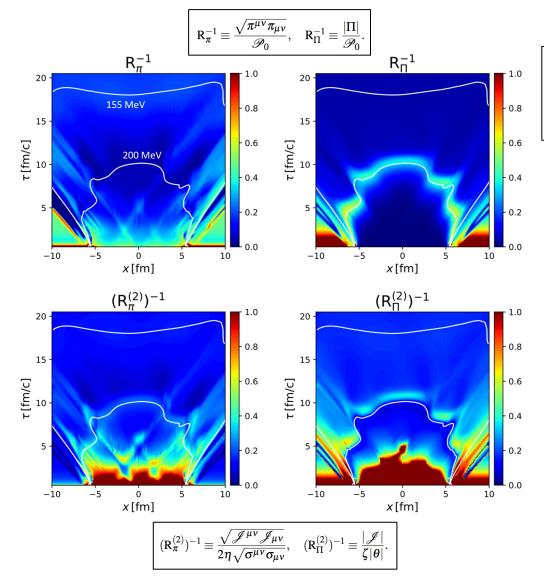
Quasiparticle anisotropic hydrodynamics

Michael Strickland Kent State University

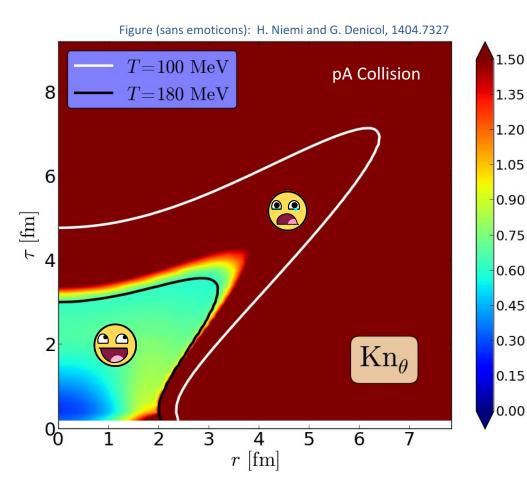
Primary References: M. Alqahtani, M. Nopoush, R. Ryblewski, and MS 1703.05808 (to appear in PRL) and 1705.10191

Canterbury Tales of Hot QFTs in the LHC Era St John's College, Oxford July 11, 2017



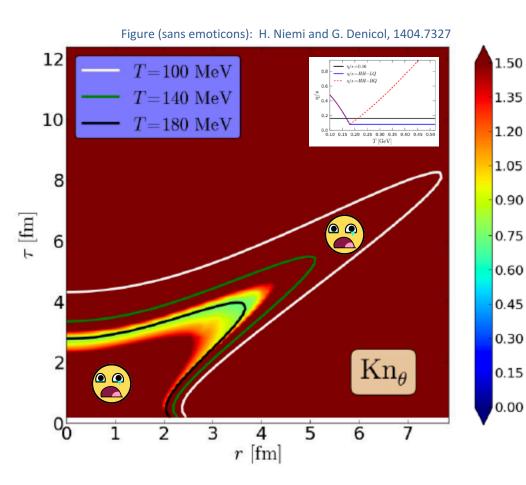
Motivation

- Viscous hydrodynamics is phenomenologically quite successful, however, the extreme environment generated in HICs presents a bit of a challenge to the standard formalism
- The QGP is born into a state of rapid longitudinal expansion which drives the system out of equilibrium
- There are many groups now focused on improving viscous hydrodynamics itself in order to better describe systems that are out of equilibrium, e.g. anisotropic hydrodynamics (aHydro)
- The goal of the aHydro program is to provide an optimized hydrodynamics(-like) framework that is more accurate out of equilibrium


Pb-Pb @ 2.76 TeV - Don't worry, be happy?

 $egin{aligned} & au_{\Pi}\dot{\Pi}+\Pi=-\zeta\, heta+\mathscr{J}+\mathscr{K}+\mathscr{R}\ , \ & au_{n}\dot{n}^{\langle\mu
angle}+n^{\mu}=\kappa I^{\mu}+\mathscr{J}^{\mu}+\mathscr{K}^{\mu}+\mathscr{R}^{\mu}\ , \ & au_{\pi}\dot{\pi}^{\langle\mu
u
angle}+\pi^{\mu
u}=2\eta\,\sigma^{\mu
u}+\mathscr{J}^{\mu
u}+\mathscr{K}^{\mu
u}+\mathscr{R}^{\mu
u}\ . \end{aligned}$

- $\mathcal{J}, \mathcal{J}^{\mu}, \text{ and } \mathcal{J}^{\mu\nu} \text{ are O(Kn R}^{-1})$
- $\mathcal{K}, \mathcal{K}^{\mu}$, and $\mathcal{K}^{\mu\nu}$ are O(Kn²)
- $\mathcal{R}, \mathcal{R}^{\mu}$, and $\mathcal{R}^{\mu\nu}$ are O(R⁻²)
- DNMR derivation assumes that Kn ~ R⁻¹
- For this to be a reasonable approx, the 2nd-order terms should be smaller than the O(Kn) Navier-Stokes terms
- Secret: In order for code to run stably, it is necessary to "dynamically regulate" the viscous corrections

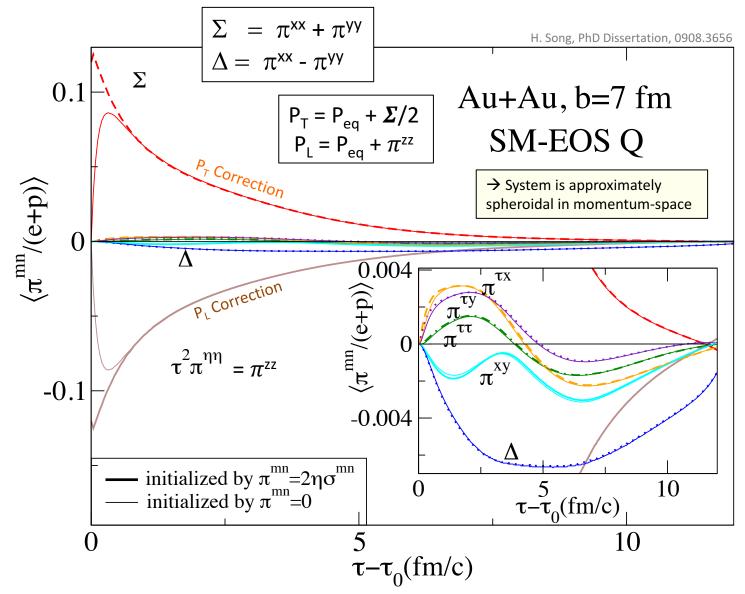

p-A @ 2.76 TeV - Don't be happy, worry!

	$ au_{\Pi}\dot{\Pi}\!+\!\Pi=\!-\zeta heta\!+\!\mathscr{J}\!+\!\mathscr{K}\!+\!\mathscr{R},$
0	$ au_n \dot{n}^{\langle \mu angle} + n^\mu = \kappa I^\mu + \mathscr{J}^\mu + \mathscr{K}^\mu + \mathscr{R}^\mu \; ,$
5	$ au_{\pi}\dot{\pi}^{\langle\mu u angle}+\pi^{\mu u}=2\eta\sigma^{\mu u}+\mathscr{J}^{\mu u}+\mathscr{K}^{\mu u}+\mathscr{R}^{\mu u}.$
0	• $\mathcal{J}, \mathcal{J}^{\mu}, \text{ and } \mathcal{J}^{\mu\nu}$ are O(Kn R ⁻¹)
5	• $\mathcal{K}, \mathcal{K}^{\mu}, \text{ and } \mathcal{K}^{\mu\nu}$ are O(Kn ²)
0	• $\mathcal{R}, \mathcal{R}^{\mu}$, and $\mathcal{R}^{\mu\nu}$ are O(R ⁻²)
5	

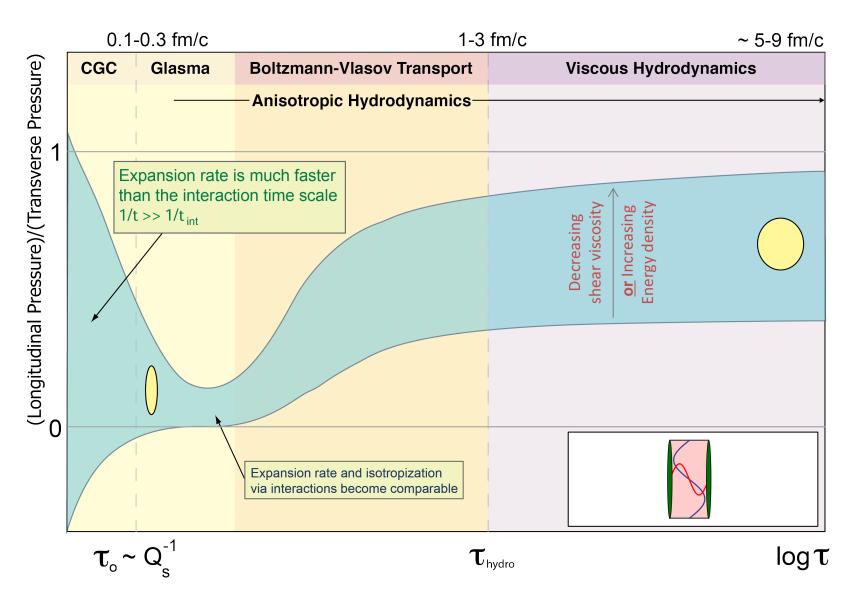
- DNMR derivation assumes that $Kn \sim R^{-1}$
- For this to be a reasonable approx, the 2nd order terms should be smaller than the O(Kn) Navier-Stokes terms
 - In order for code to run stably, it is necessary to "dynamically regulate" the viscous corrections

p-A @ 2.76 TeV - Don't be happy, worry!

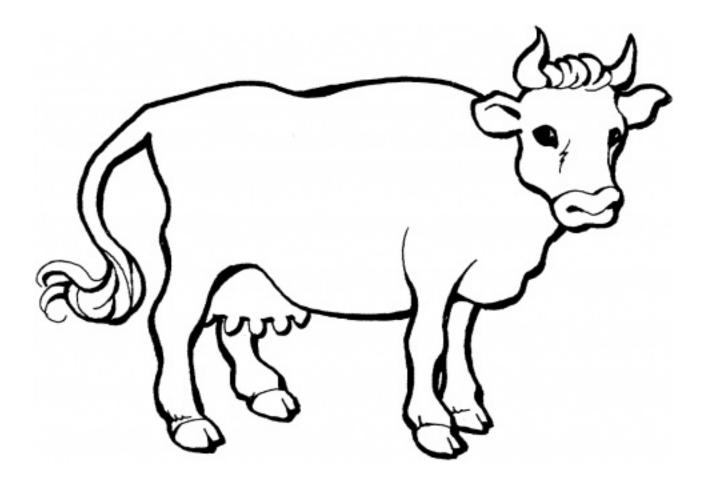
	$ au_{\Pi}\dot{\Pi}\!+\!\Pi=\!-\zeta heta\!+\!\mathscr{J}\!+\!\mathscr{K}\!+\!\mathscr{R},$
0	$ au_n \dot{n}^{\langle \mu angle} + n^\mu = \kappa I^\mu + \mathscr{J}^\mu + \mathscr{K}^\mu + \mathscr{R}^\mu \; ,$
5	$ au_{\pi}\dot{\pi}^{\langle\mu u angle}+\pi^{\mu u}=2\eta\sigma^{\mu u}+\mathscr{J}^{\mu u}+\mathscr{K}^{\mu u}+\mathscr{R}^{\mu u}.$
0	

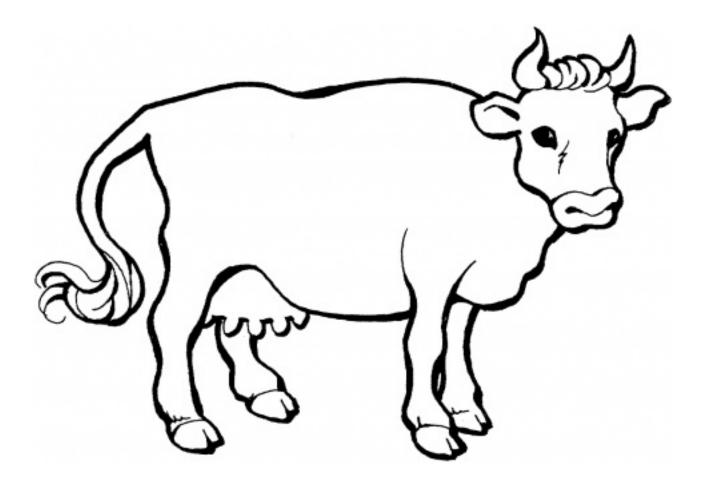

• $\mathcal{J}, \mathcal{J}^{\mu}, \text{ and } \mathcal{J}^{\mu\nu}$ are O(Kn R⁻¹)

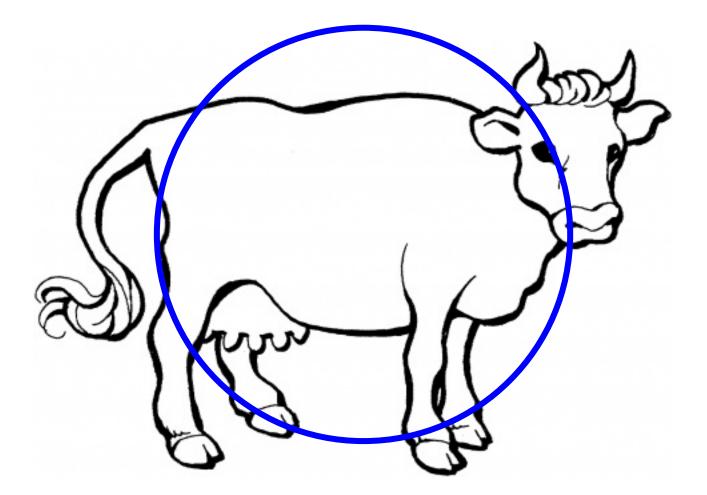
•
$$\mathcal{K}, \mathcal{K}^{\mu}, \text{ and } \mathcal{K}^{\mu\nu}$$
 are O(Kn²)

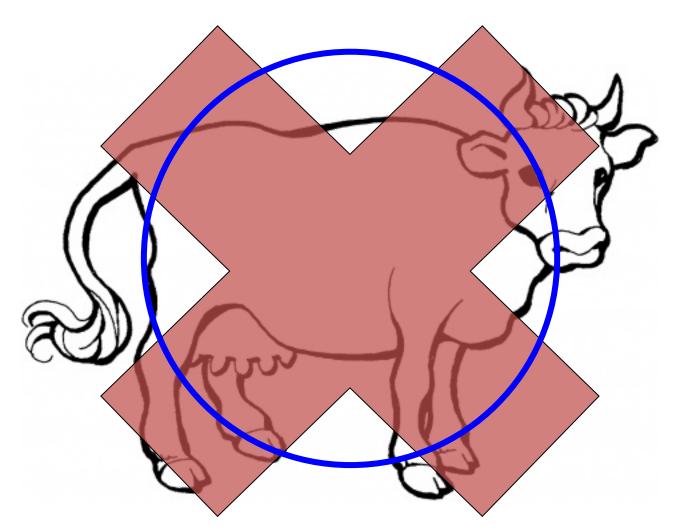

•
$$\mathcal{R}, \mathcal{R}^{\mu}$$
, and $\mathcal{R}^{\mu\nu}$ are O(R⁻²)

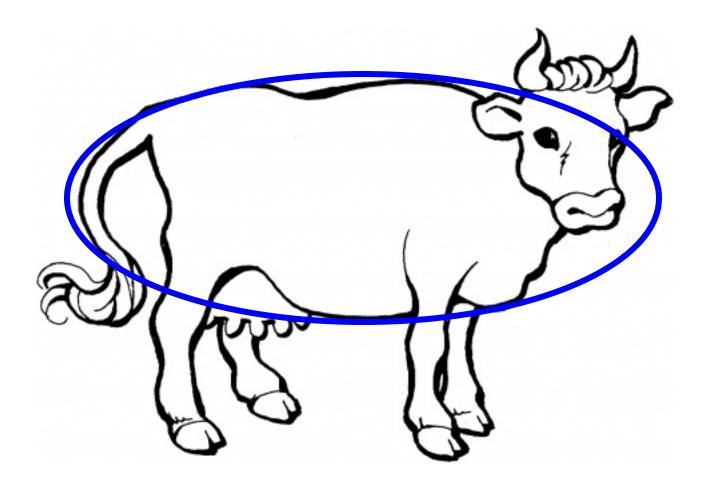
- DNMR derivation assumes that $Kn \sim R^{-1}$
- For this to be a reasonable approx, the 2nd order terms should be smaller than the O(Kn) Navier-Stokes terms
 - In order for code to run stably, it is necessary to "dynamically regulate" the viscous corrections

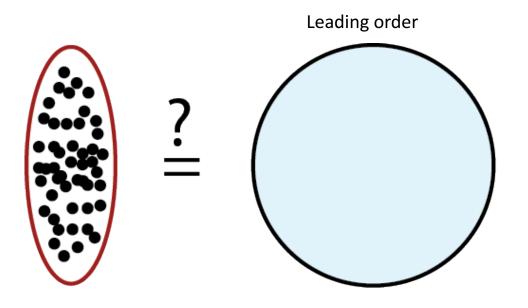

What are the largest viscous corrections?


QGP momentum anisotropy cartoon

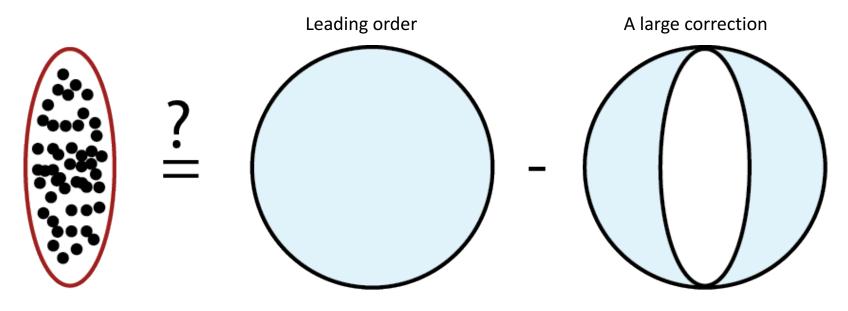

Physics 101


Cows are spheres?

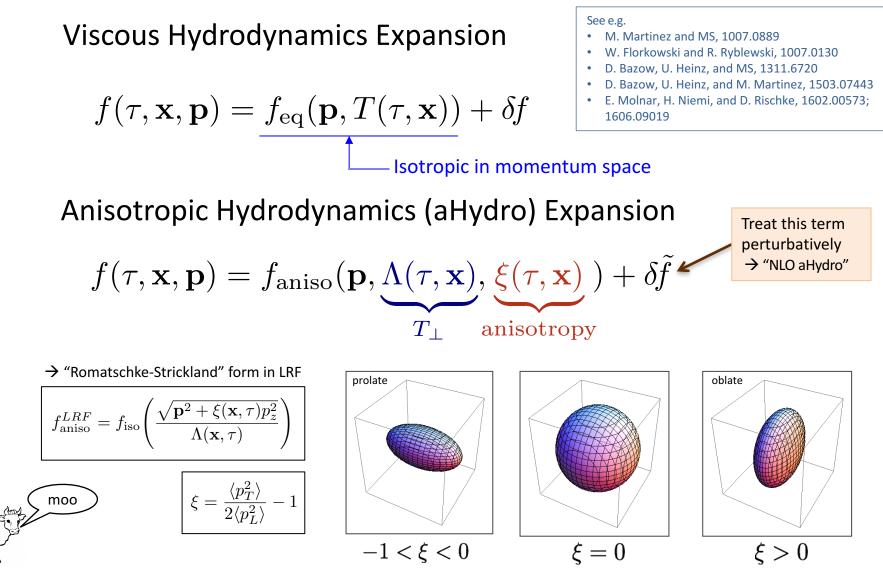

Cows are spheres?


Cows are <u>not</u> spheres

Cows are more like ellipsoids!



Non-spherical cows


Viscous hydro says that we should approximate our particle momentum-space distribution to first order by a sphere in momentum space. However, if the system is highly anisotropic in momentum space, this will result in large corrections...

Non-spherical cows

Viscous hydro says that we should approximate our particle momentum-space distribution to first order by a sphere in momentum space. However, if the system is highly anisotropic in momentum space, this will result in large corrections...

Spheroidal expansion method

Why spheroidal form at LO?

• What is special about this form at leading order?

$$f_{\text{aniso}}^{LRF} = f_{\text{iso}} \left(\frac{\sqrt{\mathbf{p}^2 + \xi(\mathbf{x}, \tau) p_z^2}}{\Lambda(\mathbf{x}, \tau)} \right)$$

- Gives the ideal hydro limit when $\xi=0$ ($\Lambda \rightarrow T$)
- For longitudinal (0+1d) free streaming, the LRF distribution function is of spheroidal form; limit emerges automatically in conformal 0+1d aHydro

$$\xi_{\rm FS}(\tau) = (1 + \xi_0) \left(\frac{\tau}{\tau_0}\right)^2 - 1$$

- Since f_{iso} ≥ 0, the one-particle distribution function and pressures are ≥ 0 (not guaranteed in standard 2nd-order viscous hydro)
- Reduces to 2nd-order viscous hydrodynamics in limit of small anisotropies M. Martinez and MS, 1007.0889

$$\frac{\Pi}{\mathcal{E}_{eq}} = \frac{8}{45}\xi + \mathcal{O}(\xi^2) \qquad \begin{bmatrix} \text{For} \\ \text{ord} \\ \text{forr} \end{bmatrix}$$

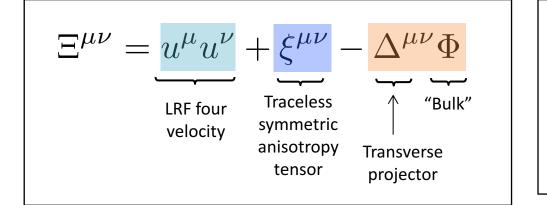
For general (3+1d) proof of equivalence to secondorder viscous hydrodynamics using generalized RS form in the near-equilibrium limit see Tinti 1411.7268.

The growing anisotropic hydrodynamics family

- There are two approaches being actively followed in the literature to address this problem
 - A. <u>Linearize around a spheroidal distribution function</u> and treat the perturbations using standard kinetic vHydro methods ["vaHydro"]
 Barow Heinz Martinez Molnar Niemi Rischke MS

Bazow, Heinz, Martinez, Molnar, Niemi, Rischke, MS

B. <u>Introduce a generalized anisotropy tensor</u> which replaces the entire viscous stress tensor at LO and then linearize around that instead


Tinti, Ryblewski, Martinez, Nopoush, Alqahtani, Bluhm, Florkowski, Schaefer, MS

- Each of these methods has its own advantages.
- In what I will show today, I will use the <u>generalized</u> <u>method</u> (B) at leading order.

Generalized aHydro formalism

In generalized aHydro, one assumes that the distribution function is of the form

$$f(x,p) = f_{eq}\left(\frac{\sqrt{p^{\mu}\Xi_{\mu\nu}(x)p^{\nu}}}{\lambda(x)}, \frac{\mu(x)}{\lambda(x)}\right) + \delta \tilde{f}(x,p)$$

 $u^{\mu}u_{\mu} = 1$ $\xi^{\mu}{}_{\mu} = 0$ $\Delta^{\mu}{}_{\mu} = 3$ $u_{\mu}\xi^{\mu\nu} = u_{\mu}\Delta^{\mu\nu} = 0$

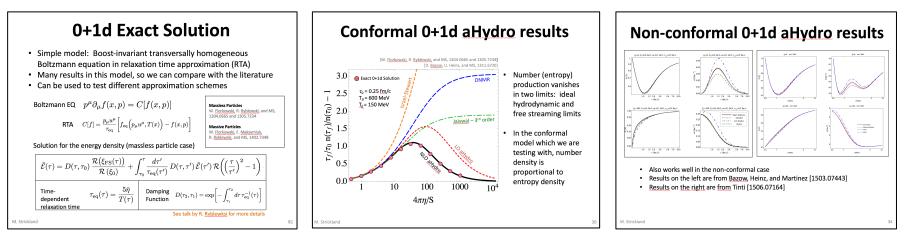
- $\bullet \quad \ \ 3 \ degrees \ of \ freedom \ in \ u^{\mu}$
- 5 degrees of freedom in $\xi^{\mu\nu}$
- 1 degree of freedom in Φ
- 1 degree of freedom in λ
- 1 degree of freedom in μ \rightarrow 11 DOFs

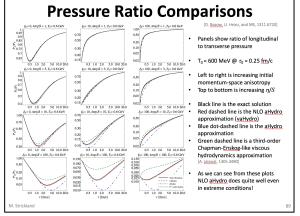
See e.g.

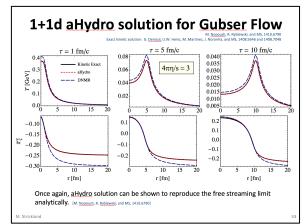
- M. Martinez, R. Ryblewski, and MS, 1204.1473
- L. Tinti and W. Florkowski, 1312.6614
- M. Nopoush, R. Ryblewski, and MS, 1405.1355

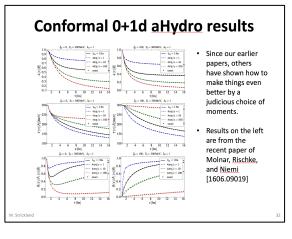
Equations of Motion

 Herein the EOM are obtained from moments of the Boltzmann equation in the relaxation time approximation (RTA) including temperature -dependent quasiparticle mass

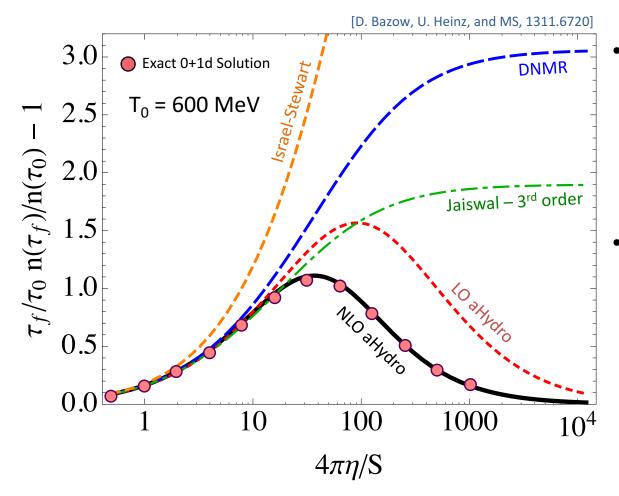

$$p^{\mu}\partial_{\mu}f + \frac{1}{2}\partial_{i}m^{2}\partial^{i}_{(p)}f = -\mathcal{C}[f] \qquad \mathcal{C}[f] = \frac{p^{\mu}u_{\mu}}{\tau_{\text{eq}}}(f - f_{\text{eq}})$$

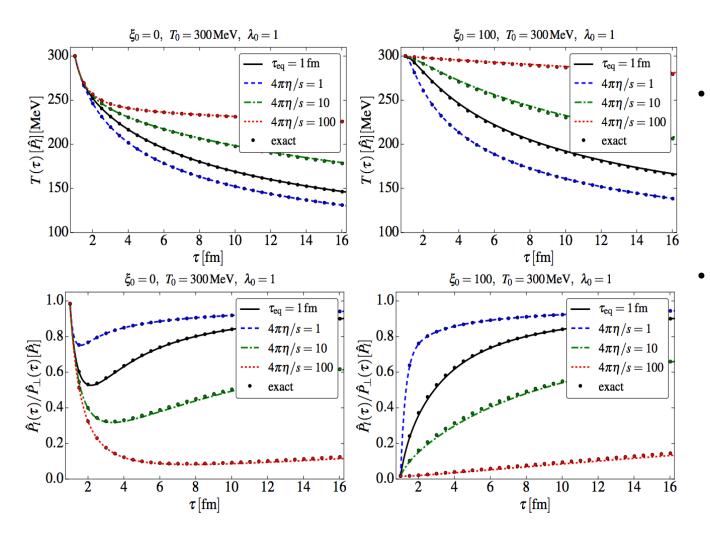

- It is relatively straightforward to use other collisional kernels (forthcoming)
- 1 equation from the 0th moment [number (non-conservation)]
- 4 equations from the 1st moment [energy-momentum conservation]
- 6 equations from the 2nd moment [dissipative dynamics]
- We must also specify the relation between the equilibrium (isotropic) pressure and energy density (EoS). <u>More on this later.</u>


$$\begin{aligned} D_u n + n\theta_u &= \frac{1}{\tau_{\rm eq}} (n_{\rm eq} - n) \\ \partial_\mu T^{\mu\nu} &= 0 \\ \partial_\mu \mathcal{I}^{\mu\nu\lambda} &= \frac{1}{\tau_{\rm eq}} (u_\mu \mathcal{I}_{\rm eq}^{\mu\nu\lambda} - u_\mu \mathcal{I}^{\mu\nu\lambda}) \qquad \qquad \mathcal{I}^{\mu\nu\lambda} \equiv \int dP \, p^\mu p^\nu p^\lambda f(x, p) \,. \end{aligned}$$


Is it really better?

aHydro reproduces exact solutions to the Boltzmann equation in a variety of expanding backgrounds better than standard viscous hydrodynamics.





Ex. 1: Dissipative particle production

- Number (entropy)
 production vanishes
 in two limits: ideal
 hydrodynamic and
 free streaming limits
- In the conformal model which we are testing with, number density is proportional to entropy density

Ex. 2: Conformal 0+1d aHydro results

- aHydro results (lines) on the left are from the recent paper of Molnar, Rischke, and Niemi [1606.09019]
- Exact solution is shown by dots [W. Florkowski, R. Ryblewski, and MS, 1304.0665 and 1305.7234]

Ex 3: Gubser Flow

Gubser flow is a <u>cylindrically-symmetric and boost-invariant flow</u> that possesses a high degree of symmetry when mapped to Weyl-rescaled deSitter space

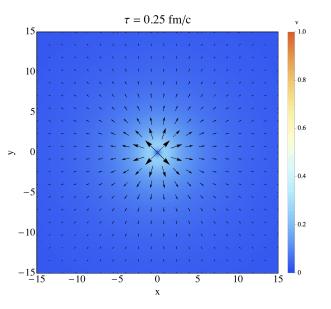
 $SO(3)_q \times SO(1,1) \times Z_2$ reflection rotational symmetry boost around beam axis + symmetry around invariance the collision plane conformal symmetry

The parameter q above is an arbitrary energy scale that sets the radial extent of the system at a given proper time.

Polar Milne components

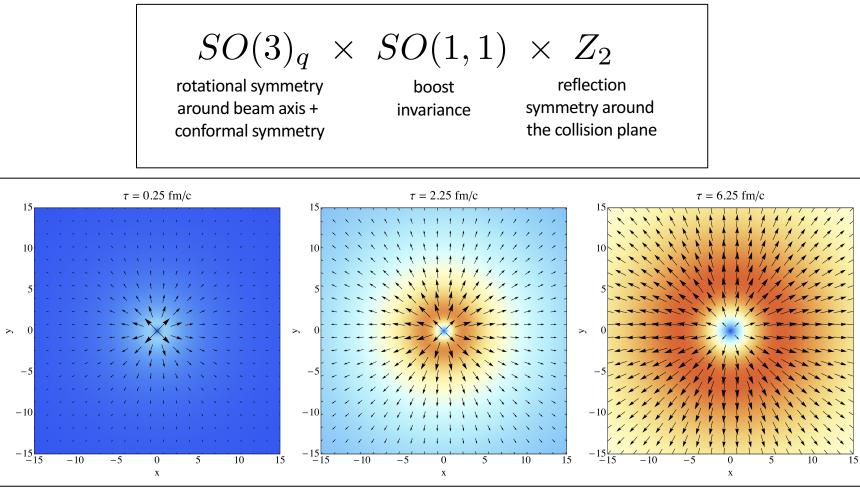
 $\tilde{u}^{\tau} = \cosh(\theta_{\perp})$

 $\tilde{u}^r = \sinh(\theta_{\perp})$


 $\tilde{u}^{\phi} = 0$

 $\tilde{u}^{\varsigma} = 0$

Transverse rapidity

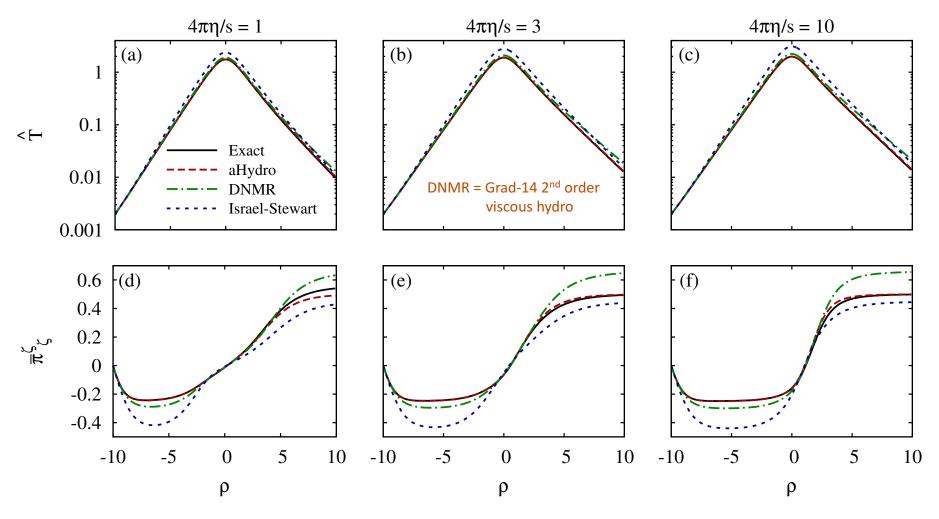

$$\theta_{\perp} = \tanh^{-1} \left(\frac{2q^2\tau r}{1+q^2\tau^2+q^2r^2} \right)$$

This flow is quite strong: The de Sitter space velocity gradients grow exponentially e^{|ρ|}

Ex 3: Gubser Flow

Gubser flow is a <u>cylindrically-symmetric and boost-invariant flow</u> that possesses a high degree of symmetry when mapped to Weyl-rescaled deSitter space

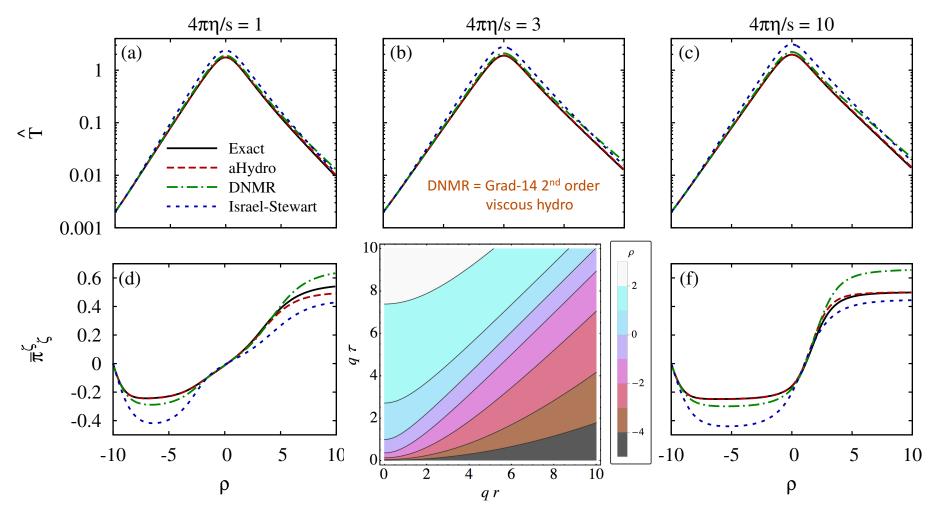
0.8


0.6

0.4

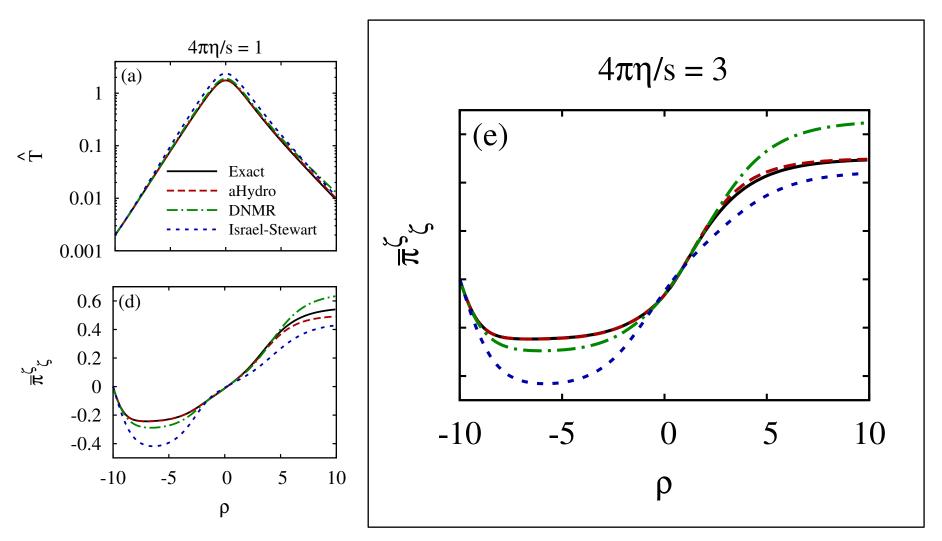
0.2

Ex 3: LO aHydro for Gubser flow


M. Nopoush, R. Ryblewski, and MS, 1410.6790 Exact Solution: G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048

Isotropic initial conditions

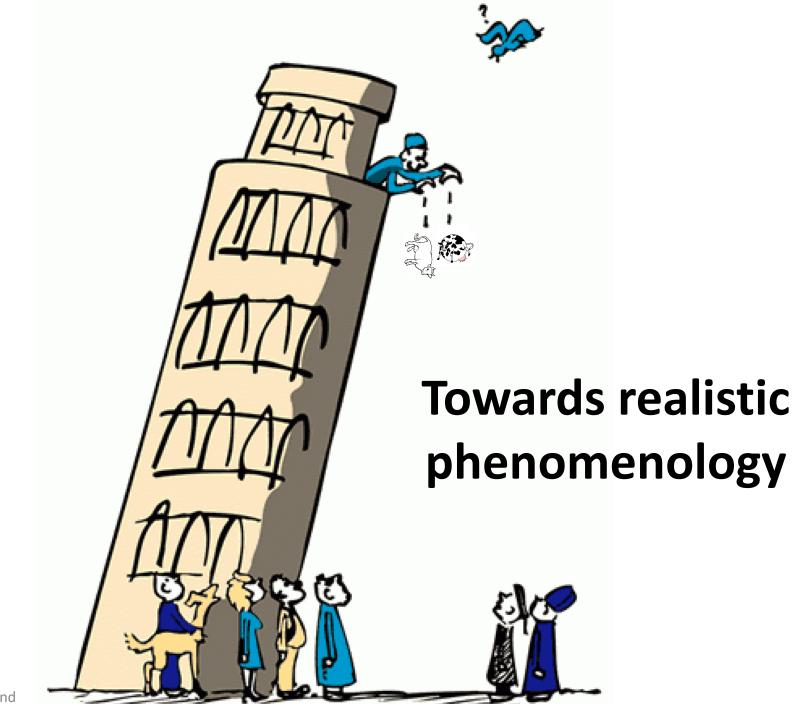
Ex 3: LO aHydro for Gubser flow


M. Nopoush, R. Ryblewski, and MS, 1410.6790 Exact Solution: G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646 and 1408.7048

Isotropic initial conditions

Ex 3: LO aHydro for Gubser flow

M. Nopoush, R. Ryblewski, and MS, 1410.6790 Exact Solution: G. Denicol, U.Heinz, M. Martinez, J. Noronha, and MS, 1408.5646; 1408.7048



At NLO even better agreement with exact solution; see M. Martinez, M. McNelis, and U. Heinz, 1703.10955 M. Strickland

Ex 3: aHydro for Gubser flow

M. Nopoush, R. Ryblewski, and MS, 1410.6790 Exact Solution: G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646; 1408.7048

M. Strickland

3+1d aHydro Equations of Motion

- Assuming an ellipsoidal form for the anisotropy tensor (ignoring offdiagonal components for now), one has seven degrees of freedom ξ_x, ξ_y, ξ_z, u_x, u_y, u_z, and λ which are all fields of space and time.
- Ignore $\delta \tilde{f}$ for now

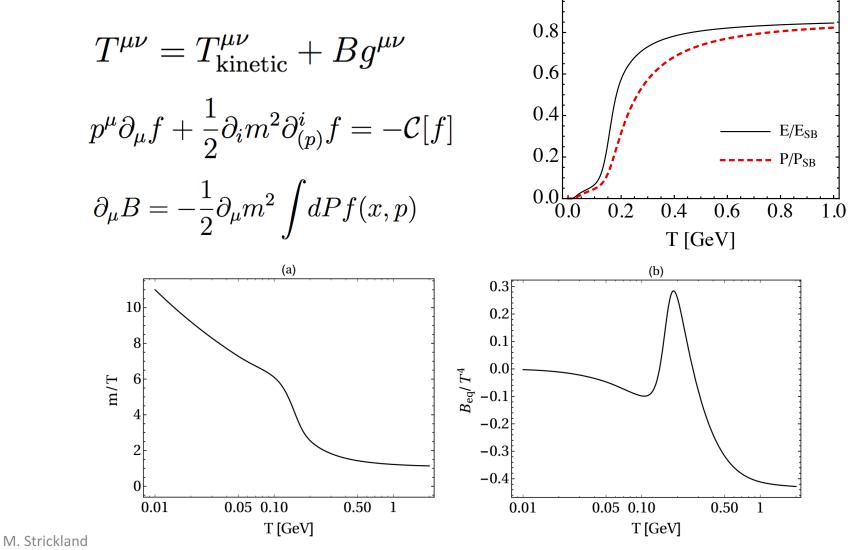
$$D_{u}\mathcal{E} + \mathcal{E}\theta_{u} + \mathcal{P}_{x}u_{\mu}D_{x}X^{\mu} + \mathcal{P}_{y}u_{\mu}D_{y}Y^{\mu} + \mathcal{P}_{z}u_{\mu}D_{z}Z^{\mu} = 0,$$

$$D_{x}\mathcal{P}_{x} + \mathcal{P}_{x}\theta_{x} - \mathcal{E}X_{\mu}D_{u}u^{\mu} - \mathcal{P}_{y}X_{\mu}D_{y}Y^{\mu} - \mathcal{P}_{z}X_{\mu}D_{z}Z^{\mu} = 0,$$

$$D_{y}\mathcal{P}_{y} + \mathcal{P}_{y}\theta_{y} - \mathcal{E}Y_{\mu}D_{u}u^{\mu} - \mathcal{P}_{x}Y_{\mu}D_{x}X^{\mu} - \mathcal{P}_{z}Y_{\mu}D_{z}Z^{\mu} = 0,$$

$$D_{z}\mathcal{P}_{z} + \mathcal{P}_{z}\theta_{z} - \mathcal{E}Z_{\mu}D_{u}u^{\mu} - \mathcal{P}_{x}Z_{\mu}D_{x}X^{\mu} - \mathcal{P}_{y}Z_{\mu}D_{y}Y^{\mu} = 0.$$

First Moment


$$\begin{aligned} \mathcal{I}^{\mu\nu\lambda} &\equiv \int dP \, p^{\mu} p^{\nu} p^{\lambda} f(x,p) \, . \\ \mathcal{I}_{i} &= \alpha \, \alpha_{i}^{2} \, \mathcal{I}_{eq}(\lambda,m) \, , \\ \mathcal{I}_{eq}(\lambda,m) &= 4\pi \tilde{N} \lambda^{5} \hat{m}^{3} K_{3}(\hat{m}) \, , \end{aligned} \qquad \begin{aligned} D_{u} \mathcal{I}_{x} + \mathcal{I}_{x}(\theta_{u} + 2u_{\mu} D_{x} X^{\mu}) &= \frac{1}{\tau_{eq}} (\mathcal{I}_{eq} - \mathcal{I}_{x}) \, , \\ D_{u} \mathcal{I}_{y} + \mathcal{I}_{y}(\theta_{u} + 2u_{\mu} D_{y} Y^{\mu}) &= \frac{1}{\tau_{eq}} (\mathcal{I}_{eq} - \mathcal{I}_{y}) \, , \end{aligned} \qquad \begin{aligned} \mathsf{Second Moment} \\ D_{u} \mathcal{I}_{z} + \mathcal{I}_{z}(\theta_{u} + 2u_{\mu} D_{z} Z^{\mu}) &= \frac{1}{\tau_{eq}} (\mathcal{I}_{eq} - \mathcal{I}_{z}) \, . \end{aligned} \end{aligned}$$

M. Alqahtani, M. Nopoush, and MS, 1509.02913; 1605.02101 M. Alqahtani, M. Nopoush, R. Ryblewski, and MS, 1703.05808; 1705.10191

1.0

M. Alqahtani, M. Nopoush, and MS, 1509.02913; 1605.02101 M. Alqahtani, M. Nopoush, R. Ryblewski, and MS, 1703.05808; 1705.10191

Quasiparticle Method

M. Alqahtani, M. Nopoush, and MS, 1509.02913; 1605.02101 M. Alqahtani, M. Nopoush, R. Ryblewski, and MS, 1703.05808; 1705.10191

Quasiparticle Method

$$T^{\mu\nu} = T^{\mu\nu}_{\text{kinetic}} + Bg^{\mu\nu}$$
$$p^{\mu}\partial_{\mu}f + \frac{1}{2}\partial_{i}m^{2}\partial^{i}_{(p)}f = -\mathcal{C}[f]$$
$$\partial_{\mu}B = -\frac{1}{2}\partial_{\mu}m^{2}\int dPf(x,p)$$

Shear viscosity

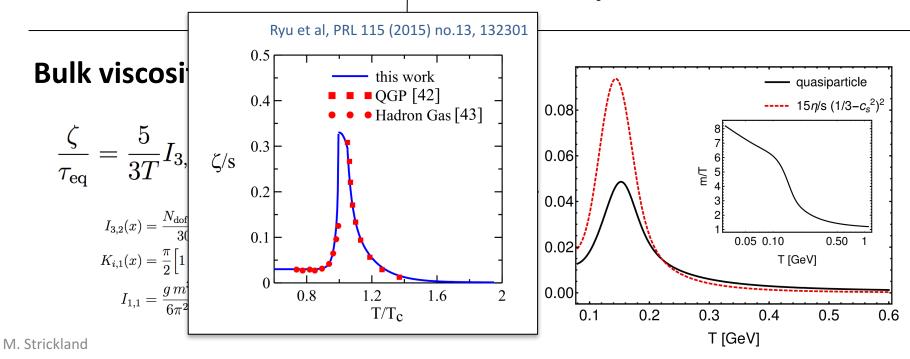
Fix relaxation time as a function of the energy density by requiring fixed shear viscosity to entry density ratio.

$$\frac{\eta}{\tau_{\rm eq}} = \frac{1}{T} I_{3,2}(\hat{m}_{\rm eq})$$

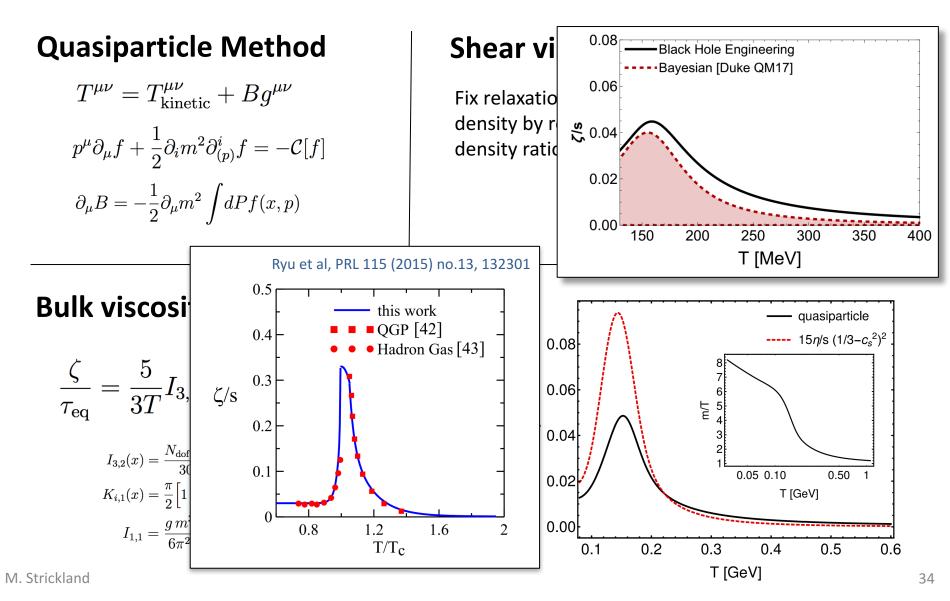
Bulk viscosity quasiparticle ----- 15*ŋ*/s (1/3–*c*_s²)² 0.08 $\frac{\zeta}{\tau_{\text{eq}}} = \frac{5}{3T}I_{3,2} - c_s^2(\mathcal{E} + \mathcal{P}) + T\hat{m}^3 \frac{dm}{dT}I_{1,1}$ 0.06 Ĕ ζ/S 0.04 $I_{3,2}(x) = \frac{N_{\text{dof}}T^5 x^5}{30\pi^2} \left[\frac{1}{16} \Big(K_5(x) - 7K_3(x) + 22K_1(x) \Big) - K_{i,1}(x) \right],$ 0.05 0.10 0.50 1 0.02 $K_{i,1}(x) = \frac{\pi}{2} \left[1 - x K_0(x) \mathcal{S}_{-1}(x) - x K_1(x) \mathcal{S}_0(x) \right],$ T [GeV] $I_{1,1} = \frac{g m^3}{6\pi^2} \left[\frac{1}{4} (K_3 - 5K_1) + K_{i,1} \right]$ 0.00 0.2 0.3 0.5 0.1 0.4 0.6 T [GeV]

M. Strickland

M. Alqahtani, M. Nopoush, and MS, 1509.02913; 1605.02101 M. Alqahtani, M. Nopoush, R. Ryblewski, and MS, 1703.05808; 1705.10191


Quasiparticle Method

$$T^{\mu\nu} = T^{\mu\nu}_{\text{kinetic}} + Bg^{\mu\nu}$$
$$p^{\mu}\partial_{\mu}f + \frac{1}{2}\partial_{i}m^{2}\partial^{i}_{(p)}f = -\mathcal{C}[f]$$
$$\partial_{\mu}B = -\frac{1}{2}\partial_{\mu}m^{2}\int dPf(x,p)$$


Shear viscosity

Fix relaxation time as a function of the energy density by requiring fixed shear viscosity to entry density ratio.

$$\frac{\eta}{\tau_{\rm eq}} = \frac{1}{T} I_{3,2}(\hat{m}_{\rm eq})$$

M. Alqahtani, M. Nopoush, and MS, 1509.02913; 1605.02101 M. Alqahtani, M. Nopoush, R. Ryblewski, and MS, 1703.05808; 1705.10191

Anisotropic Cooper-Frye Freezeout

M. Alqahtani, M. Nopoush, and MS, 1605.02101 M. Alqahtani, M. Nopoush, R. Ryblewski, and MS, 1703.05808; 1705.10191

- Use same generalized-RS form for "anisotropic freeze-out" at LO
- Form includes both shear and bulk corrections to the distribution function
- Use energy density (scalar) to determine the freeze-out hyper-surface $\Sigma \rightarrow e.g. T_{eff,FO} = 130 \text{ MeV}$

$$f(x,p) = f_{\rm iso}\left(\frac{1}{\lambda}\sqrt{p_{\mu}\Xi^{\mu\nu}p_{\nu}}\right)$$

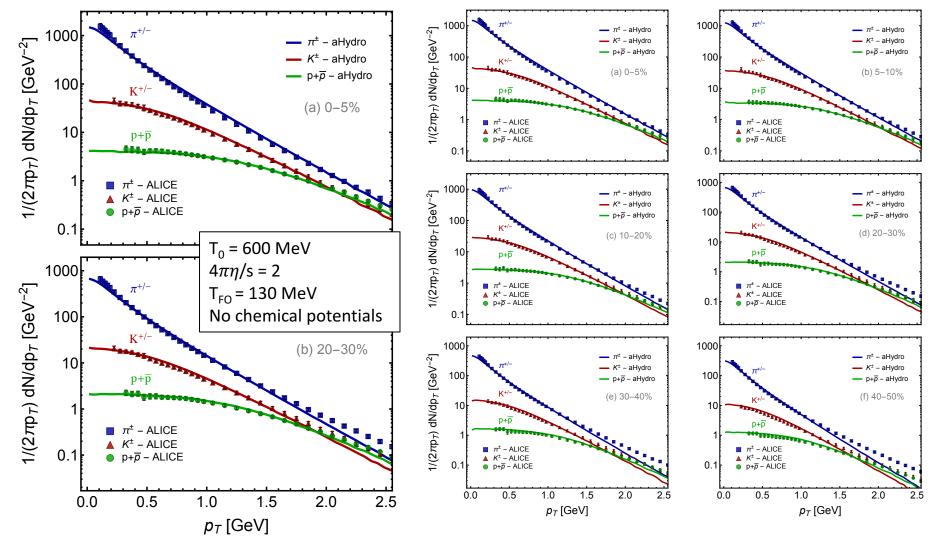
$$\Xi^{\mu\nu} = \frac{u^{\mu}u^{\nu}}{_{\text{isotropic}}} + \frac{\xi^{\mu\nu}}{_{\text{anisotropy}}} - \frac{\Phi\Delta^{\mu\nu}}{_{\text{bulk}}}$$

$$\xi^{\mu\nu}_{\text{LRF}} \equiv \text{diag}(0, \xi_x, \xi_y, \xi_z)$$
$$\xi^{\mu}_{\ \mu} = 0 \qquad u_{\mu} \xi^{\mu}_{\ \nu} = 0$$

$$\left(p^0 \frac{dN}{dp^3}\right)_i = \frac{\mathcal{N}_i}{(2\pi)^3} \int f_i(x,p) \, p^\mu d\Sigma_\mu \,,$$

NOTE: Usual 2nd-order viscous hydro form

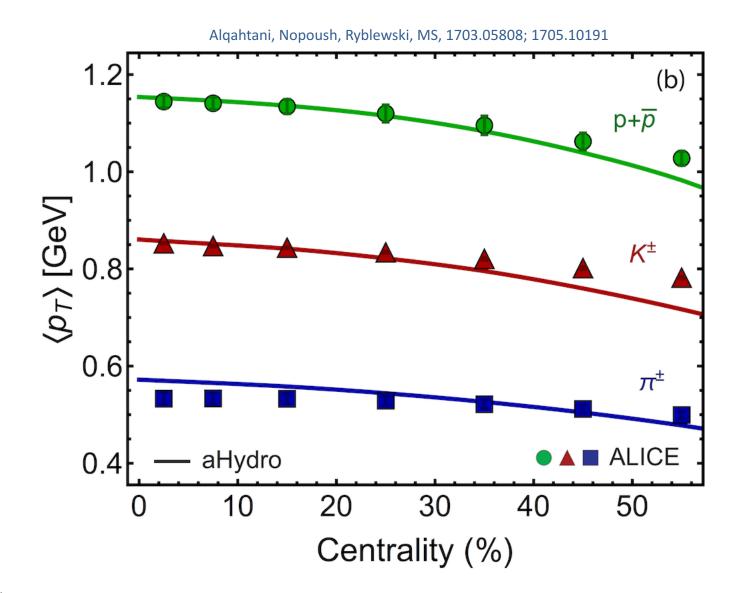
$$f(p,x) = f_{\rm eq} \left[1 + (1 - af_{\rm eq}) \frac{p_{\mu} p_{\nu} \Pi^{\mu\nu}}{2(\epsilon + P)T^2} \right]$$

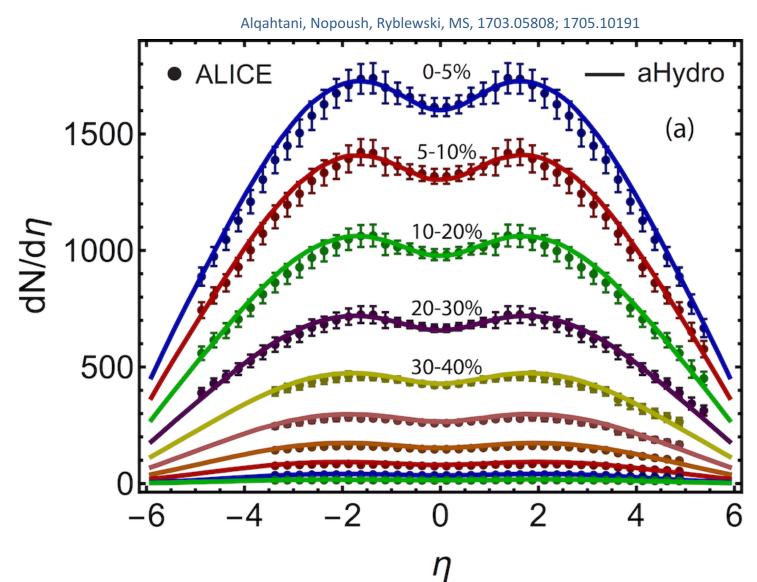

 $f_{\rm eq} = 1/[\exp(p \cdot u/T) + a]$ a = -1, +1, or 0

- This form suffers from the problem that the distribution function can be negative in some regions of phase space → <u>unphysical</u>
- Problem becomes worse when including the bulk viscous correction.

The phenomenological setup

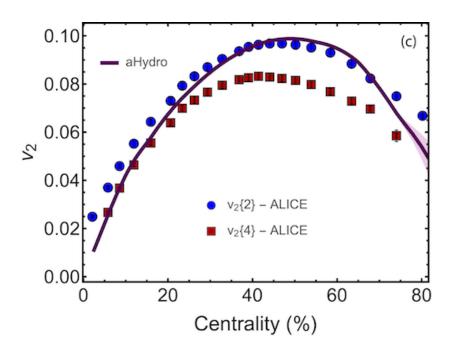
- Keep it simple at first \rightarrow smooth Glauber initial conditions
- Mixture of wounded nucleon and binary collision profiles with a binary mixing fraction of 0.15 (empirically suggested from prior viscous hydro studies)
- In the rapidity direction, we use a rapidity profile with a "tilted" central plateau and Gaussian "wings"
- We take the system to be initially isotropic in momentum space
- We then run the code and extract the freeze-out hypersurface
- The primordial particle production is then Monte-Carlo sampled using the Therminator 2 [Chojnacki, Kisiel, Florkowski, and Broniowski, arXiv:1102.0273]
- Therminator also takes care of all resonance feed downs
- All data shown are from the ALICE collaboration


Identified particle spectra

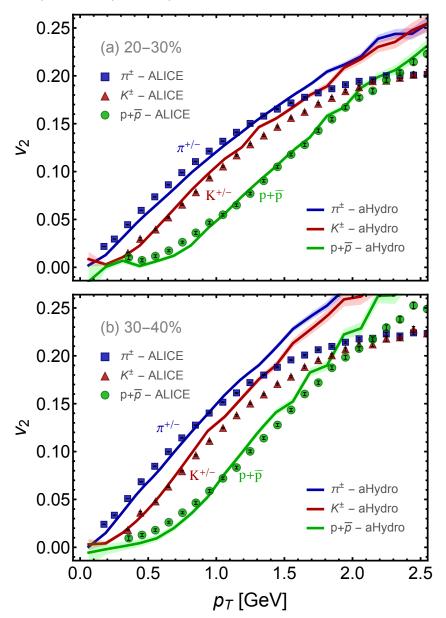

Alqahtani, Nopoush, Ryblewski, MS, 1703.05808; 1705.10191

M. Strickland

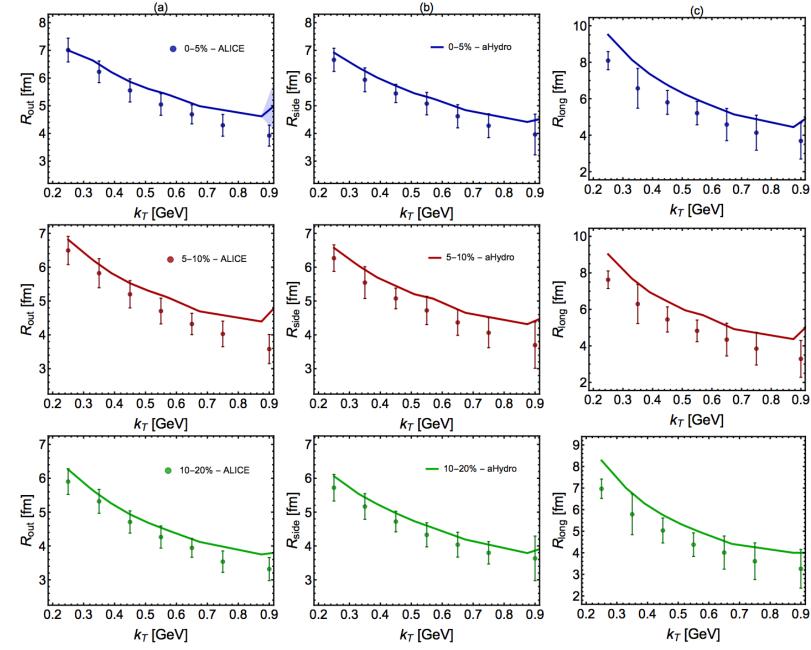
Identified particle average p_T

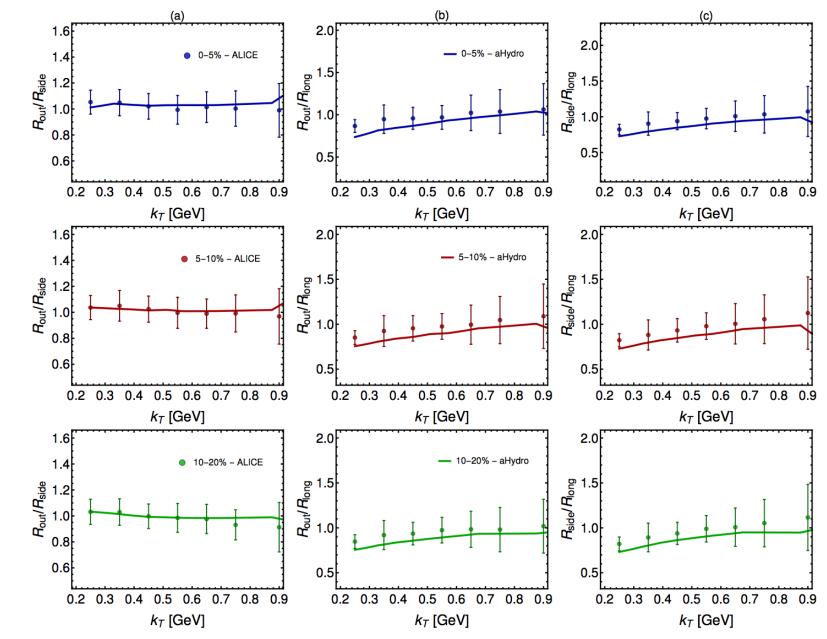


Charged particle multiplicities



Elliptic flow

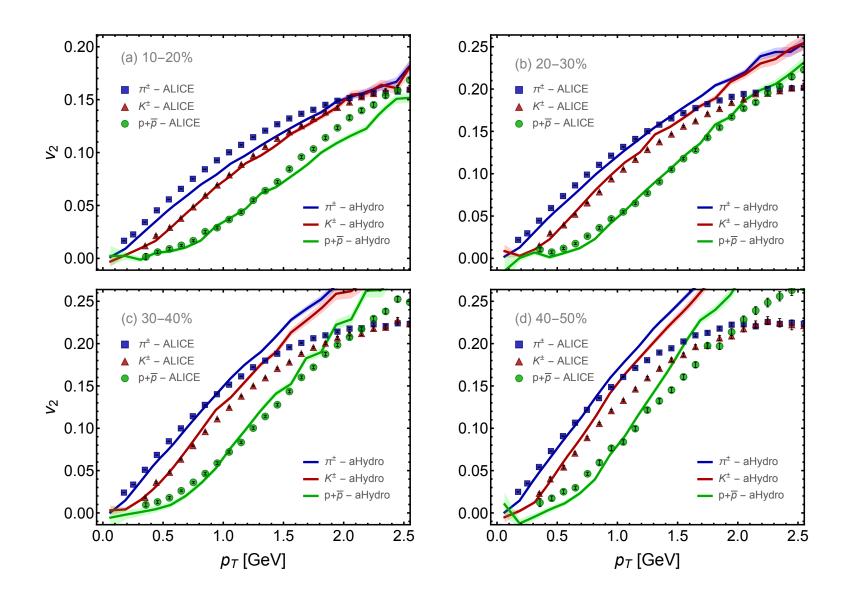

- Quite good description of elliptic flow as well
- Problems for central collisions but this is to be expected since we have not included fluctuating initial conditions yet


Alqahtani, Nopoush, Ryblewski, MS, 1703.05808; 1705.10191

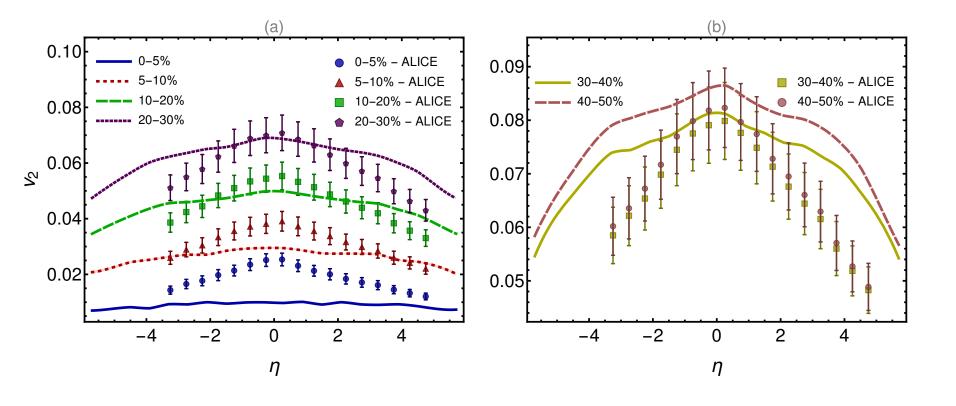
Alqahtani, Nopoush, Ryblewski, MS, 1705.10191

HBT Radi

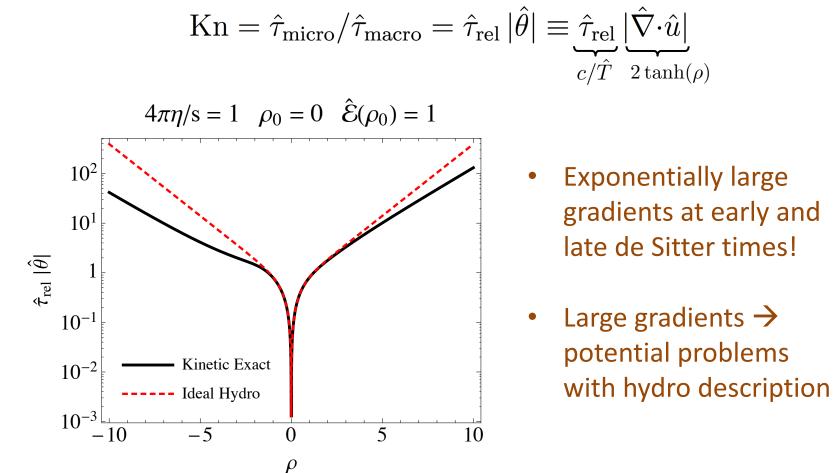
HBT Radii Ratios


Conclusions and Outlook

- Anisotropic hydrodynamics builds upon prior advances in relativistic hydrodynamics in an attempt to create an even more quantitatively reliable model of QGP evolution.
- It incorporates some "facts of life" specific to the conditions generated in relativistic heavy ion collisions and, in doing so, optimizes the dissipative hydrodynamics approach for HIC.
- We now have a running 3+1d "ellipsoidal" aHydro code with realistic EoS, anisotropic freeze-out, and fluctuating initial conditions.
- Our preliminary fits to experimental data using smooth Glauber initial conditions look quite nice.
- **Future:** off-diagonal anisotropies, turn on the fluctuating initial conditions, lower-energies/finite $\mu_{\rm B}$, small systems...


moo

Backup slides



More figures #2

Gubser flow is extreme!

Knudsen number in de Sitter coordinates

Ideal Solution: S. Gubser, 1006.0006; S. Gubser and Y. Yarom, 1012.1314 Exact Solution: G. Denicol, U.W. Heinz, M. Martinez, J. Noronha, and MS, 1408.5646; 1408.7048

Some pretty pictures from 3d viscous hydro

350

35

30

25

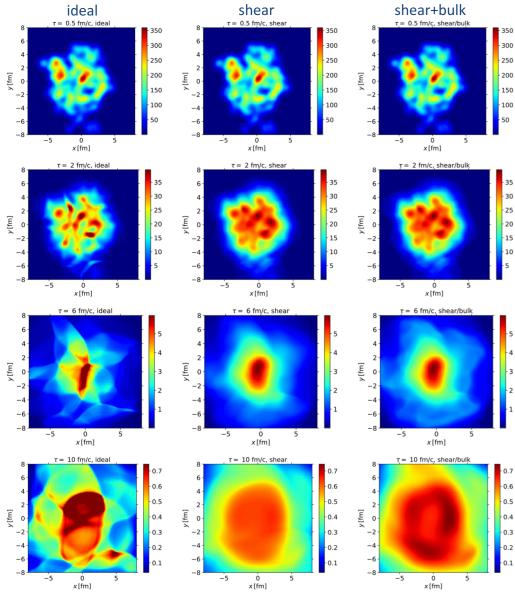
20

15

- 10 - 5

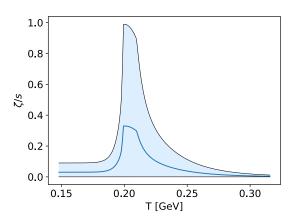
0.7

0.6


0.5

0.4

0.3


0.2

0.1

- Left panels show output from the Ohio State/Kent State GPU-based viscous hydro code [Bazow, Heinz, and MS, 1608.06577]
- Solves the non-conformal • DNMR (Denicol, Niemi, Molnar, Rischke) equations with a realistic EoS
- Parameterized ζ /s (plot below)

•
$$T_0 = 600 \text{ MeV} @ t_0 = 0.5 \text{ fm/c}$$

Technicalities - A numerical challenge

 One of the most daunting challenges faced by the quasiparticle approach is that one has to evaluate a bunch of "H" functions, e.g.

$$\mathcal{E} = \mathcal{H}_3(\boldsymbol{\alpha}, \hat{m}) \lambda^4 + B$$
$$\mathcal{H}_3(\boldsymbol{\alpha}, \hat{m}) = \tilde{N}\alpha \int d^3\hat{p} \,\mathcal{R}(\boldsymbol{\alpha}, \hat{m}) f_{eq}\left(\sqrt{\hat{p}^2 + \hat{m}^2}\right)$$
$$\mathcal{R}(\boldsymbol{\alpha}, \hat{m}) = \sqrt{\alpha_x^2 \, p_x^2 + \alpha_y^2 \, p_y^2 + \alpha_z^2 \, p_z^2 + m^2}$$

- We evaluate these efficiently by expanding the integrand around the diagonal in anisotropy space up to 12th order.
- We do this around two points (1,1,1) and (2,2,2) and switch between these two expansions smoothly.
- With this method we were able to accelerate the evaulation of H functions by a factor of 10⁵ while achieving < 0.1% accuracy.