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Effective forces in colloidal mixtures: From depletion attraction to accumulation repulsion
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Computer simulations and theory are used to systematically investigate how the effective force between two
big colloidal spheres in a sea of small spheres depends on the(bags&mall and small-smaliinteractions.
The latter are modeled as hardcore pair potentials with a Yukawa tail which can be either repulsive or
attractive. For a repulsive small-small interaction, the effective force follows the trends as predicted by a
mapping onto an effective nonadditive hardcore mixture: both a depletion attraction and an accumulation
repulsion caused by small spheres adsorbing onto the big ones can be obtained depending on the sign of the
big-small interaction. For repulsive big-small interactions, the effect of adding a small-small attraction also
follows the trends predicted by the mapping. But a more subtle “repulsion through attraction” effect arises
when both big-small and small-small attractions occur: upon increasing the strength of the small-small inter-
action, the effective potential becomes more repulsive. We have further tested several theoretical methods
against our computer simulations: The superposition approximation works best for an added big-small repul-
sion, and breaks down for a strong big-small attraction, while density functional theory is very accurate for any
big-small interaction when the small particles are pure hard spheres. The theoretical methods perform most
poorly for small-small attractions.
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[. INTRODUCTION of sterically stabilized colloids and nonadsorbing polymer
coils [9]. In this strongly nonadditivgé19] model, the big-

A fundamental description of colloidal interactions basedsmall interaction is HS-like, while the small-small interac-
on statistical mechanics is needed to understand and prediéen is ideal-gas-like. The effective pair potential between
the stability and the phase behavior of colloidal suspension&Vo colloids can be exactly calculated and has an attractive
[1,2]. Most intercolloidal forces are effective in the senseWell proportional to the density of the small particles, and a
that some microscopic degrees of freedom are averaged otitnge equal to their diamete2) Much work has also fo-
This concept of mean or effective interactidiss-5] is cru- ~ cused on the complementary model of additive HS mixtures,
cial to bridge the different length scales involved in colloidal inspired in part by a prediction that they might phase sepa-
systems and has been exploited in many different circumtate [20]. The effective depletion forces were obtained by
stances. Examples of the microscopic degrees of freedofPmputer simulationi21,22, approximate theorief23,24),
include solvent particlefs], smaller colloidal particleg7], ~ density functional theoryDFT) [25,26], and experiments
added polymer coil§8—11] or monomers ofgrafted poly- [7,27,28. Simplified potentials were used to investigate the
mer chaing12—15, as well as counteriorjs6,17 and salt ~Phase-behavior of binary HS mixtur¢29], where it was
ions [18] in the case of charged suspensions. The resultingPund that fluid-fluid phase separation, when it _occurs
effective forces turn out to exhibit a wide range of features130,31, was always metastable with respect to fluid-solid
They can be attractive, repulsive, or oscillatory, and are aRhase separation. _ _ _ _
important key to understanding colloidal stability as well as In this work we generalize these studies to arbitrary big-
flocculation and coagulatiofi].

In the present paper we consider a binary colloidal mix-
ture of big and small colloidal particles and investigate the
distance-resolved effective force and potential between twc
big colloidal spheres surrounded by many small colloidal
spheres, as depicted in Fig. 1. The small particles are aver Ft‘fbffr)
aged out so that one is left with an effective pair potential :
between the big ones, which is superimposed onto the direc
big-big interaction. The form of these effective interactions @

depends sensitively on the basic big-small and small-smal
interactions.
Most previous studies have focused on a hard-sphere
(HS-) like interaction between the colloidal particles, with a
special emphasis on two casd4) The Asakura-Oosawa FIG. 1. Two big spheres of radius,, experience an effective
model, which was originally designed to describe mixturesforce FEfi(r) induced by the sea of small spheres of radiys.
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small and small-small interactions. Our study is motivated bysystem. This statistical mechanical procedure was originally
the fact that real colloidal suspensions typically have sofdeveloped by McMillan and Mayd#7] to trace out the sol-
interactions which are beyond the HS model. These soft invent in a suspension, but it can be used just as well to trace
teractions can easily be tuned, for example by changing theut a smaller component in a binary colloid mixture.

solvent composition, the amount of added salt, the surface We begin with the Hamiltonian of our two-component
charge, etc., which provides a route to tailoring the effectivemixture

interactions between the big particles. Hence it is essential to

understand on a full statistical level how the basic big-small H=K+Hpp+Hsst+Hps. (8]
and small-small interactions affect the effective big-big inter-
actions in a binary colloidal mixture. Here K is the total kinetic energy of the mixture and three

There has been some previous work on how non-HS-likgootential energy contributions are
interactions affect the effective big-big interactions, see, e.g.,

Refs.[3,32—-43, which showed that the differences with the No b b

pure HS case could be substantial. However, with a few ex- be:;j Pop(ri—ri),

ceptions, all these studies were performed with approximate

methods such as integral equations. Our goal here is to pro- Ng

vide benchmarlexactcomputer simulation results for a set H :2 D (r°—r%) )
of nine different parameters corresponding to combinations T T

of attractive and repulsive small-small and big-small interac-

tions. This allows us teystematicallystudy the trends in the Np N

Mz

S
effective forces as induced by the basic interactions. It also Hys= CDbs(rib—er),
allows us to test several theoretical techniques, namely, DFT, !

tr]hoen:éjgi(tai:/p;oatslo;cijpéjjg%ﬁqmatlc{144], and a mapping to a where®;’s denote the pairwise interaction potentials alﬁd

S H .
Generalizing from an additive to a nonadditive HS mix- and I denote the coordinates of the centers of the big and

ture already leads to a much richer class of effective potensMall particles, respectively.
tials [45,46,30,3], which can be exactly calculated from an  The formal procedure to reduce the two-component sys-
accurate theory of additive HS mixtur26]. Similarly, we tem _to an effective one-component one, descrlbe_d in more
find here that the effective big-big interactions are pro-detail elsewhere, see, e.g., Reff8,5,16,29,3], consists of
foundly influenced by the basic big-small and small-smalltracing out the small particles for a fixed configuratigfi}
interactions. The trends can be summarized as follows. Add®f the big particles. This is most conveniently done for a
ing a big_sma” repu'sion results in enhanced attractiorﬁemigrand el’lsemb|e Whel’e the Sma" pal’tic|es in the V0|ume
through the standard depletion mechanigp]. Adding a V are kept at a fixed chemical potentijak. The resulting
big-small attraction leads to an accumulation of the smaleffective one-component Hamiltonian that governs the be-
particles near each big one, which in turn results in a mordavior of the big particles takes the form
repulsive big-big interactioaccumulation repulsionFor a .
given big-small interaction, adding a small-small repulsion Hpp=Hpp+ €, ()]
also results in an enhanced small particle density near the big
particles, and therefore in a more repulsive big-big interacwhereQ =Q(Ny,z,V;{rP}) is the grand potential of a fluid
tion. Adding a small-small attraction when the big-small in-of small particles at fugacity zsz)\s’?’exp(BMS), (B
teraction is repulsive results in a more attractive effective=1/kgT) subjected to the external potential of the fixed con-
interaction. All these effects can be qualitatively understoodiguration{r”} of the big particles. This grand potential can
from a mapping to a nonadditive HS model. But when ape further expanded as a sum oflody) terms[29]
small-small and a big-small attraction are combineogpaul-
sion through attractioreffect occurs, which is not captured Ny
by DFT or by our mapping scheme. Q= 2 Q,. 4

The paper is organized as follows. In Sec. Il, we discuss
how to formally map a two-component mixture onto an ef- i i ,
fective one-component one, and define our target quantitied N€ first term{1, is the so-called volume term, which only
In Sec. Ill, we describe our model for the basic interactions d€Pends on properties of the small partidies., ®s¢ and is
We discuss our simulation results in Sec. IV, and the resultgherefore independent of the configuratiérf}. The one-

of several different theories in Sec. V. Our conclusions ard0dy term); can be related td, times the free-energy
stated in Sec. VI. gained by inserting a single big particle into a sea of small

particles. It depends on both, and ®,, but is indepen-
dent of®,,,. Of most interest to us here is the two-body term
Il. MAPPING A BINARY MIXTURE ONTO AN EFFECTIVE Q,, which can be written as
ONE-COMPONENT SYSTEM

i=1i=

Np
In this section we briefly describe hqw to map a two- QZ(Nb!ZSy{rib}):E Vgg(|fi—f1|), (5)
component binary mixture onto an effective one-component i<i
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where the two-body effective pair-potentif’(r) is related ~ which has the obvious physical interpretation that the total
to the free-energy difference between two big spheres a disffective or mean force is simply the average of the sum over
tancer apart, immersed in a sea of small spheres at fugacitgll the big-small interactiong,(r).

z,, and the same system with the two spheres=at. It is In the next sections, we will concentrate on the effect of
important to notice thaVgl(r) itself only depends o,  changing®(r) and®,(r), at fixed reservoir densitys,

and @, and not directly orb,,. This observation was a on the effective interactionB(r) and VEi(r).

key to understanding why the effective potentials for nonad-

ditive HS mixtures can be calculated by a theory for additive IIl. MODELS

HS mixtures[30,31,48. Nevertheless, through E@3), the .

effect of d(r) is felt in that it sets the range whe¥&! (r) A. Interactions

is relevant. We model the basic small-small and big-small interactions

In a similar way, higher order interactions can be deriveddefined in Eq(2) as hardcore Yukawa pair potentials
[15], but for this scheme to remain tractable, one usually

truncates at the pair level. As long as the range® gfand e <o,
d, are small compared to the range ®f,, higher order ®ij(r)= #ii(r) otherwise,
terms are not expected to be very importg2f,31]. '

Thus far we have developed this formal tracing out in theyhere in each cagedenotes the distance between the centers
semigrand ensemble, which helps emphasize that in a MiXss the relevant particles. Throughout, we takg,(r)=0,
ture with many large particles, the correct effective potentialyhile the big-small interaction added to the HS repulsion is
VEN(r) to be used in Eq(5) is the one fixed by the chemical given by
potential or fugacity instead of the overall density of the
smaller particles, as first emphasized by Lekkerkegkeal.

[10]. It is important to keep this in mind when studying bps(r)=
phase behavior. However, for a practical calculation of the
pair term, with only two big particles in an infinite sea of
small ones, one can just as easily work in the canonical erf,
semble, keeping in mind that when using the obtained'V®
ngg(r) for a system with many big particles, the input den-

Sity ps is really that of a reservoir of small particles kept at bdr)= GSS‘TSSqu_ ksd T — 0591, (12)

the same chemical potential as the full mixture of big and r

small particled10,29,31].

For the case of two big spheres a distancapart, in a whereops=3(opp+ oy
bath of small particles at density,, the average force is The Yukawa tail can be either repulsive or attractive. This
related to the effective potential by gives us the possibility to change the interaction over a broad

range from pure H$which serve as a reference cagesoft
J repulsions and attractive tails. We note that a hard-core
Felry=——Vel(r). (6)  Yukawa interaction has been frequently used in theoretical
or studies on liquids, see, e.448,49, and references therein.
Both an attractive and repulsive tail is realized in various

This average force provides an intuitive way of understandcolloidal solutions: a Short-l‘anged attractive Yukawa tail has
ing the effective interactions which parallels the more formalPeen shown to satisfactorily model the “stickiness” in the

derivation above. First we define a one-body density as folinteraction between globular protein solutidi®]. A repul-
lows: sive Yukawa tail, on the other hand, describes charged sus-

pensiong 2,51] where the range is controlled by the added
salt concentration and the amplitude by the colloidal charge.

(€)

€phsObs
r

exl — kps(r — aps)], (10

rfa_md the small-small interaction added to the HS repulsion is
n by

NS
p§”<r'):<<2 6(r'—rﬁ>>, () -
I B. Parameter combinations
Our aim is to systematically investigate the effect of the
where(( )) denotes a canonical thermodynamic average ovemasic big-small and small-small interactions on the effective
the small particles. If one big particle is fixed at the origin, big-big interactions. We vary the big-small interaction by
and one is fixed at, then we can define a one-particle den-changing Be,;, and vary the small-small interaction by
sity of the small particleg{)(r’;0,r) for that fixed configu- changingBess. The other parameters are fixed as follows:
ration. The effective force induced between two big spheresr,=0.20,;,, kps=6lop,=1.2l0ss, and  «kg= 15/
by the smaller particles can then be written[44,21] =3loss. The range of the big-small interaction is of the
order of the small particle size, while the range of the small-
small interactions is significantly less than the small particle
FgE(F)Z—f pgl)(r’;o,r)i,g{)bs(r’)dr’, (8) size_. For_all simulat_ions the packing3 fraction of the small
ar particles in the bulk is set tgs= mpsoc/6=0.1.
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TABLE |. Parameter combinations for simulation runs. The in- 4 F ' T ]
teractions are given by Eq€l0) and(11), and only thee,s and e
are changed; the other parameters are kept fixed. run 1¢,.=0; &, =0
&—o run 2 g,.=0; e, >0
RUN Bebs Bes 3l e—=arun 3 g, =0; ¢ <0 |
1 0 0
2 0 2.99 o
3 0 —0.996 Z 2t
a
4 0.82 0
5 0.82 2.99 ]
6 0.82 —0.996
7 -0.82 0
8 -0.82 2.99 0 :
9 —0.82 ~0.99 0.4 0.6 0.8 1

I/G,,

In total, we studied nine different parameter combinations FIG. 2. Normalized density profilesy(r)/ps of centers of the
corresponding to takinge,s and Be. to be positive, nega- small spheres as a function of the distancieom the center of a

tive, or zero. The detailed values are given in Table I. single big sphere. Results are from computer simulations for runs
1-3; i.e., eps=0, andeg, is varied. The values of the;; can be

found in Table I. In this figure, as well as Figs. 3—6, the circles
denote a repulsivegg, the squares an attractivg;, and no symbol
means no addeé,. Solid lines denote no addeqs, dotted lines

A. Simulation method €ps>0, and dot-dashed lineg,;<0.

IV. COMPUTER SIMULATIONS OF EFFECTIVE FORCES
AND INTERACTIONS

Our simulation setup contains two big spherical particles . . ]
in a large cubic simulation box of length with periodic ~ Compared to the density profile of the pure HS, there is a
boundary conditions in all three directions. The big particlessignificantly increased accumulation near the big spheres
W|th their center-to-center Separatimmre ﬁxed along the when a.Sma”'Sma“ repUISiVe interacti.on is added. To first
body diagonal of the cubic box amd,= 10 000 small mobile ~order this can be understood by mapping #&(r) onto an
particles of diameteir.. are added to the box. The box effective HS diameterS! [54]: Adding a small-small repul-
lengthL=7.4% is sufficiently large to exclude any spuri- Sive interaction increases the effective HS size, and therefore
ous periodic image effects. We also studied a single big parlso the effective HS packing fraction, resulting in a more
ticle in the simulation box to access the one-body small{ronounced accumulation of density near the surface. Add-
particle densityog(r) around an isolated big sphere. For two ing a small-small attraction has the opposite effect. This is
big spheresp= NS/(L3_%ngb), while for one big sphere because the bulk is now more favorable for the small par-
ps=No/(L3—Ltmad,). We checked the asymptotic density {iCles, and they are attracted to it.
profiles to confirm that the bulk densities were always the
same. 2. Added big-small repulsion: Runs-46

We use a molecular dynami¢D) code combining the  |n Fig. 3, the density profiles are shown for runs 46,
velocity Verlet algorithm[52] with discrete collisions and  where Be,=0.82. As expected, the repulsive big-small in-
reflections induced by the hard core of the interaction potenteraction leads to a reduction of the density at contact. Again,
t|a|S n Ol‘del’ to Calculate the trajeCtorIeS Of the Sma” par'adding a Sma”_sma“ repu'sion increases the density at con-

ticles. The system was carefully equilibrated and then statisgct, and adding a small-small attraction leads to a further
tical averages were computed such as the mean force actiR@pletion of the density at contact.

on the big particle¢see Eq(8)] or the inhomogeneous den-

sity _field ps(r_) of the small particles around a singlt_e big_ 3. Added big-small attraction: Runs 79
particle. Details of our simulation procedure are described in ) _ )
Refs.[18,53. In Fig. 4, the density profiles are compared for runs 7-9,

where Be,s= —0.82. As expected, the attractive big-small
interaction results in an enhanced density at contact. Simi-
) _ o larly to the previous two cases wheeg,=0 and e€,s>0,
Before we discuss the depletion potentials it is useful tqespectively, adding a small-small repulsion enhances the
first examine the density profilga(r) of the small particles  contact density with respect to the case of no small-small
around a single sphere. repulsion. But in contrast to the two previous cases, where
adding a small-small attraction resulted in a depleted density
profile with respect to the pure HS case, here adding
In Fig. 2, these are shown for runs 1-3, whegg=0. <0 results in an enhanced total accumulation of the small

B. One-body density profiles

1. No extra big-small interaction: Runs 43
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4 F ]
—-— run4¢g >0;¢ =0
&=-=orun5¢,>0;e, >0
3| B---0run 6 g,>0; £, <0 |
run 1
o«
=X
S
T 2y .
4
a
it
-30 1 1 1
0 1 1.2 1.4 1.6 1.8
04 r/be

I/,
. ) ) FIG. 5. Effective forces between the big particlﬁ’di:ﬁfg(r)

) FIG‘_ 3. Normalized density proflleps(_r)/ps from computer shown for all nine runs. The symbols are the same as in Figs. 2—4.
simulations for runs 4-6,s>0, s is varied. We also show the The results are from direct computer simulations. Notice that the
result for run 1, the pure HS case. big-small interaction has the dominant effect. A repulsiyeresults

in a more attractiveggF<l(r) (dot-dashed lings while an attractive
particles near the big one. Although the contact value is, results in a more repulsiveF:(r) (dotted lineg. The small-
slightly smaller than the case for pure HS, there is a markegdmall interactions have a relatively smaller effect.
accumulation further out, corresponding to a second layer of
particles. The relative adsorption of the small particlesinteraction has the largest relative effect on the density pro-
around the big one is thus considerably larger than for theiles. The effect of adding a small-small repulsion can be
case of no small-small attractions. This can be understood hyualitatively understood by the larger effective sphere size
the following simple argument: the big-small attraction leadsand concomitant larger packing fraction. The effect of adding
to an accumulation of the small particles near the surface 0§ small-small attraction can be qualitatively understood by
the big sphere. When this accumulation is large enough, ithe fact that the bulk is usually preferred over the surface of
becomes favorable for the small particles to leave the bulkihe particle, except when the big-small interaction is strong
and approach the surface of the big particle, where their locadnough to provoke a nonlinear enhancement of the density of
density is larger. Thus the two attractions amplify each othegmall particles near a big one. Having investigated the effect
in a nonlinear fashion. of the interactions on the one-body density profiles, we now

In conclusion then, when comparing Figs. 2, 3, and 4, it isurn to the related two-body depletion potentials.

clear that for the parameters we have chosen, the big-small

C. Effective pair forces and potentials

In Fig. 5 we compare the effective depletion force be-
run 7 g,<0; ¢_=0 tween two big spheres for all nine parameter combinations

&—--o run 8¢,.<0; £,>0 detailed in Table I. In Fig. 6 we compare the related deple-

3t e :ﬂ:?ebs<°; €0 1 tion potentials. First we note that changing the big-small in-

teraction is the dominant effect: the depletion forces and po-
tentials split naturally into three groups: no added big-small
interaction (solid lines, runs 1-B big-small repulsion
(dashed lines, runs 446and big-small attractivédotted
lines, runs 7—8 We will treat each case in turn.

p:(N/p,

1. No extra big-small interaction: Runs 43

As was already seen for the one-body profiles, adding a
small-small repulsion(run 2) results in a larger effective
small-sphere size and packing fraction, which is reflected in
004 Y 08 ” more pronounced oscillations compared to the pure HS case

' ’ 1/ ’ (run 1). These are evident both in the effective force and in

o the effective pair potential. Adding a small-small attraction
FIG. 4. Normalized density profilepy(r)/ps from computer ~ (run 3 results in a reduced density near a big particle, as

simulations for runs 7-9¢,.<0, e is varied. We also show the seen in Fig. 2. This would imply that each big sphere ex-
result for run 1, the pure HS case. cludes slightly more free volume than if there were no small-
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I/Gy .
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bﬂ ' T i
%:5 ]
=3
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1 1.2 1.4 16 1.8 R 1.2 1.3 1.4 15
I/Gy, NGy

FIG. 6. Effective potentials between the big particmgfé(r) _ FIG. _7 Co_mpiarl_son Ofl. thlt_eory tph5|mulat||c>n for run &bs
shown for all nine runs. The results are from direct computer simu-_o‘ GS_S_O_' Slmg at_lon (solid line wit symbo_ia superposition
lations. The symbols are the same as in Figs. 2—5 approximation(solid line), and DFT(dot-dashed lingresults for the

effective force and potentidkee insetas a function of, the dis-

tance between the centers of the big particles, are shown.
small attractions, which, in turn, implies a slightly more at-

tractive potential, as is observed. V. THEORETICAL DESCRIPTIONS OF THE EFFECTIVE
FORCES AND POTENTIALS
2. Added big-small repulsion: Runs-46 A. Superposition approximation

The dominant effect of adding a big-small repulsion is to To c;alpulate the eﬁeptlve forces via E@), one heeds a
make the effective forces and potentials much more attrac‘-’res.Crlptlon for calculating the on_e-body den_S|ty of the small
tive. This can be understood with the classical picture in_artlcle_s. In Sec_. IV, we essent|ally_d|d this by computer
depletion[8,9]: Adding a big-small repulsion results in a simulations. In this section we approximate the full one-body

larger depletion layer around each large particle. When M(grensny by_a superposition of the: one-body dengiyr)
ound an isolated single sphérel]:

large spheres approach, the amount of doubly excluded vol-

ume is therefore larger, resulting in a more attractive effec- pgl)(r’;o,r)=ps(r’)ps(|r—r’|)/ps, (12

tive (depletion potential or force. Again, adding a small-
small repulsion(run 5 results in enhanced layering as an approach similar in spirit to the Kirkwood superposition

compared to the pure HS small particles. Adding a smallapproximation/54]. Since all input information comes from
small attraction(run 6) has only a weak effect similar to the (radially symmetrig problem of a single sphere, this su-

what was seen for run 3. perposition approximation greatly simplifies the calculation
of the two-body depletion forces. The inppt(r) could
3. Added big-small attraction: Runs-79 come from density functional theory or integral equation

theory, as was done previously by other autj@dks 34, but

The dominant effect of adding a big-small attraction is tohere we will use the(r) generated by our simulations and
make the effective forces and potentials much more repuldepicted in Figs. 2—4. The results are shown in Figs. 7-15,
sive. This can be qualitatively understood from the fact thawhere we compare in detail the radial fordefy(r)
the big-small attraction results in an enhanced density of= FEl(r)-r/r and the effective potentiaVEl(r) calculated
small particles near a single large sphere. When two suctvith the superposition approximation, to the results obtained
large spheres approach one another, the layers of small payy direct simulations.
ticles around each one begin to interact, leading to an en- Figure 7 (run 1) shows the HS reference case. Here the
hanced repulsion between them. As demonstrated in Fig. guperposition approximation works quite well. The packing
for a given big-small attraction, adding small-small repulsionfraction of the small sphereg;=0.1 is rather low, so we
or attraction both result in a further enhanced dengify) expect that the small-small correlation effects are not very
of the small particles around a single large one, which in turrstrong. The total one-body density is therefore well approxi-
explains why the effective pair potentials are more repulsivenated by Eq(12). As demonstrated by other authd2i,34
for both e,c>0 and €,,<0. Relatively speaking, adding for the pure HS case, this superposition approximation be-
small-small attractions has the largest effect on the effectivgins to break down ag, increases and two-body correlation
potentials, which is due to the nonlinear coupling betweereffects become more important. For example, they found that
the big-small and the small-small attractions. for large 75, the superposition approximation leads to an
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16 18 ]
_251 151 1;2 1;3 1;4 15 _241 112 1?4 116 118 2
r/G,, r/Gy,
FIG. 8. Same as Fig. 7, but for run 2,5=0, es:>0. FIG. 10. Same as Fig. 7, but for run &;s>0, €s=0.

overestimate of the strength of the attractive force at Contacpear each big sphere, the superposition approximation per-

o : g orms less well. This is perhaps not surprising, as the en-
This is exactly what is seen in Fig.(Bin 2), where the effect . . .
of an added r)(/epulsivé {(r) can b%(unde)rstood in terms of a hanced density of small particles near each big sphere results
S

. King fracti . 9 3 sh in a more important role for small-small correlations, which
larger effective packing fractions. Figure 9(run 3 shows 5.0 ot \vell treated by the superposition approximation.

that for ;<0 the superposition approximation shows a |5 symmary then, for HS or other repulsive small-small
similar error to what was seen for run 2, i.e., the forces angnteractions, the superposition approximation works best for
potentials are too attractive. low (effective) packing fractionsy,, where correlations be-

In Figs. 10-12(runs 4—6, where the repulsives,(r)  tween the small particles do not strongly alter the full one-
induces much more attractive effective interactions than fopody densityp{!)(r’;0,r) from the superposition of the den-
the pure HS case, the superposition approximation is seen tties around an isolated big sphere. The case of a strongly
work quite well for e;=0 and ess>0. This is most likely  repulsived,«(r), which lowers the effective packing fraction
because the effectiviepletion force or potential is domi- near the big spheres, is particularly well described by the
nated by¢ys(r), which also induces a lowers(r) (see Fig. superposition approximation. In contrast, the case of an at-
3), so that small-small correlations only play a relatively mi- tractive ¢,4(r), which results in an increased accumulation
nor role and Eq(12) is rather accurate. Even feg <0, the  of small particles around each big sphere, is not as well
results are reasonable, although the superposition approximdescribed.
tion tends to predict forces and potentials that are too attrac-
tive, just as was found fog,(r)=0. B. Density functional theory

~In Figs. 13-15(runs 7-9, where the attractivep(r) In a recent development, density functional thetyT)
induces an increased local accumulation of the small spherggs peen used to derive effective potentials for additive

]

B Fff: (1O
BF:: (O,

1 1.1 1.2 13 14 15 ] ;
r/cy, /Gy,

FIG. 9. Same as Fig. 7, but for run 8;,5=0, €;c<0. FIG. 11. Same as Fig. 7, but for run §;>0, es<>0.
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0

-5 F

=
8 10
538
Th
=
15
_20 L L L L _5 1 1 il
1 12 14 16 18 2 1 12 14 16 18
r'oy, 110y,
FIG. 12. Same as Fig. 7, but for run §¢>0, €5,<0. FIG. 14. Same as Fig. 7, but for run &<0, ess>0.

[25,26 and nonadditivg30,31,46 HS mixtures. For the ad- where F,J py, ,p<] is the excesgover idea) intrinsic Helm-
ditive case, quantitative agreement with computer simulaholtz free energy functional of the mixtufg5]. Given some
tions was achieved25,26. Since the calculations for the mixture functional, one can obtain the effective potentials
nonadditive case were shown to be equivalent to the additivend forces from a radially symmetric calculationoé’f)(r) in
ones[30,31, a similar quantitative accuracy could be ex-the limit of vanishing density of the big spheres. This is
pected there. In brief, the method is based on the followingnuch simpler than say trying to use DFT to directly calculate
exact relationship between the effective potential and thene cylindrically symmetric one-body densip™(r’;0,r),
one-body direct correlation functidi25,26: for use in Eq.(8) [36]. All one now needs is some prescrip-
off \ 1 1 tion for the mixture functional. Here we use Rosenfeld’s very
BVip(r) = anlw[CE’ )(Oo)icé 0], 13 successful fundamental measure thd®§j, in its form valid
Ho for HS mixtures. As found previouslj26], the DFT and

wherec{)(r) is defined for the case where a big sphere isS|mulat|on results for effective interactions of the pure HS

. i ) case depicted in Fig. @#un 1) agree very well.
fixed at the ongln,_and_exerts a field on the small spheres andaThis DFT method can easily be extended to an arbitrary
on a bhig test particle inserted at[26]. DFT can therefore

dps(r), since this simply corresponds to an additional exter-

provide a route to the effective potentials since nal field in Eq.(13). Previous DFT calculationg30] found
good agreement with earlier simulations with an attractive
cB(r)=— 6F el b Ps] (14) dps(r) [35]. Here we also find very good agreement with
b Spp(Tr) runs 4 and 7(Figs. 10 and 1Bwhich correspond to a finite
20 T T T 20 T T T
2 ; ; . 3

(NOw

eff
bb

14 16 18
1/Gy,

BF

-5 1 1 1 -5 1 1 1
1 12 14 1.6 1.8 1 1.2 14 1.6 1.8

r/Gy, r/Gy,
FIG. 13. Same as Fig. 7, but for run &;,<0, €,,=0. FIG. 15. Same as Fig. 7, but for run 8;;<0, €,.<0.

061407-8



EFFECTIVE FORCES IN COLLOIDAL MIXTURES. .. PHYSICAL REVIEW E 65 061407

$us(r) but no additionakps(r). (i) RepulsiveBeps(r):  ofr>0ps; 0M=0s; A>0.

Since there is at present no successful two-componenty) Attractive Sy, «(r): o< ope; o=0g; A<O.
DFT for mixtures where the small particles are not HS-like,
some approximations must be made. We chose to map theor details of how each of the different cases of nonadditiv-
bs{r) onto effective HS diameters?" using the Barker- ity affect the depletion potentials, we refer to Refs.
Henderson approadb7] [30,31,44.

An example where the mapping to nonadditivity works
well is given in Fig. 8(run 2, where we mapped the small-
small repulsion onto an effective HS diamefease(i)], so
that the DFT result is really that of a nonadditive HS mixture
whereo; is the bare HS diameter. We then calculated effecWith A=—0.069. In Ref[30] we also found semiquantita-
tive pair potentials and effective pair forces with our full tive agreement with the mapping for weak and short-ranged
DFT approach, including an explicib,s(r) when needed, B@ps(r). In the present case, whefep,(r) is stronger and
but with the small-spheres mapped onto the effective diamlonger ranged, the agreement is no longer quantitative. Nev-
etersol=1.447r, and o= 0.658r for the repulsive and ~ ertheless, for runs 1-8 the mapping scheme provides a quali-
attractive o), respectively. Similarly the effective pack- tative explanation of the trends. That is, for a fixégy(r),
ing fraction becomes;$"=0.303 for the repulsive angS”  adding a repulsivgcase(i)] or attractive[case(ii)] ¢s(r)
—0.0290 for the attractive interaction. causesVy(r) to become more repulsive or attractive, re-

First, for runs 2, 5, and §Figs. 8, 11, and 14, respec- specti\./._ely. Similarly_, for a fix.edﬁss(r), adding a repulsive
tively), which all correspond to a repulsivg.(r), we find  [case(ii)] or attractive[case(iv)] ¢,«(r) results in a more
good agreement for no additiona,«(r) (see Fig. 8 but attractive or repulsive/p(r), respeqtlvely. The only case
less good agreement for a repulsive or attractiyg(r) (see where this scheme breaks down is run 9, where"addmg
Figs. 11 and 14, respectively ¢SS(_r)<0 for an attractlvazﬁbs(r) shOl_JId fall under (_:asérl_). _

Because of the strength of the small-small attraction, th&Ut instéad of inducing more attraction, the effective big-big
mapping results in a very low effective packing fraction of pqtgnnal _becomes more repulsive. Of course this is not sur-
the small particles. Overall, the DFT underestimates the efP"iSing, since the DFT results already showed that a mapping
fective forces fore,.=0 ande,o>0, as can be seen in Figs. Scheme misses the nonlinear enhancement of the small par-
9 and 12. It performs rather poorly for run 9, where thelicle density profiles. _ o
attractive ¢,(r) results in a nonlinear enhancement of the, N conclusion then, the mapping to nonadditivity works
small-particle density profile, an effect not taken into accounP€St for a repulsive small-small interaction. For repulsive and
with our HS mapping. This suggests that a different two-attractive big-small interactions, th_e mapping is only quahj
component DFT, which explicitly takes into account the tative. The much better semiquantitative agreement found in
small-small attractions.(r) needs to be developed before R€f: [30] can be traced to the much weaker effect of the

we can use this route to derive accurate effective pair force@bs(") used there. Just as was seen for the direct DFT meth-
and potentials. ods, it is the case of small-small attraction combined with

big-small attraction which seems most difficult to capture
within our mapping scheme.

oo+ [ 1-ext-paynar, a9

C. Mapping to nonadditive HS system

In a previous papef30] two of us proposed that the ef-
fects of big-small and small-small interactions on \!fﬁ(r)
could be understood by mapping onto those of nonadditive In conclusion, we have shown how the basic interactions
HS systems. These have the advantage that they can be de-a colloidal mixture control the resulting effective interac-
termined by an exact mapping onto the depletion potential§ons between the big particles. This knowledge may be ex-
of additive HS mixtureqd30,31], which, in turn, are well ploited to stabilize colloidal particles against coagulation and
understood and for which a good parametrization exz6$  to tailor the colloidal phase diagrams.

Even a small nonadditivity was shown to have a large effect Adding a repulsivep,(r) results in a strongly enhanced
on the depletion potentials. attraction through the standard depletion mechanism. We

By mapping the big-small and small-small interactionsalso found at least two ways to obtain significantly more
onto effective HS diameters through E45) one can define repulsive effective interactions caused by accumulation of
the nonadditivity in terms of the parameté#r the small particlegaccumulation repulsion (1) Adding re-
pulsions between the small particles results in an enhanced
accumulation near the surface of the large particles; when
two large particles approach each other, this results in an
effective repulsion between ther2) Adding an attraction
Four different ways of adding interactions to introduce non-between the large and the small particles also results in an

VI. CONCLUSIONS

1
The=5 (Topt o) (1+4). (16

additivity were studied30]: enhanced accumulation near the surface of the large particles
and therefore in repulsive effective interactions. Further-

(i) RepulsiveB ¢ (r): ngz Ops:; 0§2> oss; A<O. more, we found that for an attractive big-small interaction,

(i) Attractive Bgs(r):  otn=0p; 0o<ogs; A>0. adding small-small attractions resulted in even more effec-
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tive repulsion. This “repulsion through attraction” effect is becomes much less accurate when (lbeal) small particle
caused by a nonlinear coupling betweggn(r) and ¢pq(r). packing is high. When the smaller component is purely HS-

These predictions could in principle be verified in experi-like, then our DFT approach is very accurate, just as was
ments that directly measure the effective forces of colloidafound for additive and nonadditive HS mixtures
suspensions, such as optical tweeZ@&58] or total internal  [26,30,31,46 When a repulsive interaction is added between
reflection microscopyTIRM) [27,28,59. They could also be the small particles, DFT does not perform quite as well, and
verified indirectly through measurements of phase behaviowhen an attraction is added between the small particles, the
and coagulation. Measurements of the second osmotic virialifferences are even more important. By mapping the small-
coefficient might also be very sensitive probes of the effecsmall and big-small interactions onto effective HS diameters,
tive interactiong31]. Systems where these interactions couldwe can map onto an effective nonadditive HS model. This
be tuned include for example ternary suspensfé0$where  explains the qualitative trends for most of our parameter
the small-small attraction is generated by depletion attractiocombinations. It is quantitative if only a small-small repul-
of an even smaller third colloidal component or highly saltedsion is added, but breaks down when both a small-small and
charged suspensions where the van der Waals attractian big-small interaction couple together to induce an en-
dominates. hanced small particle density.

In some interesting recent experimefél], a colloidal All three tested theoretical methods perform less well for
suspension of neutral big particles was stabilized by the adadded small-small attractions. Constructing a reliable theory
dition of highly charged small nanoparticles. The proposedo treat this very interesting case is therefore a challenging
mechanism was termed “nanopatrticle halos,” and is veryproblem. One possible way to extend the DFT calculations to
similar to the mechanism we observe, for example, in ouln attractive small-small interaction would be to add a mean-
run 2, where a repulsiveb.(r) of the screened Coulomb field-attractive tern{55]. For example, mean-field-like func-
(Yukawg form was added to the smaller particles, resultingtionals based on thermodynamic perturbation theory around
in an increased accumulation of small particles near each big HS reference system have been successfully applied to the
one, and an effective repulsion between the big particles. Thdensity profiles and phase behavior in systems with attractive
effects in the experiments may also be enhanced by a smalbtentials[63,64.
attractive ¢, ¢(r) (similar to our run 8). We are currently New physics is expected when wetting or drying phenom-
actively pursuing a more detailed comparison with these exena control the density of the small particles between the big
periments. ones. This is relevant if the bulk fluid of the small particles is

Another possible application of this work is to supercriti- close to liquid-gas phase coexistence. A wetting transition is
cal solventg62], which have important applications in in- expected to have a profound impact on the effective interac-
dustrial processes. The question of how the effective force otion as well, one important effect is a liquid “bridge” of
the big particles depends on the interactions with a low densmall particles between the big one which has been recently
sity solvent is encountered there as wWdl0,41), sometimes studied in more detall65].
for similar size ratios.
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