd under parity z — —z, i.e. Yopt1(—z) = —opt1(2).
e () has n-1 nodes.
Expectation values in excited states of the harmonic oscillator can be calculated from the following
(nlaln) = 0, (ulalln) =0,
(nlaaln) = n, (njaa’ln) =n+1, (n)(a")?n) = 0 = (n|a?|n). (265)
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Using these we can easily show that

(n|zln) = 0= (nlpn) ,
) = ), i) = hmw(n + 2) (266)
mw 277 2
The product of uncertainties is thus
1
Az Ap=nh(n+=). (267)

2

This tells us that only the ground state is a state of minimal uncertainty, and the uncertainties are larger
in highly excited states.

6.3 WHAT OSCILLATES IN THE QUANTUM HARMONIC OSCILLATOR?

Let us now consider a harmonic oscillator initially prepared in a state |¢(0))

o0

[£(0)) =) (nl(0)) In) . (268)

n=0 an

The TDSE tells us that at time ¢ the state of the system will be

oo

(1)) = D an eI |n) (269)

n=0
The average position of our particle as a function of time is then given by the expectation value

WOIEE) = Y apane™ " (m|2]n) . (270)

n,m=0
Matrix elements of the position operator are readily worked out using (245), (246) and & = {[a + a]
(m|2In) = € [V/némmn—1 + VvV + 16mnt1] - (271)

Substituting (271) into (270) we have
WW2e1) = €> Vnana; e + an_1ape™"]
n=1

= ) bycos(wt+ap) (272)

n=1

where 2v/nla) an—1 = by exp(i¢y). Eqn (272) proves that if we prepare the harmonic oscillator in a generic
initial state |¢)(0)) the expectation value of position oscillates with frequency w. This is reassuring.

6.4 (QUANTUM VS CLASSICAL HARMONIC OSCILLATOR

The solution of the equations of motion for the classical harmonic oscillator is

mw?

x(t) = zosin(wt) , E = —5 %0 - (273)

Defining the probability density of finding the classical harmonic oscillator at position x by

dt 2
Pcl(m)dﬂf = 2? s T = ; y (274)
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Figure 9: Probability distribution in a stationary state of the harmonic oscillator with n = 100.
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In Fig. 9 we compare P(z) to the probability distribution of a quantum harmonic oscillator at the same
energy F199 = 100.5hw. We observe that the quantum mechanical probability is a strongly oscillatory func-
tion with oscillations occurring on a length scale ~ ¢//n. Averaging the quantum mechanical probability
distribution over a very small range approaches the classical probability distribution in the large-n limit.

Aside 4: COHERENT STATES

There are other states in the harmonic oscillator problem that are of great interest. Consider the
eigenvalue equation for the annihilation operator

Py(z) = (275)

ala) = ala). (276)

These are called coherent states for reasons that will become clear shortly. Recalling that

T il

we can turn (276) into a differential equation by going to the position representation

(zlala) = ofz|e)
= 2 (ala) + - (ala) (278)
= 2£ | dl‘ i),
This is solved by
1 e 2o
Pqo(z) = (z]a) = O (279)

So the wave functions of coherent states are Gaussians centred at positions 2¢a. We can express the
coherent states in terms of the energy eigenstates (which after all form a basis) as follows. Using the
eigenvalue equation together with (246) we obtain a recurrence relation

(nlaja) = a (nja) = vVn+ L{n + 1|a). (280)
This is solved by

(nla) = 2=

(0]). (281)

Sk
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This provides us with the desired expansion in terms of energy eigenstates

Z oya n). (282)

We note that coherent states are particular superpositions involving all energy eigenstates. We have

_a?
2

(O]a) = /_ " dn Do) U(2) = (283)

What makes coherent states special is their time evolution. Using the expansion in terms of energy
eigenstates we have

la, t) Z— 0|ar) e~ 7 Ent|n). (284)

Using that E,, = hw(n + 1/2) we have

n
> <ae‘i“’t> —iwt
|Oé, t> —z%t § : <0|Oé€ ' >

, (285)

Do (x,t) = By, (x)e 2 e~ TUe (286)

Here comes the joke: the probability density |®,(z,t)|> of a coherent state looks like a Gaussian
wave-packet that oscillates with frequency w while precisely retaining its shape!

Aside 5: SOLVING THE SCHRODINGER EQUATION NUMERICALLY

Most Schrédinger equations cannot be solved exactly in the way we have done in our various examples.
Therefore one typically resorts to numerical solutions. To be specific, let’s consider the following
example
o1
H:%+2mwx+)\x4:Ho+)\:z , A>0. (287)

Let’s say that we are interested in determining the ground state wave function of this Hamiltonian.
One way of doing this is to use our knowledge of the eigenstates of the harmonic oscillator part Hy

Holn) = huo(n + 3)n). (288)

Using that these states form an orthonormal basis of the space of quantum states we have

1= |n)(nl, (289)
n=0
and therefore
H=1H1="> (m|Hn) |m)(nl. (290)
n,m
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The eigenstates |¢,,) of H can also be expressed in this basis
[n) =D (mlgn) [m). (291)

The matrix elements of the Hamiltonian in this basis are

(m|H|n) = hw(n + %)‘%m + Aml|@t|n). (292)

The matrix elements of the position operator can be determined either numerically by working out
the integrals

miath) = [~ do [p9@)] s'0) (293)

—00

where ¢7(10) (x) are the harmonic oscillator wave functions, or by using our creation/annihilation oper-
ator algebra

(mlatln) = €4ml(a+a’)*|n)
= Ovaln=D(n—2)(n = 3)8mp-a + (40— 2)v/n(n — Do

+(6n + 61+ 3)0mn + V/(n + 1)(n + 2)(4n + 6)dm ni2
/It D+ 2)(n+3)(n+ 4)5m,n+4 = V. (294)

The idea is now to truncate the sums in (290) by introducing a cutoff N. This turns H into an
(N +1) x (N + 1) matrix

1 Ve
Hypm=hw |(n+ 2)0pm+ — Vam|, n,m=0,...,N. (295)
2 o,
—~—
m

We now simply diagonalize the (dimensionless) matrix H/(fw) numerically and obtain approximate
values for the energies and eigenstates of H. We increase the cutoff N until the ground state energy
and wave function no longer change within our desired numerical accuracy. For example, taking
p#=0.1 and N = 10 gives

Ey ~ 0.668812hw ,

|o) ~ —0.986914|0) + 0.160316|2) — 0.0133936|4) — 0.0086538|6) + 0.0064238|8) — 0.00223485|10).
(296)
Increasing the cutoff to N = 20 gives
Ey ~ 0.668773hw ,
|to) ~ —0.986896|0) + 0.160386|2) — 0.0134396|4) — 0.00875891|6) + 0.00682899|8)
—0.00299289|10) + 0.000832743|12) — 0.0000103442|14) — 0.000169943|16)
+0.000129011|18) — 0.0000507885/20) (297)

You get the idea. In general we choose an appropriate basis of states in which to express our Hamil-
tonian of interest and carry out the analogous procedure.
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Homework 6: THE SIMPLE HARMONIC OSCILLATOR

3.1 After choosing units in which everything, including 7 = 1, the Hamiltonian of a harmonic oscillator
may be written H = 3(p? +22), where [2, p] = i. Show that if [1)) is a ket that satisfies H|¢) = E|y),
then

S+ )@ F D)) = (B+ 1) Fin)y)

Explain how this algebra enables one to determine the energy eigenvalues of a harmonic oscillator.

3.2 Given that a|n) = a|n—1) and E, = (n+ §)hw, where the annihilation operator of the harmonic

oscillator is o

mwx + 1p
2mhw

a

I

show that o = y/n. Hint: consider |a|n)|?.

3.3 The pendulum of a grandfather clock has a period of 1s and makes excursions of 3cm either
side of dead centre. Given that the bob weighs 0.2 kg, around what value of n would you expect its
non-negligible quantum amplitudes to cluster?

3.4 Show that the minimum value of E(p,z) = p*/2m + $mw?2? with respect to the real numbers
p,x when they are constrained to satisfy xp = %h, is %ﬁw Explain the physical significance of this
result.

3.5 How many nodes are there in the wavefunction (x|n) of the nth excited state of a harmonic
oscillator?

3.6 Show that for a harmonic oscillator that wavefunction of the second excited state is
(z]2) = constant x (22/62 — 1)e=*/4* where ¢ = \/h/2mw and find the normalising con-
stant.

3.7 Use
h

2mw

(a+a') = £(a+ah)

T =
to show for a harmonic oscillator that in the energy representation the operator & is

0 V1 0 0

v 0 2 0
0 V2 0 3
J3 ...

Bk = e 0 Vm—1 ...
vn—1 0 vn
vn 0 vVn+1
vn+1 0

Calculate the same entries for the matrix pj.

3.8 At t = 0 the state of a harmonic oscillator of mass m and frequency w is
1

W) =gV =1+

1
[N+ SN +1).
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Calculate the expectation value of x as a function of time and interpret your result physically in as
much detail as you can.

Homework 7: MORE PROBLEMS ON BASIC QUANTUM MECHANICS

3.9 A three-state system has a complete orthonormal set of states |1),|2),|3). With respect to this
basis the operators H and B have matrices

) 1 0 0 ) 100
H=hmo|0 -1 0 B=bl0o 0 1],
0 0 -1 010

where w and b are real constants.

(a) Are H and B Hermitian?

(b) Write down the eigenvalues of H and find the eigenvalues of B. Solve for the eigenvectors of both
H and B. Explain why neither matrix uniquely specifies its eigenvectors.

(¢) Show that H and B commute. Give a basis of eigenvectors common to H and B.

3.10 A system has a time-independent Hamiltonian that has spectrum {E,}. Prove that the
probability P, that a measurement of energy will yield the value Ej is is time-independent. Hint:
you can do this either from Ehrenfest’s theorem, or by differentiating (Fy, t|1)) w.r.t. ¢ and using the
TDSE.

3.11 Let ¢(z) be a properly normalised wavefunction and @ an operator on wavefunctions. Let {ar}
be the spectrum of Q and {ur(z)} be the corresponding correctly normalised eigenfunctions. Write
down an expression for the probability that a measurement of @) will yield the value g,. Show that
>, P(grl1p) = 1. Show further that the expectation of @ is (Q) = ffooo V*Qu da.

3.12 (a) Find the allowed energy values E,, and the associated normalized eigenfunctions ¢, (z) for a
particle of mass m confined by infinitely high potential barriers to the region 0 < x < a.

(b) For a particle with energy E,, = h?n?71?/2ma? calculate (x).

(c) Without working out any integrals, show that

((z = (@)% = (&%) - -

Hence find ((z — (z))?) using the result that [’ #?sin®(n7z/a) do = a®(1/6 — 1/4n*7?).

(d) A classical analogue of this problem is that of a particle bouncing back and forth between two
perfectly elastic walls, with uniform velocity between bounces. Calculate the classical average values
(z)c and ((x — (x))?)¢, and show that for high values of n the quantum and classical results tend to
each other.

3.13 A Fermi oscillator has Hamiltonian H = fT f , where f is an operator that satisfies
=0, fft+fif=1

Show that H2 = H, and thus find the eigenvalues of H. If the ket |0) satisfies H|0) = 0 with (0[0) = 1,
what are the kets (a) |a) = f]0), and (b) |b) = fT|0)?

In quantum field theory the vacuum is pictured as an assembly of oscillators, one for each possible
value of the momentum of each particle type. A boson is an excitation of a harmonic oscillator, while
a fermion in an excitation of a Fermi oscillator. Explain the connection between the spectrum of
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fJf f and the Pauli exclusion principle (which states that zero or one fermion may occupy a particular
quantum state).
SOME OPTIONAL (!) OFF-SYLLABUS STUFF YOU MAY FIND INTERESTING

3.14 Numerical solutions of the Schrédinger equation By following the discussion given in the
lecture notes construct numerical solutions for the first 10 eigenstates |¢,) of the Hamiltonian

~2

o= + 1mw 2 4+ Azt

2m 2
for % = 0.1. You can download a MATHEMATICA file for doing this from the course webpage.
Now use the eigenvectors to obtain an expression for the ground state of the harmonic oscillator
Hamiltonian (A = 0) in terms of the eigenstates of H

N

10) & >~ (6n]0) |6n)-

n=0

Now assume that we initially prepare our system in the state |®(0)) = |0) and then consider time
evolution under the Hamiltonian H. We have

N
B(2)) = > (6nl0) e # 5t |gy). (298)

n=0
We now want to determine the probability density |(z|®(¢))|? to find the particle at position z at
time t. To do this we express |®(¢)) in terms of harmonic oscillator wave functions ¥y (z)

N N
(@|®(t)) ~ Z<¢>n\0> PEl(z|gn) = > (6al0) € x|Z\k: ) (k|én)
=0 n=0
N N
2 30> (0nl0) e EE (ko) wi(z). (299)
k=0 n=0

In the last step we have cut off the sum over k in the resolution of the identity, which is justified
because (k|¢,)(6n|0) are negligible for large k. We have explicit expression for the harmonic oscillator
wave functions and know (k|¢,,) and E,, from our numerics. We therefore can plot P(z,t) = |(x|®(t))|?
for any given time. In order to keep our discussion very general we note that we essentially have two
dimensionful quantities in our problem

e A time scale 1/w.
e A length scale /.

We use these scales to introduce dimensionless variables parametrizing the time and position by x =
z¢, t = 7 /w. The probability to observe our particle in the interval [z, z+dx] is P(z,t)dx = p(z,7)dz,
where

p(z,7) = (20| @(r/w))[?¢

The nice thing is that p(z,7) no longer contains any dimensionful quantities

—z2 N N
p(2,7) /422 (onl0) Gty e—iEwner FREIVD (300)

7r4k0n0 k!2

Plot p(z,7) as a function of z for some values of 7.
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Part 111
TRANSFORMATIONS

Hermann Weyl
“The goal of mathematics is the symbolic comprehension of
the infinite with human, that is finite, means.”

7 TRANSFORMATIONS AND SYMMETRIES

A very important concept in QM is that of a transformation. Our QM system is described by a ket |¢). We
now want to ask the question how |¢)) changes if we move our quantum mechanical system by a distance
a, or rotate it by some angle around some axis. Of particular interest are transformations that leave our
system unchanged — these correspond to symmetries, which have been one of the most important organizing
principles of physics in the last century.

Aside 6: ACTIVE VS PASSIVE TRANSFORMATIONS

As our lectures follow the book by Binney and Skinner we will focus on transformations where
we change our QM system by e.g. moving it. These are call active transformations. There is an
equivalent viewpoint in which we leave our system unchanged, but transform our co-ordinate system.
Such transformations are called passive. The two kinds of transformations are related in a simple way.
For example, translating our system by a vector a is equivalent to moving our co-ordinate system by
—a.

7.1 TRANSLATIONS

If we move a quantum mechanical system in some state |¢) by a distance a we expect that the ket describing
it will change to some new ket [¢)'). It turns out that we can obtain [¢)') by acting with the translation
operator U(a)

) =U(a)ly) . (301)

To see this, let us consider a basis of position eigenstates |x). On physical grounds these must transform
under a translation as
x) — [x+a). (302)

The transformed ket can be written in terms of momentum eigenstates as
ra) = [ap obralp) = [ 00, e Hr )

(27h)3/2
- / d’p (plx) ¢ #*P|p) = / d’p (plx) ¢"#*P|p)

N / &p (plx) |p) = ¢ F¥P|x). (303)
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This tells us that we have

x+a) = U@)x), Ula)=e i*P.

(304)
As the three momentum operators commute we have
U(a)Uf(a) =1
@)U (a) 05)
so U(a) is a unitary operator. By the same reasoning we have
U(a)U(b) =U(a+b), U'(a)=U(-a), (306)

so translations form a group. Finally, because momentum eigenstates form a basis we can conclude that a
general state [¢) transforms under a translation as

[¢) =U(a)ly). (307)

Indeed, expanding [¢) in position eigenstates, we have
o) = [ dxxlu) 1) — o) = [ dxxlu) bea) =UG@) [ dxilv) ) = U@ls). (308

7.1.1 EXPECTATION VALUES

The expectation value of the three position operators in the translated state are
Wikl = [ R = [ dx P

= [ @ X e ) = [ d'x xeta) ool
— (I +ale) = (BIK[0) +a (309)

This result is as expected: the average position has been shifted by a by our transformation. Using that
|") = U(a)|y)) and that in the above |¢) is arbitrary we conclude that

(310)
To arrive at this conclusion we have used the following
Theorem 3 Let A and B be two operators. If for any state |1))
(Y] Al) = (@|Bly), (311)

then A = B.

Proof: Take [1)) = |x1) + ¢|x2). Then by the assumption that the expectation values in |¢)) are equal we
have
0= (x1l4 = Blxa) + e (x| A = Blx2) + e{xalA = Blx2) + ¢"(x2| A — Blx1). (312)

Using that the expectation values of A and B in |x1) and |x2) are equal this simplifies to
0 =cOald = Blx2) + ¢*(x2|A — Blx1). (313)
Considering this equation for ¢ = 1 and ¢ = i we conclude that we must have

{(x1|A = B|x2) = 0. (314)
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As |x1,2) are arbitrary this implies that A = B.
As U(a) only involves the momentum operators (which commute with one another) we conclude that
[U(a), p] = 0 or equivalently

U'(a)pU(a) = p.

(315)

Hence expectation values of the momentum operator do not change under translations
@'plY) = (LIplY). (316)

7.1.2 WAVE FUNCTIONS

We can now ask how wave functions change under translations. This gives us information not only about the
average position but about the entire probability distribution. The original and translated wave functions
are

b(x) = (x|v) ,  ¥(x) = (x[¢). (317)
They are related by
U (x) = (x|[U(a)[y) = (x —aly) = d(x —a). (318)
Here we have used that UT(a) = U(—a) and
x|U(a)[y) = @IU(@)[x)" = (v|x — a)" = (x —aly). (319)

An equivalent way of expressing the relation between wave functions is

¥ (x + a) = B(x).

(320)

This makes perfect sense: the value of the new wave function at the new position equals the value of the
original wave function at the original position. The probability densities are related by

[W(x —a)* = [ (%), (321)
expressing the fact that the probability of finding the translated system at position x is the same as finding
the original system at position x — a.

7.1.3 TRANSLATIONAL INVARIANCE AND MOMENTUM AS A “GOOD QUANTUM NUMBER”

As we have seen the Hamiltonian plays a special role in Quantum Mechanics because it determines the time
evolution of quantum states. Because of this its behaviour under translations is particularly important. Let
H be the Hamiltonian of our system. We call our system translationally invariant if there exists a basis of
energy eigenstates |E,) such that for any state |¢)

(En) | = [(En|U(a)l)]. (322)

This condition is equivalent to energy measurements being unaffected by translations. Eqn (322) implies
that the states |E,) are eigenstates of U(a), which in turn implies that U(a) and H commute

HU(a) =U(a)H. (323)

The condition of translational invariance can thus be cast in the form

Ul(a)HU(a) = H.

(324)

In the above discussion the vector a has been arbitrary — our transformation depends on a continuous
parameter a and (324) expresses the fact that H possesses a continuous symmetry.
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Taking it infinitesimally small we have
Uldx) =1— %dx p (325)

This allows us to recast translational invariance as the requirement that the Hamiltonian commutes with
the momentum operators

[H,p] = 0. (326)

This then implies that momentum and energy are compatible observables and there exists a simultaneous
basis of eigenstates. This in turn means that we can use the momentum eigenvalues to label the energy
eigenstates. We say that momentum is a good quantum number.

Let us look at a simple example of all this: a free particle in three spatial dimensions with Hamiltonian

o) ~2 52 -9
p Dz Dy Dz
H=-— =22 4+ -9 . 2
2m  2m  2m  2m (327)
Clearly this is translationally invariant
Do, Hl =0, a=ux,y,z. (328)

Momentum is therefore a good quantum number and there is a basis of simultaneous eigenstates of energy
and momentum, namely that of momentum eigenstates

P2 +ps+p2

Hlpx,py7pz> = om ’pmapyapz>- (329)
—_——
E(px,py,pz)
This principle generalizes: if we have a set of Hermitian operators I(™ (n=1,...,N) such that
1), 1) =0=[1™ H], 1<nm<N, (330)
there exists a basis of simultaneous eigenstates |A) = [A(1), ..., X)) of all these operators
I™IA) = XN, (331)

We can use the eigenvalues A9) to label these states. The energy eigenvalue is some (problem-dependent)
function of these eigenvalues
H|A) = E(N)|A). (332)

7.2 REFLECTIONS (PARITY)

Parity plays a very important role in Quantum Field The-
ory and the Standard Model of Particle Physics.

C.N. Yang and T.D. Lee (Nobel Prize in Physics 1957)
C.S. Wu (Wolf Prize in Physics 1978)

A very important transformation is spatial reflection or parity. It acts on position eigenstates as
Plx) = | — x). (333)

So if the system was originally at position x with certainty, it will be at position —x after the parity
transformation. The parity operator is Hermitian P = Pt because

(x'|Plx) = (x'| = x) = 6D (x' +x) = (x|P[x)". (334)
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If we carry out the parity transformation twice we return to where we started. Therefore
P?=1, (335)
which together with P = Pt implies that P is a unitary operator. Using (333) and

X = /d3x x |x)(x], (336)

we can work out how the parity operator acts on the position operator

PxP = —x. (337)
Similarly we find
(| PpaPlx) = (=x'[pa| = x) = ih aif(g) (x = x') = —(x'[a]), (338)
and hence
PpP = —p. (339)
The wave function of a parity-transformed state is
V(%) = (x|o) = (x| Ply) = (—x|¢) = (). (340)

By following through the same considerations as for translations we term a quantum system parity invariant
if
[H, P] = 0. (341)

Parity is an example of a discrete symmetry in QM — if we repeat the transformation twice we return
to where we started. In parity invariant systems there exists a basis of simultaneous eigenstates of the
Hamiltonian and the energy operator. As P2 =1 the eigenvalues of P can only be +1. The corresponding
eigenstates are called parity-even and parity-odd states. We have encountered parity-symmetric systems
before, when we studied Hamiltonians of the form

1Y% A
H=— . 42
>+ V() (342)
Parity invariance requires
-2
H=PHP = 2an FV(—%) = V(—%) = V(%). (343)

This is the case for the harmonic oscillator and various of the potential step problems we have considered
earlier. Let us now consider the implications of parity invariance for the infinite square well potential
considered in section 5.2. The Hamiltonian is invariant under a parity transformation around the centre of
the well z = a/2 and we therefore have a simultaneous basis of energy and parity eigenstates

Hpp(2) = Enipn(2) | Pa/2¢n($) = pnn(T) - (344)

Here we have denoted the position representation of the parity transformation operator by P, . We know
that the parity eigenvalues can only be +1, and hence

Pa/2¢n(x) = Yn(a — ) = ppn(z), (345)

which tells us that the wave functions of energy eigenstates must be either symmetric or antisymmetric
around a/2. This is indeed the case as we have seen before.
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Figure 10: Wave functions for the 3 lowest energy states in the infinite square well potential.

7.3 ROTATIONS

We now turn to rotations. In QM there is a subtlety associated with rotations because of the existence of
spin. This is an intrinsic property of most particles and we will discuss it later. For now we restrict our
discussion to rotations for a spinless quantum mechanical particle.

Let’s consider a rotation around the z-axis by an infinitesimal angle da

¥ = x—ydo,
" = y+ada,
27 = 2 (346)

This is the infinitesimal version of

x cosae —sina 0 7
y | =|sina cosa O |y]. (347)
A 0 0 1 z

Let us parametrize this rotation in terms of the vector e,da, where the direction of the vector denotes
the rotation axis and its magnitude the angle of rotation. Position eigenstates should therefore transform

Ulezda)|x) = |x). (348)

We can work out an explicit expression for U(e,da) by using the results we obtained for translations

1

dx) = |1 -
|x + dx) [ >

dx - f)] |x). (349)
To reproduce (346) we require dx = (—yda, zda, 0), which depends on z and y itself and we therefore should
take

Ulepda) =1 — % (—0p + 2py)da =1 — %ﬁz da. (350)

Here we have defined the operator for the z-component of orbital angular momentum

N

L,= j:ﬁy — YDz-

(351)
In order to carry out a rotation by a finite angle we should consider
Ulega) = i [U(e 3)]N I PRCE ST AP (352)
2 _Ngnoo ZN _Ngnoo h ZN - ° .
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The last step can be proved in essentially the same way as the identity for numbers
: N
Jim. [1 + N] - (353)
It is straightforward to repeat the above analysis for rotations around the x or y axis. These are induced
by the x and y components of the orbital angular momentum
Ly = 9p-— 2Dy,
L, = 2, —dp.. (354)

A rotation by an angle a around a general direction n (where n is a vector of unit length) is generated by
the operator

Una) = e~noml,

(355)
8 HEISENBERG PICTURE AND HEISENBERG EQUATION OF MOTION
Recall that the TDSE can be written as
dly(t
m‘”‘ﬁli)) — H|p (). (356)

You can check by taking the derivative with respect to time that the formal solution of this equation is (for
time-independent Hamiltonians)

[(t)) = e~ 7|y (0)). (357)
The operator

(358)

is called time-evolution operator. As H is Hermitian U (t) is unitary
UUT(t) = 1. (359)

This shows that quantum mechanical time evolution can be viewed as a unitary transformation of states. So
far our discussion has been based on time-independent operators and time evolving states. This is known as
the Schrodinger picture of QM. In daily quantum mechanical practice the objects of interest are not states
but rather matrix elements of operators

(¥ ()[0]o(1))- (360)
In the Schrodinger picture we work out the states at time ¢ and then use them to obtain the desired matrix
element. Using the time evolution operator we can write our matrix element as

(B(1|0]g(t)) = (B(O)|UT(H)OU (1)[(0)). (361)
Defining a time-dependent operator
Op(t) = UT(t)OU(t), (362)
we can write matrix elements as
(¥(0)[Om (t)]6(0)). (363)
This is known as the Heisenberg picture: here we fix a basis of quantum states once and for all, but operators

evolve in time. This turn out to be often a more convenient approach! The time evolution of operators is
governed by the Heisenberg equation of motion

y ‘
Z0n(t) =1

o [H,Op(t)] .

(364)
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To see this we simply use that HU(t) = U(t)H (which holds as the Hamiltonian commutes with itself) and

d i d i
£UT(t) = ﬁHUT(t) U =—SUMH . (365)

Homework 8: TRANSFORMATIONS AND HEISENBERG EQUATIONS OF MOTION

4.1 Reflection symmetry around a point Xg
Let Px, be the operator that induces reflections around a point xg. Argue that

PXO’X0+X> = |X0*X> ’
P %Py, = 2x01 —%,
Axof)fjxo = _p) (366)

and that the transformed wave function fulfils

¥ (%) = (20 — X). (367)

2

4.2 For which potentials V' is the Hamiltonian H = P

2= + V(%) translationally invariant?

4.3 Show that the orbital angular momentum operators L (a = z,y, z) are Hermitian.

4.4 A spinless QM system is called rotationally invariant if its Hamiltonian commutes with the orbital
angular momentum operators [H, ﬁa] =0, a = z,y, z. Rotational invariance expresses the fact the
energy measurements remain unchanged under rotations of the system. If the Hamiltonian commutes
only with L, it is called invariant under rotations around the z-axis. Consider Hamiltonians of the

form
A2

H= 2an +V(%). (368)

Show that potentials that depend only on the distance |x| lead to rotationally symmetric Hamil-
tonians, while potentials that depend on z and y only through the combination z? 4+ y? leads to
Hamiltonians that invariant under rotations around the z-axis.

4.5 Show that
I [1+ x]N @ (369)
11m -— = .

N @

N—oo

Give arguments that an analogous formula holds for operators.

4.6 Heisenberg equations of motion for the SHO
Derive the Heisenberg equations of motion for the creation and annihilation operators in the simple
harmonic oscillator and show that their solution is

a(t) = a(0)e™™! | al(t) = al(0)e™" . (370)

From these, obtain equations of motion for the position and momentum operators. Comment on the
relation of your results to Ehrenfest’s theorem.
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