Hydrodynamic fluctuations, long time tails, and critical dynamics
Derek Teaney
Stony Brook University

- Yukinao Akamatsu, Aleksas Mazeliauskas, DT, arXiv:1606.07742
- Yukinao Akamatsu, Aleksas Mazeliauskas, DT; in progress
- Y. Akamatsu, DT, Fanglida Yan, Yi Yin; in progress

Thermal fluctuations:
Sound modes in uniform plasma

These hard sound modes are part of the bath, giving to the pressure and shear viscosity

$$
\begin{aligned}
N_{e e}^{\mathrm{eq}}(\boldsymbol{k}, t) & \equiv \underbrace{\left\langle e^{*}(\boldsymbol{k}, t) e(\boldsymbol{k}, t)\right\rangle}_{\text {energy-density flucts }}=(e+p) T / c_{s}^{2} \\
N_{g g}^{\mathrm{eq}}(\boldsymbol{k}, t) & \equiv \underbrace{\left\langle g^{* i}(\boldsymbol{k}, t) g^{j}(\boldsymbol{k}, t)\right\rangle}_{\text {momentum, } g^{i} \equiv T^{0 i}}=(e+p) T \delta^{i j}
\end{aligned}
$$

In an expanding system these correlators will be driven out of equilibrium.
This changes the evolution of the slow modes.

A Bjorken expansion

1. The system has an expansion rate of $\partial_{\mu} u^{\mu}=1 / \tau$
2. The hydrodynamic expansion parameter is

$$
\epsilon \equiv \frac{\gamma_{\eta}}{\tau} \ll 1 \quad \gamma_{\eta} \equiv \frac{\eta}{e+p}
$$

and corrections to hydrodynamics are organized in powers of ϵ

$$
T^{z z}=p[1+\underbrace{\mathcal{O}(\epsilon)}_{\text {1st order }}+\underbrace{\mathcal{O}\left(\epsilon^{2}\right)}_{\text {2nd order }}+\ldots]
$$

High k modes are brought to equilibrium by the dissipation and noise

The transition regime:

- There is a wave number where the damping rate competes with the expansion

and thus the transition happens for:

$$
\gamma_{\eta} \equiv \eta /(e+p)
$$

$$
k \sim k_{*} \equiv \frac{1}{\sqrt{\gamma_{\eta} \tau}}
$$

need $k \gg k_{*}$ to reach equilibrium!

- This is an intermediate scale $k_{*} \equiv 1 /(\tau \sqrt{\epsilon})$,

$$
\epsilon \equiv \eta /(e+p) \tau
$$

$$
\begin{gathered}
\begin{array}{c}
\text { These inequalities are } \\
\text { the same and hold } \\
\text { whenever hydro applies } \\
\ell_{\mathrm{mfp}} \sim \eta /(e+p)
\end{array}
\end{gathered}<\frac{1}{\tau} \lll k_{*} \lll \frac{1}{\ell_{\mathrm{mfp}}}
$$

Want to develop a set of hydro-kinetic equations for $k \sim k_{*}$ using the scale separation $\epsilon \ll \sqrt{\epsilon} \ll 1$

Estimate of longitudinal pressure from non-equilibrium modes

$$
\Delta T^{z z} \sim \underbrace{\frac{1}{2} T}_{\text {energy } / \text { mode }} \times \underbrace{k_{*}^{3}}_{\text {number of non-eq modes }}
$$

- Using $e+p=s T$ and $k_{*}=1 / \sqrt{\gamma_{\eta} \tau}$ we estimate

$$
\frac{\Delta T^{z z}}{e+p} \sim \frac{1}{s} \frac{1}{\left(\gamma_{\eta} \tau\right)^{3 / 2}}
$$

- The full result will be:

$$
\frac{\left\langle T^{z z}\right\rangle}{e+p}=[\underbrace{\frac{p}{e+p}}_{\sim 1}-\underbrace{\frac{4}{3} \frac{\gamma_{\eta}}{\tau}}_{\text {1st order }}+\underbrace{\frac{1.08318}{s\left(4 \pi \gamma_{\eta} \tau\right)^{3 / 2}}}_{\text {3/2 order }}+\underbrace{\frac{\left(\lambda_{1}-\eta \tau_{\pi}\right)}{e+p} \frac{8}{9 \tau^{2}}}_{\text {2nd order }}]
$$

The correction is suppressed by $s=$ the number of degrees of freedom

Outline

1. Hydrodynamic Linear Response - develop hydro-kinetics
2. Bjorken Expansion

Hydro prediction cov-deriv

$$
\left\langle T^{i j}\right\rangle=p h^{i j}-\eta(\overbrace{\nabla^{i} u^{j}}+\nabla^{j} u^{i}-\frac{2}{3} \nabla \cdot u)+2 \text { nd order }
$$

So

$$
\left\langle T^{x y}(\omega)\right\rangle=[p-\overbrace{i \omega \eta}^{\text {1st order }}+\overbrace{\left(\eta \tau_{\pi}-\frac{1}{2} \kappa\right) \omega^{2}}^{\text {2nd order }}] h^{x y}(\omega)
$$

Thermal flucts. are not included, and are driven slightly out of equilibrium for $k \sim k_{*}$
$\gamma_{\eta} k_{*}^{2} \sim \omega \quad$ and they are hard $\quad \omega \ll k_{*} \sim \sqrt{\frac{\omega}{\gamma_{\eta}}} \ll \frac{1}{\ell_{\mathrm{mfp}}}$
Include hard thermal fluctuations with $k_{*} \sim \sqrt{\omega / \gamma_{\eta}}$ as loops

Evaluate the "Hard Hydro Thermal Loop"

$$
\left\langle T^{x y}(\omega)\right\rangle=[p-\underbrace{i \omega \eta}_{\text {1st order }}+\underbrace{\frac{\left(7+(3 / 2)^{3 / 2}\right)}{240 \pi} T\left(\frac{\omega}{\gamma_{\eta}}\right)^{3 / 2}}_{3 / 2 \text { order }}+\mathcal{O}\left(\omega^{2}\right)] h^{x y}(\omega)
$$

The correction is of order

$$
\Delta T^{x y} \sim \frac{1}{2} T k_{*}^{3} h^{x y}
$$

We will derive HHTLs from hydro-kinetic theory!

Developing hydro-kinetics - Brownian motion

Random Walk

$$
\frac{d p}{d t}=\underbrace{-\eta p}_{\text {drag }}+\underbrace{\xi}_{\text {noise }} \quad\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle=2 T M \eta \delta\left(t-t^{\prime}\right)
$$

1. Then we want to calculate

$$
N(t)=\left\langle p^{2}(t)\right\rangle
$$

2. Integrate the equation for short times

$$
p(t+\Delta t)=-\eta p(t) \Delta t+\int_{t}^{t+\Delta t} \xi\left(t^{\prime}\right) d t^{\prime}
$$

3. Compute $\langle p(t+\Delta t) p(t+\Delta t)\rangle$ and find an equation

$$
\frac{\Delta N}{\Delta t}=-2 \eta[N-\underbrace{T M}_{\text {equilibrium }}]
$$

Developing hydro-kinetics - linearized hydro in a uniform system

1. Evolve fields of linearized hydro with bare parameters $p_{0}(\Lambda), \eta_{0}(\Lambda), s_{0}(\Lambda)$ etc

$$
\phi_{a}(\boldsymbol{k}) \equiv\left(e(\boldsymbol{k}), g^{x}(\boldsymbol{k}), g^{y}(\boldsymbol{k}), g^{z}(\boldsymbol{k})\right)
$$

2. Then the equations are schematically exactly the same

$$
\frac{d \phi_{a}(\boldsymbol{k})}{d t}=\underbrace{\mathcal{L}_{a b}(\boldsymbol{k})}_{\text {ideal } \sim c_{s} k} \phi_{b}(\boldsymbol{k})+\underbrace{D_{a b} \phi_{b}}_{\text {visc } \sim-\eta_{0} k^{2}}+\xi_{a} \quad\left\langle\xi_{a} \xi_{b}\right\rangle=2 T \mathcal{D}_{a b}(\boldsymbol{k}) \delta_{t t^{\prime}}
$$

3. Break up the equations into eigen modes of $\mathcal{L}_{a b}$, and analyze exactly same way:
$\underbrace{\text { right moving sound }}_{\lambda_{+}=+i c_{s} k} \quad \underbrace{\text { left moving sound }}_{\lambda_{-}=-i c_{s} k} \quad \underbrace{\text { two diffusion modes }}_{\lambda_{T}=0}$

So for k in the z direction, work with the following linear combos (eigenvects)

$$
\phi_{A} \equiv[\underbrace{c_{s} e(\boldsymbol{k}) \pm g^{z}(\boldsymbol{k})}_{\phi_{+} \text {and } \phi_{-}}, \underbrace{g^{x}(\boldsymbol{k})}_{\equiv \phi_{T_{1}}}, \underbrace{g^{y}(\boldsymbol{k})}_{\phi_{T_{2}}}]
$$

Sound modes in the eigen basis:

$$
\frac{d \phi_{+}}{d t}=\underbrace{-i c_{s} k \phi_{+}}_{\text {rapid phase }}-\underbrace{\frac{2}{3} \gamma_{\eta} k^{2} \phi_{+}}_{\text {drag }}+\underbrace{\xi_{L}}_{\text {noise }}
$$

Diffusion modes in the eigen basis:

$$
\frac{d \phi_{T_{1}}}{d t}=\underbrace{-\gamma_{\eta} k^{2} \phi_{T_{1}}}_{\text {drag }}+\underbrace{\xi_{T}}_{\text {noise }}
$$

The kinetic equations in flat space

1. Want to compute how the density of sound modes (squared amplitude) evolve:

$$
N_{++}(\boldsymbol{k}, t)=\left\langle\phi_{+}^{*}(\boldsymbol{k}, t) \phi_{+}(\boldsymbol{k}, t)\right\rangle \quad N_{T_{1} T_{1}}=\left\langle\phi_{T_{1}}^{*}(\boldsymbol{k}, t) \phi_{T_{1}}(\boldsymbol{k}, t)\right\rangle
$$

2. Thus following the Brownian example:

$$
\begin{gathered}
\frac{d N_{++}}{d t}=-\frac{4}{3} \gamma_{\eta} k^{2}\left[N_{++}-N_{++}^{\mathrm{eq}}\right] \\
\frac{d N_{T_{1} T_{1}}}{d t}=-2 \gamma_{\eta} k^{2}\left[N_{T_{1} T_{1}}-N_{T_{1} T_{1}}^{\mathrm{eq}}\right]
\end{gathered}
$$

and similar equations for N_{--}and $N_{T_{2} T_{2}}$. Here

$$
N_{T_{1} T_{1}}^{\mathrm{eq}} \equiv(e+p) T \quad \text { and } \quad N_{++}^{\mathrm{eq}} \equiv(e+p) T
$$

3. Neglect off diagonal components of density matrix in eigen-basis

Now we will do the same for a perturbed and expanding system

Case 1: Kinetic equations for perturbed system (HHTLs)

Hydro equations become $\phi_{a} \equiv\left(e(\boldsymbol{k}), g^{x}(\boldsymbol{k}), g^{y}(\boldsymbol{k}), g^{z}(\boldsymbol{k})\right)$

$$
\frac{d \phi_{a}(\boldsymbol{k})}{d t}=\underbrace{\mathcal{L}_{a b}(\boldsymbol{k}) \phi_{b}(\boldsymbol{k})}_{\text {ideal }}+\underbrace{D_{a b} \phi_{b}}_{\text {visc }}+\underbrace{\xi_{a}}_{\text {noise }}+\underbrace{\mathcal{P}_{a b} \phi_{b}}_{\text {perturbation }}
$$

with

$$
\mathcal{P}_{a b}=\left(\begin{array}{cc}
0 & 0 \\
0 & \frac{1}{2} \partial_{t} h_{i j}
\end{array}\right), \quad h_{i j}(t)=\text { metric perturbation }
$$

Case 1: Kinetic equations for perturbed system (HHTLs)

1. Turn on a weak gravitational perturbations, $h_{i j}=h(t) \operatorname{diag}(1,1,-2)$

$$
\partial_{t} N_{++}(k)=-\underbrace{\frac{4}{3} \gamma_{\eta} k^{2}\left[N_{++}-N_{++}^{\mathrm{eq}}\right]}_{\text {damping }}+\underbrace{\partial_{t} h\left(\sin ^{2} \theta_{k}-2 \cos ^{2} \theta_{k}\right)}_{\text {perturbation } h_{i j} \hat{k}^{i} \hat{k}^{j}} N_{++}
$$

2. Solve the equations to first order in the gravitational, $h(t)=h e^{-i \omega t}$

$$
\delta N_{++}=\frac{i \omega h\left(\sin ^{2} \theta_{k}-2 \cos ^{2} \theta_{k}\right)}{-i \omega+\frac{4}{3} \gamma_{\eta} K^{2}} \Longleftarrow \text { solution }
$$

3. Calculate the stress tensor

$$
\delta T^{i j}=(e+p)\left\langle v^{i} v^{j}\right\rangle=\int \frac{d^{3} K}{(2 \pi)^{3}} \frac{\left\langle g^{i}(\boldsymbol{k}) g^{j}(-\boldsymbol{k})\right\rangle}{e+p}
$$

4. Find an HTL like expression

$$
\left\langle\delta T^{x x}+\delta T^{y y}-2 \delta T^{z z}\right\rangle \supset h \int \frac{d^{3} K}{(2 \pi)^{3}} \delta N_{++} \underbrace{\left(\sin ^{2} \theta-2 \cos ^{2} \theta\right)}_{\hat{k}^{x} \hat{k}^{x}+\hat{k}^{y} \hat{k}^{y}-2 \hat{k}^{z} \hat{k}^{z}}
$$

Precisely reproduces Yaffe-Kovtun hard hydro loop calculation

$$
\left\langle T^{x y}(\omega)\right\rangle=[p-\underbrace{i \omega \eta}_{\text {1st order }}+\underbrace{\frac{\left(7+(3 / 2)^{3 / 2}\right)}{240 \pi} T\left(\frac{\omega}{\gamma_{\eta}}\right)^{3 / 2}}_{3 / 2 \text { order }}+\mathcal{O}\left(\omega^{2}\right)] h^{x y}(\omega)
$$

Case 2: Kinetic equations for a Bjorken expansion - Hard Hydro Expanding Loops (HHELs)

- The hydrodynamic field fields $\phi_{a}=\left(c_{s} e, g^{x}, g^{y}, \tau g^{\eta}\right)$ are:

$$
\phi_{a}\left(\tau, \boldsymbol{k}_{\perp}, \kappa\right)=\int d^{2} \boldsymbol{x} \int d \eta e^{i \boldsymbol{k}_{\perp} \cdot \boldsymbol{x}_{\perp}+i \kappa \eta} \phi_{a}\left(\tau, \boldsymbol{x}_{\perp}, \eta\right)
$$

- The equations take the form:

$$
\frac{d}{d \tau} \phi_{a}\left(\boldsymbol{k}_{\perp}, \kappa\right)=\underbrace{\mathcal{L}_{a b}}_{\text {ideal }} \phi_{b}+\underbrace{D_{a b} \phi_{b}}_{\text {viscous }}+\underbrace{\mathcal{P}_{a b} \phi_{b}}_{\text {perturb }}+\underbrace{\xi_{a}}_{\text {noise }}
$$

The previous analysis goes through with a no complications, $\lambda= \pm i c_{s} k, 0$

$$
\mathcal{P}_{a b}=\frac{1}{\tau}\left(\begin{array}{cccc}
1+c_{s}^{2} & & & \\
& 1 & & \\
& & 1 & \\
& & & 2
\end{array}\right)
$$

The kinetic equations and approach to equilibrium:

- The kinetic equations and approach to equilibrium

$$
\begin{gathered}
\frac{\partial}{\partial \tau} N_{++}=-\frac{1}{\tau}[\underbrace{\left.2+c_{s 0}^{2}+\frac{\kappa^{2} / \tau^{2}}{k_{\perp}^{2}+\kappa^{2} / \tau^{2}}\right] N_{++}+-\underbrace{\frac{\frac{4}{3} \eta_{0}}{s_{0} T_{0}}\left(k_{\perp}^{2}+\frac{\kappa^{2}}{\tau^{2}}\right)\left[N_{++}-\frac{s_{0} T_{0}^{2}}{2 c_{s 0}^{2} \tau}\right]}_{\text {damping to equilibrium }}}_{\text {perturbation }=2 \mathcal{P}_{++}} \begin{array}{c}
\frac{\partial}{\partial \tau} N_{T_{2} T_{2}}=-\frac{2}{\tau}[\underbrace{1+\frac{k_{\perp}^{2}}{k_{\perp}^{2}+\kappa^{2} / \tau^{2}}}_{\text {perturbation }=2 \mathcal{P}_{T_{2} T_{2}}}] N_{T_{2} T_{2}}-\underbrace{\frac{2 \eta_{0}}{s_{0} T_{0}}\left(k_{\perp}^{2}+\frac{\kappa^{2}}{\tau^{2}}\right)\left[N_{T_{2} T_{2}}-\frac{s_{0} T_{0}^{2}}{\tau}\right]}_{\text {damping to equilibrium }}
\end{array} .
\end{gathered}
$$

and similar equations for the other modes

- For large k, we solve, and the modes approximately equilibrate:

$$
N_{++} \simeq \frac{s_{0} T_{0}^{2}}{2 c_{s 0}^{2} \tau}[\underbrace{1}_{\text {equilibrium }}+\underbrace{\frac{s_{0} T_{0}}{\frac{4}{3} \eta_{0}\left(k_{\perp}^{2}+\kappa^{2} / \tau^{2}\right)}\left(c_{s 0}^{2}-\frac{\kappa^{2} / \tau^{2}}{k_{\perp}^{2}+\kappa^{2} / \tau^{2}}\right)}_{\text {first viscous correction analogous to } \delta f}+\ldots]
$$

Now we solved these kinetic equations numerically

The non-equilibrium steady state at late times:

Sound Modes

Transverse modes

The evolution of the background

where

$$
T_{\text {hydro }}^{z z}=\underbrace{p_{0}(\Lambda)}_{\text {Ideal }}-\underbrace{\frac{\frac{4}{3} \eta_{0}(\Lambda)}{\tau}}_{\text {first order }}+\underbrace{\left(\lambda_{1}-\eta \tau_{\pi}\right) \frac{8}{9 \tau^{2}}}_{\text {second order }}+\ldots
$$

In addition the fluctuations give another contribution:

$$
T_{\text {flucts }}^{z z}=(e+p)\left\langle v^{z} v^{z}\right\rangle
$$

Evaluating the fluctuation contribution:

$$
\begin{aligned}
\frac{T_{\text {flucts }}^{z z}}{e+p} & =\left\langle v^{z} v^{z}\right\rangle \\
& =\int \frac{d^{2} k_{\perp} d \kappa}{(2 \pi)^{3}} \frac{1}{\left(e_{o}+p_{o}\right)^{2}}\left[N_{++} \cos ^{2} \theta+N_{T_{2} T_{2}} \sin ^{2} \theta\right] \\
& =\underbrace{\frac{T_{o} \Lambda^{3}}{6 \pi^{2}}}_{\text {from equilib }}-\underbrace{\left(\frac{17 \Lambda}{120 \pi^{2}} \frac{s_{o} T_{o}^{2}}{\eta_{o}(\Lambda)}\right) \frac{\frac{4}{3}}{\tau}}_{\text {from first viscous correction }}+\text { finite }
\end{aligned}
$$

Thus the full stress is then:

$$
\begin{aligned}
T^{z z} & =T_{\text {hydro }}^{z z}+T_{\text {flucts }}^{z z} \\
& =\underbrace{\left[p_{0}(\Lambda)+\frac{T_{o} \Lambda^{3}}{6 \pi^{2}}\right]}_{p_{\text {phys }}}-\frac{4}{3 \tau} \underbrace{\left[\eta_{0}(\Lambda)+\left(\frac{17 \Lambda}{120 \pi^{2}} \frac{s_{o} T_{o}^{2}}{\eta_{o}(\Lambda)}\right)\right]}_{\eta_{\text {phys }}}+\text { finite }
\end{aligned}
$$

where the physical quantities, $p_{\text {phys }}$ and $\eta_{\text {phys }}$, are independent of Λ

Final result for a Bjorken expansion:

$$
\frac{\left\langle T^{z z}\right\rangle}{e+p}=[\underbrace{\frac{p}{e+p}}_{\sim 1}-\underbrace{\frac{4}{3} \frac{\gamma_{\eta}}{\tau}}_{\text {1st order }}+\underbrace{\frac{1.08318}{s\left(4 \pi \gamma_{\eta} \tau\right)^{3 / 2}}}_{3 / 2 \text { order }}+\underbrace{\frac{\left(\lambda_{1}-\eta \tau_{\pi}\right)}{e+p} \frac{8}{9 \tau^{2}}}_{\text {2nd order }}]
$$

From which much can be wrought or wrung . . .

Numerical results:
Take representative numbers

$$
\frac{\left(\lambda_{1}-\eta \tau \pi\right)}{e+p} \simeq-0.8\left(\frac{\eta}{e+p}\right)^{2} \quad \frac{T^{3}}{s} \simeq \frac{1}{13.5}
$$

For $\eta / s=1 / 4 \pi$ find:
$\frac{T^{z z}}{e+p}=\frac{1}{4}[1 .-\underbrace{0.092}_{\text {first }}\left(\frac{4.5}{\tau T}\right)+\underbrace{0.034}_{3 / 2 \text { order } \simeq 30 \%}\left(\frac{4.5}{\tau T}\right)^{3 / 2}-\underbrace{0.0009}_{\text {second }}\left(\frac{4.5}{\tau T}\right)^{2}]$
while for $\eta / s=2 / 4 \pi$ we have:

$$
\frac{T^{z z}}{e+p}=\frac{1}{4}[1 .-\underbrace{0.185}_{\text {first }}\left(\frac{4.5}{\tau T}\right)+\underbrace{0.013}_{3 / 2 \text { order } \simeq 10 \%}\left(\frac{4.5}{\tau T}\right)^{3 / 2}-\underbrace{0.0034}_{\text {second }}\left(\frac{4.5}{\tau T}\right)^{2}]
$$

Fluctuation contribution is a correction to first order hydro but larger than second order in practice!

Hydrodynamic fluctuations and the critical point

- Thermodynamic variables and their equilibrium fluctuations

$$
x^{A} \equiv \underbrace{\left(\mathcal{M}, \delta e_{\mathrm{is}}\right)}_{\text {magnetization and energy density }} \mathcal{X}_{\mathrm{is}}^{A B}=\underbrace{\left\langle\delta x^{A} \delta x^{B}\right\rangle}_{\text {fluctuations }}
$$

- Largest and smallest fluctuations, $\operatorname{det} \mathcal{X}_{\text {is }}=\chi C_{M}$

$$
\begin{aligned}
\chi & \equiv \mathcal{X}_{\mathrm{is}}^{11}=\frac{\partial \overline{\mathcal{M}}}{\partial h}=\text { largest fluctuations, } \delta T_{\mathrm{is}}^{-\gamma} \\
C_{M} & \equiv \mathcal{X}_{\mathrm{is}}^{22}-\frac{\left(\mathcal{X}_{\mathrm{is}}^{12}\right)^{2}}{\mathcal{X}_{\mathrm{is}}^{11}}=\text { smallest fluctuations, } \delta T_{\text {is }}^{-\alpha}
\end{aligned}
$$

QCD hydrodynamic fluctuations:

1. Thermodynamic variables and their conjugates

$$
x^{a}=\underbrace{(e(\boldsymbol{k}), n(\boldsymbol{k})), g^{i}(\boldsymbol{k})}_{\text {energy, density, momentum }} \quad \delta X_{a}(\boldsymbol{k})=-\frac{\partial S}{\partial x^{a}}=\underbrace{(-\beta, \hat{\mu}), \beta u^{i}}_{\text {conjugates }}
$$

2. We will study

$$
\mathcal{X}^{a b}(k, t)=\left.\left\langle x^{a}(k) x^{b}(-k)\right\rangle\right|_{\text {equilibrium }}
$$

3. Also study pressure fluctuations:

$$
\delta p=p^{a} \delta X_{a} \quad\left(p^{e}, p^{n}\right)=(T(e+p), T n)
$$

which determine the speed of sound

$$
\left\langle(\delta p)^{2}\right\rangle=T(e+p) c_{s}^{2}=\underbrace{p^{a} \mathcal{X}_{a b}^{-1} p^{b}}_{\text {"nice little formula" }}
$$

From QCD to Ising and back
Assume a linear relation between reduced parameters, e.g. $\left(\frac{\delta T_{\mathrm{is}}}{T_{\mathrm{isc}}}, h\right) \Leftrightarrow\left(\frac{\delta \mu}{\mu_{c}}, \frac{\delta T}{T_{c}}\right)$

Thermodynamic conjugates obey the inverse linear map, $X_{\text {is }}=M^{-1} X_{\mathrm{QCD}}$

We will take the simplest mapping:

Hydrodynamic Fluctuations and Dynamics

Linearized equations of motion for e, n, g

$$
\frac{d x^{a}(\boldsymbol{k})}{d t}=\underbrace{\mathcal{L}^{a b}(\boldsymbol{k}) X_{b}(\boldsymbol{k})}_{\text {ideal }}+\underbrace{\Lambda^{a b} X_{b}}_{\text {viscosity+conductivity }}+\underbrace{\xi_{a}}_{\text {noise }}
$$

1. Two sound modes with eigenvalues $\pm c_{s} k$
2. One diffusive (zero) mode for the entropy per baryon fluctuations

$$
\delta \sigma \equiv \delta e-\frac{e+p}{n} \delta n=\operatorname{Tn} \delta\left(\frac{s}{n}\right)
$$

which satisfies $\langle\delta p \delta \sigma\rangle=0$.
3. Fluctuations of σ obey a relaxation type equation, $N^{\sigma \sigma}=\langle\delta \sigma(\boldsymbol{k}, t) \delta \sigma(-\boldsymbol{k}, t)\rangle$

$$
\frac{d N^{\sigma \sigma}}{d t}=-\quad \underbrace{\frac{2 T(e+p) \lambda k^{2}}{\mathcal{X} \sigma \sigma}} \quad\left[N^{\sigma \sigma}-\mathcal{X}^{\sigma \sigma}\right]
$$

where $\mathcal{X}^{\sigma \sigma}=c_{s}^{2} \operatorname{det} \mathcal{X}^{a b}$ is the static susceptibility for $\delta \sigma$.

1. The speed of sound approaches zero like the smallest ising susceptibility

$$
\begin{aligned}
T(e+p) c_{s}^{2} & =p^{a} \mathcal{X}_{a b}^{-1} p^{b} \\
\text { sound } & =p^{A} \mathcal{X}_{A B}^{-1} p^{B} \simeq \underbrace{\left(\frac{d p}{d \tau}\right)^{2} \frac{1}{C_{M}}}_{\text {the smallest susceptibility }}
\end{aligned}
$$

2. The susceptibility matrix also transforms $\operatorname{det} \mathcal{X}=(\operatorname{det} M)^{2} \operatorname{det} \mathcal{X}_{\text {is }} \propto \chi C_{M}$
3. The fluctuation in σ diverge as the largest susceptibility

$$
\mathcal{X}^{\sigma \sigma}=c_{s}^{2} \operatorname{det} \mathcal{X} \propto
$$

$$
\underbrace{\chi}_{\text {largest ising susceptibility }}
$$

The fluctuations in the entropy per baryon diverge maximally like χ (independently of how the mapping to the ising variables is done!)

Summary of equation for fluctuations in the specific entropy $\sigma \equiv n \delta(s / n)$

$$
\frac{d \bar{N}^{\sigma \sigma}(k, t)}{d t}=-\frac{2 \lambda_{\mathrm{eff}} k^{2}}{\chi(k)}\left[\bar{N}^{\sigma \sigma}-\chi(k)\right]
$$

1. Definitions:

$$
\begin{gathered}
\bar{N}^{\sigma \sigma}=\underbrace{N^{\sigma \sigma}}_{\text {flucts of } \sigma \text { mapping params }} \underbrace{\left(M_{e}^{h}\right)^{2}}_{\text {conductivity }} \\
\lambda_{\text {eff }}=\underbrace{\lambda}_{\text {mapping params }}\left(\frac{e+p}{n T}\right)^{2} \underbrace{(\underbrace{}_{\text {m }}}_{\text {(M, } \left.{ }^{h}\right)^{2}}
\end{gathered}
$$

2. Model susceptibility near critical point as a function of k with correlation length ξ

$$
\left.\bar{N}^{\sigma \sigma}(\boldsymbol{k}, t)\right|_{\text {equil }}=\chi(k)=\underbrace{\frac{\chi_{o}\left(\xi / \ell_{o}\right)^{2-\eta}}{1+(k \xi)^{2-\eta}}}_{\text {susceptibility } \chi(\boldsymbol{k})}
$$

We will solve this equation to monitor the equilibration of various wavenumbers

Transiting the critical point

1. Pass right through the critical point at late time $\tau=\tau_{Q}$, define $t \equiv \tau-\tau_{Q}$:

$$
\begin{aligned}
\partial_{\tau} \bar{n} & =-\frac{n_{c}}{\tau_{Q}} \\
\partial_{\tau} \bar{s} & =-\frac{s_{c}}{\tau_{Q}}
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
\frac{\delta \bar{n}}{n_{c}} & =-\frac{t}{\tau_{Q}} \\
\frac{\delta \bar{s}}{s_{c}} & =-\frac{t}{\tau_{Q}}+\underbrace{\Delta}_{\text {set to zero }}
\end{aligned}
$$

Set $\Delta=0$ to go directly through the critical point.
2. The (ising) reduced $T_{\text {is }}$ and correlation length behaves $a \nu \equiv \nu /(1-\alpha) \simeq 0.71$

$$
\delta T_{\mathrm{is}} \propto\left(\frac{|t|}{\tau_{Q}}\right)^{1-\alpha} \quad \text { and } \quad \xi=\ell_{o}\left(\frac{\tau_{Q}}{|t|}\right)^{a \nu}
$$

1. The fluctuations of $\delta \sigma \equiv n \delta(s / n)$ satisfy:

$$
\begin{aligned}
\partial_{t} \bar{N}^{\sigma \sigma} & =-\frac{2 \lambda_{\mathrm{eff}} k^{2}}{\chi(k)}\left[\bar{N}^{\sigma \sigma}-\chi(k)\right] \\
& =-\frac{2 \lambda_{\mathrm{eff}}}{\chi_{o} \ell_{o}^{2}\left(\xi / \ell_{o}\right)^{4-\eta}}(k \xi)^{2}\left(1+(k \xi)^{2-\eta}\right)\left[\bar{N}^{\sigma \sigma}-\chi(k)\right]
\end{aligned}
$$

2. Then the equilibration time for $k \xi \sim 1$:

$$
\underbrace{\tau_{\mathrm{eq}}(\xi) \equiv \tau_{o}\left(\frac{\xi}{\ell_{o}}\right)^{z}}_{\text {equilibration time }} \text { with } \underbrace{z \equiv 4-\eta}_{\text {dynamic critical exponent }} \quad \text { and } \quad \underbrace{\tau_{o} \equiv \frac{\chi_{o} \ell_{o}^{2}}{\lambda_{\mathrm{eff}}}}_{\text {micro relax-time }}
$$

The equation to be solved is :

$$
\partial_{t} \bar{N}^{\sigma \sigma}(\boldsymbol{k}, t)=-\frac{2(k \xi)^{2}\left(1+(k \xi)^{2-\eta}\right)}{\tau_{\mathrm{eq}}(\xi)}\left[\bar{N}^{\sigma \sigma}(\boldsymbol{k}, t)-\chi(\boldsymbol{k}, t)\right]
$$

$$
\begin{aligned}
\xi(t) & =\ell_{o}\left(\frac{\tau_{Q}}{|t|}\right)^{a \nu} \\
\tau_{\mathrm{eq}}(\xi) & =\tau_{o}\left(\frac{\xi(t)}{\ell_{o}}\right)^{z}
\end{aligned}
$$

1. There is a timescale, $t=t_{\mathrm{kz}}$, where the relaxation rate can't keep up with $\xi(t)$

$$
\underbrace{\frac{1}{\tau_{\mathrm{eq}}\left(\xi\left(t_{\mathrm{kz}}\right)\right)}}_{\text {relaxation rate }}=\underbrace{\frac{\partial_{t} \xi\left(t_{\mathrm{kz}}\right)}{\xi\left(t_{\mathrm{kz}}\right)}=\frac{a \nu}{t_{\mathrm{kz}}}}_{\text {rate-of change of } \xi(t)}
$$

2. Find a Kibble-Zurek time scale, t_{kz}, and length, $\ell_{\mathrm{kz}}=\xi\left(t_{\mathrm{kz}}\right)$

$$
\begin{aligned}
& t_{\mathrm{kz}} \equiv \tau_{o}\left(\frac{\tau_{Q}}{\tau_{o}}\right)^{a \nu z /(a \nu z+1)} \simeq \tau_{o}\left(\frac{\tau_{Q}}{\tau_{o}}\right)^{0.74} \gg \tau_{o} \\
& \ell_{\mathrm{kz}}=\ell_{o}\left(\frac{\tau_{Q}}{\tau_{o}}\right)^{a \nu /(a \nu z+1)} \simeq \ell_{o}\left(\frac{\tau_{Q}}{\tau_{o}}\right)^{0.19} \gg \ell_{o}
\end{aligned}
$$

Kibble-Zurek rescaled equation:

1. Measure all lengths, wavenumbers, and times in terms of ℓ_{kz} and t_{kz}

$$
\bar{t}=\frac{t}{t_{\mathrm{kz}}} \quad \text { and } \quad \bar{k}=k \ell_{\mathrm{kz}} \quad \text { and } \quad \bar{\xi}=\frac{\xi}{\ell_{\mathrm{kz}}}
$$

2. Also rescale the correlator, $\bar{N}^{\sigma \sigma} \rightarrow \bar{N}^{\sigma \sigma} / \chi_{o} \ell_{\mathrm{kz}}^{2-\eta}$, motivated by equilibrium:

Above Critical Point

Below Critical Point

Summary of Scales

1. The small parameter is the ratio of microscopic length to system size:

$$
\epsilon=\frac{\tau_{o}}{\tau_{Q}}=\frac{\text { micro scale }}{\text { macro scale }} \simeq \frac{1}{7}
$$

2. Hierarchy of scales:

$$
\underbrace{k_{\text {hydro }}}_{\sim v_{2}} \ll \underbrace{k_{*}}_{\text {hyd-kinetics }} \ll \underbrace{k_{\mathrm{kz}}}_{\text {longest critical fluct }} \ll \underbrace{\frac{1}{\ell_{o}}}_{\text {microlength }}
$$

which are of relative order

$$
\epsilon \ll \sqrt{\epsilon} \ll \epsilon^{0.18} \ll 1 \quad \text { or } \quad 0.14 \ll 0.38 \ll 0.70 \ll 1
$$

3. The duration of the KZ regime is short compared to τ_{Q} (parametrically only)

$$
\tau_{o} \ll t_{\mathrm{kz}} \ll \tau_{Q} \quad \text { or } \quad \epsilon \ll \underbrace{\epsilon^{0.26}}_{\sim 0.6} \ll 1
$$

May not have a clear separation of scales in practice

Normally equilibrated except at CP responsible for critical IR behavior

Modified non-flow

$$
k \sim \frac{1}{\ell_{0}}
$$

Particles
Resonance decay to non-flow

Real correlation functions at high energies

$$
C\left(\eta_{1}, \eta_{2}\right)=\frac{\left\langle\frac{d N}{d \eta_{1}} \frac{d N}{d \eta_{2}}\right\rangle}{\left\langle\frac{d N}{d \eta_{1}}\right\rangle\left\langle\frac{d N}{d \eta_{2}}\right\rangle}
$$

Correlation function

Long range rapidity flucts

Find the CP in here at lower energy

Transiting close to the critical point

1. Pass close to the critical point at late time $\tau=\tau_{Q}$, define $t \equiv \tau-\tau_{Q}$:

$$
\begin{aligned}
\partial_{\tau} \bar{n} & =-\frac{n_{c}}{\tau_{Q}} \\
\partial_{\tau} \bar{s} & =-\frac{s_{c}}{\tau_{Q}}
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& \frac{\delta \bar{n}}{n_{c}}
\end{aligned}=-\frac{t}{\tau_{Q}} .
$$

2. The "detuning" Δ acts like a magnetic field regulating critical dynamics

$$
\Delta=\underbrace{\frac{n_{c}}{s_{c}} \delta(\bar{s} / \bar{n})}_{\text {a small detuning }}
$$

The detuning limits the rate of change of critical fluctuations

Time-scale for the maximal equilibrium fluctuations:

1. The correlation length is a function of the scaling variable, $\xi=\bar{h}^{-\nu / \beta \delta} f(z)$

$$
\underbrace{z}_{\text {scaling-var }}=\underbrace{\bar{\tau}}_{\text {reduced } T_{\text {is }}} \times \underbrace{\bar{h}^{-1 / \beta \delta}}_{(\text {reduced field })^{-1 / \beta \delta}}
$$

2. The correlation length is maximal for $z \sim 1$. With

$$
\frac{\delta n}{n_{c}} \sim-\frac{t_{\text {cross }}}{\tau_{Q}} \quad \text { and } \quad \frac{\delta s}{s_{c}} \sim \Delta-\frac{t_{\text {cross }}}{\tau_{Q}}
$$

we find the timescale for the maximal correlation length

For $t \sim t_{\text {cross }}$ the correlation length is regulated by the detuning Δ

The correlation length:

$$
t_{\mathrm{cross}} \propto \tau_{Q} \Delta^{(1-\alpha) / \beta}
$$

If the system is sufficiently detuned (i.e. $t_{\text {cross }} \gg t_{k z}$) we remain in equilibrium

Comparing the Kibble-Zurek and crossing time-scales

1. We will remain in equilibrium for

$$
t_{\text {cross }} \gg t_{\mathrm{kz}}
$$

2. Find that

$$
\Delta \gg\left(\frac{\tau_{o}}{\tau_{Q}}\right)^{\beta /(\nu z+1-\alpha)}
$$

or

$$
\Delta \gg \underbrace{\left(\frac{\tau_{o}}{\tau_{Q}}\right)^{0.096}}_{\text {A very small power }}
$$

The Kibble-Zurek mechanism is probably the dominant regulator of critical dynamics since the power 0.096 is small.

Summary

1. For wavenumbers of order

$$
k \sim k_{*} \equiv \sqrt{\frac{e+p}{\eta \tau}}
$$

the system transitions to equilibrium away from the critical point
2. Worked out an alternate description of hydro with noise:

- Hydro + hydro-kinetics

$$
\begin{aligned}
\partial_{\mu}\left(T_{\text {hydro }}^{\mu \nu}+T_{\text {flucts }}^{\mu \nu}\right) & =0 \\
\partial_{\tau} N_{\text {flucts }}(\boldsymbol{k}, \tau) & =\ldots
\end{aligned}
$$

This should be generalized to a general flows.
3. Fluctuating hydro is much more important than second order hydro in practice!
4. Clarified where critical fluctuations are relevant

$$
\underbrace{k_{\text {hydro }}}_{\sim v_{2}} \ll \underbrace{k_{*}}_{\text {hyd-kinetics }} \ll \underbrace{k_{\mathrm{kz}}}_{\text {longest critical fluct }} \ll \underbrace{\frac{1}{\ell_{0}}}_{\text {microlength }}
$$

Normally equilibrated except at CP responsible for critical IR behavior

Modified non-flow

$$
k \sim \frac{1}{\ell_{0}}
$$

Particles
Resonance decay to non-flow

