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Effective forces in colloidal mixtures: From depletion attraction to accumulation repulsion
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Computer simulations and theory are used to systematically investigate how the effective force between two
big colloidal spheres in a sea of small spheres depends on the basic~big-small and small-small! interactions.
The latter are modeled as hardcore pair potentials with a Yukawa tail which can be either repulsive or
attractive. For a repulsive small-small interaction, the effective force follows the trends as predicted by a
mapping onto an effective nonadditive hardcore mixture: both a depletion attraction and an accumulation
repulsion caused by small spheres adsorbing onto the big ones can be obtained depending on the sign of the
big-small interaction. For repulsive big-small interactions, the effect of adding a small-small attraction also
follows the trends predicted by the mapping. But a more subtle ‘‘repulsion through attraction’’ effect arises
when both big-small and small-small attractions occur: upon increasing the strength of the small-small inter-
action, the effective potential becomes more repulsive. We have further tested several theoretical methods
against our computer simulations: The superposition approximation works best for an added big-small repul-
sion, and breaks down for a strong big-small attraction, while density functional theory is very accurate for any
big-small interaction when the small particles are pure hard spheres. The theoretical methods perform most
poorly for small-small attractions.

DOI: 10.1103/PhysRevE.65.061407 PACS number~s!: 82.70.Dd,61.20.Gy
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I. INTRODUCTION

A fundamental description of colloidal interactions bas
on statistical mechanics is needed to understand and pr
the stability and the phase behavior of colloidal suspens
@1,2#. Most intercolloidal forces are effective in the sen
that some microscopic degrees of freedom are averaged
This concept of mean or effective interactions@3–5# is cru-
cial to bridge the different length scales involved in colloid
systems and has been exploited in many different circu
stances. Examples of the microscopic degrees of free
include solvent particles@6#, smaller colloidal particles@7#,
added polymer coils@8–11# or monomers of~grafted! poly-
mer chains@12–15#, as well as counterions@16,17# and salt
ions @18# in the case of charged suspensions. The resul
effective forces turn out to exhibit a wide range of featur
They can be attractive, repulsive, or oscillatory, and are
important key to understanding colloidal stability as well
flocculation and coagulation@1#.

In the present paper we consider a binary colloidal m
ture of big and small colloidal particles and investigate
distance-resolved effective force and potential between
big colloidal spheres surrounded by many small colloi
spheres, as depicted in Fig. 1. The small particles are a
aged out so that one is left with an effective pair poten
between the big ones, which is superimposed onto the d
big-big interaction. The form of these effective interactio
depends sensitively on the basic big-small and small-sm
interactions.

Most previous studies have focused on a hard-sph
~HS-! like interaction between the colloidal particles, with
special emphasis on two cases.~1! The Asakura-Oosawa
model, which was originally designed to describe mixtu
1063-651X/2002/65~6!/061407~11!/$20.00 65 0614
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of sterically stabilized colloids and nonadsorbing polym
coils @9#. In this strongly nonadditive@19# model, the big-
small interaction is HS-like, while the small-small intera
tion is ideal-gas-like. The effective pair potential betwe
two colloids can be exactly calculated and has an attrac
well proportional to the density of the small particles, and
range equal to their diameter.~2! Much work has also fo-
cused on the complementary model of additive HS mixtur
inspired in part by a prediction that they might phase se
rate @20#. The effective depletion forces were obtained
computer simulation@21,22#, approximate theories@23,24#,
density functional theory~DFT! @25,26#, and experiments
@7,27,28#. Simplified potentials were used to investigate t
phase-behavior of binary HS mixtures@29#, where it was
found that fluid-fluid phase separation, when it occu
@30,31#, was always metastable with respect to fluid-so
phase separation.

In this work we generalize these studies to arbitrary b

FIG. 1. Two big spheres of radiussbb experience an effective
force Fbb

eff(r ) induced by the sea of small spheres of radiussss.
©2002 The American Physical Society07-1
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small and small-small interactions. Our study is motivated
the fact that real colloidal suspensions typically have s
interactions which are beyond the HS model. These soft
teractions can easily be tuned, for example by changing
solvent composition, the amount of added salt, the surf
charge, etc., which provides a route to tailoring the effect
interactions between the big particles. Hence it is essentia
understand on a full statistical level how the basic big-sm
and small-small interactions affect the effective big-big int
actions in a binary colloidal mixture.

There has been some previous work on how non-HS-
interactions affect the effective big-big interactions, see, e
Refs.@3,32–43#, which showed that the differences with th
pure HS case could be substantial. However, with a few
ceptions, all these studies were performed with approxim
methods such as integral equations. Our goal here is to
vide benchmarkexactcomputer simulation results for a s
of nine different parameters corresponding to combinati
of attractive and repulsive small-small and big-small inter
tions. This allows us tosystematicallystudy the trends in the
effective forces as induced by the basic interactions. It a
allows us to test several theoretical techniques, namely, D
the superposition approximation@44#, and a mapping to a
nonadditive HS model@30#.

Generalizing from an additive to a nonadditive HS m
ture already leads to a much richer class of effective po
tials @45,46,30,31#, which can be exactly calculated from a
accurate theory of additive HS mixtures@26#. Similarly, we
find here that the effective big-big interactions are p
foundly influenced by the basic big-small and small-sm
interactions. The trends can be summarized as follows. A
ing a big-small repulsion results in enhanced attract
through the standard depletion mechanism@8,9#. Adding a
big-small attraction leads to an accumulation of the sm
particles near each big one, which in turn results in a m
repulsive big-big interaction~accumulation repulsion!. For a
given big-small interaction, adding a small-small repulsi
also results in an enhanced small particle density near the
particles, and therefore in a more repulsive big-big inter
tion. Adding a small-small attraction when the big-small i
teraction is repulsive results in a more attractive effect
interaction. All these effects can be qualitatively understo
from a mapping to a nonadditive HS model. But when
small-small and a big-small attraction are combined, arepul-
sion through attractioneffect occurs, which is not capture
by DFT or by our mapping scheme.

The paper is organized as follows. In Sec. II, we disc
how to formally map a two-component mixture onto an
fective one-component one, and define our target quanti
In Sec. III, we describe our model for the basic interactio
We discuss our simulation results in Sec. IV, and the res
of several different theories in Sec. V. Our conclusions
stated in Sec. VI.

II. MAPPING A BINARY MIXTURE ONTO AN EFFECTIVE
ONE-COMPONENT SYSTEM

In this section we briefly describe how to map a tw
component binary mixture onto an effective one-compon
06140
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system. This statistical mechanical procedure was origin
developed by McMillan and Mayer@47# to trace out the sol-
vent in a suspension, but it can be used just as well to tr
out a smaller component in a binary colloid mixture.

We begin with the Hamiltonian of our two-compone
mixture

H5K1Hbb1Hss1Hbs . ~1!

Here K is the total kinetic energy of the mixture and thre
potential energy contributions are

Hbb5(
i , j

Nb

Fbb~r i
b2r j

b!,

Hss5(
i , j

Ns

Fss~r i
s2r j

s!, ~2!

Hbs5(
i 51

Nb

(
j 51

Ns

Fbs~r i
b2r j

s!,

whereF i j ’s denote the pairwise interaction potentials andr i
b

and r j
s denote the coordinates of the centers of the big a

small particles, respectively.
The formal procedure to reduce the two-component s

tem to an effective one-component one, described in m
detail elsewhere, see, e.g., Refs.@4,5,16,29,31#, consists of
tracing out the small particles for a fixed configuration$r i

b%
of the big particles. This is most conveniently done for
semigrand ensemble where the small particles in the volu
V are kept at a fixed chemical potentialms . The resulting
effective one-component Hamiltonian that governs the
havior of the big particles takes the form

Hbb
eff5Hbb1V, ~3!

whereV5V(Nb ,zs ,V;$r i
b%) is the grand potential of a fluid

of small particles at fugacity zs5ls
23 exp(bms), (b

51/kBT) subjected to the external potential of the fixed co
figuration $r i

b% of the big particles. This grand potential ca
be further expanded as a sum of (n-body! terms@29#

V5 (
n50

Nb

Vn . ~4!

The first termV0 is the so-called volume term, which onl
depends on properties of the small particles~i.e., Fss) and is
therefore independent of the configuration$r i

b%. The one-
body termV1 can be related toNb times the free-energy
gained by inserting a single big particle into a sea of sm
particles. It depends on bothFss and Fbs , but is indepen-
dent ofFbb . Of most interest to us here is the two-body ter
V2, which can be written as

V2~Nb ,zs ,$r i
b%!5(

i , j

Nb

Vbb
eff~ ur i2r j u!, ~5!
7-2
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EFFECTIVE FORCES IN COLLOIDAL MIXTURES: . . . PHYSICAL REVIEW E 65 061407
where the two-body effective pair-potentialVbb
eff(r ) is related

to the free-energy difference between two big spheres a
tancer apart, immersed in a sea of small spheres at fuga
zs , and the same system with the two spheres atr 5`. It is
important to notice thatVbb

eff(r ) itself only depends onFbs

and Fss, and not directly onFbb . This observation was a
key to understanding why the effective potentials for non
ditive HS mixtures can be calculated by a theory for addit
HS mixtures@30,31,46#. Nevertheless, through Eq.~3!, the
effect ofFbb(r ) is felt in that it sets the range whereVbb

eff(r )
is relevant.

In a similar way, higher order interactions can be deriv
@15#, but for this scheme to remain tractable, one usua
truncates at the pair level. As long as the ranges ofFss and
Fbs are small compared to the range ofFbb , higher order
terms are not expected to be very important@29,31#.

Thus far we have developed this formal tracing out in
semigrand ensemble, which helps emphasize that in a m
ture with many large particles, the correct effective poten
Vbb

eff(r ) to be used in Eq.~5! is the one fixed by the chemica
potential or fugacity instead of the overall density of t
smaller particles, as first emphasized by Lekkerkerkeret al.
@10#. It is important to keep this in mind when studyin
phase behavior. However, for a practical calculation of
pair term, with only two big particles in an infinite sea
small ones, one can just as easily work in the canonical
semble, keeping in mind that when using the obtain
Vbb

eff(r ) for a system with many big particles, the input de
sity rs is really that of a reservoir of small particles kept
the same chemical potential as the full mixture of big a
small particles@10,29,31#.

For the case of two big spheres a distancer apart, in a
bath of small particles at densityrs , the average force is
related to the effective potential by

Fbb
eff~r !52

]

]r
Vbb

eff~r !. ~6!

This average force provides an intuitive way of understa
ing the effective interactions which parallels the more form
derivation above. First we define a one-body density as
lows:

rs
(1)~r 8!5KK (

i

Ns

d~r 82r i
s!LL , ~7!

where^̂ && denotes a canonical thermodynamic average o
the small particles. If one big particle is fixed at the orig
and one is fixed atr , then we can define a one-particle de
sity of the small particlesrs

(1)(r 8;0,r ) for that fixed configu-
ration. The effective force induced between two big sphe
by the smaller particles can then be written as@44,21#

Fbb
eff~r !52E rs

(1)~r 8;0,r !
]

]r 8
fbs~r 8!dr 8, ~8!
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which has the obvious physical interpretation that the to
effective or mean force is simply the average of the sum o
all the big-small interactionsfbs(r ).

In the next sections, we will concentrate on the effect
changingFss(r ) andFbs(r ), at fixed reservoir densityrs ,
on the effective interactionsFbb

eff(r ) andVbb
eff(r ).

III. MODELS

A. Interactions

We model the basic small-small and big-small interactio
defined in Eq.~2! as hardcore Yukawa pair potentials

F i j ~r !5H `, r ,s i j ,

f i j ~r ! otherwise,
~9!

where in each caser denotes the distance between the cent
of the relevant particles. Throughout, we takefbb(r )50,
while the big-small interaction added to the HS repulsion
given by

fbs~r !5
ebssbs

r
exp@2kbs~r 2sbs!#, ~10!

and the small-small interaction added to the HS repulsio
given by

fss~r !5
esssss

r
exp@2kss~r 2sss!#, ~11!

wheresbs5
1
2 (sbb1sss).

The Yukawa tail can be either repulsive or attractive. T
gives us the possibility to change the interaction over a br
range from pure HS~which serve as a reference case! to soft
repulsions and attractive tails. We note that a hard-c
Yukawa interaction has been frequently used in theoret
studies on liquids, see, e.g.,@48,49#, and references therein
Both an attractive and repulsive tail is realized in vario
colloidal solutions: a short-ranged attractive Yukawa tail h
been shown to satisfactorily model the ‘‘stickiness’’ in th
interaction between globular protein solutions@50#. A repul-
sive Yukawa tail, on the other hand, describes charged
pensions@2,51# where the range is controlled by the add
salt concentration and the amplitude by the colloidal char

B. Parameter combinations

Our aim is to systematically investigate the effect of t
basic big-small and small-small interactions on the effect
big-big interactions. We vary the big-small interaction b
changing bebs , and vary the small-small interaction b
changingbess. The other parameters are fixed as follow
sss50.2sbb , kbs56/sbb51.2/sss, and kss515/sbb
53/sss. The range of the big-small interaction is of th
order of the small particle size, while the range of the sm
small interactions is significantly less than the small parti
size. For all simulations the packing fraction of the sm
particles in the bulk is set tohs5prssss

3 /650.1.
7-3
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A. A. LOUIS, E. ALLAHYAROV, H. LÖWEN, AND R. ROTH PHYSICAL REVIEW E65 061407
In total, we studied nine different parameter combinatio
corresponding to takingbebs andbess to be positive, nega-
tive, or zero. The detailed values are given in Table I.

IV. COMPUTER SIMULATIONS OF EFFECTIVE FORCES
AND INTERACTIONS

A. Simulation method

Our simulation setup contains two big spherical partic
in a large cubic simulation box of lengthL with periodic
boundary conditions in all three directions. The big partic
with their center-to-center separationr are fixed along the
body diagonal of the cubic box andNs510 000 small mobile
particles of diametersss are added to the box. The bo
lengthL57.49sss is sufficiently large to exclude any spur
ous periodic image effects. We also studied a single big
ticle in the simulation box to access the one-body sm
particle densityrs(r ) around an isolated big sphere. For tw
big spheresrs5Ns /(L32 1

3 psbb
3 ), while for one big sphere

rs5Ns /(L32 1
6 psbb

3 ). We checked the asymptotic densi
profiles to confirm that the bulk densities were always
same.

We use a molecular dynamics~MD! code combining the
velocity Verlet algorithm@52# with discrete collisions and
reflections induced by the hard core of the interaction pot
tials in order to calculate the trajectories of the small p
ticles. The system was carefully equilibrated and then sta
tical averages were computed such as the mean force a
on the big particles@see Eq.~8!# or the inhomogeneous den
sity field rs(r ) of the small particles around a single b
particle. Details of our simulation procedure are described
Refs.@18,53#.

B. One-body density profiles

Before we discuss the depletion potentials it is usefu
first examine the density profilesrs(r ) of the small particles
around a single sphere.

1. No extra big-small interaction: Runs 1–3

In Fig. 2, these are shown for runs 1–3, whereebs50.

TABLE I. Parameter combinations for simulation runs. The
teractions are given by Eqs.~10! and~11!, and only theebs andess

are changed; the other parameters are kept fixed.

Run bebs bess

1 0 0
2 0 2.99
3 0 20.996

4 0.82 0
5 0.82 2.99
6 0.82 20.996

7 20.82 0
8 20.82 2.99
9 20.82 20.996
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Compared to the density profile of the pure HS, there i
significantly increased accumulation near the big sphe
when a small-small repulsive interaction is added. To fi
order this can be understood by mapping thefss(r ) onto an
effective HS diametersss

eff @54#: Adding a small-small repul-
sive interaction increases the effective HS size, and there
also the effective HS packing fraction, resulting in a mo
pronounced accumulation of density near the surface. A
ing a small-small attraction has the opposite effect. This
because the bulk is now more favorable for the small p
ticles, and they are attracted to it.

2. Added big-small repulsion: Runs 4–6

In Fig. 3, the density profiles are shown for runs 4–
wherebebs50.82. As expected, the repulsive big-small i
teraction leads to a reduction of the density at contact. Ag
adding a small-small repulsion increases the density at c
tact, and adding a small-small attraction leads to a furt
depletion of the density at contact.

3. Added big-small attraction: Runs 7–9

In Fig. 4, the density profiles are compared for runs 7–
where bebs520.82. As expected, the attractive big-sma
interaction results in an enhanced density at contact. S
larly to the previous two cases whereebs50 and ebs.0,
respectively, adding a small-small repulsion enhances
contact density with respect to the case of no small-sm
repulsion. But in contrast to the two previous cases, wh
adding a small-small attraction resulted in a depleted den
profile with respect to the pure HS case, here addingess
,0 results in an enhanced total accumulation of the sm

FIG. 2. Normalized density profilesrs(r )/rs of centers of the
small spheres as a function of the distancer from the center of a
single big sphere. Results are from computer simulations for r
1–3; i.e.,ebs50, andess is varied. The values of thee i j can be
found in Table I. In this figure, as well as Figs. 3–6, the circ
denote a repulsiveess, the squares an attractiveess, and no symbol
means no addedess. Solid lines denote no addedebs , dotted lines
ebs.0, and dot-dashed linesebs,0.
7-4
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EFFECTIVE FORCES IN COLLOIDAL MIXTURES: . . . PHYSICAL REVIEW E 65 061407
particles near the big one. Although the contact value
slightly smaller than the case for pure HS, there is a mar
accumulation further out, corresponding to a second laye
particles. The relative adsorption of the small partic
around the big one is thus considerably larger than for
case of no small-small attractions. This can be understoo
the following simple argument: the big-small attraction lea
to an accumulation of the small particles near the surfac
the big sphere. When this accumulation is large enough
becomes favorable for the small particles to leave the b
and approach the surface of the big particle, where their lo
density is larger. Thus the two attractions amplify each ot
in a nonlinear fashion.

In conclusion then, when comparing Figs. 2, 3, and 4, i
clear that for the parameters we have chosen, the big-s

FIG. 3. Normalized density profilesrs(r )/rs from computer
simulations for runs 4–6;ebs.0, ess is varied. We also show the
result for run 1, the pure HS case.

FIG. 4. Normalized density profilesrs(r )/rs from computer
simulations for runs 7–9;ebs,0, ess is varied. We also show the
result for run 1, the pure HS case.
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interaction has the largest relative effect on the density p
files. The effect of adding a small-small repulsion can
qualitatively understood by the larger effective sphere s
and concomitant larger packing fraction. The effect of add
a small-small attraction can be qualitatively understood
the fact that the bulk is usually preferred over the surface
the particle, except when the big-small interaction is stro
enough to provoke a nonlinear enhancement of the densit
small particles near a big one. Having investigated the ef
of the interactions on the one-body density profiles, we n
turn to the related two-body depletion potentials.

C. Effective pair forces and potentials

In Fig. 5 we compare the effective depletion force b
tween two big spheres for all nine parameter combinati
detailed in Table I. In Fig. 6 we compare the related dep
tion potentials. First we note that changing the big-small
teraction is the dominant effect: the depletion forces and
tentials split naturally into three groups: no added big-sm
interaction ~solid lines, runs 1–3!, big-small repulsion
~dashed lines, runs 4–6!, and big-small attractive~dotted
lines, runs 7–9!. We will treat each case in turn.

1. No extra big-small interaction: Runs 1–3

As was already seen for the one-body profiles, addin
small-small repulsion~run 2! results in a larger effective
small-sphere size and packing fraction, which is reflected
more pronounced oscillations compared to the pure HS c
~run 1!. These are evident both in the effective force and
the effective pair potential. Adding a small-small attracti
~run 3! results in a reduced density near a big particle,
seen in Fig. 2. This would imply that each big sphere e
cludes slightly more free volume than if there were no sm

FIG. 5. Effective forces between the big particlesbFbb
eff(r )

shown for all nine runs. The symbols are the same as in Figs. 2
The results are from direct computer simulations. Notice that
big-small interaction has the dominant effect. A repulsiveebs results
in a more attractivebFbb

eff(r ) ~dot-dashed lines!, while an attractive
ebs results in a more repulsivebFbb

eff(r ) ~dotted lines!. The small-
small interactions have a relatively smaller effect.
7-5
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small attractions, which, in turn, implies a slightly more a
tractive potential, as is observed.

2. Added big-small repulsion: Runs 4–6

The dominant effect of adding a big-small repulsion is
make the effective forces and potentials much more att
tive. This can be understood with the classical picture
depletion @8,9#: Adding a big-small repulsion results in
larger depletion layer around each large particle. When
large spheres approach, the amount of doubly excluded
ume is therefore larger, resulting in a more attractive eff
tive ~depletion! potential or force. Again, adding a smal
small repulsion ~run 5! results in enhanced layering a
compared to the pure HS small particles. Adding a sm
small attraction~run 6! has only a weak effect similar to
what was seen for run 3.

3. Added big-small attraction: Runs 7–9

The dominant effect of adding a big-small attraction is
make the effective forces and potentials much more re
sive. This can be qualitatively understood from the fact t
the big-small attraction results in an enhanced density
small particles near a single large sphere. When two s
large spheres approach one another, the layers of small
ticles around each one begin to interact, leading to an
hanced repulsion between them. As demonstrated in Fi
for a given big-small attraction, adding small-small repulsi
or attraction both result in a further enhanced densityrs(r )
of the small particles around a single large one, which in t
explains why the effective pair potentials are more repuls
for both ess.0 and ess,0. Relatively speaking, addin
small-small attractions has the largest effect on the effec
potentials, which is due to the nonlinear coupling betwe
the big-small and the small-small attractions.

FIG. 6. Effective potentials between the big particlesbVbb
eff(r )

shown for all nine runs. The results are from direct computer sim
lations. The symbols are the same as in Figs. 2–5.
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V. THEORETICAL DESCRIPTIONS OF THE EFFECTIVE
FORCES AND POTENTIALS

A. Superposition approximation

To calculate the effective forces via Eq.~8!, one needs a
prescription for calculating the one-body density of the sm
particles. In Sec. IV, we essentially did this by compu
simulations. In this section we approximate the full one-bo
density by a superposition of the one-body densityrs(r )
around an isolated single sphere@44#:

rs
(1)~r 8;0,r !5rs~r 8!rs~ urÀr 8u!/rs , ~12!

an approach similar in spirit to the Kirkwood superpositi
approximation@54#. Since all input information comes from
the ~radially symmetric! problem of a single sphere, this su
perposition approximation greatly simplifies the calculati
of the two-body depletion forces. The inputrs(r ) could
come from density functional theory or integral equati
theory, as was done previously by other authors@21,34#, but
here we will use thers(r ) generated by our simulations an
depicted in Figs. 2–4. The results are shown in Figs. 7–
where we compare in detail the radial forceFbb

eff(r )
5Fbb

eff(r )•r /r and the effective potentialVbb
eff(r ) calculated

with the superposition approximation, to the results obtain
by direct simulations.

Figure 7 ~run 1! shows the HS reference case. Here t
superposition approximation works quite well. The packi
fraction of the small sphereshs50.1 is rather low, so we
expect that the small-small correlation effects are not v
strong. The total one-body density is therefore well appro
mated by Eq.~12!. As demonstrated by other authors@21,34#
for the pure HS case, this superposition approximation
gins to break down ashs increases and two-body correlatio
effects become more important. For example, they found
for large hs , the superposition approximation leads to

-

FIG. 7. Comparison of theory to simulation for run 1:ebs

50, ess50. Simulation ~solid line with symbols!, superposition
approximation~solid line!, and DFT~dot-dashed line! results for the
effective force and potential~see inset! as a function ofr, the dis-
tance between the centers of the big particles, are shown.
7-6
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overestimate of the strength of the attractive force at cont
This is exactly what is seen in Fig. 8~run 2!, where the effect
of an added repulsivefss(r ) can be understood in terms of
larger effective packing fractionhs . Figure 9~run 3! shows
that for ess,0 the superposition approximation shows
similar error to what was seen for run 2, i.e., the forces a
potentials are too attractive.

In Figs. 10–12~runs 4–6!, where the repulsiveebs(r )
induces much more attractive effective interactions than
the pure HS case, the superposition approximation is see
work quite well for ess50 andess.0. This is most likely
because the effective~depletion! force or potential is domi-
nated byfbs(r ), which also induces a lowerrs(r ) ~see Fig.
3!, so that small-small correlations only play a relatively m
nor role and Eq.~12! is rather accurate. Even foress,0, the
results are reasonable, although the superposition approx
tion tends to predict forces and potentials that are too att
tive, just as was found forfbs(r )50.

In Figs. 13–15~runs 7–9!, where the attractivefbs(r )
induces an increased local accumulation of the small sph

FIG. 8. Same as Fig. 7, but for run 2:ebs50, ess.0.

FIG. 9. Same as Fig. 7, but for run 3:ebs50, ess,0.
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near each big sphere, the superposition approximation
forms less well. This is perhaps not surprising, as the
hanced density of small particles near each big sphere re
in a more important role for small-small correlations, whi
are not well treated by the superposition approximation.

In summary then, for HS or other repulsive small-sm
interactions, the superposition approximation works best
low ~effective! packing fractionshs , where correlations be
tween the small particles do not strongly alter the full on
body densityrs

(1)(r 8;0,r ) from the superposition of the den
sities around an isolated big sphere. The case of a stro
repulsivefbs(r ), which lowers the effective packing fractio
near the big spheres, is particularly well described by
superposition approximation. In contrast, the case of an
tractive fbs(r ), which results in an increased accumulati
of small particles around each big sphere, is not as w
described.

B. Density functional theory

In a recent development, density functional theory~DFT!
has been used to derive effective potentials for addit

FIG. 10. Same as Fig. 7, but for run 4:ebs.0, ess50.

FIG. 11. Same as Fig. 7, but for run 5:ebs.0, ess.0.
7-7
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@25,26# and nonadditive@30,31,46# HS mixtures. For the ad
ditive case, quantitative agreement with computer simu
tions was achieved@25,26#. Since the calculations for th
nonadditive case were shown to be equivalent to the add
ones @30,31#, a similar quantitative accuracy could be e
pected there. In brief, the method is based on the follow
exact relationship between the effective potential and
one-body direct correlation function@25,26#:

bVbb
eff~r !5 lim

mb→2`

@cb
(1)~`!2cb

(1)~r !#, ~13!

wherecb
(1)(r ) is defined for the case where a big sphere

fixed at the origin, and exerts a field on the small spheres
on a big test particle inserted atr @26#. DFT can therefore
provide a route to the effective potentials since

cb
(1)~r !52b

dFex@rb ,rs#

drb~r !
, ~14!

FIG. 12. Same as Fig. 7, but for run 6:ebs.0, ess,0.

FIG. 13. Same as Fig. 7, but for run 7:ebs,0, ess50.
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whereFex@rb ,rs# is the excess~over ideal! intrinsic Helm-
holtz free energy functional of the mixture@55#. Given some
mixture functional, one can obtain the effective potenti
and forces from a radially symmetric calculation ofcb

(1)(r ) in
the limit of vanishing density of the big spheres. This
much simpler than say trying to use DFT to directly calcula
the cylindrically symmetric one-body densityrs

(1)(r 8;0,r ),
for use in Eq.~8! @36#. All one now needs is some prescrip
tion for the mixture functional. Here we use Rosenfeld’s ve
successful fundamental measure theory@56#, in its form valid
for HS mixtures. As found previously@26#, the DFT and
simulation results for effective interactions of the pure H
case depicted in Fig. 7~run 1! agree very well.

This DFT method can easily be extended to an arbitr
fbs(r ), since this simply corresponds to an additional ext
nal field in Eq.~13!. Previous DFT calculations@30# found
good agreement with earlier simulations with an attract
fbs(r ) @35#. Here we also find very good agreement wi
runs 4 and 7~Figs. 10 and 13! which correspond to a finite

FIG. 14. Same as Fig. 7, but for run 8:ebs,0, ess.0.

FIG. 15. Same as Fig. 7, but for run 9:ebs,0, ess,0.
7-8
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fbs(r ) but no additionalfss(r ).
Since there is at present no successful two-compon

DFT for mixtures where the small particles are not HS-lik
some approximations must be made. We chose to map
fss(r ) onto effective HS diameterss i j

eff using the Barker-
Henderson approach@57#

s i j
eff5s i j 1E

s i j

`

$12exp@2bf i j ~r !#%dr, ~15!

wheres i j is the bare HS diameter. We then calculated eff
tive pair potentials and effective pair forces with our fu
DFT approach, including an explicitfbs(r ) when needed,
but with the small-spheres mapped onto the effective dia
eterssss

eff51.447sss andsss
eff50.658sss for the repulsive and

attractivefss(r ), respectively. Similarly the effective pack
ing fraction becomeshss

eff50.303 for the repulsive andhss
eff

50.0290 for the attractive interaction.
First, for runs 2, 5, and 8~Figs. 8, 11, and 14, respec

tively!, which all correspond to a repulsivefss(r ), we find
good agreement for no additionalfbs(r ) ~see Fig. 8!, but
less good agreement for a repulsive or attractivefbs(r ) ~see
Figs. 11 and 14, respectively!.

Because of the strength of the small-small attraction,
mapping results in a very low effective packing fraction
the small particles. Overall, the DFT underestimates the
fective forces forebs50 andebs.0, as can be seen in Fig
9 and 12. It performs rather poorly for run 9, where t
attractivefbs(r ) results in a nonlinear enhancement of t
small-particle density profile, an effect not taken into acco
with our HS mapping. This suggests that a different tw
component DFT, which explicitly takes into account t
small-small attractionfss(r ) needs to be developed befo
we can use this route to derive accurate effective pair for
and potentials.

C. Mapping to nonadditive HS system

In a previous paper@30# two of us proposed that the e
fects of big-small and small-small interactions on theVbb

eff(r )
could be understood by mapping onto those of nonaddi
HS systems. These have the advantage that they can b
termined by an exact mapping onto the depletion potent
of additive HS mixtures@30,31#, which, in turn, are well
understood and for which a good parametrization exists@26#.
Even a small nonadditivity was shown to have a large eff
on the depletion potentials.

By mapping the big-small and small-small interactio
onto effective HS diameters through Eq.~15! one can define
the nonadditivity in terms of the parameterD

sbs
eff5

1

2
~sbb1sss

eff!~11D!. ~16!

Four different ways of adding interactions to introduce no
additivity were studied@30#:

~i! Repulsivebfss(r ): sbs
eff5sbs ; sss

eff.sss; D,0.
~ii ! Attractive bfss(r ): sbs

eff5sbs ; sss
eff,sss; D.0.
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~iii ! Repulsivebfbs(r ): sbs
eff.sbs ; sss

eff5sss; D.0.
~iv! Attractive bfbs(r ): sbs

eff,sbs ; sss
eff5sss; D,0.

For details of how each of the different cases of nonaddi
ity affect the depletion potentials, we refer to Re
@30,31,46#.

An example where the mapping to nonadditivity wor
well is given in Fig. 8~run 2!, where we mapped the smal
small repulsion onto an effective HS diameter@case~i!#, so
that the DFT result is really that of a nonadditive HS mixtu
with D520.069. In Ref.@30# we also found semiquantita
tive agreement with the mapping for weak and short-ran
bfbs(r ). In the present case, wherebfbs(r ) is stronger and
longer ranged, the agreement is no longer quantitative. N
ertheless, for runs 1–8 the mapping scheme provides a q
tative explanation of the trends. That is, for a fixedfbs(r ),
adding a repulsive@case~i!# or attractive@case~ii !# fss(r )
causesVbb(r ) to become more repulsive or attractive, r
spectively. Similarly, for a fixedfss(r ), adding a repulsive
@case~iii !# or attractive@case~iv!# fbs(r ) results in a more
attractive or repulsiveVbb(r ), respectively. The only cas
where this scheme breaks down is run 9, where add
fss(r ),0 for an attractivefbs(r ) should fall under case~ii !.
But instead of inducing more attraction, the effective big-b
potential becomes more repulsive. Of course this is not
prising, since the DFT results already showed that a mapp
scheme misses the nonlinear enhancement of the small
ticle density profiles.

In conclusion then, the mapping to nonadditivity wor
best for a repulsive small-small interaction. For repulsive a
attractive big-small interactions, the mapping is only qua
tative. The much better semiquantitative agreement foun
Ref. @30# can be traced to the much weaker effect of t
fbs(r ) used there. Just as was seen for the direct DFT m
ods, it is the case of small-small attraction combined w
big-small attraction which seems most difficult to captu
within our mapping scheme.

VI. CONCLUSIONS

In conclusion, we have shown how the basic interactio
in a colloidal mixture control the resulting effective intera
tions between the big particles. This knowledge may be
ploited to stabilize colloidal particles against coagulation a
to tailor the colloidal phase diagrams.

Adding a repulsivefbs(r ) results in a strongly enhance
attraction through the standard depletion mechanism.
also found at least two ways to obtain significantly mo
repulsive effective interactions caused by accumulation
the small particles~accumulation repulsion!. ~1! Adding re-
pulsions between the small particles results in an enhan
accumulation near the surface of the large particles; w
two large particles approach each other, this results in
effective repulsion between them.~2! Adding an attraction
between the large and the small particles also results in
enhanced accumulation near the surface of the large part
and therefore in repulsive effective interactions. Furth
more, we found that for an attractive big-small interactio
adding small-small attractions resulted in even more eff
7-9
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tive repulsion. This ‘‘repulsion through attraction’’ effect
caused by a nonlinear coupling betweenfss(r ) andfbs(r ).

These predictions could in principle be verified in expe
ments that directly measure the effective forces of colloi
suspensions, such as optical tweezers@7,58# or total internal
reflection microscopy~TIRM! @27,28,59#. They could also be
verified indirectly through measurements of phase beha
and coagulation. Measurements of the second osmotic v
coefficient might also be very sensitive probes of the eff
tive interactions@31#. Systems where these interactions cou
be tuned include for example ternary suspensions@60# where
the small-small attraction is generated by depletion attrac
of an even smaller third colloidal component or highly salt
charged suspensions where the van der Waals attra
dominates.

In some interesting recent experiments@61#, a colloidal
suspension of neutral big particles was stabilized by the
dition of highly charged small nanoparticles. The propos
mechanism was termed ‘‘nanoparticle halos,’’ and is ve
similar to the mechanism we observe, for example, in
run 2, where a repulsivefss(r ) of the screened Coulom
~Yukawa! form was added to the smaller particles, resulti
in an increased accumulation of small particles near each
one, and an effective repulsion between the big particles.
effects in the experiments may also be enhanced by a s
attractivefbs(r ) ~similar to our run 8). We are currentl
actively pursuing a more detailed comparison with these
periments.

Another possible application of this work is to supercri
cal solvents@62#, which have important applications in in
dustrial processes. The question of how the effective force
the big particles depends on the interactions with a low d
sity solvent is encountered there as well@40,41#, sometimes
for similar size ratios.

More generally to make useful predictions for practic
applications, one needs to more thoroughly explore the ra
large parameter space, which includes thee i j , thek i j , hs ,
and the ratiosss/sbb . This would be very tedious with
simulations—trustworthy theoretical techniques would
more practical. We attempted a number of theoretical
scriptions of the effective interactions. The superposition
proximation, which has the advantage of only needing o
body input, works best for a strong big-small repulsion, b
te
-

n

h,
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becomes much less accurate when the~local! small particle
packing is high. When the smaller component is purely H
like, then our DFT approach is very accurate, just as w
found for additive and nonadditive HS mixture
@26,30,31,46#. When a repulsive interaction is added betwe
the small particles, DFT does not perform quite as well, a
when an attraction is added between the small particles,
differences are even more important. By mapping the sm
small and big-small interactions onto effective HS diamete
we can map onto an effective nonadditive HS model. T
explains the qualitative trends for most of our parame
combinations. It is quantitative if only a small-small repu
sion is added, but breaks down when both a small-small
a big-small interaction couple together to induce an
hanced small particle density.

All three tested theoretical methods perform less well
added small-small attractions. Constructing a reliable the
to treat this very interesting case is therefore a challeng
problem. One possible way to extend the DFT calculation
an attractive small-small interaction would be to add a me
field-attractive term@55#. For example, mean-field-like func
tionals based on thermodynamic perturbation theory aro
a HS reference system have been successfully applied to
density profiles and phase behavior in systems with attrac
potentials@63,64#.

New physics is expected when wetting or drying pheno
ena control the density of the small particles between the
ones. This is relevant if the bulk fluid of the small particles
close to liquid-gas phase coexistence. A wetting transitio
expected to have a profound impact on the effective inter
tion as well, one important effect is a liquid ‘‘bridge’’ o
small particles between the big one which has been rece
studied in more detail@65#.
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