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Motivation?

Pre thermal plasma Locally thermalised plasmaLorentz contracted nuclei
 

Soft physics of HIC described by relativistic hydrodynamics

∂µT
µν = 0

Gradient expansion around local thermal equilibrium

Tµν = Tµνeq. − η2∇<µuν> + . . .
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At early times pre-equilibrium evolution

Hydro simulations start at intialization time τi
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Hydrodynamization in weak coupling

Anisotropy: P
T 
/ P

L

Occupancy: f

OveroccupiedUnderoccupied

Thermal

Initial

f~1f~α f~α−1

Color Glass Condensate: Initial condition overoccupied
McLerran, Venugopalan PRD49 (1994) , PRD49 (1994); Gelis et. al Int.J.Mod.Phys. E16 (2007),

Ann.Rev.Nucl.Part.Sci. 60 (2010)

f(Qs) ∼ 1/αs, Qs ∼ 2GeV

Expansion makes system underoccupied before thermalizing
Baier et al PLB502 (2001)

f(Qs)� 1



Hydrodynamization in weak coupling

Anisotropy: P
T 
/ P

L

Occupancy: f

Thermal

Kinetic theory Classical

YM

Initial

f~1f~α f~α−1

Both

Degrees of freedom:

f � 1: Classical Yang-Mills theory (CYM)
f � 1/αs: (Semi-)classical particles, Eff. Kinetic Theory (EKT)



Hydrodynamization in weak coupling

Anisotropy: P
T 
/ P

L

Occupancy: f

Thermal

Kinetic theory Classical

YM

Initial

f~1f~α f~α−1

Both

Transmutation of fields to particles: Field-particle duality
Son, Mueller PLB582 (2004) 279-287; Jeon PRC72 (2005) 014907; Mathieu et al EPJ. C74 (2014)

2873; AK et al PRD89 (2014) 7, 074036

1� f � 1/αs

”Bottom-up thermalization” of underoccupied system



Strategy at weak coupling

Anisotropy: P
L
/P

T

Time: τ

+1

0

Hydro

τ
i
~1fm/cCYM

EKT

τ
EKT

~0.1 fm/c

Strategy: Switch from CYM to EKT at τEKT , 1� f � 1/αs

From EKT to hydro at τi, PL/PT ∼ 1



Early times 0 < Qsτ . 1: classical evolution

Time: Qsτ
-1

PT/ε

PL/ε

+1

0

Epelbaum & Gelis, PRL. 111 (2013) 23230

Melting of the coherent boost invariant CGC fields
Initial condition from CGC: MV-model, JIMWLK

After τ ∼ 1/Qs, fields decohere, PL > 0



Later times Qsτ > 1: classical evolution

Berges et al. Phys.Rev. D89 (2014) 7, 074011

Anisotropy: P
T 
/ P

L

Occupancy: f

OveroccupiedUnderoccupied

Thermal

Initial

f~1f~α f~α−1

Numerical demonstration of overoccupied part of the diagram

Classical theory never thermalizes or isotropizes

Before f ∼ 1, must switch to kinetic theory



Outline

Effective kinetic theory

Hydrodynamization and thermalization at weak coupling in
effective kinetic theory

Apples to apples comparison of weak and strong coupling
hydrodynamization

Green functions of Tµν in during hydrodynamization and
phenomenological application to HIC



Effective kinetic theory of Arnold, Moore, Yaffe
JHEP 0301 (2003) 030

Soft and collinear divergences lead to nontrivial matrix elements
soft: screening, Hard-loop; collinear: LPM, ladder resum

= Re





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∗ 





No free parameters; LO accurate in the αs → 0, αsf → 0 limit, for

∆t ∼ ω−1 > Typical scattering time ∼ 1/(α2T )

,

Caveat: in anistropic systems screening complicated. Here with
isotropic screening. Also no fermions here

plasma instabilities, . . .



Why kinetic theory needed?
LO spectral function in unresummed pert-theory

ρφ2φ2(ω, k) ∼
∫

d4k

(2π)4

(
1 + n(−k0 + ω)

)
(1+n(k0))ρ(k,−k0 +ω)ρ(k, k0)

Free spectral function

ρfree = sign(k0)2πδ(−(k0)2 + k2 +m2)

No overlap if ω < 2m

K

ω

Jeon PRD47 (1993)
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√
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√
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Jeon PRD47 (1993)



Why kinetic theory needed?

In interactive theory

ρ(k0, k) ≈ 4k0Γk[
(k0)2 − E2

k

]2
+ 4(k0Γk)2

Smooth limit

lim
ω→0

ρ(0, ω)

ω
∼
∫

d4k

(2π)4
n(Ek)(1 + n(Ek))

1

E2
kΓk

-E
k
E
k
+ω

In weak coupling Γk ∼ α2T
coupling in the denominator → resummation needed

Jeon PRD47 (1993)



Why kinetic theory needed?

ω

1/α2ΤLifetime: 

Frequency of scattering: 1/α2Τ

Physical reason: Both lines long lived (α2T )−1, of the order or
scattering time

Diagrammatic resummation (in λφ4 )
Jeon PRD52 (1995)

Interpretation of the diagrammatic resummation in terms of
effective kinetic theory

Jeon, Yaffe PRD53 (1996)

Generalization to gauge theories through power counting
Arnold et al. JHEP 0301 (2003) 030
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Anisotropy: P
T 
/ P

L

Occupancy: f

OveroccupiedUnderoccupied

Thermal

Initial

f~1f~α f~α−1

Isotropic overoccupied: Transmutation of d.o.f’s

Isotropic underoccupied: Radiative break-up

Effect of longitudinal expansion: Hydrodynamization



Overoccupied cascade AK, Moore JHEP 1112 (2011) 044

What happens if you have too many soft gluons, f ∼ 1/αs.

ln(p)

ln(f)

Thermal

f ~ 1

Initial condition

(eβp-1)-1

1/α

Q



Overoccupied cascade AK, Moore JHEP 1112 (2011) 044

What happens if you have too many soft gluons, f ∼ 1/αs.
No longitudinal expansion.

ln(p)

ln(f)

Thermal

f ~ 1

Initial condition

(eβp-1)-1

Self-similar cascade

p
max      

~ t1/7

f(p
max

)~ t-4/7

1/α

Q

τinit ∼ [σn(1 + f)]−1 ∼
(
Q

T

)7 1

α2
sT
� 1

α2
sT
∼ τthem.

c.f. Bokuslawski’s talk



Overoccupied cascade AK, Lu, Moore, PRD89 (2014) 7, 074036
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Form of cascade from classical lattice simulation,

1� f . 1/αs

Large-volume: (Qa)=0.2, (QL)=51.2, Cont. extr.: down to (Qa)=0.1, (QL)=25.6, Qt=2000, m̃ = 0.08



Overoccupied cascade AK, Lu, Moore, PRD89 (2014) 7, 074036

0.01 0.1 1 10

Momentum p
~
 = p/Q (Qt)

-1/7

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

R
es

ca
le

d
 o

cc
u
p
an

cy
: 

f~
=

 λ
 f

 (
Q

t)
4
/7

Kinetic thy (discrete-p)

Lattice (continuum extrap.)

Lattice (large-volume)

Lattice and Kinetic Thy. Compared

Same system, very different degrees of freedom

1 . f � 1/αs

Numerical demonstration of field-particle duality



Anisotropy: P
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Occupancy: f

OveroccupiedUnderoccupied

Thermal

Initial

f~1f~α f~α−1

Isotropic overoccupied: Transmutation of d.o.f’s

Isotropic underoccupied: Bottom-up thermalization

Effect of longitudinal expansion: Hydrodynamization



Bottom-up thermalization

Hard particles emit soft radiation: creation of a soft thermal bath
Soft bath starts to dominate dynamics (screening, scattering, etc.)

Hard particles undergo radiative break-up
System thermalizes in a time scale it takes to quench a jet of
momentum Q

AK, Moore 1107.5050

teq ∼
(
Q

T

)1/2
1

λT 2

Q

t     (Q)
split

t     (Q/2)
split

t     (Q/4)

. . .

. . .

. . .

. . .

TQ/4Q/2

split



Bottom-up thermalization AK, Lu, PRL 113 (2014) 18, 182301
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Start with an underoccupied initial condition p ∼ Q
after a very short time, an IR bath is created (1↔ 2–processes)



Bottom-up thermalization AK, Lu, PRL 113 (2014) 18, 182301
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More energy flows to the IR, temperature increases, “Bottom-up”

When “bottom” reaches final T , “up” is quenched
AK, Moore JHEP 1112 (2011) 044

teq ∼ (Q/T )1/2 1

α2
sT



Bottom-up thermalization AK, Lu, PRL 113 (2014) 18, 182301
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Hardest scales reach equilibrium last.



Anisotropy: P
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Occupancy: f

OveroccupiedUnderoccupied

Thermal

Initial

f~1f~α f~α−1

Isotropic overoccupied: Transmutation of d.o.f’s

Isotropic underoccupied: Radiative break-up

Application to HIC: effect of longitudinal expansion



Route to equilibrium in EKT AK, Zhu, PRL 115 (2015) 18, 182301
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Initial condition (f ∼ 1/αs) from classical field thy calculation
Lappi PLB703 (2011) 325-330

In the classical limit (αs → 0, αsf fixed), no thermalization

At small values of couplings, clear Bottom-Up behaviour

Features become less defined as αs grows



Bottom-up thermalization
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Bottom-up thermalization
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Smooth appreach to hydrodynamics
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AK, Zhu, PRL 115 (2015) 18, 182301

Kinetic theory smoothly and automatically goes to hydrodynamics



Outline

Effective kinetic theory

Hydrodynamization and thermalization at weak coupling in
effective kinetic theory

Apples to apples comparison of weak and strong coupling
hydrodynamization

Green functions of Tµν in during hydrodynamization and
phenomenological application to HIC



Weak and strong coupling hydrodynamization compared

Question:

To what extent are the strong coupling and weak coupling
hydrodynamizations similar or different?

Challenge:

How to setup similar initial condition in theories with different
microscopic physics?



Weak and strong coupling hydrodynamization compared

Start with thermal equilibrium Ti

perform same macroscopic deformation on both

ds2 = −dt2 + dx2 + dy2 + g(t)dL2

g(t→ −∞) = 1, Minkowski
g(t→∞) = t2, Milne



Weak and strong coupling hydrodynamization compared
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Ideal hydro
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Free-streaming

Keegan et al JHEP 1604 (2016)

λ =∞: N=4 SUSY, λ = 5, 10: pure gauge



Weak and strong coupling hydrodynamization compared
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Large quantitative difference due to different η/s



Weak and strong coupling hydrodynamization compared
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Keegan et al JHEP 1604 (2016)

PL
PT

= 1− 8

3

(η/s)

(tTi)2/3χ1/3
, χ =

Seq(t→∞)

Seq(t→ −∞)

All hydrodynamize at very large anisotropy!



Spectrum of non-hydro modes in weak coupling

x x x x x x x x x x x x x x
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Spectrum of non-hydro modes in weak coupling

x x x x x x x xx x x x x x x x

k-k

τ
π

−1

x
i)

x

x

τ
π

pν∂νf(t,x,p) =
p0

τΠ
(f − feq) RTA

δ′(x− vt)→ δ′(x− vt) exp(−τ/τπ)

log

(
ω − k
ω + k

)
→ log

(
ω − k + i/τπ
ω + k + i/τπ

)

Bit more complicated than that... Romatschke, EPJC76 (2016)



Spectrum of non-hydro modes in weak coupling

x x x x x x x xx x x x x x x x
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τ
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−1x x
ω
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(k)

x

x

Enter hydro pole: k � 1/τπ

ωs(k) = ±csk −
i

2

τπ
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η/(P+ε)

k2 + . . .



Spectrum of non-hydro modes compared

x x x x x x x xx x x x x x x x
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−1x x
ω
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xx x x x x x
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−1x x
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x xxxxxx

No singularity at the complex infinity → cut may be deformed

log

(
ω − k + i/τπ
ω + k + i/τπ

)



Hydrodynamization through decay of non-hydro modes
In both, holography and kinetic theory the hydrodynamical gradient
expansion in divergent

R ≡ PL − PT
P

=

∞∑

n=1

rn(Tτ)−n ≈ 8Cη
Tτ

+
16Cη(CτΠ − Cλ)

3(Tτ)2
+O(

1

(Tτ)3
)

here τΠ = T−1

RTA
AK, Heller, Spalinski al. 1609.04803

Holography
Heller et al. PRL 110 (2013)



Hydrodynamization through decay of non-hydro modes

Divergence signals that powerlaw form is not sufficient

Needs to be supplemented with terms

∼ e−ξ0Tτ × (constants of integration)

No surprise? In kinetic theory, need f(p) as an initial condition.
In gradient expansion, the only boundary condition T at t→∞



Hydrodynamization through decay of non-hydro modes

Find ξ0 through analytical properties of Borel transform

RB(ξ) =

∞∑

n=1

rn
Γ(n+ b)

ξn, RI−B(Tτ) =
1

Tτ

∫ ∞

0
dξe−ξ/TτξbRB(ξ)

Exponential decay is governed by the lowest non-hydro mode
Also in IS hydro

e−ωnh
∫
T (τ)dτ ∼ e−3/2ωnhTτ = e−ξ0Tτ

RTA
AK, Heller, Spalinski al. 1609.04803

Holography
Heller et al. PRL 110 (2013)



Outline

Effective kinetic theory

Hydrodynamization and thermalization at weak coupling in
effective kinetic theory

Apples to apples comparison of weak and strong coupling
hydrodynamization

Green functions of Tµν in during hydrodynamization and
phenomenological application to HIC



Transverse dynamics and preflow

Nuclear radius R� cτi ∼ Nucleon radius Rp � 1/Qs

Transverse structure small perturbation within the causal horizon

Linear response theory for the transverse structures



Transverse dynamics and preflow

Green functions on top of non-equilibrium background



Linearized perturbations in EKT Keegan et al. 1605.04287

Transverse perturbations characterized by wavenumber k

f(x⊥,p) = f̄(p) + exp(ix · k)δf(p)

(
∂τ −

pz
τ
∂pz

)
f = C[f ]

(
∂τ −

pz
τ
∂pz + ik · p

)
f = C[f̄ , f ]

For thermal f̄ : large wavelenght pert. described by hydro
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For larger k, c2s → 1, with polynomial
decay

no plot unfortunately...



Hydrodynamization of perturbations Keegan et al.JHEP 1608 (2016)
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Perturbations hydrodynamize also at Qτ ∼ {10, 20}.



Hydrodynamization of perturbations Keegan et al.JHEP 1608 (2016)
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Green function in coordinate space
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Nanscent formation of dip in the origin hall mark of hydro



Green function in coordinate space

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

δe response to δe perturbation

Qsτ = 50

τ/τπ = 3.1

2nd hydro
{

τ
2
E
(r
)

r/(τ − τ0)

kinetic theory
Qsτ = 10
Qsτ = 20

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

δe response to δe perturbation

Qsτ = 500

τ/τπ = 15

2nd hydro
{

τ
2
E
(r
)

r/(τ − τ0)

kinetic theory
Qsτ = 10
Qsτ = 20

Evolution after Qτi > {10, 20}, evolution described by hydro



Transverse dynamics and preflow

With free streaming pre-equilibrium evolution:
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AK, Mazeliauskas, Paquet, Schlichting, Teaney, in progress

Strong dependence on initialization time!



Transverse dynamics and preflow

With full EKT pre-equilibrium evolution:
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Initialization time removed



Summary

Weak coupling hydrodynamization quantitatively and qualitatively
understood, with some caveats

Push towards phenomenologically useful pre-equilibrium
description

Some similarities and differences between weak and strong
coupling

Big quantitative difference in η/s −→ time scales very different
Non-hydro modes near equilibrium:

Imaginary parts: T in strong, τΠ in weak coupling
Real parts T in strong, and k in weak coupling

Similar divergent hydrodynamic series and hydrodynamization
through decay of non-hydro modes



Weak and strong coupling hydrodynamization compared
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Total entropy production

Strong coupling quite close to where weak coupling goes haywire?
Weak coupling param. estimate for entropy production:

Titeq ∼
Ti

λ2T (teq)
, before free streaming: T4(teq) ∼ T4

i /(Titeq) then teq ∼ λ−8/3 ∼ (η/s)4/3


