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Motivation
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• Viscous	hydrodynamics	is	phenomenologically	quite	
successful,	however,	the	extreme	environment	generated	in	
HICs	presents	a	bit	of	a	challenge	to	the	standard	formalism

• The	QGP is	born	into	a	state	of	rapid	longitudinal	expansion	
which	drives	the	system	out	of	equilibrium

• There	are	many	groups	now	focused	on	improving	viscous	
hydrodynamics	itself	in	order	to	better	describe	systems	that	
are	out	of	equilibrium,	e.g.	anisotropic	hydrodynamics	
(aHydro)

• The	goal	of	the	aHydro program	is	to	provide	an	optimized	
hydrodynamics(-like)	framework	that	is	more	accurate	out	of	
equilibrium



Pb-Pb @	2.76	TeV - Don’t	worry,	be	happy?
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• are	O(Kn R-1)
• are	O(Kn2)
• are	O(R-2)
• DNMR	derivation	assumes	that	

Kn ~	R-1

• For	this	to	be	a	reasonable	approx,	
the	2nd-order	terms	should	be	
smaller	than	the	O(Kn)	Navier-
Stokes	terms

• Secret:		In	order	for	code	to	run	
stably,	it	is	necessary	to	“dynamically	
regulate”	the	viscous	corrections

200	MeV

155	MeV
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• are	O(Kn R-1)
• are	O(Kn2)
• are	O(R-2)
• DNMR	derivation	assumes	that	

Kn ~	R-1

• For	this	to	be	a	reasonable	approx,	
the	2nd order	terms	should	be	
smaller	than	the	O(Kn)	Navier-
Stokes	terms

• In	order	for	code	to	run	stably,	it	is	
necessary	to	“dynamically	
regulate”	the	viscous	corrections

pA Collision

Figure	(sans	emoticons):		H.	Niemi and	G.	Denicol,	1404.7327
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H.	Song,	PhD	Dissertation,	0908.3656
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S =  pxx +	pyy
D =  pxx - pyy

à System	is	approximately	
spheroidal	in	momentum-space

What	are	the	largest	viscous	corrections?

=	𝜋zz

PT =	Peq +	𝜮/2
PL =	Peq +	𝜋zz



QGP	momentum	anisotropy	cartoon
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Physics	101
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Cows	are	spheres?		
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Cows	are	spheres?
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Cows	are	not spheres
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Cows	are	more	like	ellipsoids!
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Leading	order A	large	correction
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Viscous	hydro	says	that	we	should	approximate	our	
particle	momentum-space	distribution	to	first	order	
by	a	sphere	in	momentum	space.		However,	if	the	
system	is	highly	anisotropic	in	momentum	space,	this	
will	result	in	large	corrections…

Non-spherical	cows
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Leading	order A	large	correction
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Non-spherical	cows



Viscous	Hydrodynamics	Expansion
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prolate oblate

Isotropic	in	momentum	space

⇠ =
hp2T i
2hp2Li

� 1

See	e.g.
• M.	Martinez	and	MS,	1007.0889
• W.	Florkowski and	R.	Ryblewski,	1007.0130
• D.	Bazow,	U.	Heinz,	and	MS,	1311.6720
• D.	Bazow,	U.	Heinz,	and	M.	Martinez,	1503.07443
• E.	Molnar,	H.	Niemi,	and	D.	Rischke,	1602.00573;	

1606.09019

Spheroidal	expansion	method

f(⌧,x,p) = f
aniso

(p,⇤(⌧,x)| {z }
T?

, ⇠(⌧,x)| {z }
anisotropy

) + �f̃

f(⌧,x,p) = feq(p, T (⌧,x)) + �f

fLRF
aniso

= f
iso

 p
p

2 + ⇠(x, ⌧)p2z
⇤(x, ⌧)

!

Anisotropic	Hydrodynamics	(aHydro)	Expansion

à “Romatschke-Strickland”	form	in	LRF

Treat	this	term	
perturbatively
à “NLO	aHydro”

moo



• What	is	special	about	this	form	at	leading	order?

• Gives	the	ideal	hydro	limit	when	x=0  (	Là T )

• For	longitudinal	(0+1d)	free	streaming,	the	LRF	distribution	function	is	of	
spheroidal	form;	limit	emerges	automatically	in	conformal	0+1d	aHydro

• Since	fiso ≥	0,	the	one-particle	distribution	function	and	pressures	are	≥	0	
(not	guaranteed	in	standard	2nd-order	viscous	hydro)

• Reduces	to	2nd-order	viscous	hydrodynamics	in	limit	of	small	anisotropies

M.	Strickland 16

Why	spheroidal	form	at	LO?

fLRF
aniso

= f
iso

 p
p

2 + ⇠(x, ⌧)p2z
⇤(x, ⌧)

!

⇧

Eeq =
8

45
⇠ +O(⇠2)

For	general	(3+1d)	proof	of	equivalence	to	second-
order	viscous	hydrodynamics	using	generalized	RS	
form	in	the	near-equilibrium	limit	see	Tinti 1411.7268.

M.	Martinez	and	MS,	1007.0889

⇠FS(⌧) = (1 + ⇠0)

✓
⌧

⌧0

◆2

� 1



The	growing	anisotropic	hydrodynamics	family

• There	are	two	approaches	being	actively	followed	in	the	
literature	to	address	this	problem
A. Linearize	around	a	spheroidal	distribution	function	and	treat	

the	perturbations	using	standard	kinetic	vHydro methods	
[“vaHydro”]
Bazow,	Heinz,	Martinez,	Molnar,	Niemi,	Rischke,	MS

B. Introduce	a	generalized	anisotropy	tensor which	replaces	the	
entire	viscous	stress	tensor	at	LO	and	then	linearize	around	
that	instead
Tinti,	Ryblewski,	Martinez,	Nopoush,	Alqahtani,	Bluhm,	Florkowski,	Schaefer,	MS

• Each	of	these	methods	has	its	own	advantages.

• In	what	I	will	show	today,	I	will	use	the	generalized	
method (B)	at	leading	order.

M.	Strickland 17
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Generalized	aHydro formalism
In	generalized	aHydro,	one	assumes	that	the	distribution	function	is	of	the	form

f(x, p) = feq

 p
p

µ⌅µ⌫(x)p⌫

�(x)
,

µ(x)

�(x)

!
+ �f̃(x, p)

⌅µ⌫ = uµu⌫ + ⇠µ⌫ ��µ⌫�

Traceless
symmetric	
anisotropy	
tensor

“Bulk”

Transverse	
projector

LRF	four	
velocity

uµuµ = 1

⇠µµ = 0

�µ
µ = 3

uµ⇠
µ⌫ = uµ�

µ⌫ = 0

See	e.g.
• M.	Martinez,	R.	Ryblewski,	and	MS,	1204.1473
• L.	Tinti and	W.	Florkowski,	1312.6614
• M.	Nopoush,	R.	Ryblewski,	and	MS,	1405.1355	

§ 3	degrees	of	freedom	in	uµ

§ 5	degrees	of	freedom	in	xµn

§ 1	degree	of	freedom	in	F
§ 1	degree	of	freedom	in	l
§ 1	degree	of	freedom	in	µ

à 11	DOFs	
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Equations	of	Motion
• Herein	the	EOM	are	obtained	from	moments	of	the	Boltzmann	equation	in	

the	relaxation	time	approximation	(RTA)	including	temperature	-dependent	
quasiparticle	mass

• It	is	relatively	straightforward	to	use	other	collisional	kernels	(forthcoming)

• 1	equation	from	the	0th moment	[number	(non-conservation)]
• 4	equations	from	the	1st moment	[energy-momentum	conservation]
• 6	equations	from	the	2nd moment	[dissipative	dynamics]
• We	must	also	specify	the	relation	between	the	equilibrium	(isotropic)	

pressure	and	energy	density	(EoS).		More	on	this	later.
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Is	it	really	better?
aHydro reproduces	exact	solutions	to	the	Boltzmann	equation	in	a	variety	of	expanding	
backgrounds	better	than	standard	viscous	hydrodynamics.



Ex.	1:		Dissipative	particle	production

• Number	(entropy)	
production	vanishes	
in	two	limits:		ideal	
hydrodynamic	and	
free	streaming	limits

• In	the	conformal	
model	which	we	are	
testing	with,	number	
density	is	
proportional	to	
entropy	density

M.	Strickland

[D.	Bazow,	U.	Heinz,	and	MS,	1311.6720]

Exact	0+1d	Solution

21

T0 =	600	MeV
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Ex.	2:		Conformal	0+1d	aHydro results

• aHydro results	
(lines)	on	the	left	
are	from	the	recent	
paper	of	Molnar,	
Rischke,	and	Niemi
[1606.09019]

• Exact	solution	is	
shown	by	dots
[W.	Florkowski,	R.	Ryblewski,	
and	MS,	1304.0665	and	
1305.7234]
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ũ⌧
= cosh(✓?)

ũr
= sinh(✓?)

ũ�
= 0

ũ&
= 0

Gubser flow	is	a	cylindrically-symmetric	and	boost-invariant	flow	that	possesses	
a	high	degree	of	symmetry	when	mapped	to	Weyl-rescaled	deSitter space	

rotational	symmetry
around	beam	axis	+	
conformal	symmetry

boost
invariance

reflection
symmetry	around	
the	collision	plane

Polar	Milne	components Transverse	rapidity

The	parameter	q above	is	an	arbitrary	energy	scale	that	
sets	the	radial	extent	of	the	system	at	a	given	proper	time.

This	flow	is	quite	strong:	The	
de	Sitter	space	velocity	gradients	
grow	exponentially	e|r|

SO(3)q ⇥ SO(1, 1) ⇥ Z2

Ex	3:	Gubser Flow S.	Gubser,	1006.0006
S.	Gubser and	Y.Yarom,	1012.1314	
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ũr
= sinh(✓?)

ũ�
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S.	Gubser,	1006.0006
S.	Gubser and	Y.	Yarom,	1012.1314	
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Ex	3:	LO	aHydro for	Gubser flow
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Isotropic	initial	conditions

DNMR	=	Grad-14	2nd order
viscous	hydro

M.	Nopoush,	R.	Ryblewski,	and	MS,	1410.6790	
Exact	Solution:		G.	Denicol,	U.W.	Heinz,	M.	Martinez,	J.	Noronha,	and	MS,	1408.5646	and	1408.7048
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Ex	3:	LO	aHydro for	Gubser flow

 0.001

 0.01

 0.1

 1

     

T^

4πη/s = 1

(a)

Exact

aHydro

DNMR

Israel-Stewart

 

 

 

 

     

4πη/s = 3

(b)

 

 

 

 

     

4πη/s = 10

(c)

-0.4

-0.2

0

0.2

0.4

0.6

-10 -5  0  5 10

π_
ζ ζ

ρ

(d)

 

 

 

 

 

 

-10 -5  0  5 10

ρ

(e)

 

 

 

 

 

 

-10 -5  0  5 10

ρ

(f)

Isotropic	initial	conditions

DNMR	=	Grad-14	2nd order
viscous	hydro

M.	Nopoush,	R.	Ryblewski,	and	MS,	1410.6790	
Exact	Solution:		G.	Denicol,	U.W.	Heinz,	M.	Martinez,	J.	Noronha,	and	MS,	1408.5646	and	1408.7048



M.	Strickland 27

 0.001

 0.01

 0.1

 1

     

T^

4πη/s = 1

(a)

Exact

aHydro

DNMR

Israel-Stewart

 

 

 

 

     

4πη/s = 3

(b)

 

 

 

 

     

4πη/s = 10

(c)

-0.4

-0.2

0

0.2

0.4

0.6

-10 -5  0  5 10

π_
ζ ζ

ρ

(d)

 

 

 

 

 

 

-10 -5  0  5 10

ρ

(e)

 

 

 

 

 

 

-10 -5  0  5 10

ρ

(f)

At	NLO	even	better	agreement	with	exact	solution;	see	M.	Martinez,	M.	McNelis,	and	U.	Heinz,	1703.10955

DNMR	=	Grad-14	2nd order
viscous	hydro
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Ex	3:	LO	aHydro for	Gubser flow
M.	Nopoush,	R.	Ryblewski,	and	MS,	1410.6790	

Exact	Solution:		G.	Denicol,	U.Heinz,	M.	Martinez,	J.	Noronha,	and	MS,	1408.5646;	1408.7048
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Kinetic Exact

aHydro

DNMR
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Ex	3:	aHydro for	Gubser flow
M.	Nopoush,	R.	Ryblewski,	and	MS,	1410.6790	

Exact	Solution:		G.	Denicol,	U.W.	Heinz,	M.	Martinez,	J.	Noronha,	and	MS,	1408.5646;	1408.7048
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Towards	realistic	
phenomenology
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3+1d	aHydro Equations	of	Motion
• Assuming	an	ellipsoidal	form	for	the	anisotropy	tensor	(ignoring	off-

diagonal	components	for	now),	one	has	seven	degrees	of	freedom		xx,
xy,	xz,	ux,	uy, uz,	and	l which	are	all	fields	of	space	and	time.		

• Ignore						for	now	

First	Moment

Second	Moment

M.	Alqahtani,	M.	Nopoush,	and	MS,	1509.02913;	1605.02101
M.	Alqahtani,	M.	Nopoush,	R.	Ryblewski,	and	MS,	1703.05808;	1705.10191



Implementing	the	equation	of	state
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EêESB
PêPSB
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T @GeVD

M.	Alqahtani,	M.	Nopoush,	and	MS,	1509.02913;	1605.02101
M.	Alqahtani,	M.	Nopoush,	R.	Ryblewski,	and	MS,	1703.05808;	1705.10191

Quasiparticle	Method



Implementing	the	equation	of	state
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Quasiparticle	Method

Bulk	viscosity

M.	Alqahtani,	M.	Nopoush,	and	MS,	1509.02913;	1605.02101
M.	Alqahtani,	M.	Nopoush,	R.	Ryblewski,	and	MS,	1703.05808;	1705.10191

Shear	viscosity
Fix	relaxation	time	as	a	function	of	the	energy	
density	by	requiring	fixed	shear	viscosity	to	entry	
density	ratio.



Implementing	the	equation	of	state
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Quasiparticle	Method

Bulk	viscosity

M.	Alqahtani,	M.	Nopoush,	and	MS,	1509.02913;	1605.02101
M.	Alqahtani,	M.	Nopoush,	R.	Ryblewski,	and	MS,	1703.05808;	1705.10191

Shear	viscosity
Fix	relaxation	time	as	a	function	of	the	energy	
density	by	requiring	fixed	shear	viscosity	to	entry	
density	ratio.

Ryu et	al,	PRL	115	(2015)	no.13,	132301



Implementing	the	equation	of	state

M.	Strickland 34

Quasiparticle	Method

Bulk	viscosity

M.	Alqahtani,	M.	Nopoush,	and	MS,	1509.02913;	1605.02101
M.	Alqahtani,	M.	Nopoush,	R.	Ryblewski,	and	MS,	1703.05808;	1705.10191

Shear	viscosity
Fix	relaxation	time	as	a	function	of	the	energy	
density	by	requiring	fixed	shear	viscosity	to	entry	
density	ratio.

Ryu et	al,	PRL	115	(2015)	no.13,	132301



Anisotropic	Cooper-Frye	Freezeout

M.	Strickland 35

• Use	same	generalized-RS	form	for	“anisotropic	freeze-out”	at	LO
• Form	includes	both	shear	and	bulk	corrections	to	the	distribution	function

M.	Alqahtani,	M.	Nopoush,	and	MS,	1605.02101
M.	Alqahtani,	M.	Nopoush,	R.	Ryblewski,	and	MS,	1703.05808;	1705.10191
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#
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• This	form	suffers	from	the	problem	that	the	
distribution	function	can	be	negative	in	some	
regions	of	phase	space	à unphysical

• Problem	becomes	worse	when	including	the	bulk	
viscous	correction.

• Use	energy	density	(scalar)	to	
determine	the	freeze-out	hyper-
surface	S à e.g.	Teff,FO =	130	MeV

isotropic anisotropy
tensor

bulk
correction



The	phenomenological	setup
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• Keep	it	simple	at	first	à smooth	Glauber	initial	conditions
• Mixture	of	wounded	nucleon	and	binary	collision	profiles	with	a	

binary	mixing	fraction	of	0.15	(empirically	suggested	from	prior	
viscous	hydro	studies)

• In	the	rapidity	direction,	we	use	a	rapidity	profile	with	a	“tilted”	
central	plateau	and	Gaussian	“wings”

• We	take	the	system	to	be	initially	isotropic	in	momentum	space
• We	then	run	the	code	and	extract	the	freeze-out	hypersurface
• The	primordial	particle	production	is	then	Monte-Carlo	sampled	

using	the	Therminator 2	[Chojnacki,	Kisiel,	Florkowski,	and	Broniowski,	arXiv:1102.0273]
• Therminator	also	takes	care	of	all	resonance	feed	downs
• All	data	shown	are	from	the	ALICE	collaboration



Identified	particle	spectra
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TFO	=	130	MeV
No	chemical	potentials



Identified	particle	average	pT
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Alqahtani,	Nopoush,	Ryblewski,	MS,	1703.05808;	1705.10191



M.	Strickland 39

Charged	particle	multiplicities
Alqahtani,	Nopoush,	Ryblewski,	MS,	1703.05808;	1705.10191
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Elliptic	flow
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• Quite	good	description	of	elliptic	
flow	as	well

• Problems	for	central	collisions	but	
this	is	to	be	expected	since	we	have	
not	included	fluctuating	initial	
conditions	yet

Alqahtani,	Nopoush,	Ryblewski,	MS,	1703.05808;	1705.10191
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Alqahtani,	Nopoush,	Ryblewski,	MS,	1705.10191
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Alqahtani,	Nopoush,	Ryblewski,	MS,	1705.10191



Conclusions	and	Outlook
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• Anisotropic	hydrodynamics	builds	upon	prior	advances	in	
relativistic	hydrodynamics	in	an	attempt	to	create	an	even	more	
quantitatively	reliable	model	of	QGP	evolution.

• It	incorporates	some	“facts	of	life”	specific	to	the	conditions	
generated	in	relativistic	heavy	ion	collisions	and,	in	doing	so,	
optimizes	the	dissipative	hydrodynamics	approach	for	HIC.

• We	now	have	a	running	3+1d	“ellipsoidal”	aHydro code	with	
realistic	EoS,	anisotropic	freeze-out,	and	fluctuating	initial	
conditions.

• Our	preliminary	fits	to	experimental	data	using	smooth	Glauber	
initial	conditions	look	quite	nice.

• Future: off-diagonal	anisotropies,	turn	on	the	fluctuating	initial	
conditions,	lower-energies/finite	𝜇B,	small	systems…

moo
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More	figures	#2
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Knudsen	number	in	de	Sitter	coordinates
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Gubser flow	is	extreme!

2 tanh(⇢)
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• Exponentially	large	
gradients	at	early	and	
late	de	Sitter	times!

• Large	gradients	à
potential	problems	
with	hydro	description

Ideal	Solution:		S.	Gubser,	1006.0006;	S.	Gubser and	Y.	Yarom,	1012.1314	
Exact	Solution:		G.	Denicol,	U.W.	Heinz,	M.	Martinez,	J.	Noronha,	and	MS,	1408.5646;	1408.7048
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• Left	panels	show	output	from	
the	Ohio	State/Kent	State	
GPU-based	viscous	hydro	code	

• Solves	the	non-conformal	
DNMR	(Denicol,	Niemi,	
Molnar,	Rischke)	equations	
with	a	realistic	EoS

• Parameterized	z/s	(plot	below)
• h/s	=	0.2
• T0 =	600	MeV	@	t0 =	0.5	fm/c

Some	pretty	pictures	from	3d	viscous	hydro
ideal shear shear+bulk

[Bazow,	Heinz,	and	MS,	1608.06577]



Technicalities	- A	numerical	challenge
• One	of	the	most	daunting	challenges	faced	by	the	

quasiparticle	approach	is	that	one	has	to	evaluate	a	bunch	of	
“H”	functions,	e.g.

• We	evaluate	these	efficiently	by	expanding	the	integrand	
around	the	diagonal	in	anisotropy	space	up	to	12th order.

• We	do	this	around	two	points	(1,1,1)	and	(2,2,2)	and	switch	
between	these	two	expansions	smoothly.

• With	this	method	we	were	able	to	accelerate	the	evaulation
of	H	functions	by	a	factor	of	105 while	achieving	<	0.1%	
accuracy.

M.	Strickland 49


