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Thermal fluctuations:

-

Sound modes in uniform plasma

These hard sound modes are part of the bath, giving to the pressure and shear viscosity

Ned(k,t) = (e"(k,t)e(k,t)) =(e+p)T/c;

\ . J/

~

energy-density flucts
(9" (k,t)g (k. 1)) =(e+ p)T5”

A\ J/
~

momentum, giETOi

Ngyl(k,t)

In an expanding system these correlators will be driven out of equilibrium.

This changes the evolution of the slow modes.



A Bjorken expansion
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Lo

1. The system has an expansion rate of (%u“ — 1/7‘

2. The hydrodynamic expansion parameter is

_ T _n
T =

and corrections to hydrodynamics are organized in powers of €

T =p|ll+ O(e) + O() +]
—— N——
1st order 2nd order

High £ modes are brought to equilibrium by the dissipation and noise



The transition regime:

e There is a wave number where the damping rate competes with the expansion

1
2
’Ynk ~ -
N——~ N~
damping rate expansion rate
and thus the transition happens for: Y =n/(e +p)
k~ k L dk > k.t h ilibrium!
~ Ry = nee « to reach equilibrium!
v/ InT
e This is an intermediate scale k. = 1/(7+/€), e=n/(e+p)T
1
- < ke K —
These inequalities are T fmfp
the same and hold
whenever hydro applies 1 1 1 11
bmtp ~ 1/ (e +p) - = K=
T T A/ € T €

Want to develop a set of hydro-kinetic equations for k ~ k.
using the scale separation € < /€ < 1



Estimate of longitudinal pressure from non-equilibrium modes

-

« T »
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AT ~ T X k3

—~— N~
energy / mode  number of non-eq modes

DO

e Usinge +p = sT and k, = 1/, /7,7 we estimate

AT#? 1 1
e+p S (%77')3/2
e The full result will be:
(T>%) p 4, 1.08318 (M —n7r) 8
= [ - -2 4 + . ]
ctp Lletp 37 | s(dmy,r)P etp O
\f-/ v \ ~ , . ~ ,
~ 1 1st order 3/2 order 2nd order

The correction is suppressed by s = the number of degrees of freedom



QOutline
1. Hydrodynamic Linear Response — develop hydro-kinetics

2. Bjorken Expansion



EqUIllbrlum Linear Response Kovtun, Yaffe; Kovtun, Moore, Romatschke

- weak gravity of frequency w driving plasma

? 2%

out of equilibrium, A" (w)
— 7 SY

J\,VM\N\;E'

Hydro prediction cov-deriv
<T”> = ph* — 77( V! +V7u' — gv : u) + 2nd order
So
1st order 2nd order

A~ - ~
(™) = [p— dwn + (yme — $0)w? | A7V(w)

Thermal flucts. are not included, and are driven slightly out of equilibrium for £ ~ k,

1

5 W
Ynky ~w  andtheyarehard w <K ki~ — K ——
Tn gmfp

Include hard thermal fluctuations with k, ~ \/w /7y, as loops



Hard HYdrO Thermal LOOpS (H HTLS) Kovtun, Yaffe; Kovtun, Moore, Romatschke

Hard ~ k, = , /<

sound propagator

Evaluate the “Hard Hydro Thermal Loop”

. (7+(3/2)*2) ., (w\*? )

Ty — o hadl Ty
(T (w)) [p on + T ) o )}h (w)
~— N ~ .

1st order 3/2 order

The correction is of order
1 3
ATPY ~ §T /c* h*Y

We will derive HHTLs from hydro-kinetic theory!



Developing hydro-kinetics — Brownian motion

Random Walk

d /
=t & (S = 2TMn st~ )
~ =~
drag noise

1. Then we want to calculate

2. Integrate the equation for short times

t+At
p(t+ At) = —np(t)At + /t E(t)dt!

3. Compute (p(t + At) p(t + At)) and find an equation

AN
A - L

equilibrium



Developing hydro-kinetics — linearized hydro in a uniform system

1. Evolve fields of linearized hydro with bare parameters po(A), n9(A), so(A) etc

0a(k) = (e(k). 9" (k). gV (k). g (k)
2. Then the equations are schematically exactly the same

dpa(k) _

Dy
dt N—— ——
ideal ~ ¢k VisC ~ — nok2

+&a <€a‘£b> — 2Tz)ab(k)(stt’

3. Break up the equations into eigen modes of L, and analyze exactly same way:

right moving sound left moving sound two diffusion modes

-~

Ay = Ficgk A = —icgk Ar =0
So for k in the z direction, work with the following linear combos (eigenvects)

b2 = |cselk) £g° (k) . g"(k) , g"(k)
Geltk) £g7(k) - g'(k), ¢'(R)
Qb—|— and gb— — ¢T1 = quQ




Sound modes in the eigen basis:

do - 2 12
— = —icskgy — Ik o+ £
rapid phase drag noise

Diffusion modes in the eigen basis:

d¢
L — _%7k2 Qle + &7
dt A - 7/ N~
drag noise




The kinetic equations in flat space

1. Want to compute how the density of sound modes (squared amplitude) evolve:
N—I——I—(ka t) — <¢>I—<|—(k7 t)¢+(k7 t)> NT1T1 — <¢j}1 (k7 t)¢T1 (k7 t)>

2. Thus following the Brownian example:

ANy

4 2
i 5k [Ny — N
dN o
dj;flTl - 2%7]{2 [l ‘1T J‘T?TJ

and similar equations for N__ and N, r,. Here
Nyl =(e+p)T  and N{L =(e+p)T

3. Neglect off diagonal components of density matrix in eigen-basis

Now we will do the same for a perturbed and expanding system



Case 1: Kinetic equations for perturbed system (HHTLS)

- weak gravity of frequency w driving plasma

W out of equilibrium, A% (w)

Hydro equations become ¢, = (e(k), g*(k), gY(k), gz(k))

do,(k
¢ ( ) — Lab(k)¢b(k)+Dab¢b+ ga + Pab¢b
dt N -~ N~ = N——
ideal visc noise  perturbation
with
0 0
Pap = , hi;(t) = metric perturbation

0 %04hj



Case 1: Kinetic equations for perturbed system (HHTLS)
1. Turn on a weak gravitational perturbations, h;; = h(t) diag(1,1, —2)
815N_|__|_(]€) = — %’ynk2 [N_|__|_ — N_T_q } + 8th (Sin2 Qk — 2C082 Qk) N_|__|_

~~

damping perturbation A ; ki kI

2. Solve the equations to first order in the gravitational, h(t) = he "

wwh (Sin2 0r — 2 cos> Or)

SN,y =
o —iw + 27, K?

< solution

3. Calculate the stress tensor

. o 3 zk i _k
0T = (e +p) (v'7) = / (C;T[)(?, (g'( e)i; )

4. Find an HTL like expression

3
K
(C;T>3 ON 1 SSiHQ 6 — 2 cos’ 9)/

kT + EVEY — 2k

Precisely reproduces Yaffe-Kovtun hard hydro loop calculation

(ST + 6TYY — 26T*) O h /




. (74 (3/2)%) [ w\*? )

(w)) = |p— T — O h*Y
(T7(w)) = [p= iwn  +—— ) o)
~—~ \ ~ ,

1st order 3/2 order




Case 2: Kinetic equations for a Bjorken expansion — Hard Hydro Expanding Loops (HHELS)

LE0-

e The hydrodynamic field fields ¢, = (cse, g%, g¥, Tg") are:

bu(r koL, 1) = / P / dy LR G ()

® The equations take the form:

d
d—%(’ﬂaﬁl) = Lap O+ Daup®p + Papdp + &a
T —— —— e =~

ideal viscous  perturb  noise

The previous analysis goes through with a no complications, A = +icsk, 0

(14 ¢ \




The kinetic equations and approach to equilibrium:

e The kinetic equations and approach to equilibrium

0 1 k2 /T2 210 K2 soT?
—N :——[2—|—c2—|— ]N — 3 k2 4+ = ) |Npy — —9 1|,
or T T s0 k3 + Kk2/72 T oo U 72 L 22T
perturbation = 2P 1 damping to equilibrium
— =——| 1+ ]N —— |k +—= ) |N — 0.
or 1212 T [ k:_2L + k2 /72 1212 soTp \ + ' 72 121 T
perturbation = 2P, 1, damping to equilibrium
and similar equations for the other modes
e For large k, we solve, and the modes approximately equilibrate:
sng soTo 5 k2 /T2
N_|_+ ~ [ 1 + Cs0 — 4+ .. ]
2¢50T sno(k? +rk2/m2) \ 7 kT 4 w2/72
~—~ . .~ .
equilibrium first viscous correction analogous to ¢ f

Now we solved these kinetic equations numerically



N, . / equilibrium
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The non-equilibrium steady state at late times:

T

T

k*s1/(yn T

T

1/2
)

hydro-kinetics

N,/ equilibrium

visc. approx ------
0.5 1.5 2 25
K/K«

1.5

Transverse modes

cos(0)=0.1 _ 1/2
(6) ke=1/(, 7)
/’ hydro-kinetics —
' VisC. approx -
05 1 15 2 25 3 35 4

k/k*



The evolution of the background

L& b

dTTT TTT + TZZ

dr T

where
4
B 3M0(A) 8
Tﬁ;dro — po(A) _ 2
T 9r
N N — N\ ~ .
|deal first order second order

In addition the fluctuations give another contribution:

ffjcts — (6 T p) <UZUZ>

‘|‘()\1_777_7r)—‘|‘---



Evaluating the fluctuation contribution:

zz
flucts _ <UZ’UZ>
e+ p

d’k | dk 1 ,
N / (27'(')3 (6 +p )2 [N+‘|‘ cos” 6 + NT2T2 sin” 9]

T,A® 17A 5,12\ 3 5
= — 5 = -+ finite
672 12072 no(A) ) 7
from equilib  from first viscous correction
Thus the full stress is then: compare Kovtun, Moore, Romatschke

2z __mzz 2z
T _Thydro + Tﬂucts

_ [po(A)—l— TOA3] 4 [no(A)+( 17A SOT02>] it

672 | 37 | 12072 1o (A)

Pphys Tlphys

where the physical quantities, pyhys and 7phys, are independent of A



Final result for a Bjorken expansion:

N~ |\

E E dT'TT B TTT _l_ TZZ
‘_{} é "JJ \7_’ dr T
(=) [ p A4y N 1.08318 n (A1 —n7r) 8 }
e+p le+p 3T 5(47?%77-)3/2 _etp 97-2,

SN—— —— -~ ~~
~ 1 1st order 3/2 order 2nd order

From which much can be wrought or wrung . . .



Numerical results:

Take representative numbers

2

(A —nrm) 08" : T3 1
e+p \e+p 13.

Forn/s = 1/4m find:

4.5 4.5\ 3/2 4.5\ 2
1. — 0.092 (> + 0.034 () — 0.0009 >
V

TZZ
e+p_

1

4

7T N—~—
first 3/2 order >~ 30% second

while for n/s = 2 /4w we have:

TZZ
e+p_

1
4

1. — 0.185 45 + 0.013 45 7 0.0034 45
N~~~ \ 7T ~—~— ok ~—— \ 7T

first 3/2 order ~10% second

Fluctuation contribution is a correction to first order hydro

but larger than second order in practice!




Hydrodynamic fluctuations and the critical point



ISing Model Fluctuations: Onuki-phase transition dynamics

h
y=larger flucts
C'yy=smaller flucts
—
coexistence T, T

e Thermodynamic variables and their equilibrium fluctuations

A = (M, dess) XAB = <5$A5a;B>
magnetization and energy density fluctu;ions

e Largest and smallest fluctuations, det Xis = xCs



QCD hydrodynamic fluctuations:

1. Thermodynamic variables and their conjugates

i 05 ~ i
x* = (e(k),n(k)), g'(k) 0 Xq(k) = 5T (=6, ft), pu’
energy, densit; momentum conjugates
2. We will study
X (k) = <aza(k)azb(—k)>
equilibrium

3. Also study pressure fluctuations:
op=p*éX, (p%,p")=(T(e+p), Tn)

which determine the speed of sound

(0p)*) =T(e+p)es = p"x,'p°

“nice little formula”



From QCD to ISing and back Onuki phase transition dynamics

Assume a linear relation between reduced parameters, e.g. (%, h) & (5—“ 5—T>

e’ Te
ozt =M4 oab
N~ —~—
Ising fields QCD fields

Thermodynamic conjugates obey the inverse linear map, Xis = M_lXQCD

M Ising 5 QCD-like phase diagram
P
Cis
n
We will take the simplest mapping:
oM = M" 0 and e€is =M on
N = N N>

magnetization entropy ising-edense b-density



Hydrodynamic Fluctuations and Dynamics

Linearized equations of motion for e, n, g

dz®(k)

= LK) X, (k) + AP X, + &
dt N ~~ o \/-/ \/
ideal viscosity+conductivity  noise

1. Two sound modes with eigenvalues tck

2. One diffusive (zero) mode for the entropy per baryon fluctuations

e+ p
n

do = de —

on =1nd (i)

n
which satisfies (dpdo) = 0.

3. Fluctuations of o obey a relaxation type equation, N°7 = (do(k,t)do(—k,t))

oo 2
dN°7 2T (e + p)Ak INT — x°°] .
dt Xoo

\ - J/
~

relaxation controlled by A =conductivity

where X %9

c? det X is the static susceptibility for Jo.



Mapping entropy/baryon fluctuations onto the ising (Onuki - Phase transition dynamics)

1. The speed of sound approaches zero like the smallest ising susceptibility
2 —1.b
T(e+p)c; =p*X ,"p

Ay—1, B dp\? 1

the smallest susceptibility

\

2. The susceptibility matrix also transforms detX’ = (detM)? detXis o< xCus

3. The fluctuation in o diverge as the largest susceptibility

X7 = 2 det X o X
\/
largest ising susceptibility

The fluctuations in the entropy per baryon diverge maximally like x

(independently of how the mapping to the ising variables is done!)



Summary of equation for fluctuations in the specific entropy 0 = nd(s/n)

AN (k) 2\gh?

— NO'O' . L
dt (k) | x(k)]
1. Definitions:
NO‘O' _ NO©o (Mh)2
—— \\i_/
flucts of c mapping params
2
€+ p
= O (SR pny
——~ nl’ N——
conductivity mapping params

2. Model susceptibility near critical point as a function of £ with correlation length &

Xo <€/€0)2_77
14 (k&>

susceptibility x (k)

N7 (k)] = X (k) =

We will solve this equation to monitor the equilibration of various wavenumbers



Transiting the critical point

1. Pass right through the critical point at late time 7 = 7, define t = 7 — 7(:

e on__t
n———
' Q — 7;’0 Q
_ S 0s  t
87—8——5 SC_ TQ+ A
set to zero

Set A = 0 to go directly through the critical point.

2. The (ising) reduced Tis and correlation length behaves av = v /(1 — «) ~ 0.71

| e av
t
01 X (H> and E=1Y, (TQ>
TQ 1t



Dynamical critical eXponen’[S Son and Stephanov most helpful

1. The fluctuations of 6o = nd(s/n) satisfy:

B 2ot k?

BN = N7 — x(h
t X (k) | (+)
— I (REP(1+ (REPT) [N~ x(R)]

Xol5(&/Lo)*

2. Then the equilibration time for k& ~ 1 :
z 062
Teq(§) = To (§> with z2=4—n and To = Xo%o
go < Aeﬁj

equilibre;[?on time dynamic critical exponent micro relax-time

The equation to be solved is :

2(k€)*(1 + (kE)*™)
7éq(§)

O N7 (k,t) = — N7 (k,t) — x(k,t)]



Kibble-Zurek Sca“ng Of Equation Kible,Zurek; Berdnikov, Rajagopal; Mukherjee, Venugopalan, Yin

A A e ()"

J\N t
—l] 5 t

V T o= ()

1. There is a timescale, t = ty,, where the relaxation rate can’t keep up with &(t)

1 . atf(tkz) . CL_V
Z-eq(g(tkz))J B \g(tkz) B tsz

relaxation rate  rate-of change of £(t)

2. Find a Kibble-Zurek time scale, ty,, and length, f, = &(tk,)

- avz/(avz+1) - 0.74
tkz =To <Q> ~ T, <Q> > T,

To To

av/(avz+1) 0.19
b, =, (TQ) ~ 1, (TQ> > 0,

To



Kibble-Zurek rescaled equation:

1. Measure all lengths, wavenumbers, and times in terms of £y, and ty,

§

Ekz

t

and k =kl and & =
tkz

t

2. Also rescale the correlator, N7 — ]\_f“/xoﬁiz_”, motivated by equilibrium:

Above Critical Point

Below Critical Point

T
T=3 — |
t=5 —
equilibrium .
\ \:\\f 1
t=5 I
| |
2 2.5



Summary of Scales

1. The small parameter is the ratio of microscopic length to system size:

To micro scale 1

€ — p— ~~r —

To  macroscale 7

2. Hierarchy of scales:

1
Fhydro < k. < [ < —
—— ~~ ~—~ o
~ V9 hyd-kinetics longest critical fluct Rl
microlength

which are of relative order

e<Ve< B «1l o 014<038<0.70<1

3. The duration of the KZ regime is short compared to 7, (parametrically only)

To Kty K Tg o e 9 «1

~ 0.6
May not have a clear separation of scales in practice



————————————————————

Expanding plasma k ~ %

\’02’ U3, ...

J

Normally equilibrated except at CP
responsible for critical IR behavior
Modified non—flow

N —7 Particles

Resonance decay to non—flow

/




Real correlation functions at high energies

dN M>
dn1 dn2
C —
(M,12) = 700N T an
m dna
Correlation function Short Range = "Non-flow" Long range rapidity flucts

Find the CP in here
at lower energy



Transiting close to the critical point

-~

&

1. Pass close to the critical point at late time 7 = 7, definet = 7 — 7(:

e m__ ¢t

T = O . ni TQ

0,5 =— < éz_i—l— A

! TQ Sc TQ ~
small

2. The “detuning” A acts like a magnetic field regulating critical dynamics

A= —6(5/n)

a small detuning

The detuning limits the rate of change of critical fluctuations



Time-scale for the maximal equilibrium fluctuations: see Berdnikov,Rajagopal hep-ph/9912274

1. The correlation length is a function of the scaling variable, £ = h™"/5 f(z)

<~ —~— ——

scaling-var reduced Tis  (reduced field)_l/ po

2. The correlation length is maximal for z ~ 1. With

5_/'7’ ~ _tCI'OSS and @ ~ A . tCI’OSS

Ne TQ Sc TQ

we find the timescale for the maximal correlation length

1—
Leross ™ TQ X A( @)/P
~~ S——
only timescale  only dimensionless number

For t ~ t.ross the correlation length is regulated by the detuning A



The correlation Iength: numerical data Engels,Fromme,Seniuch, cond-mat/0209492

Leross OX TQA(l_a)/B

0.6] -
0.50 :
Q\: .
>
"5 O4j n
§ :
0.3/ _
0.2/ :
—4 - 0 > 4
t/tcrOSS

If the system is sufficiently detuned (i.e. tcross > T1») We remain in equilibrium



Comparing the Kibble-Zurek and crossing time-scales

1. We will remain in equilibrium for

tcross > tkz

2. Find that
.

A > (O

TQ

- 0.096
(@)
Q

\ . J/
-~

A very small power

)5/(VZ+104)

or

The Kibble-Zurek mechanism is probably the dominant regulator of critical dynamics

since the power 0.096 is small.



Summary

1. For wavenumbers of order
e+ p
nT
the system transitions to equilibrium away from the critical point

k~k, =

2. Worked out an alternate description of hydro with noise:

- Hydro + hydro-kinetics

aﬂ (Tﬁyydro + TléLlLchtS) 0

a7'Jvﬂucts(k:7 7_) K

This should be generalized to a general flows.
3. Fluctuating hydro is much more important than second order hydro in practice!

4. Clarified where critical fluctuations are relevant

1
khydro < K < kkz K —
N—— ~~ ~— o
~ V9 hyd-kinetics longest critical fluct N

microlength



————————————————————

Expanding plasma k ~ %

\’02’ U3, ...

J

Normally equilibrated except at CP
responsible for critical IR behavior
Modified non—flow

N —7 Particles

Resonance decay to non—flow

/




