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Preface

These lecture notes provide a concise introduction to the theory of polymer dy-
namics. The reader is assumed to have a reasonable math background (including
some knowledge of probability and statistics, partial differential equations, and
complex functions) and have some knowledge of statistical mechanics.

We will first introduce the concept of a Gaussian chain (chapter 1), which is a
simple bead and spring model representing the equilibrium properties of a poly-
mer. By adding friction and random forces to such a chain, one arrives at a de-
scription of the dynamics of a single polymer. For simplicity we will first neglect
any hydrodynamic interactions (HIs). Surprisingly, this so-called Rouse model
(chapter 2) is a very good approximation for low molecular weight polymers at
high concentrations.

The next two chapters deal with extensions of the Rouse model. In chapter 3
we will treat HIs in an approximate way and arrive at the Zimm model, appropriate
for dilute polymers. In chapter 4 we will introduce the tube model, in which
the primary result of entanglements in high molecular weight polymers is the
constraining of a test chain to longitudinal motion along its own contour.

The following books have been very helpful in the preparation of these lec-
tures:

• W.J. Briels, Theory of Polymer Dynamics, Lecture Notes, Uppsala (1994).
Also available on http://www.tn.utwente.nl/cdr/PolymeerDictaat/.

• M. Doi and S.F. Edwards, The Theory of Polymer Dynamics (Clarendon,
Oxford, 1986).

• D.M. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1976).

I would especially like to thank Prof. Wim Briels, who introduced me to the sub-
ject of polymer dynamics. His work formed the basis of a large part of these
lecture notes.

Johan Padding, Cambridge, January 2005.
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Chapter 1

The Gaussian chain

1.1 Similarity of global properties

Polymers are long linear macromolecules made up of a large number of chemical
units or monomers, which are linked together through covalent bonds. The num-
ber of monomers per polymer may vary from a hundred to many thousands. We
can describe the conformation of a polymer by giving the positions of its back-
bone atoms. The positions of the remaining atoms then usually follow by simple
chemical rules. So, suppose we have N +1 monomers, with N +1 position vectors

R0,R1, . . . ,RN .

We then have N bond vectors

r1 = R1 −R0, . . . ,rN = RN −RN−1.

Much of the static and dynamic behavior of polymers can be explained by models
which are surprisingly simple. This is possible because the global, large scale
properties of polymers do not depend on the chemical details of the monomers,
except for some species-dependent “effective” parameters. For example, one can
measure the end-to-end vector, defined as

R = RN −R0 =
N

∑
i=1

ri. (1.1)

If the end-to-end vector is measured for a large number of polymers in a melt, one
will find that the distribution of end-to-end vectors is Gaussian and that the root
mean squared end-to-end distance scales with the square root of the number of
bonds,

√
〈R2〉 ∝ √

N, irrespective of the chemical details. This is a consequence
of the central limit theorem.
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1. THE GAUSSIAN CHAIN

1.2 The central limit theorem

Consider a chain consisting of N independent bond vectors ri. By this we mean
that the orientation and length of each bond is independent of all others. A justifi-
cation will be given at the end of this section. The probability density in configu-
ration space Ψ

(
rN

)
may then be written as

Ψ
(
rN) =

N

∏
i=1

ψ(ri) . (1.2)

Assume further that the bond vector probability density ψ(ri) depends only on
the length of the bond vector and has zero mean, 〈ri〉= 0. For the second moment
we write〈

r2〉 =
∫

d3r r2ψ(r) ≡ b2, (1.3)

where we have defined the statistical segment (or Kuhn) length b,. Let Ω(R;N) be
the probability distribution function for the end-to-end vector given that we have
a chain of N bonds,

Ω(R;N) =

〈
δ

(
R−

N

∑
i=1

ri

)〉
, (1.4)

where δ is the Dirac-delta function. The central limit theorem then states that

Ω(R;N) =
{

3
2πNb2

}3/2

exp

{
− 3R2

2Nb2

}
, (1.5)

i.e., that the end-to-end vector has a Gaussian distribution with zero mean and a
variance given by〈

R2〉 = Nb2. (1.6)

In order to prove Eq. (1.5) we write

Ω(R;N) =
1

(2π)3

∫
dk

〈
exp

{
ik ·

(
R−∑

i
ri

)}〉

=
1

(2π)3

∫
dk eik·R

〈
exp

{
−ik ·∑

i
ri

}〉

=
1

(2π)3

∫
dk eik·R

{∫
dr e−ik·rψ(r)

}N

. (1.7)
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1. THE GAUSSIAN CHAIN

For k = 0, the Fourier transform of ψ(r) will be equal to one. Because ψ(r)
has zero mean and finite second moment, the Fourier transform of ψ(r) will have
its maximum around k = 0 and go to zero for large values of k. Raising such a
function to the N’th power leaves us with a function that differs from zero only
very close to the origin, and which may be approximated by{∫

dr e−ik·rψ(r)
}N

≈
{

1− 1
2

〈
(k · r)2

〉}N

≈ 1− 1
2

N
〈
(k · r)2

〉
= 1− 1

6
Nk2b2 (1.8)

for small values of k, and by zero for the values of k where 1− 1
6Nk2b2 is negative.

This again may be approximated by exp
{−1

6Nk2b2
}

for all values of k. Then

Ω(R;N) =
1

(2π)3

∫
dk exp

{
ik ·R− 1

6
Nk2b2

}
= I (Rx) I (Ry) I (Rz) (1.9)

I (Rx) =
1

2π

∫
dkx exp

{
iRxkx − 1

6
Nb2k2

x

}

=
{

3
2πNb2

}1/2

exp

{
− 3R2

x

2Nb2

}
. (1.10)

Combining Eqs. (1.9) and (1.10) we get Eq. (1.5).
Using Ω(R;N), we can obtain an interesting insight in the thermodynamic

behaviour of a polymer chain. The entropy of a chain in which the end-to-end
vector R is kept fixed, absorbing all constants into a reference entropy, is given by

S (R;N) = kB lnΩ(R;N) = S0− 3kR2

2Nb2 , (1.11)

where kB is Boltzmann’s constant. The free energy is then

A = U −TS = A0 +
3kBTR2

2Nb2 , (1.12)

where T is the temperature. We see that the free energy is related quadratically
to the end-to-end distance, as if the chain is a harmonic (Hookean) spring with
spring constant 3kBT/Nb2. Unlike an ordinary spring, however, the strength of the
spring increases with temperature! These springs are often referred to as entropic
springs.
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1. THE GAUSSIAN CHAIN

Figure 1.1: A polyethylene chain
represented by segments of λ =
20 monomers. If enough consec-
utive monomers are combined into
one segment, the vectors connecting
these segments become independent
of each other.

Of course, in a real polymer the vectors connecting consecutive monomers
do not take up random orientations. However, if enough (say λ) consecutive
monomers are combined into one segment with center-of-mass position R i, the
vectors connecting the segments (Ri −Ri−1, Ri+1 −Ri, etcetera) become inde-
pendent of each other,1 see Fig. 1.1. If the number of segments is large enough,
the end-to-end vector distribution, according to the central limit theorem, will be
Gaussianly distributed and the local structure of the polymer appears only through
the statistical segment length b.

1.3 The Gaussian chain

Now we have established that global conformational properties of polymers are
largely independent of the chemical details, we can start from the simplest model
available, consistent with a Gaussian end-to-end distribution. This model is one
in which every bond vector itself is Gaussian distributed,

ψ(r) =
{

3
2πb2

}3/2

exp

{
− 3

2b2 r2
}

. (1.13)

1We assume we can ignore long range excluded volume interactions. This is not always the
case. Consider building the chain by consecutively adding monomers. At every step there are
on average more monomers in the back than in front of the last monomer. Therefore, in a good
solvent, the chain can gain entropy by going out, and being larger than a chain in which the new
monomer does not feel its predecessors. In a bad solvent two monomers may feel an effective
attraction at short distances. In case this attraction is strong enough it may cause the chain to
shrink. Of course there is a whole range between good and bad, and at some point both effects
cancel and Eq. (1.5) holds true. A solvent having this property is called a Θ-solvent. In a polymer
melt, every monomer is isotropically surrounded by other monomers, and there is no way to decide
whether the surrounding monomers belong to the same chain as the monomer at hand or to a
different one. Consequently there will be no preferred direction and the polymer melt will act as a
Θ-solvent. Here we shal restrict ourselves to such melts and Θ-solvents.
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1. THE GAUSSIAN CHAIN

Figure 1.2: The gaussian chain can be
represented by a collection of beads
connected by harmonic springs of
strength 3kBT/b2.

Such a Gaussian chain is often represented by a mechanical model of beads con-
nected by harmonic springs, as in Fig. 1.2. The potential energy of such a chain
is given by:

Φ(r1, . . . ,rN) =
1
2

k
N

∑
i=1

r2
i . (1.14)

It is easy to see that if the spring constant k is chosen equal to

k =
3kBT

b2 , (1.15)

the Boltzmann distribution of the bond vectors obeys Eqs. (1.2) and (1.13). The
Gaussian chain is used as a starting point for the Rouse model.

Problems

1-1. A way to test the Gaussian character of a distribution is to calculate the ratio
of the fourth and the square of the second moment. Show that if the end-to-end
vector has a Gaussian distribution then〈

R4
〉

〈R2〉2 = 5/3.
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Chapter 2

The Rouse model

2.1 From statics to dynamics

In the previous chapter we have introduced the Gaussian chain as a model for the
equilibrium (static) properties of polymers. We will now adjust it such that we can
use it to calculate dynamical properties as well. A prerequisite is that the polymer
chains are not very long, otherwise entanglements with surrounding chains will
highly constrain the molecular motions.

When a polymer chain moves through a solvent every bead, whether it repre-
sents a monomer or a larger part of the chain, will continuously collide with the
solvent molecules. Besides a systematic friction force, the bead will experience
random forces, resulting in Brownian motion. In the next sections we will analyze
the equations associated with Brownian motion, first for the case of a single bead,
then for the Gaussian chain. Of course the motion of a bead through the solvent
will induce a velocity field in the solvent which will be felt by all the other beads.
To first order we might however neglect this effect and consider the solvent as
being some kind of indifferent ether, only producing the friction. When applied
to dilute polymeric solutions, this model gives rather bad results, indicating the
importance of hydrodynamic interactions. When applied to polymeric melts the
model is much more appropriate, because in polymeric melts the friction may be
thought of as being caused by the motion of a chain relative to the rest of the ma-
terial, which to a first approximation may be taken to be at rest; propagation of
a velocity field like in a normal liquid is highly improbable, meaning there is no
hydrodynamic interaction.
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2. THE ROUSE MODEL

v-�v

F

Figure 2.1: A spherical bead moving
with velocity v will experience a fric-
tion force −ξv opposite to its veloc-
ity and random forces F due to the
continuous bombardment of solvent
molecules.

2.2 Friction and random forces

Consider a spherical bead of radius a and mass m moving in a solvent. Because
on average the bead will collide more often on the front side than on the back side,
it will experience a systematic force proportional with its velocity, and directed
opposite to its velocity. The bead will also experience a random or stochastic force
F(t). These forces are summarized in Fig. 2.1 The equations of motion then read1

dr
dt

= v (2.1)

dv
dt

= −ξv+F. (2.2)

In Appendix A we show that the friction constant ξ is given by

ξ = ζ/m = 6πηsa/m, (2.3)

where ηs is the viscosity of the solvent.
Solving Eq. (2.2) yields

v(t) = v0e−ξt +
∫ t

0
dτ e−ξ(t−τ)F(t). (2.4)

where v0 is the initial velocity. We will now determine averages over all possible
realizations of F(t), with the initial velocity as a condition. To this end we have to
make some assumptions about the stochastic force. In view of its chaotic charac-
ter, the following assumptions seem to be appropriate for its average properties:

〈F(t)〉 = 0 (2.5)〈
F(t) ·F(t ′)

〉
v0

= Cv0δ(t− t ′) (2.6)

1Note that we have divided all forces by the mass m of the bead. Consequently, F(t) is an
acceleration and the friction constant ξ is a frequency.
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2. THE ROUSE MODEL

where Cv0 may depend on the initial velocity. Using Eqs. (2.4) - (2.6), we find

〈v(t)〉v0
= v0e−ξt +

∫ t

0
dτ e−ξ(t−τ) 〈F(τ)〉v0

= v0e−ξt (2.7)

〈v(t) ·v(t)〉v0
= v2

0e−2ξt +2
∫ t

0
dτ e−ξ(2t−τ)v0 · 〈F(τ)〉v0

+
∫ t

0
dτ′

∫ t

0
dτ e−ξ(2t−τ−τ′) 〈F(τ) ·F(τ′)

〉
v0

= v2
0e−2ξt +

Cv0

2ξ

(
1− e−2ξt

)
. (2.8)

The bead is in thermal equilibrium with the solvent. According to the equipartition
theorem, for large t, Eq. (2.8) should be equal to 3kBT/m, from which it follows
that

〈
F(t) ·F(t ′)

〉
= 6

kBTξ
m

δ(t − t ′). (2.9)

This is one manifestation of the fluctuation-dissipation theorem, which states that
the systematic part of the microscopic force appearing as the friction is actually
determined by the correlation of the random force.

Integrating Eq. (2.4) we get

r(t) = r0 +
v0

ξ

(
1− e−ξt

)
+

∫ t

0
dτ

∫ τ

0
dτ′ e−ξ(τ−τ′)F(τ′), (2.10)

from which we calculate the mean square displacement

〈
(r(t)− r0)2〉

v0
=

v2
0

ξ2

(
1− e−ξt

)2
+

3kBT
mξ2

(
2ξt −3+4e−ξt − e−2ξt

)
. (2.11)

For very large t this becomes

〈
(r(t)− r0)2〉 =

6kBT
mξ

t, (2.12)

from which we get the Einstein equation

D =
kBT
mξ

=
kBT
ζ

, (2.13)

where we have used
〈
(r(t)− r0)2

〉
= 6Dt. Notice that the diffusion coefficient D

is independent of the mass m of the bead.

15



2. THE ROUSE MODEL

From Eq. (2.7) we see that the bead loses its memory of its initial velocity
after a time span τ≈ 1/ξ. Using equipartition its initial velocity may be put equal
to

√
3kBT/m. The distance l it travels, divided by its diameter then is

l
a

=

√
3kBT/m

aξ
=

√
ρkBT
9πη2

s a
, (2.14)

where ρ is the mass density of the bead. Typical values are l/a ≈ 10−2 for a
nanometre sized bead and l/a ≈ 10−4 for a micrometre sized bead in water at
room temperature. We see that the particles have hardly moved at the time pos-
sible velocity gradients have relaxed to equilibrium. When we are interested in
timescales on which particle configurations change, we may restrict our attention
to the space coordinates, and average over the velocities. The time development of
the distribution of particles on these time scales is governed by the Smoluchowski
equation.

In Appendix B we shall derive the Smoluchowski equation and show that the
explicit equations of motion for the particles, i.e. the Langevin equations, which
lead to the Smoluchowski equation are

dr
dt

= −1
ζ
∇∇∇Φ+∇∇∇D+ f (2.15)

〈f(t)〉 = 0 (2.16)〈
f(t)f(t ′)

〉
= 2DĪδ(t − t ′). (2.17)

where Ī denotes the 3-dimensional unit matrix Iαβ = δαβ. We use these equations
in the next section to derive the equations of motion for a polymer.

2.3 The Rouse chain

Suppose we have a Gaussian chain consisting of N + 1 beads connected by N
springs of strength k = 3kBT/b2, see section 1.3. If we focus on one bead, while
keeping all other beads fixed, we see that the external field Φ in which that bead
moves is generated by connections to its predecessor and successor. We assume
that each bead feels the same friction ζ, that its motion is overdamped, and that
the diffusion coefficient D = kBT/ζ is independent of the position Rn of the bead.
This model for a polymer is called the Rouse chain. According to Eqs. (2.15)-
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2. THE ROUSE MODEL

(2.17) the Langevin equations describing the motion of a Rouse chain are

dR0

dt
= −3kBT

ζb2 (R0−R1)+ f0 (2.18)

dRn

dt
= −3kBT

ζb2 (2Rn−Rn−1 −Rn+1)+ fn (2.19)

dRN

dt
= −3kBT

ζb2 (RN −RN−1)+ fN (2.20)

〈fn (t)〉 = 0 (2.21)〈
fn (t) fm

(
t ′
)〉

= 2DĪδnmδ(t − t ′). (2.22)

Eq. (2.19) applies when n = 1, . . . ,N −1.

2.4 Normal mode analysis

Equations (2.18) - (2.20) are (3N + 3) coupled stochastic differential equations.
In order to solve them, we will first ignore the stochastic forces fn and try specific
solutions of the following form:

Rn(t) = X(t)cos(an+ c). (2.23)

The equations of motion then read

dX
dt

cosc = −3kBT
ζb2 {cosc− cos(a+ c)}X (2.24)

dX
dt

cos(na+ c) = −3kBT
ζb2 4sin2(a/2)cos(na+ c)X (2.25)

dX
dt

cos(Na+ c) = −3kBT
ζb2 {cos(Na+ c)− cos((N −1)a+ c)}X, (2.26)

where we have used

2cos(na+ c)− cos((n−1)a+ c)− cos((n+1)a+ c)
= cos(na+ c){2−2cosa} = cos(na+ c)4sin2(a/2). (2.27)

The boundaries of the chain, Eqs. (2.24) and (2.26), are consistent with Eq. (2.25)
if we choose

cosc− cos(a+ c) = 4sin2(a/2)cosc (2.28)

cos(Na+ c)− cos((N −1)a+ c) = 4sin2(a/2)cos(Na+ c), (2.29)
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2. THE ROUSE MODEL

which is equivalent to

cos(a− c) = cosc (2.30)

cos((N +1)a+ c) = cos(Na+ c). (2.31)

We find independent solutions from

a− c = c (2.32)

(N +1)a+ c = p2π−Na− c, (2.33)

where p is an integer. So finally

a =
pπ

N +1
, c = a/2 =

pπ
2(N +1)

. (2.34)

Eq. (2.23), with a and c from Eq. (2.34), decouples the set of differential equa-
tions. To find the general solution to Eqs. (2.18) to (2.22) we form a linear combi-
nation of all independent solutions, formed by taking p in the range p = 0, . . . ,N:

Rn = X0 +2
N

∑
p=1

Xp cos

[
pπ

N +1
(n+

1
2
)
]

. (2.35)

The factor 2 in front of the summation is only for reasons of convenience. Making
use of2

1
N +1

N

∑
n=0

cos

[
pπ

N +1
(n+

1
2
)
]

= δp0 (0 ≤ p < 2(N +1)), (2.36)

we may invert this to

Xp =
1

N +1

N

∑
n=0

Rn cos

[
pπ

N +1
(n+

1
2
)
]

. (2.37)

The equations of motion then read

dXp

dt
= −3kBT

ζb2 4sin2
(

pπ
2(N +1)

)
Xp +Fp (2.38)〈

Fp(t)
〉

= 0 (2.39)〈
F0(t)F0(t ′)

〉
=

2D
N +1

Īδ(t− t ′) (2.40)

〈
Fp(t)Fq(t ′)

〉
=

D
N +1

Īδpqδ(t − t ′) (p+q > 0) (2.41)

2The validity of Eq. (2.36) is evident when p = 0 or p = N +1. In the remaining cases the sum
may be evaluated using cos(na+ c) = 1/2(einaeic + e−inae−ic). The result then is

1
N +1

N

∑
n=0

cos

[
pπ

N +1
(n+

1
2
)
]

=
1

2(N +1)
sin(pπ)

sin
(

pπ
2(N+1)

) ,

which is consistent with Eq. (2.36).
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2. THE ROUSE MODEL

where p,q = 0, . . . ,N. Fp is a weighted average of the stochastic forces fn,

Fp =
1

N +1

N

∑
n=0

fn cos

[
pπ

N +1
(n+

1
2
)
]

, (2.42)

and is therefore itself a stochastic variable, characterised by its first and second
moments, Eqs. (2.39) - (2.41).

2.5 Rouse mode relaxation times and amplitudes

Eqs. (2.38) - (2.41) form a decoupled set of 3(N +1) stochastic differential equa-
tions, each of which describes the fluctuations and relaxations of a normal mode
(a Rouse mode) of the Rouse chain. It is easy to see that the zeroth Rouse mode,
X0, is the position of the centre-of-mass RG = ∑n Rn/(N + 1) of the polymer
chain. The mean square displacement of the centre-of-mass, gcm(t) can easily be
calculated:

X0(t) = X0(0)+
∫ t

0
dτ F0(τ) (2.43)

gcm(t) =
〈
(X0(t)−X0(0))2

〉
=

〈∫ t

0
dτ

∫ t

0
dτ′ F0(τ) ·F0(τ′)

〉

=
6D

N +1
t ≡ 6DGt. (2.44)

So the diffusion coefficient of the centre-of-mass of the polymer is given by DG =
D/(N +1) = kBT/[(N +1)ζ]. Notice that the diffusion coefficient scales inversely
proportional to the length (and weight) of the polymer chain. All other modes
1 ≤ p ≤ N describe independent vibrations of the chain leaving the centre-of-
mass unchanged; Eq. (2.37) shows that Rouse mode Xp descibes vibrations of
a wavelength corresponding to a subchain of N/p segments. In the applications
ahead of us, we will frequently need the time correlation functions of these Rouse
modes. From Eq. (2.38) we get

Xp(t) = Xp(0)e−t/τp +
∫ t

0
dτ e−(t−τ)/τpFp(τ), (2.45)

where the characteristic relaxation time τp is given by

τp =
ζb2

3kBT

[
4sin2

(
pπ

2(N +1)

)]−1

≈ ζb2(N +1)2

3π2kBT
1
p2 . (2.46)

The last approximation is valid for large wavelengths, in which case p � N. Mul-
tiplying Eq. (2.45) by Xp(0) and taking the average over all possible realisations
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2. THE ROUSE MODEL

of the random force, we find〈
Xp(t) ·Xp(0)

〉
=

〈
X2

p

〉
exp(−t/τp) . (2.47)

From these equations it is clear that the lower Rouse modes, which represent
motions with larger wavelengths, are also slower modes. The relaxation time of
the slowest mode, p = 1, is often referred to as the Rouse time τR.

We now calculate the equilibrium expectation values of X 2
p , i.e., the ampli-

tudes of the normal modes. To this end, first consider the statistical weight of a
configuration R0, . . . ,RN in Carthesian coordinates,

P(R0, . . . ,RN) =
1
Z

exp

[
− 3

2b2

N

∑
n=1

(Rn−Rn−1)
2

]
, (2.48)

where Z is a normalization constant (the partition function). We can use Eq. (2.35)
to find the statistical weight of a configuration in Rouse coordinates. Since the
transformation to the Rouse coordinates is a linear transformation from one set
of orthogonal coordinates to another, the corresponding Jacobian is simply a con-
stant. The statistical weight therefore reads

P(X0, . . . ,XN) =
1
Z

exp

[
−12

b2 (N +1)
N

∑
p=1

Xp ·Xp sin2
(

pπ
2(N +1)

)]
. (2.49)

[Exercise: show this] Since this is a simple product of independent Gaussians, the
amplitudes of the Rouse modes can easily be calculated:

〈
X2

p

〉
=

b2

8(N +1)sin2
(

pπ
2(N+1)

) ≈ (N +1)b2

2π2

1
p2 . (2.50)

Again, the last approximation is valid when p � N. Using the amplitudes and
relaxation times of the Rouse modes, Eqs. (2.50) and (2.46) respectively, we can
now calculate all kinds of dynamic quantities of the Rouse chain.

2.6 Correlation of the end-to-end vector

The first dynamic quantity we are interested in is the time correlation function of
the end-to-end vector R. Notice that

R = RN −R0 = 2
N

∑
p=1

Xp{(−1)p−1}cos

[
pπ

2(N +1)

]
. (2.51)
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Figure 2.2: Molecular dynamics
simulation results for the orienta-
tional correlation function of the
end-to-end vector of a C120H242

polyethylene chain under melt con-
ditions (symbols), compared with
the Rouse model prediction (solid
line). J.T. Padding and W.J. Briels,
J. Chem. Phys. 114, 8685 (2001). 0 1000 2000 3000 4000
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Because the Rouse mode amplitudes decay as p−2, our results will be dominated
by p values which are extremely small compared to N. We therefore write

R = −4
N

∑′
p=1

Xp, (2.52)

where the prime at the summation sign indicates that only terms with odd p should
occur in the sum. Then

〈R(t) ·R(0)〉 = 16
N

∑′
p=1

〈
Xp(t) ·Xp(0)

〉

=
8b2

π2 (N +1)
N

∑′
p=1

1
p2 e−t/τp . (2.53)

The characteristic decay time at large t is τ1, which is proportional to (N +1)2.
Figure 2.2 shows that Eq. (2.53) gives a good description of the time correla-

tion function of the end-to-end vector of a real polymer chain in a melt (provided
the polymer is not much longer than the entanglement length).

2.7 Segmental motion

In this section we will calculate the mean square displacements gseg(t) of the
individual segments. Using Eq. (2.35) and the fact that different modes are not
correlated, we get for segment n〈

(Rn(t)−Rn(0))2
〉

=
〈
(X0(t)−X0(0))2

〉
+4

N

∑
p=1

〈
(Xp(t)−Xp(0))2

〉
cos2

[
pπ

N +1
(n+

1
2
)
]

. (2.54)
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Averaging over all segments, and introducing Eqs. (2.44) and (2.47), the mean
square displacement of a typical segment in the Rouse model is

gseg(t) =
1

N +1

N

∑
n=0

〈
(Rn(t)−Rn(0))2

〉

= 6DGt +4
N

∑
p=1

〈
X2

p

〉(
1− e−t/τp

)
. (2.55)

Two limits may be distinguished. First, when t is very large, t 	 τ1, the first term
in Eq. (2.55) will dominate, yielding

gseg(t)≈ 6DGt (t 	 τ1) . (2.56)

This is consistent with the fact that the polymer as a whole diffuses with diffusion
coefficient DG.

Secondly, when t � τ1 the sum over p in Eq. (2.55) dominates. If N 	 1
the relaxation times can be approximated by the right hand side of Eq. (2.46), the
Rouse mode amplitudes can be approximated by the right hand side of Eq. (2.50),
and the sum can be replaced by an integral,

gseg(t) =
2b2

π2 (N +1)
∫ ∞

0
dp

1
p2

(
1− e−t p2/τ1

)

=
2b2

π2 (N +1)
∫ ∞

0
dp

1
τ1

∫ t

0
dt ′ e−t ′p2/τ1

=
2b2

π2

(N +1)
τ1

1
2

√
πτ1

∫ t

0
dt ′

1√
t ′

=
(

12kBTb2

πζ

)1/2

t1/2 (τN � t � τ1, N 	 1) . (2.57)

So, at short times the mean square displacement of a typical segment is subdiffu-
sive with an exponent 1/2, and is independent of the number of segments N in the
chain.

Figure 2.3 shows the mean square displacement of monomers (circles) and
centre-of-mass (squares) of an unentangled polyethylene chain in its melt. Ob-
serve that the chain motion is in agreement with the Rouse model prediction, but
only for displacements larger than the square statistical segment length b2.

2.8 Stress and viscosity

We will now calculate the viscosity of a solution or melt of Rouse chains. To
this end we will first introduce the macroscopic concepts of stress and shear flow.

22



2. THE ROUSE MODEL

Figure 2.3: Molecular dynamics
simulation results for the mean
square displacements of a C120H242

polyethylene chain under melt con-
ditions (symbols). The dotted and
dot-dashed lines are Rouse predic-
tions for a chain with an infinite
number of modes and for a finite
Rouse chain, respectively. The hor-
izontal line is the statistical segment
length b2. J.T. Padding and W.J.
Briels, J. Chem. Phys. 114, 8685
(2001).
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Then we will show how the viscosity can be calculated from a microscopic model
such as the Rouse model.

2.8.1 The stress tensor

Suppose the fluid velocity on a macroscopic scale is described by the fluid velocity
field v(r). When two neighbouring fluid volume elements move with different
velocities, they will experience a friction force proportional to the area of the
surface between the two fluid volume elements. Moreover, even without relative
motion, the volume elements will be able to exchange momentum through the
motions of, and interactions between, the constituent particles.

All the above forces can conveniently be summarized in the stress tensor. Con-
sider a surface element of size dA and normal t̂. Let dF be the force exerted by
the fluid below the surface element on the fluid above the fluid element. Then we
define the stress tensor S̄ by

dFα = −∑
β

Sαβt̂βdA = −(
S̄ · t̂)αdA, (2.58)

where α and β run from 1 to 3 (or x, y, and z). It is easy to show that the total
force F on a volume element V is given by

F = V∇∇∇ · S̄. (2.59)

In the case of simple fluids the stress tensor consists of one part which is inde-
pendent of the fluid velocity, and a viscous part which depends linearly on the
instantaneous derivatives ∂vα/∂rβ. In Appendix A we elaborate on this, and cal-
culate the velocity field and friction on a sphere moving in a simple liquid. In the
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Figure 2.4: Shear flow in the xy-
plane (a). Strain γ, shear rate γ̇,
and stress Sxy versus time t for
sudden shear strain (b) and sud-
den shear flow (c).

more general case of complex fluids, the stress tensor depends on the history of
fluid flow (the fluid has a memory) and has both viscous and elastic components.

2.8.2 Shear flow and viscosity

Shear flows, for which the velocity components are given by

vα (r, t) =∑
β
καβ (t)rβ, (2.60)

are commonly used for studying the viscoelastic properties of complex fluids. If
the shear rates καβ (t) are small enough, the stress tensor depends linearly on κ̄κκ(t)
and can be written as

Sαβ (t) =
∫ t

−∞
dτ G(t− τ)καβ (τ) , (2.61)

where G(t) is called the shear relaxation modulus. G(t) contains the shear stress
memory of the complex fluid. This becomes apparent when we consider two
special cases, depicted in Fig. 2.4:

(i) Sudden shear strain. At t = 0 a shear strain γ is suddenly applied to a
relaxed system. The velocity field is given by

vx(t) = δ(t)γry (2.62)

vy(t) = 0 (2.63)

vz(t) = 0 (2.64)

The stress tensor component of interest is Sxy, which now reads

Sxy(t) = γG(t). (2.65)

So G(t) is simply the stress relaxation after a sudden shear strain.
(ii) Sudden shear flow. At t = 0 a shear flow is suddenly switched on:

vx(t) = Θ(t) γ̇ry (2.66)

vy(t) = 0 (2.67)

vz(t) = 0 (2.68)
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2. THE ROUSE MODEL

Here Θ(t) is the Heaviside function and γ̇ is the shear rate. Now Sxy is given by

Sxy(t) = γ̇
∫ t

0
dτ G(t − τ) , (2.69)

In the case of simple fluids, the shear stress is the product of shear rate and the
shear viscosity, a characteristic transport property of the fluid (see Appendix A,
Eq. (A.3)). Similarly, in the case of complex fluids, the shear viscosity is defined
as the ratio of steady-state shear stress and shear rate,

η = lim
t→∞

Sxy (t)
γ̇

= lim
t→∞

∫ t

0
dτ G(t− τ) =

∫ ∞

0
dτ G(τ) . (2.70)

The limit t → ∞ must be taken because during the early stages elastic stresses are
built up. This expression shows that the integral over the shear relaxation modulus
yields the (low shear rate) viscosity.

2.8.3 Microscopic expression for the viscosity and stress tensor

Eq. (2.70) is not very useful as it stands because the viscosity is not related to the
microscopic properties of the molecular model. Microscopic expresions for trans-
port properties such as the viscosity can be found by relating the relaxation of
a macroscopic disturbance to spontaneous fluctuations in an equilibrium system.
Close to equilibrium there is no way to distinguish between spontaneous fluctua-
tions and deviations from equilibrium that are externally prepared. Since one can-
not distinguish, according to the regression hypothesis of Onsager, the regression
of spontaneous fluctuations should coincide with the relaxation of macroscopic
variables to equilibrium. A derivation for the viscosity and many other transport
properties can be found in Statistical Mechanics text books. The result for the
viscosity is

η =
V

kBT

∫ ∞

0
dτ

〈
σmicr

xy (τ)σmicr
xy (0)

〉
, (2.71)

where V is the volume in which the microscopic stress tensor σ̄σσmicr is calculated.
Eq. (2.71) is sometimes referred to as the Green-Kubo expression for the viscosity.
Using Onsager’s regression hypothesis, it is possible to relate also the integrand
of Eq. (2.71) to the shear relaxation modulus G(t) in the macroscopic world:

G(t) =
V

kBT

〈
σmicr

xy (t)σmicr
xy (0)

〉
(2.72)

The microscopic stress tensor in Eqs. (2.71) and (2.72) is generally defined as

σ̄σσmicr = − 1
V

Ntot

∑
i=1

[Mi (Vi−v)(Vi−v)+RiFi] , (2.73)

25



2. THE ROUSE MODEL

where Mi is the mass and Vi the velocity of particle i, and Fi is the force on particle
i. Eqs. (2.71) and (2.72) are ensemble averages under equilibrium conditions. We
can therefore set the macroscopic fluid velocity field v to zero. If furthermore we
assume that the interactions between the particles are pairwise additive, we find

σ̄σσmicr = − 1
V

(
Ntot

∑
i=1

MiViVi +
Ntot−1

∑
i=1

Ntot

∑
j=i+1

(
Ri −R j

)
Fi j

)
, (2.74)

where Fi j is the force that particle j is exerting on particle i.
The sums in Eqs. (2.73) and (2.74) must be taken over all Ntot particles in the

system, including the solvent particles. At first sight, it would be a tremendous
task to calculate the viscosity analytically. Fortunately, for most polymers there is
a large separation of time scales between the stress relaxation due to the solvent
and the stress relaxation due to the polymers. In most cases we can therefore treat
the solvent contribution to the viscosity, denoted by ηs, separately from the poly-
mer contribution. Moreover, because the velocities of the polymer segments are
usually overdamped, the polymer stress is dominated by the interactions between
the beads. The first (kinetic) part of Eq. (2.73) or (2.74) may then be neglected.

2.8.4 Calculation for the Rouse model

Even if we can treat separately the solvent contribution, the sum over i in Eq.
(2.74) must still be taken over all beads of all chains in the system. This is why
in real polymer systems the stress tensor is a collective property. In the Rouse
model, however, there is no correlation between the dynamics of one chain and
the other, so one may just as well analyze the stress relaxation of a single chain
and make an ensemble average over all initial configurations.

Using Eqs. (2.35) and (2.74), the microscopic stress tensor of a Rouse chain
in a specific configuration, neglecting also the kinetic contributions, is equal to

σ̄σσmicr =
1
V

3kBT
b2

N

∑
n=1

(Rn−1−Rn)(Rn−1 −Rn)

=
1
V

48kBT
b2

N

∑
n=1

N

∑
p=1

N

∑
q=1

XpXq sin

(
pπn

N +1

)
sin

(
pπ

2(N +1)

)
×

sin

(
qπn

N +1

)
sin

(
qπ

2(N +1)

)

=
1
V

24kBT
b2 N

N

∑
p=1

XpXp sin2
(

pπ
2(N +1)

)
. (2.75)
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Combining this with the expression for the equilibrium Rouse mode amplitudes,
Eq. (2.50), this can be written more concisely as

σ̄σσmicr =
3kBT

V

N

∑
p=1

XpXp〈
X2

p

〉 . (2.76)

The correlation of the xy-component of the microscopic stress tensor at t = 0 with
the one at t = t is therefore

σmicr
xy (t)σmicr

xy (0) =
(

3kBT
V

)2 N

∑
p=1

N

∑
q=1

Xpx(t)Xpy(t)Xqx(0)Xqy(0)〈
X2

p

〉〈
X2

q

〉 . (2.77)

To obtain the shear relaxation modulus, according to Eq. (2.72), the ensemble
average must be taken over all possible configurations at t = 0. Now, since the
Rouse modes are Gaussian variables, all the ensemble averages of products of an
odd number of Xp’s are zero and the ensemble averages of products of an even
number of Xp’s can be written as a sum of products of averages of only two Xp’s.
For the even term in Eq. (2.77) we find:〈

Xpx (t)Xpy (t)Xqx (0)Xqy (0)
〉

=
〈
Xpx (t)Xpy (t)

〉〈
Xqx (0)Xqy (0)

〉
+

〈
Xpx (t)Xqy (0)

〉〈
Xpy (t)Xqx (0)

〉
+

〈
Xpx (t)Xqx (0)

〉〈
Xpy (t)Xqy (0)

〉
.(2.78)

The first four ensemble averages equal zero because, for a Rouse chain in equi-
librium, there is no correlation between different cartesian components. The last
two ensemble averages are nonzero only when p = q, since the Rouse modes are
mutually orthogonal. Using the fact that all carthesian components are equivalent,
and Eq. (2.47), the shear relaxation modulus (excluding the solvent contribution)
of a Rouse chain can be expressed as

G(t) =
kBT
V

N

∑
p=1

[
〈Xk(t) ·Xk(0)〉〈

X2
k

〉
]2

=
ckBT
N +1

N

∑
p=1

exp(−2t/τp) , (2.79)

where c = N/V is the number density of beads.
In concentrated polymer systems and melts, the stress is dominated by the

polymer contribution. The shear relaxation modulus calculated above predicts a
viscosity, at constant monomer concentration c and segmental friction ζ, propor-
tional to N:

η =
∫ ∞

0
dtG(t)≈ ckBT

N +1
τ1

2

N

∑
p=1

1
p2

≈ ckBT
N +1

τ1

2
π2

6
=

cζb2

36
(N +1). (2.80)
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This has been confirmed for concentrated polymers with low molecular weight.3

Concentrated polymers of high molecular weight give different results, stressing
the importance of entanglements. We will deal with this in Chapter 4.

In dilute polymer solutions, we do not neglect the solvent contribution to the
stress. The shear relaxation modulus Eq. (2.79) must be augmented by a very
fast decaying term, the integral of which is the solvent viscosity ηs, leading to the
following expression for the intrinsic viscosity:

[η] ≡ lim
ρ→0

η−ηs

ρηs
≈ NAv

M
1
ηs

ζb2

36
(N +1)2. (2.81)

Here, ρ = cM/(NAv(N +1)) is the polymer concentration; M is the mol mass of
the polymer, and NAv is Avogadro’s number. Eq. (2.81) is at variance with exper-
imental results for dilute polymers, signifying the importance of hydrodynamic
interactions. These will be included in the next chapter.

Problems

2-1. Why is it obvious that the expression for the end-to-end vector R, Eq. (2.52),
should only contain Rouse modes of odd mode number p?
2-2. Show that the shear relaxation modulus G(t) of a Rouse chain at short times
decays like t−1/2 and is given by

G(t) =
ckBT
N +1

√
πτ1

8t
(τN � t � τ1).

3A somewhat stronger N dependence is often observed because the density and, more impor-
tant, the segmental friction coefficient increase with increasing N.
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Appendix A: Friction on a slowly moving sphere

We will calculate the fluid flow field around a moving sphere and the resulting
friction. To formulate the basic equations for the fluid we utilize the conservation
of mass and momentum. The conservation of mass is expressed by the continuity
equation

Dρ
Dt

= −ρ∇∇∇ ·v, (A.1)

and the conservation of momentum by the Navier-Stokes equation

ρ
D
Dt

v = ∇∇∇ · S̄. (A.2)

Here ρ(r, t) is the fluid density, v(r, t) the fluid velocity, D/Dt ≡ v ·∇∇∇+∂/∂t the
total derivative, and S̄ is the stress tensor.

We now have to specify the nature of the stress tensor S̄. For a viscous
fluid, friction occurs when the distance between two neighbouring fluid elements
changes, i.e. they move relative to each other. Most simple fluids can be described
by a stress tensor which consists of a part which is independent of the velocity,
and a part which depends linearly on the derivatives ∂vα/∂rβ, i.e., where the fric-
tion force is proportional to the instantaneous relative velocity of the two fluid
elements.4 The most general form of the stress tensor for such a fluid is

Sαβ = ηs

{
∂vα
∂rβ

+
∂vβ
∂rα

}
−
{

P+
(

2
3
ηs −κ

)
∇∇∇ ·v

}
δαβ, (A.3)

where ηs is the shear viscosity, κ the bulk viscosity, which is the resistance of the
fluid against compression, and P the pressure.

Many flow fields of interest can be described assuming that the fluid is incom-
pressible, i.e. that the density along the flow is constant. In that case ∇∇∇ · v = 0,
as follows from Eq. (A.1). Assuming moreover that the velocities are small, and
that the second order non-linear term v ·∇∇∇v may be neglected, we obtain Stokes

4The calculations in this Appendix assume that the solvent is an isotropic, unstructured fluid,
with a characteristic stress relaxation time which is much smaller than the time scale of any flow
experiment. The stress response of such a so-called Newtonian fluid appears to be instantaneous.
Newtonian fluids usually consist of small and roughly spherical molecules, e.g., water and light
oils. Non-Newtonian fluids, on the other hand, usually consist of large or elongated molecules.
Often they are structured, either spontaneously or under the influence of flow. Their characteristic
stress relaxation time is experimentally accessible. As a consequence, the stress between two non-
Newtonian fluid elements generally depends on the history of relative velocities, and contains an
elastic part. Examples are polymers and self-assembling surfactants.
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ordinates (r,θ,φ) and the unit vectors
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equation for incompressible flow

ρ
∂v
∂t

= ηs∇2v−∇∇∇P (A.4)

∇∇∇ ·v = 0. (A.5)

Now consider a sphere of radius a moving with velocity vS in a quiescent liq-
uid. Assume that the velocity field is stationary. Referring all coordinates and
velocities to a frame which moves with velocity vS relative to the fluid transforms
the problem into one of a resting sphere in a fluid which, at large distances from
the sphere, moves with constant velocity v0 ≡ −vS. The problem is best consid-
ered in spherical coordinates (see Fig. 2.5),5 v(r) = vrêr + vθêθ + vφêφ, so that
θ = 0 in the flow direction. By symmetry the azimuthal component of the fluid
velocity is equal to zero, vφ = 0. The fluid flow at infinity gives the boundary
conditions

vr = v0 cosθ
vθ = −v0 sinθ

}
for r → ∞. (A.6)

Moreover, we will assume that the fluid is at rest on the surface of the sphere (stick
boundary conditions):

vr = vθ = 0 for r = a. (A.7)

5In spherical coordinates the gradient, Laplacian and divergence are given by

∇∇∇ f = êr
∂
∂r

f +
1
r

êθ
∂
∂θ

f +
1

r sinθ
êφ

∂
∂φ

f

∇2 f =
1
r2

∂
∂r

(
r2 ∂

∂r
f

)
+

1
r2 sinθ

∂
∂θ

(
sinθ

∂
∂θ

f

)
+

1

r2 sin2 θ
∂2

∂φ2 f

∇∇∇ ·v =
1
r2

∂
∂r

(
r2vr

)
+

1
r sinθ

∂
∂θ

(sinθvθ)+
1

r sinθ
∂
∂φ

vφ.
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It can easily be verified that the solution of Eqs. (A.4) - (A.5) is

vr = v0 cosθ
(

1− 3a
2r

+
a3

2r3

)
(A.8)

vθ = −v0 sinθ
(

1− 3a
4r

− a3

4r3

)
(A.9)

p− p0 = −3
2
ηsv0a

r2 cosθ. (A.10)

We shall now use this flow field to calculate the friction force exerted by the fluid
on the sphere. The stress on the surface of the sphere results in the following force
per unit area:

f = S̄ · êr = êrSrr + êθSθr = −êr p|(r=a) + êθηs
∂vθ
∂r

∣∣∣∣
(r=a)

=
(
−p0 +

3ηsv0

2a
cosθ

)
êr − 3ηsv0

2a
sinθêθ. (A.11)

Integrating over the whole surface of the sphere, only the component in the flow
direction survives:

F =
∫

dΩ a2
[(

−p0 +
3ηsv0

2a
cosθ

)
cosθ+

3ηsv0

2a
sin2 θ

]
= 6πηsav0. (A.12)

Transforming back to the frame in which the sphere is moving with velocity
vS = −v0 through a quiescent liquid, we find for the fluid flow field

v(r) = vS
3a
4r

(
1+

a2

3r2

)
+ êr (êr ·vS)

3a
4r

(
1− a2

r2

)
, (A.13)

and the friction on the sphere

F = −ζvS = −6πηsavS. (A.14)

F is known as the Stokes friction.
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2. THE ROUSE MODEL

Appendix B: Smoluchowski and Langevin equations

The Smoluchowski equation describes the time evolution of the probability den-
sity Ψ(r,r0; t) to find a particle at a particular position r at a particular time t,
given it was at r0 at t = 0. It is assumed that at every instant of time the particle
is in thermal equilibrium with respect to its velocity, i.e., the particle velocity is
strongly damped on the Smoluchowski timescale. A flux will exist, given by

J(r,r0, t) = −D∇∇∇Ψ(r,r0; t)− 1
ζ
Ψ(r,r0; t)∇∇∇Φ(r). (B.1)

The first term in Eq. (B.1) is the flux due to the diffusive motion of the parti-
cle; D is the diffusion coefficient, occurring in

〈
(r(t)− r0)2

〉
= 6Dt. The second

term is the flux in the “downhill” gradient direction of the external potential Φ(r),
damped by the friction coefficient ζ. At equilibrium, the flux must be zero and the
distribution must be equal to the Boltzmann distribution

Ψeq(r) = C exp [−βΦ(r)] , (B.2)

where β = 1/kBT and C a normalization constant. Using this in Eq. (B.1) while
setting J(r, t) = 0, leads to the Einstein equation (2.13). In general, we assume
that no particles are generated or destroyed, so

∂
∂t

Ψ(r,r0; t) = −∇∇∇ ·J(r,r0, t). (B.3)

Combining Eq. (B.1) with the above equation of particle conservation we arrive
at the Smoluchowski equation

∂
∂t

Ψ(r,r0; t) = ∇∇∇ ·
[

1
ζ
Ψ(r,r0; t)∇∇∇Φ(r)

]
+∇∇∇ · [D∇∇∇Ψ(r,r0; t)] (B.4)

lim
t→0

Ψ(r,r0; t) = δ(r− r0). (B.5)

The Smoluchowski equation describes how particle distribution functions change
in time and is fundamental to the non-equilibrium statistical mechanics of over-
damped particles such as colloids and polymers.

Sometimes it is more advantageous to have explicit equations of motion for the
particles instead of distribution functions. Below we shall show that the Langevin
equations which lead to the above Smoluchowski equation are:

dr
dt

= −1
ζ
∇∇∇Φ+∇∇∇D+ f (B.6)

〈f(t)〉 = 0 (B.7)〈
f(t)f(t ′)

〉
= 2DĪδ(t − t ′). (B.8)
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2. THE ROUSE MODEL

where Ī denotes the 3-dimensional unit matrix Iαβ = δαβ.
The proof starts with the Chapman-Kolmogorov equation, which in our case

reads

Ψ(r,r0; t +∆t) =
∫

dr′ Ψ(r,r′;∆t)Ψ(r′,r0; t). (B.9)

This equation simply states that the probability of finding a particle at position r
at time t +∆t, given it was at r0 at t = 0, is equal to the probability of finding that
particle at position r′ at time t, given it was at position r0 at time t = 0, multiplied
by the probability that it moved from r′ to r in the last interval ∆t, integrated over
all possibilities for r′ (we assume Ψ is properly normalized). In the following
we assume that we are always interested in averages

∫
dr F(r)Ψ(r,r0; t) of some

function F(r). According to Eq. (B.9) this average at t +∆t reads∫
dr F(r)Ψ(r,r0; t +∆t) =

∫
dr

∫
dr′ F(r)Ψ(r,r′;∆t)Ψ(r′,r0; t). (B.10)

We shall now perform the integral with respect to r on the right hand side. Because
Ψ(r,r′;∆t) differs from zero only when r is in the neighbourhood of r′, we expand
F(r) around r′,

F(r) = F(r′)+∑
α

(rα− r′α)
∂F(r′)
∂r′α

+
1
2 ∑α,β

(rα− r′α)(rβ− r′β)
∂2F(r′)
∂r′α∂r′β

(B.11)

where α and β run from 1 to 3. Introducing this into Eq. (B.10) we get∫
dr F(r)Ψ(r,r0; t +∆t) =∫

dr′
{∫

dr Ψ(r,r′;∆t)
}
Ψ(r′,r0; t)F(r′)+

∑
α

∫
dr′

{∫
dr (rα− r′α)Ψ(r,r′;∆t)

}
Ψ(r′,r0; t)

∂F(r′)
∂r′α

+

1
2 ∑α,β

∫
dr′

{∫
dr (rα− r′α)(rβ− r′β)Ψ(r,r′;∆t)

}
Ψ(r′,r0; t)

∂2F(r′)
∂r′α∂r′β

.

(B.12)

Now we evaluate the terms between brackets:∫
dr Ψ(r,r′;∆t) = 1 (B.13)∫

dr (rα− r′α)Ψ(r,r′;∆t) = −1
ζ
∂Φ
∂r′α

∆t +
∂D
∂r′α

∆t (B.14)∫
dr (rα− r′α)(rβ− r′β)Ψ(r,r′;∆t) = 2Dδαβ∆t, (B.15)
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2. THE ROUSE MODEL

which hold true up to first order in ∆t. The first equation is obvious. The last two
easily follow from the Langevin equations (B.6) - (B.8). Introducing this into Eq.
(B.12), dividing by ∆t and taking the limit ∆t → 0, we get∫

dr F(r)
∂
∂t

Ψ(r,r0; t) =

∑
α

∫
dr′

{[
−1
ζ
∂Φ
∂r′α

+
∂D
∂r′α

]
∂F(r′)
∂r′α

+D
∂2F(r′)
∂r′2α

}
Ψ(r′,r0; t) (B.16)

Next we change the integration variable r′ into r and perform some partial inte-
grations. Making use of lim|r|→∞Ψ(r,r0; t) = 0 and ∇2(DΨ) = ∇∇∇ · (Ψ∇∇∇D)+∇∇∇ ·
(D∇∇∇Ψ), we finally obtain∫

dr F(r)
∂
∂t

Ψ(r,r0; t)

= ∑
α

∫
dr F(r)

∂
∂rα

[
1
ζ
Ψ(r,r0; t)

∂Φ
∂rα

]
+

∑
α

∫
dr F(r)

{
∂

∂rα

[
−Ψ(r,r0; t)

∂D
∂rα

]
+

∂2

∂r2
α

[DΨ(r,r0; t)]
}

=
∫

dr F(r)
{
∇∇∇ ·

[
1
ζ
Ψ(r,r0; t)∇∇∇Φ(r)

]
+∇∇∇ · [D∇∇∇Ψ(r,r0; t)]

}
. (B.17)

Because this has to hold true for all possible F(r) we conclude that the Smolu-
chowski equation (B.4) follows from the Langevin equations (B.6) - (B.8).
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Chapter 3

The Zimm model

3.1 Hydrodynamic interactions in a Gaussian chain

In the previous chapter we have focused on the Rouse chain, which gives a good
description of the dynamics of unentangled concentrated polymer solutions and
melts. We will now add hydrodynamic interactions between the beads of a Gaus-
sian chain. This so-called Zimm chain, gives a good description of the dynamics
of unentangled dilute polymer solutions.

The equations describing hydrodynamic interactions between beads, up to
lowest order in the bead separations, are given by

vi = −
N

∑
j=0

µ̄µµi j ·F j (3.1)

µ̄µµii =
1

6πηsa
Ī, µ̄µµi j =

1
8πηsRi j

(
Ī+ R̂i jR̂i j

)
. (3.2)

Here vi is the velocity of bead i, F j the force exerted by the fluid on bead j, ηs the
solvent viscosity, a the radius of a bead, and R̂i j = Ri j/Ri j, where Ri j = Ri −R j

is the vector from the position of bead j to the position of bead i. A derivation can
be found in Appendix A of this chapter.

In Eq. (3.1), the mobility tensors µ̄µµ relate the bead velocities to the hydro-
dynamic forces acting on the beads. Of course there are also conservative forces
−∇∇∇kΦ acting on the beads because they are connected by springs. On the Smolu-
chowski time scale, we assume that the conservative forces make the beads move
with constant velocities vk. This amounts to saying that the forces −∇∇∇kΦ are ex-
actly balanced by the hydrodynamic forces acting on the beads k. In Appendix
B we describe the Smoluchowski equation for the beads in a Zimm chain. The
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3. THE ZIMM MODEL

Langevin equations corresponding to this Smoluchowski equation are

dR j

dt
= −∑

k

µ̄µµ jk ·∇∇∇kΦ+ kBT ∑
k

∇∇∇k · µ̄µµ jk + f j (3.3)

〈
f j(t)

〉
= 0 (3.4)〈

f j(t)fk(t ′)
〉

= 2kBT µ̄µµ jkδ(t − t ′). (3.5)

The reader can easily check that these reduce to the equations of motion of the
Rouse chain when hydrodynamic interactions are neglected.

The particular form of the mobility tensor Eq. (3.2) (the Oseen tensor) has the
fortunate property

∑
k

∇∇∇k · µ̄µµ jk = 0, (3.6)

which greatly simplifies Eq. (3.3).

3.2 Normal modes and Zimm relaxation times

If we introduce the mobility tensors Eq. (3.2) into the Langevin equations (3.3)
- (3.5), we are left with a completely intractable set of equations. One way out
of this is by noting that in equilibrium, on average, the mobility tensor will be
proportional to the unit tensor. A simple calculation yields

〈
µ̄µµ jk

〉
eq

=
1

8πηs

〈
1

Rjk

〉
eq

(
Ī+

〈
R̂ jkR̂ jk

〉
eq

)

=
1

6πηs

〈
1

Rjk

〉
eq

Ī

=
1

6πηsb

(
6

π | j− k|
) 1

2

Ī (3.7)

The next step is to write down the equations of motion of the Rouse modes, using
Eqs. (2.35) and (2.37):

dXp

dt
= −

N

∑
q=1

µpq
3kBT

b2 4sin2
(

qπ
2(N +1)

)
Xq +Fp (3.8)

〈
Fp(t)

〉
= 0 (3.9)〈

Fp(t)Fq(t ′)
〉

= kBT
µpq

N +1
Īδ(t− t ′), (3.10)
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3. THE ZIMM MODEL

where

µpq =
2

N +1

N

∑
j=0

N

∑
k=0

1
6πηsb

(
6

π | j− k|
) 1

2

cos

[
pπ

N +1
( j +

1
2
)
]

cos

[
qπ

N +1
(k +

1
2
)
]

.

(3.11)

Eq. (3.8) is still not tractable. It turns out however (see Appendix C for a proof)
that for large N approximately

µpq =
(

N +1
3π3p

) 1
2 1
ηsb

δpq. (3.12)

Introducing this result in Eq. (3.8), we see that the Rouse modes, just like with
the Rouse chain, constitute a set of decoupled coordinates of the Zimm chain:

dXp

dt
= − 1

τp
Xp +Fp (3.13)〈

Fp(t)
〉

= 0 (3.14)〈
Fp(t)Fq(t ′)

〉
= kBT

µpp

N +1
Īδpqδ(t− t ′), (3.15)

where the first term on the right hand side of Eq. (3.13) equals zero when p = 0,
and otherwise, for p � N,

τp ≈ 3πηsb3

kBT

(
N +1
3πp

) 3
2

. (3.16)

Eqs. (3.13) - (3.15) lead to the same exponential decay of the normal mode auto-
correlations as in the case of the Rouse chain,〈

Xp(t) ·Xp(0)
〉

=
〈
X2

p

〉
exp(−t/τp) , (3.17)

but with a different distribution of relaxation times τ p. Notably, the relaxation

time of the slowest mode, p = 1, scales as N
3
2 instead of N2. The amplitudes of

the normal modes, however, are the same as in the case of the Rouse chain,

〈
X2

p

〉≈ (N +1)b2

2π2

1
p2 . (3.18)

This is because both the Rouse and Zimm chains are based on the same static
model (the Gaussian chain), and only differ in the details of the friction, i.e. they
only differ in their kinetics.
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3. THE ZIMM MODEL

3.3 Dynamic properties of a Zimm chain

The diffusion coefficient of (the centre-of-mass of) a Zimm chain can easily be
calculated from Eqs. (3.13) - (3.15). The result is

DG =
kBT

2
µ00

N +1
=

kBT
6πηsb

√
6
π

1
(N +1)2

N

∑
j=0

N

∑
k=0

1

| j− k| 1
2

≈ kBT
6πηsb

√
6
π

1
N2

∫ N

0
d j

∫ N

0
dk

1

| j− k| 1
2

=
8
3

kBT
6πηsb

√
6
πN

. (3.19)

The diffusion coefficient now scales with N−1/2, in agreement with experiments
on dilute polymer solutions.

The similarities between the Zimm chain and the Rouse chain enable us to
quickly calculate various other dynamic properties. For example, the time corre-
lation function of the end-to-end vector is given by Eq. (2.53), but now with the
relaxation times τp given by Eq. (3.16). Similarly, the segmental motion can be
found from Eq. (2.55), and the shear relaxation modulus (excluding the solvent
contribution) from Eq. (2.79). Hence, for dilute polymer solutions, the Zimm
model predicts an intrinsic viscosity given by

[η] =
η−ηs

ρηs
=

NAvkBT
Mηs

N

∑
p=1

τp

2
=

NAv

M
12π

[
(N +1)b2

12π

] 3
2 N

∑
p=1

1

p
3
2

, (3.20)

where ρ is the polymer concentration and M is the mol mass of the polymer. The
intrinsic viscosity scales with N1/2 (remember that M ∝ N), again in agreement
with experiments on dilute polymer solutions.

Problems

3-1. Proof the last step in Eq. (3.7) [Hint: the Zimm chain is a Gaussian chain].
3-2. Check Eq. (3.18) explicitly from Eqs. (3.12) and (3.16) and by noting that

0 =
d
dt

〈
Xp(t) ·Xp(t)

〉
= − 2

τp

〈
Xp(t) ·Xp(t)

〉
+2

〈
Fp(t) ·Xp(t)

〉
in equilibrium, where the last term is equal to

2
∫ t

0
dτ e−(t−τ)/τp

〈
Fp(t) ·Fp(τ)

〉
=

∫ ∞

−∞
dτ e−|t−τ|/τp

〈
Fp(t) ·Fp(τ)

〉
.

3-3. Proof the first step in Eq. (3.19). [Hint: remember that the centre-of-mass is
given by X0].
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Appendix A: Derivation of hydrodynamic interactions
in a suspension of spheres

In Appendix A of chapter 2 we calculated the flow field in the solvent around a
single slowly moving sphere. When more than one sphere is present in the system,
this flow field will be felt by the other spheres. As a result these spheres experience
a force which is said to result from hydrodynamic interactions with the original
sphere.

We will assume that at each time the fluid flow field can be treated as a steady
state flow field. This is true for very slow flows, where changes in positions and
velocities of the spheres take place over much larger time scales than the time it
takes for the fluid flow field to react to such changes. The hydrodynamic problem
then is to find a flow field satisfying the stationary Stokes equations,

ηs∇2v = ∇∇∇P (A.1)

∇∇∇ ·v = 0, (A.2)

together with the boundary conditions

v(Ri +a) = vi ∀i, (A.3)

where Ri is the position vector and vi is the velocity vector of the i’th sphere, and
a is any vector of length a. If the spheres are very far apart we may approximately
consider any one of them to be alone in the fluid. The flow field is then just the
sum of all flow fields emanating from the different spheres

v(r) =∑
i

v(0)
i (r−Ri), (A.4)

where, according to Eq. (A.13),

v(0)
i (r−Ri) = vi

3a
4 |r−Ri|

[
1+

a2

3(r−Ri)2

]

+(r−Ri)((r−Ri) ·vi)
3a

4 |r−Ri|3
[
1− a2

(r−Ri)2

]
. (A.5)

We shall now calculate the correction to this flow field, which is of lowest order
in the sphere separation.

We shall first discuss the situation for only two spheres in the fluid. In the
neighbourhood of sphere one the velocity field may be written as

v(r) = v(0)
1 (r−R1)+

3a
4 |r−R2|

[
v2 +

(r−R2)
|r−R2|

(r−R2)
|r−R2| ·v2

]
, (A.6)
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where we have approximated v(0)
2 (r−R2) to terms of order a/ |r−R2|. On the

surface of sphere one we approximate this further by

v(R1 +a) = v(0)
1 (a)+

3a
4R21

(
v2 + R̂21R̂21 ·v2

)
, (A.7)

where R̂21 = (R2 −R1)/ |R2−R1|. Because v(0)
1 (a) = v1, we notice that this

result is not consistent with the boundary condition v(R1 + a) = v1. In order to
satisfy this boundary condition we subtract from our results so far, a solution of
Eqs. (A.1) and (A.2) which goes to zero at infinity, and which on the surface
of sphere one corrects for the second term in Eq. (A.7). The flow field in the
neighbourhood of sphere one then reads

v(r) = vcorr
1

3a
4 |r−R1|

[
1+

a2

3(r−R1)2

]

+(r−R1)((r−R1) ·vcorr
1 )

3a

4 |r−R1|3
[
1− a2

(r−R1)2

]

+
3a

4R21

(
v2 + R̂21R̂21 ·v2

)
(A.8)

vcorr
1 = v1− 3a

4R21

(
v2 + R̂21R̂21 ·v2

)
. (A.9)

The flow field in the neighbourhood of sphere two is treated similarly.
We notice that the correction that we have applied to the flow field in order to

satisfy the boundary conditions at the surface of sphere one is of order a/R21. Its
strength in the neighbourhood of sphere two is then of order (a/R21)2, and need
therefore not be taken into account when the flow field is adapted to the boundary
conditions at sphere two.

The flow field around sphere one is now given by Eqs. (A.8) and (A.9). The
last term in Eq. (A.8) does not contribute to the stress tensor (the gradient of a
constant field is zero). The force exerted by the fluid on sphere one then equals
−6πηsavcorr

1 . A similar result holds for sphere two. In full we have

F1 = −6πηsav1 +6πηsa
3a

4R21

(
Ī+ R̂21R̂21

) ·v2 (A.10)

F2 = −6πηsav2 +6πηsa
3a

4R21

(
Ī+ R̂21R̂21

) ·v1, (A.11)

where Ī is the three-dimensional unit tensor. Inverting these equations, retaining
only terms up to order a/R21, we get

v1 = − 1
6πηsa

F1− 1
8πηsR21

(
Ī+ R̂21R̂21

) ·F2 (A.12)

v2 = − 1
6πηsa

F2− 1
8πηsR21

(
Ī+ R̂21R̂21

) ·F1 (A.13)
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When more than two spheres are present in the fluid, corrections resulting
from n-body interactions (n ≥ 3) are of order (a/Ri j)2 or higher and need not be
taken into account. The above treatment therefore generalizes to

Fi = −
N

∑
j=0

ζ̄ζζi j ·v j (A.14)

vi = −
N

∑
j=0

µ̄µµi j ·F j, (A.15)

where

ζ̄ζζii = 6πηsaĪ, ζ̄ζζi j = −6πηsa
3a

4Ri j

(
Ī+ R̂i jR̂i j

)
(A.16)

µ̄µµii =
1

6πηsa
Ī, µ̄µµi j =

1
8πηsRi j

(
Ī+ R̂i jR̂i j

)
. (A.17)

µ̄µµi j is generally called the mobility tensor. The specific form Eq. (A.17) is known
as the Oseen tensor.

Appendix B: Smoluchowski equation for the Zimm
chain

For sake of completeness, we will describe the Smoluchowski equation for the
beads in a Zimm chain. The equation is similar to, but a generalized version of,
the Smoluchowski equation for a single bead treated in Appendix B of chapter 2.

Let Ψ(R0, . . . ,RN; t) be the probability density of finding beads 0, . . . ,N near
R0, . . . ,RN at time t. The equation of particle conservation can be written as

∂Ψ
∂t

= −
N

∑
j=0

∇∇∇ j ·J j, (B.1)

where J j is the flux of beads j. This flux may be written as

J j = −∑
k

D̄ jk ·∇∇∇kΨ−∑
k

µ̄µµ jk · (∇∇∇kΦ)Ψ. (B.2)

The first term in Eq. (B.2) is the flux due to the random displacements of all beads,
which results in a flux along the negative gradient of the probability density. The
second term results from the forces −∇∇∇kΦ felt by all the beads. On the Smolu-
chowski time scale, these forces make the beads move with constant velocities vk,
i.e., the forces −∇∇∇kΦ are exactly balanced by the hydrodynamic forces acting on
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the beads k. Introducing these forces into Eq. (A.15), we find the systematic part
of the velocity of bead j:

v j = −∑
k

µ̄µµ jk · (∇∇∇kΦ) . (B.3)

Multiplying this by Ψ, we obtain the systematic part of the flux of particle j.
At equilibrium, each flux J j must be zero and the distribution must be equal to

the Boltzmann distribution Ψeq = C exp [−βΦ]. Using this in Eq. (B.2) it follows
that

D̄ jk = kBT µ̄µµ jk, (B.4)

which is a generalization of the Einstein equation.
Combining Eqs. (B.1), (B.2), and (B.4) we find the Smoluchowski equation

for the beads in a Zimm chain:

∂Ψ
∂t

=∑
j
∑
k

∇∇∇ j · µ̄µµ jk · (∇∇∇kΦ+ kBT∇∇∇k lnΨ)Ψ. (B.5)

Using techniques similar to those used in Appendix B of chapter 2, it can be shown
that the Langevin Eqs. (3.3) - (3.5) are equivalent to the above Smoluchowski
equation.

Appendix C: Derivation of Eq. (3.12)

In order to derive Eq. (3.12) we write

µpq =
2

N +1
1

6πηsb

√
6
π

N

∑
j=0

cos

[
pπ

N +1
( j +

1
2
)
]
×

j

∑
k= j−N

cos

[
qπ

N +1
( j− k +

1
2
)
]

1√|k|

=
2

N +1
1

6πηsb

√
6
π

N

∑
j=0

cos

[
pπ

N +1
( j +

1
2
)
]

cos

[
qπ

N +1
( j +

1
2
)
]
×

j

∑
k= j−N

cos

(
qπk

N +1

)
1√|k|

+
2

N +1
1

6πηsb

√
6
π

N

∑
j=0

cos

[
pπ

N +1
( j +

1
2
)
]

sin

[
qπ

N +1
( j +

1
2
)
]
×

j

∑
k= j−N

sin

(
qπk

N +1

)
1√|k| . (C.1)
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Figure 3.1: Contour for integration in
the complex plane, Eq. (C.4). Part I is
a line along the real axis from x = 0 to
x = R, part II is a semicircle z = Reiφ,
where φ ∈ ]0,π/4], and part III is the
diagonal line z = (1 + i)x, where x ∈
]0,R/

√
2].

R

I

IIIII

We now approximate

j

∑
k= j−N

cos

(
qπk

N +1

)
1√|k| ≈

∫ ∞

−∞
dk cos

(
qπk

N +1

)
1√|k|

= 4
∫ ∞

0
dx cos

(
qπx2

N +1

)
=

√
2(N +1)

q
(C.2)

j

∑
k= j−N

sin

(
qπk

N +1

)
1√|k| ≈

∫ ∞

−∞
dk sin

(
qπk

N +1

)
1√|k| = 0. (C.3)

The result of Eq. (C.3) is obvious because the integrand is an odd function of k.
The last equality in Eq. (C.2) can be found by considering the complex function
f (z) = exp(iaz2) for any positive real number a on the contour given in Fig. 3.1.
Because f (z) is analytic (without singularities) on all points on and within the
contour, the contour integral of f (z) must be zero. We now write

0 =
∮

dz eiaz2
=

∫
(I)

dz eiaz2
+

∫
(II)

dz eiaz2
+

∫
(III)

dz eiaz2

=
∫ R

0
dx eiax2

+
∫ π/4

0
dφ iReiφ+iaR2e2iφ

+
∫ 0

R/
√

2
dx (1+ i)eia[(1+i)x]2

=
∫ R

0
dx eiax2

+
∫ π/4

0
dφ iReiφ+iaR2 cos2φ−aR2 sin2φ− (1+ i)

∫ R/
√

2

0
dx e−2ax2

(C.4)

Taking the limit R → ∞ the second term vanishes, after which the real part of the
equation yields

∫ ∞

0
dx cos(ax2) =

∫ ∞

0
dx e−2ax2

=
√

π
8a

. (C.5)

Introducing Eqs. (C.2) and (C.3) into Eq. (C.1) one finds Eq. (3.12). As a
technical detail we note that in principle diagonal terms in Eq. (3.11) should have
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been treated separately, which is clear from Eq. (A.17). Since the contribution of
all other terms is proportional to N1/2, however, we omit the diagonal terms.
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Chapter 4

The tube model

4.1 Entanglements in dense polymer systems

In the Rouse model we have assumed that interactions between different chains
can be treated through some effective friction coefficient. As we have seen, this
model applies well to melts of short polymer chains. In the Zimm model we have
assumed that interactions between different chains can be ignored altogether, and
only intrachain hydrodynamic interactions need to be taken into account. This
model applies well to dilute polymer systems.

We will now treat the case of long polymer chains at high concentration or
in the melt state. Studies of the mechanical properties of such systems reveal a
nontrivial molecular weight dependence of the viscosity and rubber-like elastic
behavior on time scales which increase with chain length. The observed behavior
is rather universal, independent of temperature or molecular species (as long as the
polymer is linear and flexible), which indicates that the phenomena are governed
by the general nature of polymers. This general nature is, of course, the fact
that the chains are intertwined and can not penetrate through each other: they
are “entangled” (see Fig. 4.1). These topological interactions seriously affect the
dynamical properties since they impose constraints on the motion of the polymers.

Figure 4.1: A simplified picture of
polymer chains at high density. The
chains are intertwined and cannot
penetrate through each other.
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Figure 4.2: Representation of a poly-
mer in a tube. The tube is due to sur-
rounding chains, i.e. entanglements,
so that the polymer can only reptate
along the tube.

4.2 The tube model

In the tube model, introduced by De Gennes and further refined by Doi and Ed-
wards, the complicated topological interactions are simplified to an effective tube
surrounding each polymer chain. In order to move over large distances, the chain
has to leave the tube by means of longitudinal motions. This concept of a tube
clearly has only a statistical (mean field) meaning. The tube can change by two
mechanisms. First by means of the motion of the central chain itself, by which
the chain leaves parts of its original tube, and generates new parts. Secondly, the
tube will fluctuate because of motions of the chains which build up the tube. It is
generally believed that tube fluctuations of the second kind are unimportant for ex-
tremely long chains. For the case of medium long chains, subsequent corrections
can be made to account for fluctuating tubes.

Let us now look at the mechanisms which allow the polymer chain to move
along the tube axis, which is also called the primitive chain.

The chain of interest fluctuates around the primitive chain. By some fluctua-
tion it may store some excess mass in part of the chain, see Fig. 4.2. This mass
may diffuse along the primitive chain and finally leave the tube. The chain thus
creates a new piece of tube and at the same time destroys part of the tube at the
other side. This kind of motion is called reptation. Whether the tube picture is
indeed correct for concentrated polymer solutions or melts still remains a matter
for debate, but many experimental and simulation results suggest that reptation is
the dominant mechanism for the dynamics of a chain in the highly entangled state.

It is clear from the above picture that the reptative motion will determine the
long time motion of the chain. The main concept of the model is the primitive
chain. The details of the polymer itself are to a high extent irrelevant. We may
therefore choose a convenient polymer as we wish. Our polymer will again be
a Gaussian chain. Its motion will be governed by the Langevin equations at the
Smoluchowski time scale. Our basic chain therefore is a Rouse chain.

46



4. THE TUBE MODEL

4.3 Definition of the model

The tube model consists of two parts. First we have the basic chain, and secondly
we have the tube and its motion. So:

• Basic chain
Rouse chain with parameters N, b and ζ.

• Primitive chain

1. The primitive chain has contour length L, which is assumed to be
constant. The position along the primitive chain will be indicated by
the continuous variable s ∈ [0,L]. The configurations of the primitive
chain are assumed to be Gaussian; by this we mean that〈(

R(s)−R(s′)
)2
〉

= d
∣∣s− s′

∣∣ , (4.1)

where d is a new parameter having the dimensions of length. It is the
step length of the primitive chain, or the tube diameter.

2. The primitive chain can move back and forth only along itself with
diffusion coefficient

DG =
kBT

(N +1)ζ
, (4.2)

i.e., with the Rouse diffusion coefficient, because the motion of the
primitive chain corresponds to the overall translation of the Rouse
chain along the tube.

The Gaussian character of the distribution of primitive chain conformations is
consistent with the reptation picture, in which the chain continuously creates new
pieces of tube, which may be chosen in random directions with step length d.

Apparently we have introduced two new parameters, the contour length L and
the step length d. Only one of them is independent, however, because they are
related by the end-to-end distance of the chain,

〈
R2

〉
= Nb2 = dL, where the first

equality stems from the fact that we are dealing with a Rouse chain, and the second
equality follows from Eq. (4.1).

4.4 Segmental motion

We shall now demonstrate that according to our model the mean quadratic dis-
placement of a typical monomer behaves like in Fig. (4.3). This behaviour has
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Figure 4.3: Logarithmic plot of the seg-
mental mean square displacement, in
case of the reptation model (solid line)
and the Rouse model (dashed line).

been qualitatively verified by computer simulations. Of course the final regime
should be simple diffusive motion. The important prediction is the dependence of
the diffusion constant on N.

In Fig. (4.3), τR is the Rouse time which is equal to τ1 in Eq. (2.46). The
meaning of τe and τd will become clear in the remaining part of this section. We
shall now treat the different regimes in Fig. (4.3) one after another.

i) t ≤ τe

At short times a Rouse bead does not know about any tube constraints. According
to Eq. (2.57) then

gseg(t) =
(

12kTb2

πζ

) 1
2

t
1
2 . (4.3)

Once the segment has moved a distance equal to the tube diameter d, it will feel
the constraints of the tube, and a new regime will set in. The time at which this
happens is given by the entanglement time

τe =
πζ

12kBTb2 d4. (4.4)

Notice that this is independent of N.

ii) τe < t ≤ τR

On the time and distance scale we are looking now, the bead performs random
motions, still constrained by the fact that the monomer is a part of a chain because
t ≤ τR. Orthogonally to the primitive chain these motions do not lead to any
displacement, because of the constraints implied by the tube. Only along the
primitive chain the bead may diffuse free of any other constraint than the one
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implied by the fact that it belongs to a chain. The diffusion therefore is given by
the 1-dimensional analog of Eq. (2.57) or Eq. (4.3),

〈
(sn(t)− sn(0))2〉 =

1
3

(
12kTb2

πζ

) 1
2

t
1
2 , (4.5)

where sn(t) is the position of bead n along the primitive chain at time t. It is
assumed here that for times t ≤ τR the chain as a whole does not move, i.e. that
the primitive chain does not change. Using Eq. (4.1) then

gseg(t) = d

(
4kBTb2

3πζ

) 1
4

t
1
4 , (4.6)

where we have assumed 〈|sn(t)− sn(0)|〉 ≈ 〈
(sn(t)− sn(0))2

〉 1
2 .

iii) τR < t ≤ τd

The bead still moves along the tube diameter. Now however t > τR, which means
that we should use the 1-dimensional analog of Eq. (2.56):

〈(sn(t)− sn(0))2〉 = 2DGt. (4.7)

Again assuming that the tube does not change appreciably during time t, we get

gseg(t) = d

[
2kBT

(N +1)ζ

] 1
2

t
1
2 . (4.8)

From our treatment it is clear that τd is the time it takes for the chain to create
a tube which is uncorrelated to the old one, or the time it takes for the chain to
get disentangled from its old surroundings. We will calculate the disentanglement
time τd in the next paragraph.

iv) τd < t

This is the regime in which reptation dominates. On this time and space scale we
may attribute to every bead a definite value of s. We then want to calculate

ϕ(s, t) = 〈(R(s, t)−R(s,0))2〉, (4.9)

where R(s, t) is the position of bead s at time t. In order to calculate ϕ(s, t) it is
useful to introduce

ϕ(s,s′; t) =
〈
(R(s, t)−R(s′,0))2〉 , (4.10)
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Figure 4.4: Motion of the
primitive chain along its
contour.

i.e. the mean square distance between bead s at time t and bead s′ at time zero.
According to Fig. (4.4), for all s, except s = 0 and s = L, we have

ϕ(s,s′; t +∆t) =
〈
ϕ(s+∆ξ,s′; t)

〉
, (4.11)

where ∆ξ according to the definition of the primitive chain in section 4.3 is a
stochastic variable. The average on the right hand side has to be taken over the
distribution of ∆ξ. Expanding the right hand side of Eq. (4.11) we get

〈
ϕ(s+∆ξ,s′; t)

〉 ≈ ϕ(s,s′; t)+ 〈∆ξ〉 ∂
∂s

ϕ(s,s′; t)+
1
2

〈
(∆ξ)2〉 ∂2

∂s2ϕ(s,s′; t)

= ϕ(s,s′; t)+DG∆t
∂2

∂s2ϕ(s,s′; t). (4.12)

Introducing this into Eq. (4.11) and taking the limit for ∆t going to zero, we get

∂
∂t

ϕ(s,s′; t) = DG
∂2

∂s2ϕ(s,s′; t). (4.13)

In order to complete our description of reptation we have to find the boundary
conditions going with this diffusion equation. We will demonstrate that these are
given by

ϕ(s,s′; t)|t=0 = d|s− s′| (4.14)
∂
∂s

ϕ(s,s′; t)|s=L = d (4.15)

∂
∂s

ϕ(s,s′; t)|s=0 = −d. (4.16)
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The first of these is obvious. The second follows from

∂
∂s

ϕ(s,s′; t)|s=L = 2

〈
∂R(s, t)

∂s
|s=L · (R(L, t)−R(s′,0))

〉

= 2

〈
∂R(s, t)

∂s
|s=L · (R(L, t)−R(s′, t))

〉

+2

〈
∂R(s, t)

∂s
|s=L · (R(s′, t)−R(s′,0))

〉

= 2

〈
∂R(s, t)

∂s
|s=L · (R(L, t)−R(s′, t))

〉

=
∂
∂s

〈
(R(s, t)−R(s′, t))2〉 |s=L =

∂
∂s

d|s− s′|s=L. (4.17)

Condition Eq. (4.16) follows from a similar reasoning.
We now solve Eqs. (4.13)–(4.16), obtaining

ϕ(s,s′; t) = |s− s′|d +2DG
d
L

t

+4
Ld
π2

∞

∑
p=1

1
p2 (1− e−t p2/τd )cos

( pπs
L

)
cos

(
pπs′

L

)
, (4.18)

where

τd =
L2

π2DG
=

1
π2

b4

d2

ζ
kBT

N3. (4.19)

We shall not derive this here. The reader may check that Eq. (4.18) indeed is the
solution to Eq. (4.13) satisfying (4.14)-(4.16).

Notice that τd becomes much larger than τR for large N, see Eq. (2.46). If the
number of steps in the primitive chain is defined by Z = Nb2/d2 = L/d, then the
ratio between τd and τR is 3Z.

Taking the limit s → s′ in Eq. (4.18) we get

〈
(R(s, t)−R(s,0))2〉= 2DG

d
L

t +4
Ld
π2

∞

∑
p=1

cos2
( pπs

L

)
(1−e−t p2/τd)

1
p2 . (4.20)

For t > τd we get diffusive behaviour with diffusion constant

D =
1
3

DG
d
L

=
1
3

d2

b2

kBT
ζ

1
N2 . (4.21)

Notice that this is proportional to N−2, whereas the diffusion coefficient of the
Rouse model was proportional to N−1. The reptation result, N−2, is confirmed
by experiments which measured the diffusion coefficients of polymer melts as a
function of their molecular weight.
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Figure 4.5: Schematic logaritmic
plot of the time behaviour of the
shear relaxation modulus G(t) as
measured in a concentated poly-
mer solution or melt; N1 < N2.

4.5 Viscoelastic behaviour

Experimentally the shear relaxation modulus G(t) of a concentrated polymer so-
lution or melt turns out to be like in Fig. 4.5. We distinguish two regimes.

i) t < τe

At short times the chain behaves like a 3-dimensional Rouse chain. Using Eq. (2.79)
we find

G(t) =
ckBT
N +1

N

∑
p=1

exp(−2t/τp)

≈ ckBT
N +1

∫ ∞

0
dp exp

(−2p2t/τR
)

=
ckBT
N +1

√
πτR

8t
, (4.22)

which decays as t−
1
2 . At t = τe this possibility to relax ends. The only way for the

chain to relax any further is by breaking out of the tube.

ii) t > τe

The stress that remains in the system is caused by the fact that the chains are
trapped in twisted tubes. By means of reptation the chain can break out of its
tube. The newly generated tube contains no stress. So, it is plausible to assume
that the stress at any time t is proportional to the fraction of the original tube that
is still part of the tube at time t. We’ll call this fraction Ψ(t). So,

G(t) = G0
NΨ(t) . (4.23)

On the reptation time scale, τe is practically zero, so we can set Ψ(τe) =Ψ(0)= 1.
To make a smooth transition from the Rouse regime to the reptation regime, we
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match Eq. (4.22) with Eq. (4.23) at t = τe, yielding

G0
N =

ckBT
N +1

√
πτR

8τe
=

ckBT√
2π

b2

d2 . (4.24)

Notice that the plateau value G0
N is independent of the chain length N. The numer-

ical prefactor of 1/
√

2π in Eq. (4.24) is not rigorous because in reptation theory
the time τe, at which the Rouse-like modulus is supposed to be instantaneously
replaced by the reptation-like modulus, is not defined in a rigorous manner. A
more precise calculation based on stress relaxation after a large step strain gives a
numerical prefactor of 4/5, i.e.

G0
N =

4
5

ckBTb2

d2 =
4
5

ckBT
Ne

. (4.25)

In the last equation we have defined the entanglement length Ne. In most exper-
iments the entanglement length (or more precisely the entanglement molecular
weight) is estimated from the value of the plateau modulus, using Eq. (4.25).

We will now calculate Ψ(t). Take a look at

〈
u
(
s′, t

) ·u(s,0)
〉≡ 〈

∂R(s′, t)
∂s′

· ∂R(s,0)
∂s

〉
. (4.26)

The vector u(s′, t) is the tangent to the primitive chain, at segment s′ at time t.
Because the primitive chain has been parametrized with the contour length, we
have from Eq. (4.1) 〈u·u〉 = 〈∆R ·∆R〉/(∆s)2 = d/∆s ; the non-existence of the
limit of �s going to zero is a peculiarity of a Gaussian process. Using Eqs. (4.10)
and (4.18) we calculate

〈
u
(
s′, t

) ·u(s,0)
〉

= −1
2

∂2

∂s∂s′
ϕ
(
s′,s; t

)
= dδ

(
s− s′

)− 2d
L

∞

∑
p=1

(1− e−t p2/τd )sin
( pπs

L

)
sin

(
pπs′

L

)

=
2d
L

∞

∑
p=1

e−t p2/τd sin
( pπs

L

)
sin

(
pπs′

L

)
, (4.27)

where we have used

2
L

∞

∑
p=1

sin
( pπs

L

)
sin

(
pπs′

L

)
= δ

(
s− s′

)
. (4.28)

Using this last equation, we also find〈
u
(
s′,0

) ·u(s,0)
〉

= dδ
(
s− s′

)
. (4.29)
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Figure 4.6: Development of Ψ(s, t)
in time.

This equation states that there is no correlation between the tangents to the primi-
tive chain at a segment s, and at another segment s′. If we consider 〈u(s′, t) ·u(s,0)〉
as a function of s′, at time t, we see that the original delta function has broadened
and lowered. However, the tangent u(s′, t) can only be correlated to u(s,0) by
means of diffusion of segment s′, during the time interval [0, t], to the place where
s was at time t = 0, and still lies in the original tube. So, 1

d 〈u(s′, t) ·u(s,0)〉 is
the probability density that, at time t, segment s ′ lies within the original tube at
the place where s was initially. Integrating over s′ gives us the probability Ψ(s, t)
that at time t any segment lies within the original tube at the place where segment
s was initially. In other words, the chance that the original tube segment s is still
up-to-date, is

Ψ(s, t) =
1
d

∫ L

0
ds′

〈
u
(
s′, t

) ·u(s,0)
〉

=
4
π

∞

∑′
p=1

1
p

sin
( pπs

L

)
e−t p2/τd , (4.30)

where the prime at the summation sign indicates that only terms with odd p should
occur in the sum. We have plotted this in Fig. 4.6. The fraction of the original
tube that is still intact at time t, is therefore given by

Ψ(t) =
1
L

∫ L

0
ds Ψ(s, t)

=
8
π2

∞

∑′
p=1

1
p2 e−t p2/τd . (4.31)

This formula shows why τd is the time needed by the chain to reptate out if its
tube; for t > τd , Ψ(t) is falling to zero quickly.

In conclusion we have found results that are in good agreement with Fig. 4.5.
We see an initial drop proportional to t−1/2; after that a plateau value G0

N indepen-
dent of N; and finally a maximum relaxation time τd proportional to N3.
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Finally, we are able to calculate the viscosity of a concentrated polymer solu-
tion or melt of reptating chains. Using Eq. 2.70 we find

η =
∫ ∞

0
dτ G(τ) = G0

N
8
π2

∞

∑′
p=1

1
p2

∫ ∞

0
dτ e−τp2/τd

= G0
N

8
π2 τd

∞

∑′
p=1

1
p4 =

π2

12
G0

Nτd . (4.32)

Since G0
N is independent of N, the viscosity, like τd , is proportional to N3. This

is close to the experimentally observed scaling η ∝ N3.4. The small discrepancy
may be removed by introducing other relaxation modes in the tube model, which
is beyond the scope of these lecture notes.

Problems

4-1. In Eq. (4.22) we have shown that, at short times, the shear relaxation modulus
G(t) decays as t−

1
2 . We know, however, that G(t) must be finite at t = 0. Explain

how the stress relaxes at extremely short times. Draw this in Fig. 4.5.
4-2. In the tube model we have assumed that the primitive chain has a fixed
contour length L. In reality, the contour length of a primitive chain can fluctuate
in time. Calculations of a Rouse chain constrained in a straight tube of length L
show that the average contour length fluctuation is given by

∆L̄ =
〈
∆L2〉 1

2 ≈
(

Nb2

3

) 1
2

.

Show that the relative fluctuation of the contour length decreases with increasing
chain length, i.e. that the fixed contour length assumption is justified for extremely
long chains.
4-3. Can you guess what the effect of contour length fluctuations will be on
the disentanglement times of entangled, but not extremely long, polymer chains?
[Hint: See the first equality in Eq. (4.19)]. What will be the consequence for the
viscosity of such polymer chains compared to the tube model prediction?
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