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Thermal fluctuations:

Sound modes in uniform plasma

These hard sound modes are part of the bath, giving to the pressure and shear viscosity

N eq
ee (k, t) ≡ 〈e∗(k, t)e(k, t)〉︸ ︷︷ ︸

energy-density flucts

=(e+ p)T/c2
s

N eq
gg (k, t) ≡

〈
g∗i(k, t)gj(k, t)

〉
︸ ︷︷ ︸
momentum, gi≡T 0i

=(e+ p)Tδij

In an expanding system these correlators will be driven out of equilibrium.

This changes the evolution of the slow modes.



A Bjorken expansion

T zz

1. The system has an expansion rate of ∂µu
µ = 1/τ

2. The hydrodynamic expansion parameter is

ε ≡ γη
τ
� 1 γη ≡

η

e+ p

and corrections to hydrodynamics are organized in powers of ε

T zz = p
[
1 + O(ε)︸︷︷︸

1st order

+ O(ε2)︸ ︷︷ ︸
2nd order

+ . . .
]

High k modes are brought to equilibrium by the dissipation and noise



The transition regime:

• There is a wave number where the damping rate competes with the expansion

γηk
2

︸︷︷︸
damping rate

∼ 1

τ︸︷︷︸
expansion rate

and thus the transition happens for: γη ≡ η/(e+ p)

k ∼ k∗ ≡
1
√
γητ

need k � k∗ to reach equilibrium!

• This is an intermediate scale k∗ ≡ 1/(τ
√
ε), ε ≡ η/(e+ p)τ
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⌧
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Want to develop a set of hydro-kinetic equations for k ⇠ k⇤
using the scale separation 1,

p
✏, ✏

These inequalities are 
the same and hold 

whenever hydro applies  
`mfp ⇠ ⌘/(e + p)

Want to develop a set of hydro-kinetic equations for k ∼ k∗
using the scale separation ε� √ε� 1



Estimate of longitudinal pressure from non-equilibrium modes

T zz

∆T zz ∼ 1
2T︸︷︷︸

energy / mode

× k3
∗︸︷︷︸

number of non-eq modes

• Using e+ p = sT and k∗ = 1/
√
γητ we estimate

∆T zz

e+ p
∼ 1

s

1

(γητ)3/2

• The full result will be:

〈T zz〉
e+ p

=
[ p

e+ p︸ ︷︷ ︸
∼ 1

− 4

3

γη
τ︸︷︷︸

1st order

+
1.08318

s (4πγητ)3/2

︸ ︷︷ ︸
3/2 order

+
(λ1 − ητπ)

e+ p

8

9τ2
︸ ︷︷ ︸

2nd order

]

The correction is suppressed by s = the number of degrees of freedom



Outline

1. Hydrodynamic Linear Response – develop hydro-kinetics

2. Bjorken Expansion



Equilibrium Linear Response Kovtun, Yaffe; Kovtun, Moore, Romatschke

out of equilibrium, hij(ω)

weak gravity of frequency ω driving plasma

Hydro prediction
〈
T ij
〉

= phij − η
(

cov-deriv︷ ︸︸ ︷
∇iuj +∇jui − 2

3
∇ · u

)
+ 2nd order

So

〈T xy(ω)〉 =
[
p−

1st order︷︸︸︷
iωη +

2nd order︷ ︸︸ ︷
(ητπ − 1

2κ)ω2
]
hxy(ω)

Thermal flucts. are not included, and are driven slightly out of equilibrium for k ∼ k∗

γηk
2
∗ ∼ ω and they are hard ω � k∗∼

√
ω

γη
� 1

`mfp

Include hard thermal fluctuations with k∗ ∼
√
ω/γη as loops



Hard Hydro Thermal Loops (HHTLs) Kovtun, Yaffe; Kovtun, Moore, Romatschke

sound propagator

Hard ∼ k∗ =
√

ω
γη

T xy = (e + p)uxuy

Soft ∼ ω

hxy(ω)

Evaluate the “Hard Hydro Thermal Loop”

〈T xy(ω)〉 =
[
p− iωη

︸︷︷︸
1st order

+
(7 + (3/2)3/2)

240π
T

(
ω

γη

)3/2

︸ ︷︷ ︸
3/2 order

+O(ω2)
]
hxy(ω)

The correction is of order

∆T xy ∼ 1
2T k

3
∗ h

xy

We will derive HHTLs from hydro-kinetic theory!



Developing hydro-kinetics – Brownian motion

Random Walk

dp

dt
= −ηp︸︷︷︸

drag

+ ξ︸︷︷︸
noise

〈
ξ(t)ξ(t′)

〉
= 2TMη δ(t− t′)

1. Then we want to calculate

N(t) =
〈
p2(t)

〉

2. Integrate the equation for short times

p(t+ ∆t) = −η p(t)∆t+

∫ t+∆t

t
ξ(t′)dt′

3. Compute 〈p(t+ ∆t) p(t+ ∆t)〉 and find an equation

∆N

∆t
= −2η

[
N − TM︸︷︷︸

equilibrium

]



Developing hydro-kinetics – linearized hydro in a uniform system

1. Evolve fields of linearized hydro with bare parameters p0(Λ), η0(Λ), s0(Λ) etc

φa(k) ≡
(
e(k), gx(k), gy(k), gz(k)

)

2. Then the equations are schematically exactly the same

dφa(k)

dt
= Lab(k)︸ ︷︷ ︸

ideal∼ csk
φb(k) + Dabφb︸ ︷︷ ︸

visc∼− η0k
2

+ξa 〈ξaξb〉 = 2TDab(k)δtt′

3. Break up the equations into eigen modes of Lab, and analyze exactly same way:

right moving sound︸ ︷︷ ︸
λ+ = +icsk

left moving sound︸ ︷︷ ︸
λ− = −icsk

two diffusion modes︸ ︷︷ ︸
λT = 0

So for k in the z direction, work with the following linear combos (eigenvects)

φA ≡
[
cse(k)± gz(k)︸ ︷︷ ︸
φ+ and φ−

, gx(k)︸ ︷︷ ︸
≡ φT1

, gy(k)︸ ︷︷ ︸
≡ φT2

]



Sound modes in the eigen basis:

dφ+

dt
= −icsk φ+︸ ︷︷ ︸

rapid phase

− 2
3γηk

2 φ+︸ ︷︷ ︸
drag

+ ξL︸︷︷︸
noise

Diffusion modes in the eigen basis:

dφT1
dt

=−γηk2 φT1︸ ︷︷ ︸
drag

+ ξT︸︷︷︸
noise



The kinetic equations in flat space

1. Want to compute how the density of sound modes (squared amplitude) evolve:

N++(k, t) =
〈
φ∗+(k, t)φ+(k, t)

〉
NT1T1

=
〈
φ∗T1(k, t)φT1(k, t)

〉

2. Thus following the Brownian example:

dN++

dt
=− 4

3γηk
2
[
N++ −N eq

++

]

dNT1T1

dt
=− 2γηk

2
[
NT1T1

−N eq
T1T1

]

and similar equations for N−− and NT2T2
. Here

N eq
T1T1
≡ (e+ p)T and N eq

++ ≡ (e+ p)T

3. Neglect off diagonal components of density matrix in eigen-basis

Now we will do the same for a perturbed and expanding system



Case 1: Kinetic equations for perturbed system (HHTLs)

out of equilibrium, hij(ω)

weak gravity of frequency ω driving plasma

Hydro equations become φa ≡
(
e(k), gx(k), gy(k), gz(k)

)

dφa(k)

dt
= Lab(k)φb(k)︸ ︷︷ ︸

ideal

+Dabφb︸ ︷︷ ︸
visc

+ ξa︸︷︷︸
noise

+ Pabφb︸ ︷︷ ︸
perturbation

with

Pab =


0 0

0 1
2∂thij


 , hij(t) = metric perturbation



Case 1: Kinetic equations for perturbed system (HHTLs)

1. Turn on a weak gravitational perturbations, hij = h(t) diag(1, 1,−2)

∂tN++(k) = − 4
3
γηk

2 [N++ −Neq
++

]︸ ︷︷ ︸
damping

+ ∂th (sin2 θk − 2 cos2 θk)︸ ︷︷ ︸
perturbation hij k̂

ik̂j

N++

2. Solve the equations to first order in the gravitational, h(t) = he−iωt

δN++ =
iωh (sin2 θk − 2 cos2 θk)

−iω + 4
3
γηK2

⇐= solution

3. Calculate the stress tensor

δT ij = (e+ p)
〈
vivj

〉
=

∫
d3K

(2π)3

〈
gi(k)gj(−k)

〉

e+ p

4. Find an HTL like expression

〈δT xx + δT yy − 2δT zz〉 ⊃ h
∫

d3K

(2π)3
δN++ (sin2 θ − 2 cos2 θ)︸ ︷︷ ︸

k̂xk̂x + k̂yk̂y − 2k̂z k̂z

Precisely reproduces Yaffe-Kovtun hard hydro loop calculation



〈T xy(ω)〉 =
[
p− iωη

︸︷︷︸
1st order

+
(7 + (3/2)3/2)

240π
T

(
ω

γη

)3/2

︸ ︷︷ ︸
3/2 order

+O(ω2)
]
hxy(ω)



Case 2: Kinetic equations for a Bjorken expansion – Hard Hydro Expanding Loops (HHELs)

• The hydrodynamic field fields φa = (cse, g
x, gy, τgη) are:

φa(τ,k⊥, κ) =

∫
d2x

∫
dη eik⊥·x⊥+iκ η φa(τ,x⊥, η)

• The equations take the form:

d

dτ
φa(k⊥, κ) = Lab︸︷︷︸

ideal

φb + Dabφb︸ ︷︷ ︸
viscous

+ Pabφb︸ ︷︷ ︸
perturb

+ ξa︸︷︷︸
noise

The previous analysis goes through with a no complications, λ = ±icsk, 0

Pab =
1

τ


1 + c2s

1

1

2





The kinetic equations and approach to equilibrium:

• The kinetic equations and approach to equilibrium

∂

∂τ
N++ =− 1

τ

[
2 + c2s0 +

κ2/τ2

k2⊥ + κ2/τ2︸ ︷︷ ︸
perturbation = 2P++

]
N++ −

4
3
η0

s0T0

(
k2⊥ +

κ2

τ2

)[
N++ −

s0T 2
0

2c2s0τ

]
,︸ ︷︷ ︸

damping to equilibrium

∂

∂τ
NT2T2

=− 2

τ

[
1 +

k2⊥
k2⊥ + κ2/τ2︸ ︷︷ ︸

perturbation = 2PT2T2

]
NT2T2

− 2η0

s0T0

(
k2⊥ +

κ2

τ2

)[
NT2T2

− s0T 2
0

τ

]
︸ ︷︷ ︸

damping to equilibrium

.

and similar equations for the other modes

• For large k, we solve, and the modes approximately equilibrate:

N++ ' s0T 2
0

2c2s0τ

[
1︸︷︷︸

equilibrium

+
s0T0

4
3
η0(k2⊥ + κ2/τ2)

(
c2s0 −

κ2/τ2

k2⊥ + κ2/τ2

)
︸ ︷︷ ︸

first viscous correction analogous to δf

+ . . .
]

Now we solved these kinetic equations numerically



The non-equilibrium steady state at late times:
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The evolution of the background

dT ττ

dτ
= −T

ττ + T zz

τ
where

T zzhydro = p0(Λ)
︸ ︷︷ ︸
Ideal

−
4
3η0(Λ)

τ︸ ︷︷ ︸
first order

+ (λ1 − ητπ)
8

9τ2︸ ︷︷ ︸
second order

+ . . .

In addition the fluctuations give another contribution:

T zzflucts = (e+ p) 〈vzvz〉



Evaluating the fluctuation contribution:

T zzflucts

e+ p
= 〈vzvz〉

=

∫
d2k⊥dκ
(2π)3

1

(eo + po)2

[
N++ cos2 θ +NT2T2

sin2 θ
]

=
ToΛ

3

6π2

︸ ︷︷ ︸
from equilib

−
(

17Λ

120π2

soT
2
o

ηo(Λ)

) 4
3

τ︸ ︷︷ ︸
from first viscous correction

+ finite

Thus the full stress is then: compare Kovtun, Moore, Romatschke

T zz =T zzhydro + T zzflucts

=

[
p0(Λ) +

ToΛ
3

6π2

]

︸ ︷︷ ︸
pphys

− 4

3τ

[
η0(Λ) +

(
17Λ

120π2

soT
2
o

ηo(Λ)

)]

︸ ︷︷ ︸
ηphys

+finite

where the physical quantities, pphys and ηphys, are independent of Λ



Final result for a Bjorken expansion:

dT ττ

dτ
= −T

ττ + T zz

τ

〈T zz〉
e+ p

=
[ p

e+ p︸ ︷︷ ︸
∼ 1

− 4

3

γη
τ︸︷︷︸

1st order

+
1.08318

s (4πγητ)3/2

︸ ︷︷ ︸
3/2 order

+
(λ1 − ητπ)

e+ p

8

9τ2
︸ ︷︷ ︸

2nd order

]

From which much can be wrought or wrung . . .



Numerical results:

Take representative numbers

(λ1 − ητπ)

e+ p
' −0.8

(
η

e+ p

)2 T 3

s
' 1

13.5

For η/s = 1/4π find:

T zz

e+ p
=

1

4


1.− 0.092︸ ︷︷ ︸

first

(
4.5

τT

)
+ 0.034︸ ︷︷ ︸

3/2 order'30%

(
4.5

τT

)3/2

− 0.0009︸ ︷︷ ︸
second

(
4.5

τT

)2



while for η/s = 2/4π we have:

T zz

e+ p
=

1

4


1.− 0.185︸ ︷︷ ︸

first

(
4.5

τT

)
+ 0.013︸ ︷︷ ︸

3/2 order'10%

(
4.5

τT

)3/2

− 0.0034︸ ︷︷ ︸
second

(
4.5

τT

)2



Fluctuation contribution is a correction to first order hydro

but larger than second order in practice!



Hydrodynamic fluctuations and the critical point



Ising Model Fluctuations: Onuki-phase transition dynamics

coexistence

h

Tc

χ=larger flucts

CM=smaller flucts

T

• Thermodynamic variables and their equilibrium fluctuations

xA ≡ (M, δeis)︸ ︷︷ ︸
magnetization and energy density

XABis =
〈
δxAδxB

〉
︸ ︷︷ ︸
fluctuations

• Largest and smallest fluctuations, detXis = χCM

χ ≡X 11
is =

∂M
∂h

= largest fluctuations, δT−γis

CM ≡X 22
is −

(X 12
is )2

X 11
is

= smallest fluctuations, δT−αis



QCD hydrodynamic fluctuations:

1. Thermodynamic variables and their conjugates

xa = (e(k), n(k)), gi(k)︸ ︷︷ ︸
energy, density, momentum

δXa(k) = − ∂S

∂xa
= (−β, µ̂), βui︸ ︷︷ ︸

conjugates

2. We will study

X ab(k, t) =
〈
xa(k)xb(−k)

〉∣∣∣
equilibrium

3. Also study pressure fluctuations:

δp = paδXa (pe, pn) = (T (e+ p), Tn)

which determine the speed of sound

〈
(δp)2

〉
= T (e+ p)c2

s = paX−1
ab p

b

︸ ︷︷ ︸
“nice little formula”



From QCD to Ising and back Onuki phase transition dynamics

Assume a linear relation between reduced parameters, e.g.
(
δTis
Tisc

, h
)
⇔
(
δµ
µc
, δTTc

)

δxA︸︷︷︸
Ising fields

=MA
b δxb︸︷︷︸

QCD fields

Thermodynamic conjugates obey the inverse linear map, Xis = M−1XQCD

M

eis

s

n

(nc, sc)

Ising QCD-like phase diagram

We will take the simplest mapping:

δM
︸︷︷︸

magnetization

= Mh
e

δs

sc︸︷︷︸
entropy

and δeis

︸︷︷︸
ising-edense

= M τ
n

δn

nc︸︷︷︸
b-density



Hydrodynamic Fluctuations and Dynamics

Linearized equations of motion for e, n, g

dxa(k)

dt
= Lab(k)Xb(k)︸ ︷︷ ︸

ideal

+ ΛabXb︸ ︷︷ ︸
viscosity+conductivity

+ ξa︸︷︷︸
noise

1. Two sound modes with eigenvalues±csk
2. One diffusive (zero) mode for the entropy per baryon fluctuations

δσ ≡ δe− e+ p

n
δn =Tn δ

( s
n

)

which satisfies 〈δpδσ〉 = 0.

3. Fluctuations of σ obey a relaxation type equation, Nσσ = 〈δσ(k, t)δσ(−k, t)〉

dNσσ

dt
= − 2T (e+ p)λk2

X σσ︸ ︷︷ ︸
relaxation controlled by λ ≡conductivity

[Nσσ −X σσ] ,

where X σσ = c2
s detX ab is the static susceptibility for δσ.



Mapping entropy/baryon fluctuations onto the ising (Onuki - Phase transition dynamics)

1. The speed of sound approaches zero like the smallest ising susceptibility

T (e+ p)c2
s =paX−1

ab p
b

sound =pAX−1
ABp

B '
(
dp

dτ

)2 1

CM︸ ︷︷ ︸
the smallest susceptibility

2. The susceptibility matrix also transforms detX = (detM)2 detXis ∝ χCM
3. The fluctuation in σ diverge as the largest susceptibility

X σσ = c2
s detX ∝ χ︸︷︷︸

largest ising susceptibility

The fluctuations in the entropy per baryon diverge maximally like χ

(independently of how the mapping to the ising variables is done!)



Summary of equation for fluctuations in the specific entropy σ ≡ nδ(s/n)

dN̄σσ(k, t)

dt
= −2λeffk

2

χ(k)

[
N̄σσ − χ(k)

]

1. Definitions:

N̄σσ = Nσσ

︸︷︷︸
flucts of σ

(Mh
e )2

︸ ︷︷ ︸
mapping params

λeff = λ︸︷︷︸
conductivity

(
e+ p

nT

)2

(Mh
e )2

︸ ︷︷ ︸
mapping params

2. Model susceptibility near critical point as a function of k with correlation length ξ

N̄σσ(k, t)
∣∣
equil

= χ(k) =
χo(ξ/`o)

2−η

1 + (kξ)2−η
︸ ︷︷ ︸

susceptibility χ(k)

We will solve this equation to monitor the equilibration of various wavenumbers



Transiting the critical point

1. Pass right through the critical point at late time τ = τQ, define t ≡ τ − τQ:

∂τn =− nc
τQ

∂τs =− sc
τQ

=⇒
δn

nc
=− t

τQ

δs

sc
=− t

τQ
+ ∆︸︷︷︸

set to zero

Set ∆ = 0 to go directly through the critical point.

2. The (ising) reduced Tis and correlation length behaves aν ≡ ν/(1− α) ' 0.71

δTis ∝
( |t|
τQ

)1−α
and ξ = `o

(
τQ
|t|

)aν



Dynamical critical exponents Son and Stephanov most helpful

1. The fluctuations of δσ ≡ nδ(s/n) satisfy:

∂tN̄
σσ =− 2λeffk

2

χ(k)

[
N̄σσ − χ(k)

]

=− 2λeff

χo`2o(ξ/`o)
4−η (kξ)2(1 + (kξ)2−η)

[
N̄σσ − χ(k)

]

2. Then the equilibration time for kξ ∼ 1 :

τeq(ξ) ≡ τo
(
ξ

`o

)z

︸ ︷︷ ︸
equilibration time

with z ≡ 4− η
︸ ︷︷ ︸

dynamic critical exponent

and τo ≡
χo`

2
o

λeff︸ ︷︷ ︸
micro relax-time

The equation to be solved is :

∂tN̄
σσ(k, t) = −2(kξ)2(1 + (kξ)2−η)

τeq(ξ)

[
N̄σσ(k, t)− χ(k, t)

]



Kibble-Zurek Scaling of Equation Kible,Zurek; Berdnikov, Rajagopal; Mukherjee, Venugopalan, Yin

ξ(t) =`o

(
τQ
|t|

)aν

τeq(ξ) =τo

(
ξ(t)

`o

)z

1. There is a timescale, t = tkz, where the relaxation rate can’t keep up with ξ(t)

1

τeq(ξ(tkz))︸ ︷︷ ︸
relaxation rate

=
∂tξ(tkz)

ξ(tkz)
=
aν

tkz︸ ︷︷ ︸
rate-of change of ξ(t)

2. Find a Kibble-Zurek time scale, tkz, and length, `kz = ξ(tkz)

tkz ≡τo
(
τQ
τo

)aνz/(aνz+1)

' τo
(
τQ
τo

)0.74

� τo

`kz =`o

(
τQ
τo

)aν/(aνz+1)

' `o
(
τQ
τo

)0.19

� `o



Kibble-Zurek rescaled equation:

1. Measure all lengths, wavenumbers, and times in terms of `kz and tkz

t =
t

tkz
and k = k`kz and ξ =

ξ

`kz

2. Also rescale the correlator, N̄σσ → N̄σσ/χo`
2−η
kz , motivated by equilibrium:
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Summary of Scales

1. The small parameter is the ratio of microscopic length to system size:

ε =
τo
τQ

=
micro scale

macro scale
' 1

7

2. Hierarchy of scales:

khydro︸ ︷︷ ︸
∼ v2

� k∗︸︷︷︸
hyd-kinetics

� kkz︸︷︷︸
longest critical fluct

� 1

`o︸︷︷︸
microlength

which are of relative order

ε� √ε� ε0.18 � 1 or 0.14� 0.38� 0.70� 1

3. The duration of the KZ regime is short compared to τQ (parametrically only)

τo � tkz � τQ or ε� ε0.26
︸︷︷︸
∼ 0.6

� 1

May not have a clear separation of scales in practice



Short range structure of ridge

Partially equilibrated fluctuations

Normally equilibrated except at CP

responsible for critical IR behavior

Particles

Resonance decay to non−flow

Modified non−flow

k ∼ 1
ℓo

k ∼ kkz

Expanding plasma k ∼ 1
L

v2, v3, . . .

k ∼ k∗



Real correlation functions at high energies

C(η1, η2) =

〈
dN
dη1

dN
dη2

〉

〈
dN
dη1

〉〈
dN
dη2

〉

The ratio of the correlation function between opposite-charge and same-charge pairs can be approximated
by:

R(⌘1, ⌘2) ⇡ 1 + �+�SRC(⌘1, ⌘2) � �±±SRC(⌘1, ⌘2) (11)

where the two �+�SRC and �±±SRC distributions represent the SRC for the opposite-charge pairs and same-
charge pairs, respectively, and the LRC and single-particle modes cancel out in the ratio, since all relevant
deviations from unity are small. Assuming that the shape of the SRC component factorizes in ⌘� and ⌘+
and the shape along ⌘+ is the same for the opposite-charge and same-charge pairs, the ratio R(⌘1, ⌘2) can
be further simplified as:

R(⌘+, ⌘�) ⇡ 1 + f (⌘+)
⇥
g+�(⌘�) � g±±(⌘�)

⇤
, �+�SRC = f (⌘+)g+�(⌘�), �±±SRC = f (⌘+)g±±(⌘�) (12)

where f (⌘+) describes the shape along ⌘+ and can be calculated via Eq. (10). The functions g+� and g±±

describe the SRC along the ⌘� direction for the two charge combinations, which di↵er in both magnitude
and shape.

In order to estimate the g(⌘�) function for same-charged pairs, the CN(⌘+, ⌘�) distributions for same-
charge pairs are projected into one-dimensional (1-D) ⌘� distributions over a narrow slice |⌘+| < 0.4. The
distributions, denoted by CN(⌘�), are shown in the second column of Fig. 4 for the same-charge pairs
in Pb+Pb and p+Pb collisions. The SRC appears as a narrow peak on top of a distribution that has an
approximately quadratic shape. Therefore a quadratic fit is applied to the data in the region of |⌘�| > 1.5,
and the di↵erence between the data and fit in the |⌘�| < 2 region is taken as the estimated SRC component
or the g(⌘�) function, which is assumed to be zero for |⌘�| > 2. This range (|⌘�| > 1.5) is about twice
the width of the short-range peak in the R(⌘+, ⌘�) distribution along the ⌘� direction (examples are given
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Figure 4: The separation of correlation functions for same-charge pairs (first column) into the SRC (third column)
and LRC (last column) for Pb+Pb (top row) and p+Pb (bottom row) collisions with 200  Nrec

ch < 220. The second
column shows the result of the quadratic fit over the |⌘�| > 1.5 range of the 1-D correlation function projected
over the |⌘+| < 0.4 slice, which is used to estimate the SRC component. The error bars represent the statistical
uncertainties.
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Figure 4: The separation of correlation functions for same-charge pairs (first column) into the SRC (third column)
and LRC (last column) for Pb+Pb (top row) and p+Pb (bottom row) collisions with 200  Nrec

ch < 220. The second
column shows the result of the quadratic fit over the |⌘�| > 1.5 range of the 1-D correlation function projected
over the |⌘+| < 0.4 slice, which is used to estimate the SRC component. The error bars represent the statistical
uncertainties.

10

The ratio of the correlation function between opposite-charge and same-charge pairs can be approximated
by:

R(⌘1, ⌘2) ⇡ 1 + �+�SRC(⌘1, ⌘2) � �±±SRC(⌘1, ⌘2) (11)

where the two �+�SRC and �±±SRC distributions represent the SRC for the opposite-charge pairs and same-
charge pairs, respectively, and the LRC and single-particle modes cancel out in the ratio, since all relevant
deviations from unity are small. Assuming that the shape of the SRC component factorizes in ⌘� and ⌘+
and the shape along ⌘+ is the same for the opposite-charge and same-charge pairs, the ratio R(⌘1, ⌘2) can
be further simplified as:

R(⌘+, ⌘�) ⇡ 1 + f (⌘+)
⇥
g+�(⌘�) � g±±(⌘�)

⇤
, �+�SRC = f (⌘+)g+�(⌘�), �±±SRC = f (⌘+)g±±(⌘�) (12)

where f (⌘+) describes the shape along ⌘+ and can be calculated via Eq. (10). The functions g+� and g±±

describe the SRC along the ⌘� direction for the two charge combinations, which di↵er in both magnitude
and shape.

In order to estimate the g(⌘�) function for same-charged pairs, the CN(⌘+, ⌘�) distributions for same-
charge pairs are projected into one-dimensional (1-D) ⌘� distributions over a narrow slice |⌘+| < 0.4. The
distributions, denoted by CN(⌘�), are shown in the second column of Fig. 4 for the same-charge pairs
in Pb+Pb and p+Pb collisions. The SRC appears as a narrow peak on top of a distribution that has an
approximately quadratic shape. Therefore a quadratic fit is applied to the data in the region of |⌘�| > 1.5,
and the di↵erence between the data and fit in the |⌘�| < 2 region is taken as the estimated SRC component
or the g(⌘�) function, which is assumed to be zero for |⌘�| > 2. This range (|⌘�| > 1.5) is about twice
the width of the short-range peak in the R(⌘+, ⌘�) distribution along the ⌘� direction (examples are given

1η-2 -1
0 1 2

2
η

-2
-1

0
1

2

) 2η, 1η(±± N
C 1

1.005
1.01

ATLAS     
Pb+Pb

-η
-5 0 5

) -η(±± N
C

1

1.005
|<0.4+η|

ATLAS
    
Pb+Pb

1η-2 -1
0 1 2

2
η

-2
-1

0
1

2

) 2η, 1η(
±± SR

C
δ 0

0.001
0.002
0.003

ATLAS     
Pb+Pb

1η-2 -1
0 1 2

2
η

-2
-1

0
1

2

) 2η, 1η(±±
su

b,
N

C

1

1.005

ATLAS     
Pb+Pb

 < 220rec
ch N≤200 -1bµ = 2.76 TeV,  7 NNsPb+Pb   > 0.2 GeV

T
p

1η-2 -1
0 1 2

2
η

-2
-1

0
1

2

) 2η, 1η(±± N
C 1

1.005
1.01

1.015

ATLAS     
p+Pb

-η
-5 0 5

) -η(±± N
C

1

1.005

1.01
|<0.4+η|

ATLAS
    
p+Pb

1η-2 -1
0 1 2

2
η

-2
-1

0
1

2

) 2η, 1η(
±± SR

C
δ 0

0.005

0.01

ATLAS     
p+Pb

1η-2 -1
0 1 2

2
η

-2
-1

0
1

2

) 2η, 1η(±±
su

b,
N

C
1

1.005

ATLAS     
p+Pb

 < 220rec
ch N≤200 -1 = 5.02 TeV, 28 nbNNsp+Pb   > 0.2 GeV

T
p

Figure 4: The separation of correlation functions for same-charge pairs (first column) into the SRC (third column)
and LRC (last column) for Pb+Pb (top row) and p+Pb (bottom row) collisions with 200  Nrec

ch < 220. The second
column shows the result of the quadratic fit over the |⌘�| > 1.5 range of the 1-D correlation function projected
over the |⌘+| < 0.4 slice, which is used to estimate the SRC component. The error bars represent the statistical
uncertainties.
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Correlation function Short Range = "Non-flow" Long range rapidity flucts

Find the CP in here
at lower energy



Transiting close to the critical point

1. Pass close to the critical point at late time τ = τQ, define t ≡ τ − τQ:

∂τn =− nc
τQ

∂τs =− sc
τQ

=⇒

δn

nc
=− t

τQ

δs

sc
=− t

τQ
+ ∆︸︷︷︸

small

2. The “detuning” ∆ acts like a magnetic field regulating critical dynamics

∆ =
nc
sc
δ (s/n)

︸ ︷︷ ︸
a small detuning

The detuning limits the rate of change of critical fluctuations



Time-scale for the maximal equilibrium fluctuations: see Berdnikov,Rajagopal hep-ph/9912274

1. The correlation length is a function of the scaling variable, ξ = h̄−ν/βδf(z)

z︸︷︷︸
scaling-var

= τ̄︸︷︷︸
reduced Tis

× h̄−1/βδ
︸ ︷︷ ︸

(reduced field)−1/βδ

2. The correlation length is maximal for z ∼ 1. With

δn

nc
∼ − tcross

τQ
and

δs

sc
∼ ∆− tcross

τQ

we find the timescale for the maximal correlation length

tcross ∼ τQ︸︷︷︸
only timescale

× ∆(1−α)/β

︸ ︷︷ ︸
only dimensionless number

For t ∼ tcross the correlation length is regulated by the detuning ∆



The correlation length: numerical data Engels,Fromme,Seniuch, cond-mat/0209492

tcross ∝ τQ∆(1−α)/β

-4 -2 0 2 4

0.2

0.3

0.4

0.5

0.6

t/tcross

(ξ
/ℓ 0
)Δ

ν/
β

If the system is sufficiently detuned (i.e. tcross � tkz) we remain in equilibrium



Comparing the Kibble-Zurek and crossing time-scales

1. We will remain in equilibrium for

tcross � tkz

2. Find that

∆�
(
τo
τQ

)β/(νz+1−α)

or

∆�
(
τo
τQ

)0.096

︸ ︷︷ ︸
A very small power

The Kibble-Zurek mechanism is probably the dominant regulator of critical dynamics

since the power 0.096 is small.



Summary

1. For wavenumbers of order

k ∼ k∗ ≡
√
e+ p

ητ

the system transitions to equilibrium away from the critical point

2. Worked out an alternate description of hydro with noise:

- Hydro + hydro-kinetics

∂µ(Tµνhydro + Tµνflucts) =0

∂τNflucts(k, τ) = . . .

This should be generalized to a general flows.

3. Fluctuating hydro is much more important than second order hydro in practice!

4. Clarified where critical fluctuations are relevant

khydro︸ ︷︷ ︸
∼ v2

� k∗︸︷︷︸
hyd-kinetics

� kkz︸︷︷︸
longest critical fluct

� 1

`o︸︷︷︸
microlength



Short range structure of ridge

Partially equilibrated fluctuations

Normally equilibrated except at CP

responsible for critical IR behavior

Particles

Resonance decay to non−flow

Modified non−flow

k ∼ 1
ℓo

k ∼ kkz

Expanding plasma k ∼ 1
L

v2, v3, . . .

k ∼ k∗


