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Preface

These lecture notes provide a concise introduction to the theory of polymer dy-
namics. The reader is assumed to have a reasonable math background (including
some knowledge of probability and statistics, partial differential equations, and
complex functions) and have some knowledge of statistical mechanics.

We will first introduce the concept of a Gaussian chain (chapter 1), whichisa
simple bead and spring model representing the equilibrium properties of a poly-
mer. By adding friction and random forces to such a chain, one arrives at a de-
scription of the dynamics of a single polymer. For simplicity we will first neglect
any hydrodynamic interactions (HIs). Surprisingly, this so-called Rouse model
(chapter 2) is a very good approximation for low molecular weight polymers at
high concentrations.

The next two chapters deal with extensions of the Rouse model. In chapter 3
wewill treat HIsin an approximate way and arrive at the Zimm model, appropriate
for dilute polymers. In chapter 4 we will introduce the tube model, in which
the primary result of entanglements in high molecular weight polymers is the
constraining of atest chain to longitudinal motion along its own contour.

The following books have been very helpful in the preparation of these lec-
tures:

e W.J. Briels, Theory of Polymer Dynamics, Lecture Notes, Uppsala (1994).
Also available on http://www.tn.utwente.nl/cdr/PolymeerDictaat/.

e M. Doi and S.F. Edwards, The Theory of Polymer Dynamics (Clarendon,
Oxford, 1986).

e D.M. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1976).

I would especially like to thank Prof. Wim Briels, who introduced me to the sub-
ject of polymer dynamics. His work formed the basis of a large part of these
lecture notes.

Johan Padding, Cambridge, January 2005.






Chapter 1

The Gaussian chain

1.1 Similarity of global properties

Polymers are long linear macromolecules made up of alarge number of chemical
units or monomers, which are linked together through covalent bonds. The num-
ber of monomers per polymer may vary from a hundred to many thousands. We
can describe the conformation of a polymer by giving the positions of its back-
bone atoms. The positions of the remaining atoms then usually follow by simple
chemical rules. So, suppose we have N + 1 monomers, with N 4 1 position vectors

Ro,R1,...,RN.
We then have N bond vectors
M= Rl—Ro,...,I’N = RN—RN_]_.

Much of the static and dynamic behavior of polymers can be explained by models
which are surprisingly ssmple. This is possible because the global, large scale
properties of polymers do not depend on the chemical details of the monomers,
except for some species-dependent “effective” parameters. For example, one can
measure the end-to-end vector, defined as

N
R=Rn—Ro=).ri. (L.1)
i=1

If the end-to-end vector is measured for alarge number of polymersin amelt, one
will find that the distribution of end-to-end vectors is Gaussian and that the root
mean squared end-to-end distance scales with the square root of the number of
bonds, /(R?) «< /N, irrespective of the chemical details. Thisis a consequence
of the central limit theorem.



1. THE GAUSSIAN CHAIN

1.2 Thecentral limit theorem

Consider a chain consisting of N independent bond vectors ri. By this we mean
that the orientation and length of each bond isindependent of all others. A justifi-
cation will be given at the end of this section. The probability density in configu-
ration space ¥ (rN) may then be written as

¥ () =Tw(r). (12)

Assume further that the bond vector probability density y(ri) depends only on
the length of the bond vector and has zero mean, (r;) = 0. For the second moment
we write

_ / o r2y(r) = b2, (13)

where we have defined the statistical segment (or Kuhn) length b,. Let Q (R; N) be
the probability distribution function for the end-to-end vector given that we have
achain of N bonds,

Q(R;N) = <6 (R—iiri>>, (1.4)

where § isthe Dirac-delta function. The central limit theorem then states that

3 %2 3R2
Q(R;N):{W} exp{—m}, (1.5

i.e., that the end-to-end vector has a Gaussian distribution with zero mean and a
variance given by

(R?) = Nb?. (1.6)

In order to prove EqQ. (1.5) we write

QR;N) = ﬁ/dk <exp{ik'(R >}>
- /dké"R<eXD{—'k Z“}z
{/dre Ky } _ (1.7)




1. THE GAUSSIAN CHAIN

For k = 0, the Fourier transform of y (r) will be equal to one. Because v (r)
has zero mean and finite second moment, the Fourier transform of v (r) will have
its maximum around k = 0 and go to zero for large values of k. Raising such a
function to the N’th power leaves us with a function that differs from zero only
very close to the origin, and which may be approximated by

{/dr e_ik'r\p(r)}N ~ {1—%<(k.r)z>}N
~ 1—%N<(k-r)z>

= 1- %Nkzbz (1.8)

for small valuesof k, and by zero for the values of k where 1 — 2Nk2b? isnegative.
This again may be approximated by exp { —£Nk?b?} for all values of k. Then

QRN) = (2—71t)3/dk exp{ik-R—éNkzbz}

= 1(R)I(R)I (R (1.9)
(R = %/dkx eXp{inkx—észkf}
3 1/2 3R)2(
- {onw) ) (119

Combining Egs. (1.9) and (1.10) we get Eq. (1.5).

Using Q(R;N), we can obtain an interesting insight in the thermodynamic
behaviour of a polymer chain. The entropy of a chain in which the end-to-end
vector R iskept fixed, absorbing al constantsinto areference entropy, isgiven by

3kR?
S(R;N) =kgInQ (R;N) _SO_W’ (1.12)
where kg is Boltzmann’'s constant. The free energy isthen
3ksTR?
A=U-TS=Ao+ —rr, (1.12)

where T is the temperature. We see that the free energy is related quadratically
to the end-to-end distance, as if the chain is a harmonic (Hookean) spring with
spring constant 3kg T /Nb?. Unlike an ordinary spring, however, the strength of the
spring increases with temperature! These springs are often referred to as entropic

springs.



1. THE GAUSSIAN CHAIN

Figure1.1: A polyethylene chain
represented by segments of A =
20 monomers. |If enough consec-
utive monomers are combined into
one segment, the vectors connecting
these segments become independent
of each other.

Of course, in a real polymer the vectors connecting consecutive monomers
do not take up random orientations. However, if enough (say A) consecutive
monomers are combined into one segment with center-of-mass position R;, the
vectors connecting the segments (R; — Ri_1, Ri11 — R, etcetera) become inde-
pendent of each other,! see Fig. 1.1. If the number of segments is large enough,
the end-to-end vector distribution, according to the central limit theorem, will be
Gaussianly distributed and the local structure of the polymer appears only through
the statistical segment length b.

1.3 The Gaussian chain

Now we have established that global conformational properties of polymers are
largely independent of the chemical details, we can start from the simplest model
available, consistent with a Gaussian end-to-end distribution. This model is one
in which every bond vector itself is Gaussian distributed,

3/2
y(r) = {%} exp{—%rz}. (113)

1We assume we can ignore long range excluded volume interactions. This is not always the
case. Consider building the chain by consecutively adding monomers. At every step there are
on average more monomers in the back than in front of the last monomer. Therefore, in a good
solvent, the chain can gain entropy by going out, and being larger than a chain in which the new
monomer does not feel its predecessors. In a bad solvent two monomers may fed an effective
attraction at short distances. In case this attraction is strong enough it may cause the chain to
shrink. Of course there is a whole range between good and bad, and at some point both effects
cancel and Eq. (1.5) holdstrue. A solvent having this property is called a ©-solvent. In a polymer
melt, every monomer isisotropically surrounded by other monomers, and thereisno way to decide
whether the surrounding monomers belong to the same chain as the monomer at hand or to a
different one. Consequently there will be no preferred direction and the polymer melt will act asa
O-solvent. Here we shal restrict ourselves to such melts and ©-solvents.

10



1. THE GAUSSIAN CHAIN

Figure 1.2: The gaussian chain can be

represented by a collection of beads N % @ %

connected by harmonic springs of
strength 3kgT /2.

Such a Gaussian chain is often represented by a mechanical model of beads con-
nected by harmonic springs, asin Fig. 1.2. The potential energy of such a chain
isgiven by:

®(ry,...,In) = Eeri. (1.14)

It iseasy to seethat if the spring constant k is chosen equal to

3keT
e

the Boltzmann distribution of the bond vectors obeys Egs. (1.2) and (1.13). The
Gaussian chain is used as a starting point for the Rouse model.

(1.15)

Problems

1-1. A way to test the Gaussian character of a distribution isto calculate the ratio
of the fourth and the square of the second moment. Show that if the end-to-end
vector has a Gaussian distribution then
R
®) s
(R?)

11






Chapter 2

The Rouse model

2.1 From staticsto dynamics

In the previous chapter we have introduced the Gaussian chain as a model for the
equilibrium (static) properties of polymers. We will now adjust it such that we can
useit to calculate dynamical propertiesaswell. A prerequisiteisthat the polymer
chains are not very long, otherwise entanglements with surrounding chains will
highly constrain the molecular motions.

When a polymer chain moves through a solvent every bead, whether it repre-
sents a monomer or a larger part of the chain, will continuously collide with the
solvent molecules. Besides a systematic friction force, the bead will experience
random forces, resulting in Brownian motion. In the next sectionswe will analyze
the equations associated with Brownian motion, first for the case of a single bead,
then for the Gaussian chain. Of course the motion of a bead through the solvent
will induce a velocity field in the solvent which will be felt by all the other beads.
To first order we might however neglect this effect and consider the solvent as
being some kind of indifferent ether, only producing the friction. When applied
to dilute polymeric solutions, this model gives rather bad results, indicating the
importance of hydrodynamic interactions. When applied to polymeric melts the
model is much more appropriate, because in polymeric melts the friction may be
thought of as being caused by the motion of achain relative to the rest of the ma-
terial, which to a first approximation may be taken to be at rest; propagation of
avelocity field like in a normal liquid is highly improbable, meaning there is no
hydrodynamic interaction.

13



2. THE ROUSE MODEL

Figure2.1: A spherical bead moving
with velocity v will experience a fric-

\ Jlj/ tion force —&v opposite to its veloc-
'E;‘Q > »V ity and random forces F due to the
-~ continuous bombardment of solvent

i molecules.

2.2 Friction and random forces

Consider a spherical bead of radius a and mass m moving in a solvent. Because
on average the bead will collide more often on the front side than on the back side,
it will experience a systematic force proportional with its velocity, and directed
oppositetoitsvelocity. The bead will also experience arandom or stochastic force
F(t). Theseforces are summarized in Fig. 2.1 The equations of motion then read*

=V (2.1

g 2a S

= —&v+F. (2.2

In Appendix A we show that the friction constant & is given by
§ = {/m=6rnsa/m, (2.3)

where 1 is the viscosity of the solvent.
Solving Eq. (2.2) yields

t
v(t) = voe & + /O dt e SIE (L), (2.4)

where vq istheinitial velocity. We will now determine averages over all possible
realizations of F(t), with theinitial velocity as acondition. To thisend we have to
make some assumptions about the stochastic force. In view of its chaotic charac-
ter, the following assumptions seem to be appropriate for its average properties:

(Ft)) = 0 (2.5)
<F(t)-F(t’)>VO = Cyd(t—t) (2.6)

INote that we have divided all forces by the mass m of the bead. Consequently, F(t) is an
acceleration and the friction constant £ is a frequency.

14



2. THE ROUSE MODEL

where C,, may depend on the initial velocity. Using Egs. (2.4) - (2.6), wefind

WO, = voe Pt [ dre HUI ),
— Voe_‘:t (27)
VOV, = e B 42 [ dve 2 v (B,

0

s [ [Care 82 (B FD)),,
_ e 02% (1-e%). (2.8)

Thebead isin thermal equilibrium with the solvent. According to the equipartition
theorem, for larget, Eq. (2.8) should be equal to 3kgT /m, from which it follows
that

ke T
(F(t)-F(t)) = 6%&60 —t). (2.9)
Thisis one manifestation of the fluctuation-dissipation theorem, which states that
the systematic part of the microscopic force appearing as the friction is actually
determined by the correlation of the random force.

Integrating Eq. (2.4) we get
t T ,
) =ro+ g (L-e )+ [ar [ ar e SR, (2.10
£ o Jo

from which we cal culate the mean square displacement

((rt)—ro)?),, = ¥ (1— e—ﬁt)2+ SkeT (2@ 3448 e—zét) . (2.12)

g2 mE2
For very large t this becomes
6kg T
((r(t)—ro)?) = %t, (2.12)
from which we get the Einstein equation
keT _ kgT
D=—=— 2.13
M C (2.13)

where we have used {(r (t) —rg)?) = 6Dt. Notice that the diffusion coefficient D
isindependent of the mass m of the bead.

15



2. THE ROUSE MODEL

From Eq. (2.7) we see that the bead loses its memory of its initial velocity
after atime span t ~ 1/&. Using equipartition itsinitial velocity may be put equal
to /3kgT/m. Thedistancel it travels, divided by its diameter thenis

I \/3kBT/m_ pksT
a  a&  \om& (214

where p is the mass density of the bead. Typical values are | /a ~ 1072 for a
nanometre sized bead and | /a ~ 10~4 for a micrometre sized bead in water at
room temperature. We see that the particles have hardly moved at the time pos-
sible velocity gradients have relaxed to equilibrium. When we are interested in
timescal es on which particle configurations change, we may restrict our attention
to the space coordinates, and average over the vel ocities. The time development of
the distribution of particles on these time scales is governed by the Smoluchowski
eguation.

In Appendix B we shall derive the Smoluchowski equation and show that the
explicit equations of motion for the particles, i.e. the Langevin equations, which
lead to the Smoluchowski equation are

%.: —%V¢+VD+f (2.15)
(fit)) = 0 (2.16)
(fOf(t)) = 2DI3(t—t"). (2.17)

where | denotes the 3-dimensional unit matrix | op = Oup- We use these equations
in the next section to derive the equations of motion for a polymer.

2.3 TheRousechain

Suppose we have a Gaussian chain consisting of N + 1 beads connected by N
springs of strength k = 3kgT /b?, see section 1.3. If we focus on one bead, while
keeping all other beads fixed, we see that the external field ® in which that bead
moves is generated by connections to its predecessor and successor. We assume
that each bead feels the same friction {, that its motion is overdamped, and that
the diffusion coefficient D = kg T /C isindependent of the position Ry, of the bead.
This model for a polymer is called the Rouse chain. According to Egs. (2.15)-

16



2. THE ROUSE MODEL

(2.17) the Langevin equations describing the motion of a Rouse chain are

dRo 3kgT

el —W(Ro—Rl)—Ffo (2.18)
% = 3;2; (2Rn—Rp-1—Rpt1) +fn (2.19)
df*TN _ —?’g'%(RN—RN_l)HN (2.20)
(fnt)) = 0 (2.21)
(fa)fm(t')) = 2DI&md(t—t'). (2.22)

Eq. (2.19) applieswhenn=1,... ,N— 1.

2.4 Normal mode analysis

Equations (2.18) - (2.20) are (3N + 3) coupled stochastic differential equations.
In order to solve them, we will first ignore the stochastic forces f,, and try specific
solutions of the following form:

Rn(t) = X(t) cos(an+c). (2.23)

The equations of motion then read

dX _ 3ksT
ot cose = A {cosc— cos(a+c)} X (2.29)
%—i(cos(naqt c) = —:1(—524% (a/2) cos(na+c)X (2.25)
%—Tcos(NaqLc) = 3;?2 {cos(Na+c) —cos((N—1)a+c)} X, (2.26)
where we have used

2cos(na+c) —cos((n—1)a+c) —cos((n+1)a+c)
= cos(na+c) {2 —2cosa} = cos(na+c)4sin®(a/2). (2.27)

The boundaries of the chain, Egs. (2.24) and (2.26), are consistent with Eq. (2.25)
if we choose

cosc—cos(a+c) = 4sin(a/2)cosc (2.28)
cos(Na+c)—cos((N—1)a+c) = 4sin?(a/2)cos(Na+c), (2.29)

17



2. THE ROUSE MODEL

which is equivalent to

cos(a—cC) = cosc (2.30)
cos((N+1)a+c) = cos(Na+c). (2.31)
We find independent solutions from
a—-c = ¢ (2.32)
(N+la+c = p2n—Na-c, (2.33)
where p isaninteger. So finally
a:NﬂH’CZa/ZZZ(N;Pil)' (2.34)

Eqg. (2.23), with a and ¢ from EQ. (2.34), decouples the set of differential equa-
tions. To find the general solution to Egs. (2.18) to (2.22) we form alinear combi-
nation of all independent solutions, formed by taking pintherange p=0,...,N:
N
_ Pt 1

Rn_Xo+2p§1chos{N+l(n+2)]. (2.35)
Thefactor 2 in front of the summation isonly for reasons of convenience. Making
use of?

Lg“cos P (n+}) =9 (0<p<2(N+1)) (2.36)
N+1 & N1 2/ =% =P | |
we may invert thisto
1 N P 1
p= N—Hn_ORncos{N+1(n+ é)] : (2.37)
The equations of motion then read
dXp _3kBT . o pr
A 4sin (72(N+1))Xp+Fp (2.38)
(Fp(t)) = 0 (2:39)
Yy — 2P it
(Fo(t)Fo(t")) = N+1I6(t t') (2.40)
D —
(Fp(t)Fq(t)) = N—Hlﬁpqﬁ(t—t’) (p+9>0) (2.41)

2The validity of Eq. (2.36) isevident when p=0or p=N+ 1. Intheremaining casesthe sum
may be evaluated using cos(na-+c) = 1/2(e'"3¢ 4 e "3 '), Theresult thenis

1 X pr 1 1 sin(pr)
N+1nszOS[N+1(n+§)] TN gn ()

which is consistent with Eq. (2.36).

18



2. THE ROUSE MODEL

where p,q=0,...,N. Fpisaweighted average of the stochastic forcesfp,

1 N prn 1
Fp= —N+1r§0fncos {N+1(n+ §>] , (2.42)

and is therefore itself a stochastic variable, characterised by its first and second
moments, Egs. (2.39) - (2.41).

2.5 Rouse moderelaxation timesand amplitudes

Egs. (2.38) - (2.41) form adecoupled set of 3(N + 1) stochastic differential equa-
tions, each of which describes the fluctuations and relaxations of a normal mode
(a Rouse mode) of the Rouse chain. It is easy to see that the zeroth Rouse mode,
Xo, is the position of the centre-of-mass Rg = >Rn/(N + 1) of the polymer
chain. The mean sguare displacement of the centre-of-mass, gem(t) can easily be
calcul ated:

Xo(t) = Xo(0)+ Otdr Fo(t) (2.43)

gom(t) = <(Xo(t)—Xo(0))2>:< /Otdr ‘v Fo(r)-Fo(T')>

0

= ——t=6Dg¢gt. 2.44
— 6 (2.44)

So the diffusion coefficient of the centre-of-mass of the polymer isgivenby Dg =
D/(N+1) =ksT/[(N+1)L]. Noticethat the diffusion coefficient scalesinversely
proportional to the length (and weight) of the polymer chain. All other modes
1 < p < N describe independent vibrations of the chain leaving the centre-of-
mass unchanged; Eq. (2.37) shows that Rouse mode X, descibes vibrations of
a wavelength corresponding to a subchain of N/p segments. In the applications
ahead of us, we will frequently need the time correlation functions of these Rouse
modes. From Eg. (2.38) we get

t
Xp(t) = X p(0)e /% + / dr e -0/ BF (1), (2.45)
0
where the characteristic relaxation time T is given by
WP [, Pt \]T'_CRR(N+1)? 1
=37 | 2Nt )| T e 2 (240

Thelast approximation isvalid for large wavelengths, in which case p < N. Mul-
tiplying Eq. (2.45) by X 1(0) and taking the average over al possible realisations

19



2. THE ROUSE MODEL

of the random force, we find
(Xp(t)-Xp(0)) = (X3) exp(—t/Tp). (2.47)

From these equations it is clear that the lower Rouse modes, which represent
motions with larger wavelengths, are also slower modes. The relaxation time of
the slowest mode, p = 1, is often referred to as the Rouse time TR.

We now calculate the equilibrium expectation values of Xg, i.e., the ampli-
tudes of the normal modes. To this end, first consider the statistical weight of a
configuration Ry, ..., Ry in Carthesian coordinates,

1

P(Ro,...,RN):Z

(2.48)

bzz —Rn- 1

where Z isanormalization constant (the partition function). We can use Eq. (2.35)
to find the statistical weight of a configuration in Rouse coordinates. Since the
transformation to the Rouse coordinates is a linear transformation from one set
of orthogonal coordinates to another, the corresponding Jacobian is simply a con-
stant. The statistical weight therefore reads

P(Xo,...,XN):%exp[ ;L)z N+ 1) pr psinZ(Z(NpL))]. (2.49)

[Exercise: show this] Since thisisasimple product of independent Gaussians, the
amplitudes of the Rouse modes can easily be calculated:

b? _(IN+1)b? 1
~ 2 _2.
8(N +1)sin? ( (,\‘ﬂl)> 2nep

() =

(2.50)

Again, the last approximation is valid when p < N. Using the amplitudes and
relaxation times of the Rouse modes, Egs. (2.50) and (2.46) respectively, we can
now calculate all kinds of dynamic quantities of the Rouse chain.

2.6 Correation of the end-to-end vector

The first dynamic quantity we are interested in is the time correlation function of
the end-to-end vector R. Notice that

N
—Ry—Ro=2 _1)P - i } 2
R=Rn—Ro p;lxp{( 1) 1}cos{2<N+l) (2.51)

20



2. THE ROUSE MODEL

10 T T T T T T

Figure2.2: Molecular dynamics
simulation results for the orienta-
tional correlation function of the
end-to-end vector of a CipoHo42
polyethylene chain under melt con-
ditions (symbols), compared with
the Rouse model prediction (solid
line). J.T. Padding and W.J. Briels, . . . &
J. Chem. Phys. 114, 8685 (2001). 04 01000 2000 3000 4000
t[ps]

o
o

<R(H)R(0)>/<R*>
o
o))

Because the Rouse mode amplitudes decay as p~2, our results will be dominated
by p values which are extremely small compared to N. We therefore write

N
R=-4Y"X,, (252)
p=1

where the prime at the summation sign indicates that only termswith odd p should
occur in the sum. Then

N
R@%Rw»:=lﬁZKMﬂ%XM®>
p=

2 N
- Ei%(N +1)Y ée—t/fp. (2.53)

p=1

The characteristic decay time at larget is 1, which is proportional to (N + 1)2.

Figure 2.2 showsthat Eq. (2.53) gives a good description of the time correla-
tion function of the end-to-end vector of areal polymer chain in amelt (provided
the polymer is not much longer than the entanglement length).

2.7 Segmental motion
In this section we will calculate the mean square displacements gsg(t) of the

individual segments. Using Eq. (2.35) and the fact that different modes are not
correlated, we get for segment n

((Ra(t) =Rn(0))?) = ((Xolt) - X0(0))*)
+4§<(Xp(t>_xp(0))2>0052{ = (n+—)} (2.54)
p=1

21



2. THE ROUSE MODEL

Averaging over all segments, and introducing Egs. (2.44) and (2.47), the mean
square displacement of atypica segment in the Rouse model is

N
Bol) = 757 2 ((Ralt)~Re0)F)

N
— 6Dct+4 Y, (X3) (1-et/"). (2.55)
p=1

Two limits may be distinguished. First, whent isvery large, t > 11, thefirst term
in Eq. (2.55) will dominate, yielding
Oseg(t) ~ 6Dgt (t>1). (2.56)

Thisis consistent with the fact that the polymer as awhole diffuses with diffusion
coefficient Dg.

Secondly, when t < 11 the sum over p in Eq. (2.55) dominates. If N> 1
the relaxation times can be approximated by the right hand side of Eq. (2.46), the
Rouse mode amplitudes can be approximated by the right hand side of Eq. (2.50),
and the sum can be replaced by an integral,

2
Oseg(t) = 207 N+1/ dp—(l e‘tp/“)
2
= &N—Fl/ dp—/ dt/e—t/pz/Tl

2b? ( N+1
R /dt/

[ 12kgT b2
= o
So, at short times the mean square displacement of atypical segment is subdiffu-
sive with an exponent 1/2, and is independent of the number of segmentsN in the
chain.

Figure 2.3 shows the mean square displacement of monomers (circles) and
centre-of-mass (squares) of an unentangled polyethylene chain in its melt. Ob-
serve that the chain motion is in agreement with the Rouse model prediction, but
only for displacementslarger than the square statistical segment length b?.

1/2
) tY2  (n<t<T, N> 1). (2.57)

2.8 Stressand viscosity

We will now calculate the viscosity of a solution or melt of Rouse chains. To
this end we will first introduce the macroscopic concepts of stress and shear flow.
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2. THE ROUSE MODEL

Figure2.3: Molecular dynamics
simulation results for the mean
square displacements of aCypgHoay 10
polyethylene chain under melt con-

ditions (symbols). The dotted and 10
dot-dashed lines are Rouse predic-
tions for a chain with an infinite
number of modes and for a finite
Rouse chain, respectively. The hor-

g(t) [nm’]

CI
0Osey ROUSE, infinite N
—- 0, RoOUSE, T, exact

izontal lineisthe statistical segment  10°
length b2. J.T. Padding and W.J. ]
Briels, J. Chem. Phys. 114, 8685
(2001).

Then we will show how the viscosity can be cal culated from a microscopic model
such as the Rouse model.

2.8.1 Thestresstensor

Supposethefluid vel ocity on a macroscopic scaleis described by the fluid velocity
field v(r). When two neighbouring fluid volume elements move with different
velocities, they will experience a friction force proportional to the area of the
surface between the two fluid volume elements. Moreover, even without relative
motion, the volume elements will be able to exchange momentum through the
motions of, and interactions between, the constituent particles.

All the above forces can conveniently be summarized in the stresstensor. Con-
sider a surface element of size dA and normal t. Let dF be the force exerted by
the fluid below the surface element on the fluid above the fluid element. Then we
define the stress tensor S by

dFy = — Y SyplpdA=— (S-1) dA, (2.59)
p
where oo and 3 run from 1 to 3 (or X, y, and 2). It is easy to show that the total
force F on avolume element V is given by
F=VV.S (2.59)

In the case of simple fluids the stress tensor consists of one part which is inde-
pendent of the fluid velocity, and a viscous part which depends linearly on the
instantaneous derivatives dvy, /drg. In Appendix A we elaborate on this, and cal-
culate the velocity field and friction on a sphere moving in asimple liquid. In the
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2. THE ROUSE MODEL

Y Y
_I:,t __4t Figure 2.4: Shear flow in the xy-

plane (a). Strain v, shear rate v,
and stress S,y versus time t for

SuN\S . v~ sudden shear strain (b) and sud-

den shear flow (c).

[
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more general case of complex fluids, the stress tensor depends on the history of
fluid flow (the fluid has a memory) and has both viscous and elastic components.

2.8.2 Shear flow and viscosity

Shear flows, for which the velocity components are given by

Vo (1, t) = %Kaﬁ (t)rg, (2.60)

are commonly used for studying the viscoelastic properties of complex fluids. If
the shear rates kg (t) are small enough, the stress tensor depends linearly on x (t)
and can be written as

Sp () = /_twd'c G(t—1)Kep (1), (2.61)

where G (t) is called the shear relaxation modulus. G(t) contains the shear stress
memory of the complex fluid. This becomes apparent when we consider two
special cases, depicted in Fig. 2.4:

(i) Sudden shear strain. Att = 0 a shear strain vy is suddenly applied to a
relaxed system. The velocity field is given by

w(t) = 8ty (2.62)
w(t) = 0 (2.63)
V() = 0 (2.64)

The stress tensor component of interest is S,y, which now reads

Sy(t) =7G(t). (2.65)

So G (t) issimply the stress relaxation after a sudden shear strain.
(i1) Sudden shear flow. Att = 0 a shear flow is suddenly switched on:

Ww(t) = O()yry (2.66)
w(t) = 0 (2.67)
Vo(t) = 0 (2.68)
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2. THE ROUSE MODEL

Here © (t) isthe Heaviside function and v is the shear rate. Now S,y is given by
t
— [ drG(t-m), (2.69)
0

In the case of simple fluids, the shear stress is the product of shear rate and the
shear viscosity, a characteristic transport property of the fluid (see Appendix A,
Eqg. (A.3)). Similarly, in the case of complex fluids, the shear viscosity is defined
asthe ratio of steady-state shear stress and shear rate,

t
n=fim S’“fym_nm dtGt—1 / dt Gt (2.70)
The limitt — « must be taken because during the early stages elastic stresses are
built up. Thisexpression showsthat theintegral over the shear relaxation modulus
yields the (low shear rate) viscosity.

2.8.3 Microscopic expression for theviscosity and stresstensor

Eq. (2.70) is not very useful asit stands because the viscosity is not related to the
microscopic properties of the molecular model. Microscopic expresionsfor trans-
port properties such as the viscosity can be found by relating the relaxation of
a macroscopic disturbance to spontaneous fluctuations in an equilibrium system.
Close to equilibrium there is no way to distinguish between spontaneous fluctua-
tions and deviations from equilibrium that are externally prepared. Since one can-
not distinguish, according to the regression hypothesis of Onsager, the regression
of spontaneous fluctuations should coincide with the relaxation of macroscopic
variables to equilibrium. A derivation for the viscosity and many other transport
properties can be found in Statistical Mechanics text books. The result for the
viscosity is

n= k\B/—T/ode <<5)’(“yi°r (T)G{S,icr (O)>, (2.71)

whereV is the volume in which the microscopic stress tensor 6™ is calculated.
Eq. (2.71) issometimesreferred to as the Green-Kubo expression for the viscosity.
Using Onsager’s regression hypothesis, it is possible to relate also the integrand
of EQ. (2.71) to the shear relaxation modulus G (t) in the macroscopic world:

\ mlcr micr
Gt)= (7 < (t) ol (0)> 2.72)
The microscopic stress tensor in Egs. (2.71) and (2.72) is generally defined as
) 1 Niot
oMicr — -y > IMi(Vi—V) (Vi = V) +RiFi], (2.73)

i=1
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2. THE ROUSE MODEL

where M; isthemassand V; thevelocity of particlei, and F; istheforce on particle
i. Egs. (2.71) and (2.72) are ensemble averages under equilibrium conditions. We
can therefore set the macroscopic fluid velocity field v to zero. If furthermore we
assume that the interactions between the particles are pairwise additive, we find

Neot Niot—1 Nt
oM — <2MVV.+ Yo Y (R )F.,) (2.74)

i=1 j=i+1

where Fi;j isthe force that particle j is exerting on particlei.

The sumsin Egs. (2.73) and (2.74) must be taken over al Nyt particlesin the
system, including the solvent particles. At first sight, it would be a tremendous
task to calculate the viscosity analytically. Fortunately, for most polymersthereis
a large separation of time scales between the stress relaxation due to the solvent
and the stress relaxation due to the polymers. In most cases we can therefore treat
the solvent contribution to the viscosity, denoted by n s, separately from the poly-
mer contribution. Moreover, because the velocities of the polymer segments are
usually overdamped, the polymer stress is dominated by the interactions between
the beads. Thefirst (kinetic) part of Eq. (2.73) or (2.74) may then be neglected.

2.8.4 Calculation for the Rouse model

Even if we can treat separately the solvent contribution, the sum over i in Eq.
(2.74) must still be taken over al beads of al chainsin the system. Thisiswhy
in real polymer systems the stress tensor is a collective property. In the Rouse
model, however, there is no correlation between the dynamics of one chain and
the other, so one may just as well analyze the stress relaxation of a single chain
and make an ensemble average over al initial configurations.

Using Egs. (2.35) and (2.74), the microscopic stress tensor of a Rouse chain
in a specific configuration, neglecting also the kinetic contributions, is equal to

~micr 1 3kBT
V b2

1 48kgT N N n

Ve XX iX"XqSi'"(r\;Lle) Sin(z(Npil)) )

n=1p=1g=1

o) (o)

_ 124kgT pr
= vz NZprpsm (2(N+1))' (2.75)

2 Rn l—Rn)(Rn 1—Rn)
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2. THE ROUSE MODEL

Combining this with the expression for the equilibrium Rouse mode amplitudes,
Eq. (2.50), this can be written more concisely as

~micr 3kBT ICJXIO
c v Z . TX3) (2.76)

The correlation of the xy-component of the microscopic stresstensor at t = 0 with
theoneatt =t istherefore

ol ()0l (0) = <3kBT) pzlqz - X<p>y<2§><(q>é>)qu(0)' o1

To obtain the shear relaxation modulus, according to Eq. (2.72), the ensemble
average must be taken over all possible configurations at t = 0. Now, since the
Rouse modes are Gaussian variables, al the ensemble averages of products of an
odd number of X,'s are zero and the ensemble averages of products of an even
number of Xp's can be written as a sum of products of averages of only two X;'s.
For the even term in Eq. (2.77) we find:

(Xpx (1) Xpy (1) Xgx (0) Xy (0)) = (Xpx (1) Xpy (1)) (Xgx (0) Xqy (0))
+ (Xpx (1) Xay (0)) (Xpy (1) Xx (0))
+ (Xpx () Xx (0)) (Xpy (1) Xay (0)) .(2.78)

The first four ensemble averages equal zero because, for a Rouse chain in equi-
librium, there is no correlation between different cartesian components. The last
two ensemble averages are nonzero only when p = q, since the Rouse modes are
mutually orthogonal. Using the fact that al carthesian components are equivalent,
and Eq. (2.47), the shear relaxation modulus (excluding the solvent contribution)
of a Rouse chain can be expressed as

N , 2
G(t) = g y [<X"(t<) x,§>(>k(0)>] [flkiTl S ew(-2/m), (@79

where c = N/V isthe number density of beads.

In concentrated polymer systems and melts, the stress is dominated by the
polymer contribution. The shear relaxation modulus calculated above predicts a
viscosity, at constant monomer concentration ¢ and segmental friction {, propor-
tional to N:

o ckeT 11 &N, 1
= dtG(t) =~ = —
N /o ®) N+12p:1p2

ckgT Enz CCb2
N+126 36

p=1

= (N+1). (2.80)

27



2. THE ROUSE MODEL

This has been confirmed for concentrated polymers with low molecular weight.3
Concentrated polymers of high molecular weight give different results, stressing
the importance of entanglements. We will deal with thisin Chapter 4.

In dilute polymer solutions, we do not neglect the solvent contribution to the
stress. The shear relaxation modulus Eqg. (2.79) must be augmented by a very
fast decaying term, the integral of which isthe solvent viscosity ns, leading to the
following expression for the intrinsic viscosity:

Y n_nsNNAvlcbz 2

Here, p = cM/(Nay(N + 1)) is the polymer concentration; M is the mol mass of
the polymer, and Nay is Avogadro’'s number. Eq. (2.81) is at variance with exper-
imental results for dilute polymers, signifying the importance of hydrodynamic
interactions. These will be included in the next chapter.

Problems

2-1. Why isit obvious that the expression for the end-to-end vector R, EQ. (2.52),
should only contain Rouse modes of odd mode number p?

2-2. Show that the shear relaxation modulus G(t) of a Rouse chain at short times
decays liket~1/2 and is given by

_ CkgT [mmy
G(t)_N+1 & (N <t K 11).

3A somewhat stronger N dependence is often observed because the density and, more impor-
tant, the segmental friction coefficient increase with increasing N.
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2. THE ROUSE MODEL

Appendix A: Friction on a slowly moving sphere

We will calculate the fluid flow field around a moving sphere and the resulting
friction. To formulate the basic equations for the fluid we utilize the conservation
of mass and momentum. The conservation of massis expressed by the continuity
equation

_ = —pV-V, (A-l)
and the conservation of momentum by the Navier-Stokes equation

D —

thv_V-S. (A.2)
Here p(r,t) isthe fluid density, v(r,t) the fluid velocity, D/Dt = v -V +d/dt the
total derivative, and Sis the stress tensor. B

We now have to specify the nature of the stress tensor S. For a viscous
fluid, friction occurs when the distance between two neighbouring fluid elements
changes, i.e. they moverelative to each other. Most simple fluids can be described
by a stress tensor which consists of a part which is independent of the velocity,
and a part which depends linearly on the derivatives v, /drg, i.e., where the fric-
tion force is proportional to the instantaneous relative velocity of the two fluid
elements.* The most general form of the stress tensor for such afluid is

oV, 9V 2
ngzns{a—r;urﬁ}—{PJr <§ns—K>V-V}8aB, (A.3)

where 1 isthe shear viscosity, k the bulk viscosity, which is the resistance of the
fluid against compression, and P the pressure.

Many flow fields of interest can be described assuming that the fluid isincom-
pressible, i.e. that the density along the flow is constant. In that case V-v = 0,
as follows from Eq. (A.1). Assuming moreover that the velocities are small, and
that the second order non-linear term v - Vv may be neglected, we obtain Stokes

4The calculations in this Appendix assume that the solvent is an isotropic, unstructured fluid,
with a characteristic stress relaxation time which is much smaller than the time scale of any flow
experiment. The stress response of such a so-called Newtonian fluid appears to be instantaneous.
Newtonian fluids usually consist of small and roughly spherica molecules, e.g., water and light
oils. Non-Newtonian fluids, on the other hand, usually consist of large or elongated molecules.
Often they are structured, either spontaneously or under the influence of flow. Their characteristic
stress relaxation time is experimentally accessible. As a consequence, the stress between two non-
Newtonian fluid elements generally depends on the history of relative velocities, and contains an
elastic part. Examples are polymers and self-assembling surfactants.
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2. THE ROUSE MODEL

Figure 2.5: Definition of spherical co-
y ordinates (r,0,¢) and the unit vectors
&, &, and &.

X

equation for incompressible flow

ov
S NsV2v — VP (A.4)

Vv = 0 (A.5)

Now consider a sphere of radius a moving with velocity vs in a quiescent lig-
uid. Assume that the velocity field is stationary. Referring all coordinates and
vel ocities to a frame which moves with velocity vs relative to the fluid transforms
the problem into one of aresting sphere in a fluid which, at large distances from
the sphere, moves with constant velocity vo = —vs. The problem is best consid-
ered in spherical coordinates (see Fig. 2.5),° V(r) = V& + Vgl + V&, SO that
6 = 0in the flow direction. By symmetry the azimuthal component of the fluid
velocity is equal to zero, vy = 0. The fluid flow at infinity gives the boundary
conditions

Vi = VpCOSO

Moreover, we will assumethat thefluid isat rest on the surface of the sphere (stick
boundary conditions):

Vi =Vg=0 for r=a. (A.7)

5In spherical coordinates the gradient, Laplacian and divergence are given by

Lo, 1.9 1.9
Vi = era_rf+Fee%f+rsin9 %
10 0 1 9 0 1
2 _ 19 /(>0 9 (ano? 9
Vit = aa (r arf>+r23ineae (S‘”eaef>+r2§n2(aa¢2f
10, 1 9 3
Vo= r_2§( r)Jrrsmeﬁ( Vo) + Sn6 90
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2. THE ROUSE MODEL

It can easily be verified that the solution of Egs. (A.4) - (A.5) is

3a a°
Vi = VOCOSG (1—54—?) (A8)
. 3a a°
Vg = —vosme(l—ﬂ—ﬁ) (A.9)
31nsvoa
pP-Po = 555 cosd. (A.10)

We shall now use this flow field to calculate the friction force exerted by the fluid
on the sphere. The stress on the surface of the sphere resultsin the following force
per unit area:

= . 4 . . . 0V,
f = S&=6S5+&S =—6& p|(r:a)+eensa—re

(r=a)

_ 3nsvo A MM
= (—po+ > cose)er— > Sin0gy. (A.11)

Integrating over the whole surface of the sphere, only the component in the flow
direction survives:

F= /dQ a? K—po + 322/0 cose) oSO + 32—2/0 sin? e} = 6mnsavo. (A.12)

Transforming back to the frame in which the sphere is moving with velocity
Vs = —Vg through a quiescent liquid, we find for the fluid flow field

3a a2\ . . 3a a?
v(r) =vsy- (1+ @) +& (& -vs) - (1—r—2), (A.13)
and the friction on the sphere
F = —{vs= —6mnsavs. (A.14)

F is known as the Stokes friction.
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2. THE ROUSE MODEL

Appendix B: Smoluchowski and L angevin equations

The Smoluchowski equation describes the time evolution of the probability den-
sity W(r,ro;t) to find a particle at a particular position r at a particular time t,
givenitwasat rg att = 0. It isassumed that at every instant of time the particle
isin thermal equilibrium with respect to its velocity, i.e., the particle velocity is
strongly damped on the Smoluchowski timescale. A flux will exist, given by

%‘P(r,ro;t)VCD(r). (B.1)
The first term in Eq. (B.1) is the flux due to the diffusive motion of the parti-
cle; D isthe diffusion coefficient, occurring in {(r (t) —ro)?) = 6Dt. The second
termisthe flux in the “downhill” gradient direction of the external potential ®(r),
damped by the friction coefficient . At equilibrium, the flux must be zero and the
distribution must be equal to the Boltzmann distribution

Feq(r) = Cexp[-Bo(r)], (B.2)

where B = 1/kgT and C a normalization constant. Using thisin Eg. (B.1) while
setting J(r,t) = 0, leads to the Einstein equation (2.13). In general, we assume
that no particles are generated or destroyed, so

J(r,ro,t) = —=DV¥(r,ro;t) —

%‘P(r,ro;t):—V-J(r,ro,t). (B.3)
Combining Eqg. (B.1) with the above equation of particle conservation we arrive
at the Smoluchowski equation

%‘P(r fot) = V. %‘P(r,ro;t)th(r) LV DV¥(rrt)]  (BA)

tIma‘I’(r,ro;t) = O(r—ro). (B.5)

The Smoluchowski equation describes how particle distribution functions change
in time and is fundamental to the non-equilibrium statistical mechanics of over-
damped particles such as colloids and polymers.

Sometimesit ismore advantageousto have explicit equations of motionfor the
particlesinstead of distribution functions. Below we shall show that the Langevin
equations which lead to the above Smoluchowski equation are:

zt—r = —:—CLVcI>+VD+f (B.6)
(ft)) = 0 (B.7)
(fOf(t)) 2DIS(t —t'). (B.8)
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where | denotes the 3-dimensional unit matrix lop = Bap-
The proof starts with the Chapman-Kolmogorov equation, which in our case
reads

W(r,ro;t+At) = /dr"P(r,r’;At)‘P(r’,ro;t). (B.9)

This equation simply states that the probability of finding a particle at position r
attimet + At, givenitwasat ro att = 0, isequal to the probability of finding that
particle at positionr’ at timet, givenit wasat positionrg at timet = 0, multiplied
by the probability that it moved fromr’ tor inthe last interval At, integrated over
al possibilities for r’ (we assume ¥ is properly normalized). In the following
we assume that we are always interested in averages [dr F(r)W¥(r,ro;t) of some
function F(r). According to Eq. (B.9) thisaverage at t + At reads

/dr F(r)¥(r,ro;t+At) :/dr /dr’ F(r)P(r,r’; A)¥(r',ro;t). (B.10)

We shall now perform theintegral with respect tor ontheright hand side. Because
W(r,r’; At) differsfrom zero only whenr isin the neighbourhood of r’, we expand
F(r)aroundr’,
oF(r) 1 %F (r')
. / ¢! - ¢! A T S
FI)=FI")+>(ra—ry) a7 +2azé(ra re)(rg—Tp) o, (B.11)

where oc and 3 run from 1 to 3. Introducing thisinto Eq. (B.10) we get

/df F(r)®(r,roit+At) =
/dr' {/df ‘P(r,r':At)}‘P(r',ro;t)F(r’)+
%/dr’ {/dr (ra—r&)‘l’(r,r’;At)}‘I’(r’,ro;t)a%(/rl)+

o

1 _ L OPF(r)
Eazﬁ/drl {/dr (ra—r&)(rﬁ—ré)‘P(r,r’,At)}‘I‘(r’,ro,t)m.
(B.12)
Now we evaluate the terms between brackets:
/dr P(r,r';At) = 1 (B.13)
100 oD
dr (rg, —ri)P(r,r;At) = ————At+ —At (B.14)
[ (ra—rwrian = g iAo
/dr (ro—re)(rg—rg)¥(r,r’;At) = 2D3pAt, (B.15)
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which hold true up to first order in At. The first equation is obvious. The last two
easily follow from the Langevin equations (B.6) - (B.8). Introducing thisinto Eq.
(B.12), dividing by At and taking the limit At — 0, we get

/dr F(r)=-¥(r,ro;t) =
190 9D OF(r) | (F()) s o
z/d {[_587 ar’] o TP o }‘P(r,ro,t) (B.16)

Next we change the integration variable r’ into r and perform some partial inte-
grations. Making use of lim_..*¥(r,ro;t) = 0 and V2(D¥) = V- (¥VD)+V.
(DVY¥), we finally obtain

/dr F(N)2¥(r, 1o t)
_ Z/dr F(r {1‘P(r fo; )grij +
> [ar e {a% e | + o ¥
= [a F(r){V-E‘P(r,ro;t)vtb(r)]+V-[DV‘P(r,ro;t)]}. (B.17)

Because this has to hold true for al possible F(r) we conclude that the Smolu-
chowski equation (B.4) follows from the Langevin equations (B.6) - (B.8).
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Chapter 3
The Zimm model

3.1 Hydrodynamicinteractionsin a Gaussian chain

In the previous chapter we have focused on the Rouse chain, which gives a good
description of the dynamics of unentangled concentrated polymer solutions and
melts. We will now add hydrodynamic interactions between the beads of a Gaus-
sian chain. This so-called Zimm chain, gives a good description of the dynamics
of unentangled dilute polymer solutions.

The equations describing hydrodynamic interactions between beads, up to
lowest order in the bead separations, are given by

N

Vi = _ZEJFJ (31)
i—o

TR T (I +RijRij) (3.2)

Wi = e’ HJ—S,mSRij +RijRij) - :

Herev; isthe velocity of bead i, Fj the force exerted by the fluid on bead j, ns the
solvent viscosity, a the radius of a bead, and f{ij =Rij/Rj, where Rij = Ri — R;j
isthe vector from the position of bead j to the position of bead i. A derivation can
be found in Appendix A of this chapter.

In Eg. (3.1), the mobility tensors W relate the bead velocities to the hydro-
dynamic forces acting on the beads. Of course there are also conservative forces
—V® acting on the beads because they are connected by springs. On the Smolu-
chowski time scale, we assume that the conservative forces make the beads move
with constant velocities vi. This amounts to saying that the forces —V @ are ex-
actly balanced by the hydrodynamic forces acting on the beads k. In Appendix
B we describe the Smoluchowski equation for the beads in a Zimm chain. The
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Langevin equations corresponding to this Smoluchowski equation are

R,

& _Zﬁjk’vkq)‘f'kBTZVk‘ﬁjk-i—fj (3.3)

k k
(fi) = 0 (3.4)
(fiOf(t)) = 2keTHd(t—t). (3.5)

The reader can easily check that these reduce to the equations of motion of the
Rouse chain when hydrodynamic interactions are neglected.

The particular form of the mobility tensor Eq. (3.2) (the Oseen tensor) has the
fortunate property

> ViR =0, (3.6)
K

which greatly ssmplifies Eq. (3.3).

3.2 Normal modesand Zimm relaxation times
If we introduce the mobility tensors Eq. (3.2) into the Langevin equations (3.3)
- (3.5), we are left with a completely intractable set of equations. One way out

of thisis by noting that in equilibrium, on average, the mobility tensor will be
proportional to the unit tensor. A simple calculation yields

_ 1 1 - &
(Hi)eq = 8nns<R—jk>eq<l+<Rijjk>eq>
"~ e\
~6mns \ Rk &

1
1 6 2 _
= | ¥4
s (71 10) e

The next step isto write down the equations of motion of the Rouse modes, using
Egs. (2.35) and (2.37):

dXp & 3keT, . ,( o«
W e (gt 00
(Fp(t)) = 0 (3.9)
(Fp(OFq(t)) = kBTN“—_‘fll_S(t—t’), (3.10)
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where

1
6 2 pr 1 gr 1
Mpa = N+1z 2 67me (n|j—k|) COS{N+1(J+§)} COS{NH(HE)] |

j=0k=0
(3.11)

Eqg. (3.8) isstill not tractable. It turns out however (see Appendix C for a proof)
that for large N approximately

1
N+1\2 1

Introducing this result in Eq. (3.8), we see that the Rouse modes, just like with
the Rouse chain, constitute a set of decoupled coordinates of the Zimm chain:

% = —T—lpxp+Fp (3.13)
(Fp(t)) = 0 (3.14)
(Fo(Falt)) = keTs % “pp Tpg3(t 1), (3.15)

where the first term on the right hand side of Eqg. (3.13) equals zero when p = 0,
and otherwise, for p < N,

3 3

& TeT B

Egs. (3.13) - (3.15) lead to the same exponential decay of the normal mode auto-
correlations as in the case of the Rouse chain,

(Xp(t) - Xp(0)) = (X3) exp(—t/1p), (3.17)

but with a different distribution of relaxation times tp. Notably, the relaxation

time of the slowest mode, p = 1, scaes as N3 instead of N2. The amplitudes of
the normal modes, however, are the same as in the case of the Rouse chain,

(X3) ~ 7—. (3.18)

This is because both the Rouse and Zimm chains are based on the same static
model (the Gaussian chain), and only differ in the details of thefriction, i.e. they
only differ in their kinetics.
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3.3 Dynamic propertiesof a Zimm chain

The diffusion coefficient of (the centre-of-mass of) a Zimm chain can easily be
calculated from Egs. (3.13) - (3.15). Theresultis

_ kT poo _ keT \[ LR

Do = 5 N71~ 67cnsb N+122 21

j=0k= 0|j—k|

6 1 8 keT /6
— 2 J—. (319
67msb\/7 o , Kk} 36mebV AN (3.19)

The diffusion coefficient now scales with N=%/2, in agreement with experiments
on dilute polymer solutions.

The similarities between the Zimm chain and the Rouse chain enable us to
quickly calculate various other dynamic properties. For example, the time corre-
lation function of the end-to-end vector is given by Eq. (2.53), but now with the
relaxation times T, given by Eq. (3.16). Similarly, the ssgmental motion can be
found from Eqg. (2.55), and the shear relaxation modulus (excluding the solvent
contribution) from Eq. (2.79). Hence, for dilute polymer solutions, the Zimm
model predicts an intrinsic viscosity given by

3
n—"s _ NavkeT %_p Mlz (N+1)b? Zii
PNs Mns ;= 2 12n

m] =

where p isthe polymer concentration and M is the mol mass of the polymer. The
intrinsic viscosity scales with N¥/2 (remember that M o N), again in agreement
with experiments on dilute polymer solutions.

Problems
3-1. Proof thelast step in Eq. (3.7) [Hint: the Zimm chain is a Gaussian chain].
3-2. Check Eq. (3.18) explicitly from Egs. (3.12) and (3.16) and by noting that
d 2
= q (Xp(t) - Xp(t)) = T (Xp(t) - Xp(t)) +2(Fp(t) - Xp(t))

in equilibrium, where the last term is equal to
t [ o]

2 / dre /% (Fo(t)-Fp(t)) = / dt e -/% (Fo(t) - Fo(T)).
O —00

3-3. Proof thefirst step in Eq. (3.19). [Hint: remember that the centre-of-massis
given by Xg].

38



3. THE ZIMM MODEL

Appendix A: Derivation of hydrodynamicinteractions
in a suspension of spheres

In Appendix A of chapter 2 we calculated the flow field in the solvent around a
single slowly moving sphere. When more than one sphereis present in the system,
thisflow field will befelt by the other spheres. Asaresult these spheres experience
a force which is said to result from hydrodynamic interactions with the origina
sphere.

We will assume that at each time the fluid flow field can be treated as a steady
state flow field. Thisistrue for very slow flows, where changes in positions and
velocities of the spheres take place over much larger time scales than the time it
takes for the fluid flow field to react to such changes. The hydrodynamic problem
thenisto find aflow field satisfying the stationary Stokes equations,

nsVv = VP (A.1)

V.v = 0, (A.2)
together with the boundary conditions

V(Ri+a) =V, Vi, (A.3)

where R; isthe position vector and v; isthe velocity vector of thei’th sphere, and
aisany vector of length a. If the spheres are very far apart we may approximately
consider any one of them to be alone in the fluid. The flow field is then just the
sum of all flow fields emanating from the different spheres

v(r) = Zvi(o)(r —Ri), (A.4)
where, according to Eq. (A.13),
(0) I aZ
o) v [ s
2
+(r=R)((r =Ry .Vi)4|r iaR_|3 {1_ (r _aRi)z} : (A.5)

We shall now calculate the correction to this flow field, which is of lowest order
in the sphere separation.

We shall first discuss the situation for only two spheres in the fluid. In the
neighbourhood of sphere one the velocity field may be written as

3a {v L (T=R) =Ry v], (A.6)

0)
vi) =\ —R)+-—2 :
() =vi( 1)Jr4|r—R2| r—Ra| =Ry 2
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3. THE ZIMM MODEL

where we have approximated V(ZO)(I’ —R>) to terms of order a/ |r — R2|. On the

surface of sphere one we approximate this further by

V(R1+a) = V(10)(a) + % (V2+R21R21- Vo), (A7)
where Ry; = (R2 —R1)/|R2—R1|. Because v(lo)(a) = V1, we notice that this
result is not consistent with the boundary condition v(R1+a) = v3. In order to
satisfy this boundary condition we subtract from our results so far, a solution of
Egs. (A.1) and (A.2) which goes to zero at infinity, and which on the surface
of sphere one corrects for the second term in Eq. (A.7). The flow field in the
neighbourhood of sphere one then reads

3a al
Corr
_ 1
vir) = vi 4\r—R1]{ +3(r—R1)2]

2
(=R ((r —Ry) V)2 [1—6‘—]

4r —Ry)? (r—Ry)?
+ﬁ (V2+R21R21 - V2) (A.8)
4R
V(iorr = Vi— ﬁ (V2—|— |i21|i21 . Vz) . (A.9)
4R

The flow field in the neighbourhood of sphere two istreated similarly.

We notice that the correction that we have applied to the flow field in order to
satisfy the boundary conditions at the surface of sphere oneis of order a/Ro;. Its
strength in the neighbourhood of sphere two is then of order (a/R21)?, and need
therefore not be taken into account when the flow field is adapted to the boundary
conditions at sphere two.

The flow field around sphere one is now given by Egs. (A.8) and (A.9). The
last term in Eq. (A.8) does not contribute to the stress tensor (the gradient of a
constant field is zero). The force exerted by the fluid on sphere one then equals
—6mnsavi®". A similar result holds for sphere two. In full we have

3a — ~ =~
F1 = —6mnsavi+6nnsa R (I +R2R21) - vo (A.10)
3a — -~ =
Fo = —6nnsavZ+6nnsa4R2 (1 +R21R21) - vy, (A.11)
1

where | is the three-dimensional unit tensor. Inverti ng these equations, retaining
only terms up to order a/Rp1, we get
1
— Fi—
6rnsa 8mnsR21
1
Vo = — Fo—
2 6mnsa 2 8nmnsRx1

(|_+ ﬁﬂﬁgl) -F2 (A.12)

V1=

(|_+ ﬁﬂﬁgl) -F1 (A.13)
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3. THE ZIMM MODEL

When more than two spheres are present in the fluid, corrections resulting
from n-body interactions (n > 3) are of order (a/R; ,-)2 or higher and need not be
taken into account. The above treatment therefore generalizes to

N _

Fi = =28y (A.14)
j=0
N —

vi= L HF (A.15)
j=0

where

r. = py 38—~ -~ =

Si = 6msal, Cijz—Gnﬂsarm(WRinij) (A.16)

_ 1 — B L

uii N GTCnsal’ MJ - 8nnSR|J (I +R|JR|]) ' (Al?)

H”- isgeneraly called the mobility tensor. The specific form Eq. (A.17) isknown
as the Oseen tensor.

Appendix B: Smoluchowski equation for the Zimm
chain

For sake of completeness, we will describe the Smoluchowski equation for the
beads in a Zimm chain. The equation is similar to, but a generalized version of,
the Smoluchowski equation for a single bead treated in Appendix B of chapter 2.
Let ¥(Ro,...,Rn;t) be the probability density of finding beadsO,...,N near
Ro,...,Rn a timet. The equation of particle conservation can be written as

¥ N
EZ_ZVJ'JL (B.1)
j=0

where J; isthe flux of beads j. Thisflux may be written as
Jj :—ZSjk~Vk‘Ij—Zij~(Vk®)‘I’. (B.2)
k k

Thefirst termin Eq. (B.2) isthe flux dueto the random displacements of all beads,
which resultsin aflux along the negative gradient of the probability density. The
second term results from the forces — V@ felt by all the beads. On the Smolu-
chowski time scale, these forces make the beads move with constant velocities vy,
i.e., theforces — V@ are exactly balanced by the hydrodynamic forces acting on
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3. THE ZIMM MODEL

the beads k. Introducing these forcesinto Eq. (A.15), we find the systematic part
of the velocity of bead j:

- % Hix (V@) (B.3)

Multiplying this by ¥, we obtain the systematic part of the flux of particle j.

At equilibrium, each flux J; must be zero and the distribution must be equal to
the Boltzmann distribution Weq = Cexp[—p®]. Using thisin Eq. (B.2) it follows
that

which is a generalization of the Einstein equation.
Combining Egs. (B.1), (B.2), and (B.4) we find the Smoluchowski equation
for the beadsin a Zimm chain:

¥ _
ot = ZZVJ ’ ujk' (qu)+ kBTVkm‘P) ¥, (B.5)
i k

Using techniques similar to those used in Appendix B of chapter 2, it can be shown
that the Langevin Egs. (3.3) - (3.5) are equivalent to the above Smoluchowski
equation.

Appendix C: Derivation of Eg. (3.12)

In order to derive Eq. (3.12) we write
2 1 6 pr . 1
Mpg = N—+16nnsb\/;z‘cos{N+l(J+§)]x
s S
= VALY
B 6 1 e ,. 1
— N+161msb\/72COS{N+1 +§)}COS{N+1(1+§)}X
j
z © (an) 1
k=N 1) VK
2 6 1] . [ o ,. 1
N+161msb\/; [ J+2)] Sn{N+1(J+§)] X

cos
=0
j
. an) 1
sn{ —— | — (C
2 an(§5) U

[ERN

cos[ (j—k+=

NI

k=j—N
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3. THE ZIMM MODEL

Figure 3.1: Contour for integration in
the complex plane, Eq. (C.4). Part | is
aline aong thereal axisfrom x = 0 to
x =R, part I is a semicircle z= Re?, 1] Il
where ¢ € ]0,rt/4], and part Il is the
diagona line z= (14 1i)x, where x €

]0,R/V2].

A\
'

We now approximate

j oo

an) 1 / (an) 1

cos — = dk cos —

k—%m <N+1 VK oo N+1/ /K

oo 2
= 4/ dxcos(qnx ): 2(N+1) (C.2)

0

N+1 q

i oo
. grk 1 / _ ( grk ) 1
E sin — & dk sin —=0. C3
N <N+1> K] o N+1 K] €3

The result of EqQ. (C.3) is obvious because the integrand is an odd function of k.
The last equality in Eq. (C.2) can be found by considering the complex function
f(2) = exp(iaz?) for any positive real number a on the contour given in Fig. 3.1.
Because f(z) is anaytic (without singularities) on all points on and within the
contour, the contour integral of f(z) must be zero. We now write

0 = fdzeiazzz/ dzeiaz2+/ dzeiaz2+/ dz ¥
0) () ()

0

= /Rdx g +/n/4d¢ jReioHARE? | dx (14 i)eal2+x?
0 0

R/V2

_ /Rdx eiax2 i /n/4d¢ iRei¢+iachosz¢—astin2¢ —(1+i) /R/\/de e—2ax2
0 0 0

(C.4)

Taking the limit R — < the second term vanishes, after which the real part of the
equation yields

/Ooo dx cos(ax?) = /Ooo dx e~ 2 = ,/%. (C.5)

Introducing Egs. (C.2) and (C.3) into Eq. (C.1) one finds Eq. (3.12). Asa
technical detail we note that in principle diagonal termsin Eqg. (3.11) should have
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3. THE ZIMM MODEL

been treated separately, which is clear from Eq. (A.17). Since the contribution of
al other terms s proportional to N%/2, however, we omit the diagona terms.
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Chapter 4
Thetube modd

4.1 Entanglementsin dense polymer systems

In the Rouse model we have assumed that interactions between different chains
can be treated through some effective friction coefficient. Aswe have seen, this
model applieswell to melts of short polymer chains. In the Zimm model we have
assumed that interactions between different chains can be ignored altogether, and
only intrachain hydrodynamic interactions need to be taken into account. This
model applies well to dilute polymer systems.

We will now treat the case of long polymer chains at high concentration or
in the melt state. Studies of the mechanical properties of such systems revea a
nontrivial molecular weight dependence of the viscosity and rubber-like elastic
behavior on time scales which increase with chain length. The observed behavior
israther universal, independent of temperature or molecular species (aslong asthe
polymer is linear and flexible), which indicates that the phenomena are governed
by the general nature of polymers. This general nature is, of course, the fact
that the chains are intertwined and can not penetrate through each other: they
are “entangled” (see Fig. 4.1). These topological interactions serioudly affect the
dynamical properties since they impose constraints on the motion of the polymers.

Figure4.1: A simplified picture of
polymer chains at high density. The
chains are intertwined and cannot
penetrate through each other.
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4. THE TUBE MODEL

Figure 4.2: Representation of a poly-
mer in atube. The tube is due to sur-
rounding chains, i.e. entanglements,
so that the polymer can only reptate
along the tube.

4.2 Thetube modd

In the tube model, introduced by De Gennes and further refined by Doi and Ed-
wards, the complicated topological interactions are simplified to an effective tube
surrounding each polymer chain. In order to move over large distances, the chain
has to leave the tube by means of longitudinal motions. This concept of a tube
clearly has only a statistical (mean field) meaning. The tube can change by two
mechanisms. First by means of the motion of the central chain itself, by which
the chain leaves parts of its original tube, and generates new parts. Secondly, the
tube will fluctuate because of motions of the chains which build up the tube. It is
generally believed that tube fluctuations of the second kind are unimportant for ex-
tremely long chains. For the case of medium long chains, subsequent corrections
can be made to account for fluctuating tubes.

Let us now look at the mechanisms which allow the polymer chain to move
along the tube axis, which is also called the primitive chain.

The chain of interest fluctuates around the primitive chain. By some fluctua-
tion it may store some excess mass in part of the chain, see Fig. 4.2. This mass
may diffuse along the primitive chain and finally leave the tube. The chain thus
creates a new piece of tube and at the same time destroys part of the tube at the
other side. Thiskind of motion is called reptation. Whether the tube picture is
indeed correct for concentrated polymer solutions or melts still remains a matter
for debate, but many experimental and simulation results suggest that reptation is
the dominant mechanism for the dynamics of achainin the highly entangled state.

It is clear from the above picture that the reptative motion will determine the
long time motion of the chain. The main concept of the model is the primitive
chain. The details of the polymer itself are to a high extent irrelevant. We may
therefore choose a convenient polymer as we wish. Our polymer will again be
a Gaussian chain. Its motion will be governed by the Langevin equations at the
Smoluchowski time scale. Our basic chain therefore is a Rouse chain.
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4. THE TUBE MODEL

4.3 Definition of the moddl

The tube model consists of two parts. First we have the basic chain, and secondly
we have the tube and its motion. So:

e Basicchan
Rouse chain with parameters N, b and £.

e Primitive chain

1. The primitive chain has contour length L, which is assumed to be
constant. The position along the primitive chain will be indicated by
the continuous variable s € [0, L]. The configurations of the primitive
chain are assumed to be Gaussian; by this we mean that

<(R(s)—R(s’))2> —d|s-s]|, (4.1)

where d is a new parameter having the dimensions of length. It isthe
step length of the primitive chain, or the tube diameter.

2. The primitive chain can move back and forth only along itself with
diffusion coefficient
ke T

(N+1)C’

i.e., with the Rouse diffusion coefficient, because the motion of the

primitive chain corresponds to the overall trandation of the Rouse
chain along the tube.

Dg = (4.2

The Gaussian character of the distribution of primitive chain conformationsis
consistent with the reptation picture, in which the chain continuously creates new
pieces of tube, which may be chosen in random directions with step length d.

Apparently we have introduced two new parameters, the contour length L and
the step length d. Only one of them is independent, however, because they are
related by the end-to-end distance of the chain, (R?) = Nb? = dL, where thefirst
equality stemsfrom thefact that we are dealing with a Rouse chain, and the second
equality followsfrom Eg. (4.1).

4.4 Segmental motion

We shall now demonstrate that according to our model the mean quadratic dis-
placement of atypical monomer behaves like in Fig. (4.3). This behaviour has

47



4. THE TUBE MODEL

4Ing ()

seg

Figure 4.3: Logarithmic plot of the seg-
mental mean sguare displacement, in
case of the reptation model (solid line)
and the Rouse model (dashed line).

<«chain— « tube »—3-d—

been qualitatively verified by computer simulations. Of course the fina regime
should be simple diffusive motion. The important prediction is the dependence of
the diffusion constant on N.

In Fig. (4.3), tr is the Rouse time which is equal to t1 in EQ. (2.46). The
meaning of te and tq Will become clear in the remaining part of this section. We
shall now treat the different regimesin Fig. (4.3) one after another.

Nt <1e

At short times a Rouse bead does not know about any tube constraints. According
to Eq. (2.57) then

o= (207)

Once the segment has moved a distance equal to the tube diameter d, it will feel
the constraints of the tube, and a new regime will set in. The time at which this
happens is given by the entanglement time

Nl

(4.3)

LS

e = TokaTh?

(4.9)

Notice that thisis independent of N.

) Te <t <1R

On the time and distance scale we are looking now, the bead performs random
motions, still constrained by the fact that the monomer is a part of a chain because
t < 1r. Orthogonally to the primitive chain these motions do not lead to any
displacement, because of the constraints implied by the tube. Only aong the
primitive chain the bead may diffuse free of any other constraint than the one
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4. THE TUBE MODEL

implied by the fact that it belongs to a chain. The diffusion therefore is given by
the 1-dimensional analog of Eqg. (2.57) or Eq. (4.3),

1
1 /12kTb?\2
t) —sn(0))2) = = t2, 45
(150 -%(0)%) = 5 () @5)
where s,(t) is the position of bead n along the primitive chain at timet. It is
assumed here that for timest < tr the chain as a whole does not move, i.e. that
the primitive chain does not change. Using Eq. (4.1) then

NI

o\
4kBTb> th) (4.6)

Oseg(t) =d ( 3

where we have assumed (|sn(t) — $n(0) ) & {(sn(t) — sn(0))?) 2.

) tr<t <1y

The bead still moves along the tube diameter. Now however t > tr, which means
that we should use the 1-dimensional analog of Eq. (2.56):

((sn(t) — sn(0))?) = 2Dgt. (4.7)

Again assuming that the tube does not change appreciably during timet, we get

NI

ZKB;T} “ (4.8)

o) =4 1

From our treatment it is clear that tq4 is the time it takes for the chain to create
a tube which is uncorrelated to the old one, or the time it takes for the chain to
get disentangled fromits old surroundings. We will cal cul ate the disentanglement
time tq4 in the next paragraph.

V) 1g < t

Thisisthe regime in which reptation dominates. On this time and space scale we
may attribute to every bead a definite value of s. We then want to calculate

o(st) = {(R(st) —R(s,0))%), (4.9)

where R(s,t) is the position of bead s at timet. In order to calculate @(s,t) it is
useful to introduce

¢(s,951) = ((R(s,t) —R(5,0))%), (4.10)
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chain at time ¢

chain at time #+At

Figure 4.4: Motion of the
primitive chain along its
contour.

i.e. the mean square distance between bead s at timet and bead s’ at time zero.
According to Fig. (4.4), for al s, except s=0and s= L, we have

o(s, St +At) = (@(s+AE,S;t)), (4.12)

where A& according to the definition of the primitive chain in section 4.3 is a
stochastic variable. The average on the right hand side has to be taken over the
distribution of A. Expanding the right hand side of Eq. (4.11) we get

2
(p(s+AE,S;t)) ~ (p(S,S’;t)+(A§)a%(p(S,S’;t)+:—2L<(A§)2>§—Sch(s,s’;t)
= (p(s,g;t)+DGAt%<p(s,§;t). (4.12)

Introducing thisinto Eg. (4.11) and taking the limit for At going to zero, we get

2(p(s s;t)=D a—2(p(s g;t) (4.13)
ot T Gogg T =) '

In order to complete our description of reptation we have to find the boundary
conditions going with this diffusion equation. We will demonstrate that these are
given by

0(s,S;t)t=o = d|s—F| (4.14)
J . _
a—S(P(S,S/,t)ls:L = d (4.15)
2 pssit)lso = . (4.6)
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The first of these is obvious. The second follows from

ais(p(S,S/;t)|$L:2<aRa(St)’&L( (L,t) —R(S, ))>

_ 2<3R§jt)|ﬂ< R(<,1) >
+z<aRa<§")rs_L (R(,t) — <§,0>>
_ z<aR§§’t)|sﬁL-<R<L,t>—R(s’,t>)>

= (RS -RED) st = s~ Slor. (4.17)

Condition Eq. (4.16) follows from a similar reasoning.
We now solve Egs. (4.13)—4.16), obtaining

o(s 8it) = |s—s’|d+2Dth
Ld > ey prs prs
71:2 z (1—e )cos<T> cos| —— | (4.18)

where
L2 1b* ¢
Dg  m2d2kgT
We shall not derive this here. The reader may check that Eq. (4.18) indeed is the
solution to Eq. (4.13) satisfying (4.14)-(4.16).
Notice that tq becomes much larger than tr for large N, see Eq. (2.46). If the
number of stepsin the primitive chain is defined by Z = sz/d2 L/d, then the

ratio between 14 and 1R is 3Z.
Taking thelimit s— s’ in Eq. (4.18) we get

Tq = — N3, (4.19)

((R(st) —R(s,0))2) = 2Dth+4;—g glcosz (p“TS> (1—etV /Td) . (4.20)

For t > 14 we get diffusive behaviour with diffusion constant

1. d 1d%ksT 1
D=3Pef =3p ¢ N 420
Notice that this is proportional to N~2, whereas the diffusion coefficient of the
Rouse model was proportional to N~1. The reptation result, N—2, is confirmed
by experiments which measured the diffusion coefficients of polymer melts as a
function of their molecular weight.
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In G(t)
Tg T4 (N) Tq (Ny)
! J l<_ o  Figure4.5: Schematic logaritmic
" plot of the time behaviour of the
shear relaxation modulus G(t) as
measured in a concentated poly-
— mer solution or melt; N; < No.

4.5 Viscodastic behaviour

Experimentally the shear relaxation modulus G(t) of a concentrated polymer so-
lution or melt turns out to be like in Fig. 4.5. We distinguish two regimes.

i)t<Te

At short timesthe chain behaveslike a 3-dimensional Rouse chain. Using Eq. (2.79)
we find

]
G(t) = f,"ilzexp (~2t/5)

ckgT 5
N+1/ dp exp (—2p“t/TR)

o CkBT TCTR
N N~|—1\/ N (422)

which decays ast™2. Att = Te this possibility to relax ends. The only way for the
chain to relax any further is by breaking out of the tube.

Q

i) t > 1o

The stress that remains in the system is caused by the fact that the chains are
trapped in twisted tubes. By means of reptation the chain can break out of its
tube. The newly generated tube contains no stress. So, it is plausible to assume
that the stress at any timet is proportional to the fraction of the original tube that
isdtill part of the tube at timet. We'll call thisfraction ¥ (t). So,

G(t) = GQ¥ (t). (4.23)

Onthereptation timescale, te ispracticaly zero, sowecan set ¥ (te) = ¥ (0) = 1.
To make a smooth transition from the Rouse regime to the reptation regime, we
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match Eq. (4.22) with Eq. (4.23) at t = 1, Yielding

G0 ckeT [mMTR ckBTb_2
NTN+1 8te /2rd?

(4.24)

Notice that the plateau value Gﬁ isindependent of the chain length N. The numer-
ical prefactor of 1/v/2r in Eq. (4.24) is not rigorous because in reptation theory
the time 1¢, a which the Rouse-like modulus is supposed to be instantaneously
replaced by the reptation-like modulus, is not defined in a rigorous manner. A
more precise calculation based on stress relaxation after alarge step strain givesa
numerical prefactor of 4/5, i.e.

0 _ 4 ckgTb? _ AckeT
NT 5 o2 5 Ne

In the last equation we have defined the entanglement length Ne. In most exper-
iments the entanglement length (or more precisely the entanglement molecular
weight) is estimated from the value of the plateau modulus, using Eq. (4.25).

We will now calculate W (t). Take alook at

(u(s,t) -u(s,0)) = <aR§§’t) .8R52’0)>. (4.26)

The vector u(S,t) is the tangent to the primitive chain, at segment s’ at time t.
Because the primitive chain has been parametrized with the contour length, we
have from Eq. (4.1) (u-u) = (AR -AR) / (As)? = d/As ; the non-existence of the
limit of Asgoing to zero isa peculiarity of aGaussian process. Using Egs. (4.10)
and (4.18) we calculate

G

(4.25)

1 9°
(u(s,t)-u(s0)) = —E@(p(s’,s;t)

B 2d & 10219y i [ PRSY o [ PS

= db(s-9) - X d)sn<T>sn<T
20 & _t2/1g i [ PTSY o <pns’ )

= — Y eP/ugn(—=)sin( — ), (4.27)
25 0 ()

where we have used
2 & . /prsy L (pns’)
— Y sn(——)sin[ — | =§(s—9). (4.28)
S () sn(7) =s(s-9)
Using thislast equation, we also find
(u(s,0)-u(s0))=dd(s—9). (4.29)
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W(s,f)
NS

t/’l?d: 1.0

1 Figure 4.6: Development of (s, t)
0 L2 L intime.

S
This equation states that there is no correlation between the tangents to the primi-
tivechain at asegment s, and at another segment s'. If we consider (u (s,t) - u(s,0))
asafunction of ¢, at timet, we see that the original delta function has broadened
and lowered. However, the tangent u(s',t) can only be correlated to u (s,0) by
means of diffusion of segment s/, during thetimeinterval [0,t], to the place where
swas at timet = 0, and till liesin the original tube. So, % (u(s,t)-u(s,0)) is
the probability density that, at timet, segment s’ lies within the original tube at
the place where swas initially. Integrating over s’ gives us the probability W (s,t)
that at timet any segment lies within the original tube at the place where segment
swas initialy. In other words, the chance that the original tube segment sis still
up-to-date, is

Y(st) = %/OLds’ {u(d,t)-u(s0))

_ Ay, (@) e P/, (4.30)
U Y L

where the prime at the summation sign indicatesthat only termswith odd p should

occur in the sum. We have plotted this in Fig. 4.6. The fraction of the original

tube that is still intact at timet, is therefore given by

W) — %/OLds‘P(s,t)

% 3 ize—t P/t (4.31)
ne s P
This formula shows why 14 is the time needed by the chain to reptate out if its
tube; for t > 14, ¥ (t) isfalling to zero quickly.

In conclusion we have found results that are in good agreement with Fig. 4.5.
We see aninitial drop proportional tot ~/2; after that a plateau value G, indepen-
dent of N; and finally a maximum relaxation time tq proportional to N°.

0
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4. THE TUBE MODEL

Finally, we are able to calculate the viscosity of a concentrated polymer solu-
tion or melt of reptating chains. Using Eq. 2.70 we find

e 8o/ 1 [ 2
= dtG(1) =G — —/ dt e P/
n /0 (7) angl P2 Jo
8 /1 n?
= G%PTdZIFZEGg‘Td. (4.32)
p—1

Since G,Q, is independent of N, the viscosity, like tq4, is proportional to N3. This
is close to the experimentally observed scaling 1 «< N34, The small discrepancy
may be removed by introducing other relaxation modes in the tube model, which
is beyond the scope of these lecture notes.

Problems

4-1. In Eq. (4.22) we have shown that, at short times, the shear relaxation modulus
G(t) decays ast~2. We know, however, that G(t) must befiniteatt = 0. Explain
how the stress relaxes at extremely short times. Draw thisin Fig. 4.5.

4-2. In the tube model we have assumed that the primitive chain has a fixed
contour length L. In reality, the contour length of a primitive chain can fluctuate
in time. Calculations of a Rouse chain constrained in a straight tube of length L
show that the average contour length fluctuation is given by

1
— Z%N N—bZ?
AL_<AL>N(3 .

Show that the relative fluctuation of the contour length decreases with increasing
chainlength, i.e. that the fixed contour length assumptionisjustified for extremely
long chains.

4-3. Can you guess what the effect of contour length fluctuations will be on
the disentanglement times of entangled, but not extremely long, polymer chains?
[Hint: See the first equality in Eq. (4.19)]. What will be the consequence for the
viscosity of such polymer chains compared to the tube model prediction?
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central limit theorem, 8
Chapman-Kolmogorov equation, 33
contour length, 47

diffusion coefficient, 15
Rouse model, 19
tube model, 51
Zimm model, 38
disentanglement time, 49, 51

Einstein equation, 15, 42
end-to-end vector, 7, 20
entanglement length, 53
entanglement time, 48
entropic spring, 9
equipartition, 15

fluctuation-dissipation theorem, 15
friction, 14, 23, 31

gaussian chain, 11, 16
Green-Kubo, 25

hydrodynamic interactions, 35, 39
intrinsic viscosity
Rouse model, 28
Zimm model, 38
Kuhn length, 8
Langevin equation, 16, 32, 36

mean-sguare displacement
centre-of-mass, 19
segment, 22, 47
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mobility tensor, 35, 41

Onsager’s regression hypothesis, 25
Oseen tensor, 36, 41

plateau modulus, 53, 54
primitive chain, 46, 47, 50

random forces, 14
relaxation time

Rouse model, 19

tube model, 51

Zimm mode!, 37
reptation, 46, 49, 52
Rouse chain, 16, 47, 52
Rouse mode, 18, 19, 37
Rouse time, 20, 48

shear flow, 24

shear relaxation modulus, 24, 25, 27,
52

Smoluchowski equation, 16, 32, 41

statistical segment, 8

stochastic forces, 14

Stokes friction, 31

stress tensor, 23, 25

tube diameter, 47
tube mode!, 46

viscosity, 25
Rouse model, 27
tube model, 55
Zimm model, 38

Zimm chain, 35



