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History

Cagniard de la Tour (1822): discovered continuos transition from liquid
to vapour by heating alcohol, water, etc. in a gun barrel, glass tubes.
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Name

Faraday (1844) – liquefying gases:

“Cagniard de la Tour made an experiment some years ago which gave me
occasion to want a new word.”

Mendeleev (1860) – measured vanishing of liquid-vapour surface
tension: “Absolute boiling temperature”.

Andrews (1869) – systematic studies of many substances established
continuity of vapour-liquid phases. Coined the name “critical point”.
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Theory

van der Waals (1879) –
in “On the continuity of the gas and liquid state”
(PhD thesis) wrote e.o.s. with a critical point.

Smoluchowski, Einstein (1908,1910) – explained critical opalescence.

Landau – classical theory of critical phenomena

Fisher, Kadanoff, Wilson – scaling, full fluctuation theory based on RG.
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Critical opalescence
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Critical point is a ubiquitous
phenomenon
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Critical point between the QGP and hadron gas phases?
QCD is a relativistic theory of a fundamental force.
CP is a singularity of EOS, anchors the 1st order transition.

Quarkyonic
   regime

QGP
(liquid)

critical point

nuclear
matter

hadron gas

? CFL+

?

Lattice QCD at µB . 2T – a crossover.

C.P. is ubiquitous in models (NJL, RM, Holog., Strong coupl. LQCD, . . . )
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Essentially two approaches to discovering the QCD critical point.
Each with its own challenges.

Lattice simulations.

The sign problem restricts reliable lat-
tice calculations to µB = 0.

Under different assumptions one can
estimate the position of the critical
point, assuming it exists, by extrapo-
lation from µ = 0.
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Outline

Equilibrium

Non-equilibrium
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Why fluctuations are large at a critical point?

The key equation:

P (σ) ∼ eS(σ) (Einstein 1910)

At the critical point S(σ) “flattens”. And χ ≡ 〈σ2〉/V →∞.

CLT? σ is not a sum of∞ many uncorrelated contributions: ξ →∞
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Fluctuations of order parameter and ξ

Fluctuations at CP – conformal field theory.

Parameter-free→ universality. Only one scale ξ = m−1σ <∞,

P [σ] ∼ exp {−Ω[σ]/T} ,

Ω =

∫
d3x

[
1

2
(∇σ)2 +

m2
σ

2
σ2 +

λ3
3
σ3 +

λ4
4
σ4 + . . .

]
.

Width/shape of P (σ0 ≡
∫
xσ) best expressed via cumulants:

Higher cumulants (shape of P (σ0)) depend stronger on ξ.
Universal: 〈σk0 〉c ∼ V ξp , p = k(3− [σ])− 3, [σ] = β/ν ≈ 1/2.

E.g., p ≈ 2 for k = 2, but p ≈ 7 for k = 4.
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Sign

Higher moments also depend on which side of the CP we are

κ3[σ] = 2V T 3/2 λ̃3 ξ
4.5 ; κ4[σ] = 6V T 2 [ 2(λ̃3)

2 − λ̃4 ] ξ7 .

This dependence is also universal.

2 relevant directions/parameters. Using Ising model variables:
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Experiments do not measure σ.
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Mapping to QCD and experimental observables

Observed fluctuations are not the same as σ, but related:

Think of a collective mode described by field σ such that m = m(σ):

δnp = δnfree
p +

∂〈np〉
∂σ

× δσ

The cumulants of multiplicity M ≡
∫
p np:

κ4[M ] = 〈M〉︸︷︷︸
baseline

+ κ4[σ]× g4
( )4
︸ ︷︷ ︸
∼M4

+ . . . ,

g – coupling of the critical mode (g = dm/dσ).

κ4[σ] < 0 means κ4[M ] < baseline

NB: Sensitivity to Maccepted: (κ4)σ ∼M4 (number of 4-tets).
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Mapping Ising to QCD phase diagram

T vs µB:

In QCD (t,H)→ (µ− µCP, T − TCP)

κn(N) = N +O(κn(σ))
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Beam Energy Scan

“intriguing hint” (2015 LRPNS)
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QM2017 update: another intriguing hint

Preliminary, but very interesting: Non-monotonous
√
s

dependence with max
near 19 GeV.

Charge/isospin blind.

∆φ (in)dependence is
as expected from
critical correlations.

Width ∆η suggests
soft thermal pions –
but pT dependence
need to be checked.

But: no signal in R2

for K or p.
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Non-equilibrium physics is essential near the critical point.

The goal for
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Why ξ is finite

System expands and is out of equilibrium

Kibble-Zurek mechanism:

Critical slowing down means τrelax ∼ ξz.
Given τrelax . τ (expansion time scale):

ξ . τ1/z,

z ≈ 3 (universal).

Estimates: ξ ∼ 2− 3 fm
(Berdnikov-Rajagopal)

KZ scaling for ξ(t)
and cumulants
(Mukherjee-Venugopalan-Yin)
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Lessons

κn ∼ ξp and ξmax ∼ τ1/z

Therefore, the magnitude of fluctuation signals is determined by
non-equilibrium physics.

Logic so far:

Equilibrium fluctuations + a non-equilibrium effect (finite ξ)

−→ Observable critical fluctuations

Can we get critical fluctuations from hydrodynamics directly?
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Time evolution of cumulants (memory)

Mukherjee-Venugopalan-Yin

Relaxation to equilibrium

dP (σ0)

dτ
= F [P (σ0)]

⇓
dκn
dτ

= L[κn, κn−1, . . .]

κ3 κ4

Signs of cumulants also depend on off-equilibrium dynamics.
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Hydrodynamics breaks down at CP

Tµν = εuµuν + p∆µν + T̃µνvisc

T̃µνvisc = −ζ∆µν(∇ · u) + . . .

Near CP gradient terms are dominated by ζ ∼ ξ3 →∞
(z − α/ν ≈ 3).

When k ∼ ξ−3 hydrodynamics breaks down, i.e., while k � ξ−1 still.

(For simplicity, measure dim-ful quantities in units of T , i.e., k ∼ T (Tξ)−3.)

Why does hydro break at so small k?
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Critical slowing down and bulk viscosity

Bulk viscosity is the effect of system taking time to adjust to local
equilibrium (Khalatnikov-Landau).

phydro = pequilibrium − ζ∇ · v

∇ · v – expansion rate

ζ ∼ τrelaxation ∼ ξ3

Hydrodynamics breaks down because of large relaxation time
(critical slowing down).

Similar to breakdown of an effective theory due to a low-energy mode
which should not have been integrated out.
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Critical slowing down and Hydro+

There is a critically slow mode φ with relaxation time τφ ∼ ξ3.

To extend the range of hydro – extend hydro by the slow mode.

(MS-Yin 1704.07396, in preparation)

“Hydro+” has two competing limits, k → 0 and ξ →∞;

or competing rates Γφ ∼ ξ−3 → 0 and Γhydro ∼ k → 0.

Regime I: Γφ � Γhydro – ordinary hydro (ζ ∼ ξ3 →∞ at CP).

Crossover occurs when Γhydro ∼ Γφ, or k ∼ ξ−3.

Regime II: k > ξ−3 – “Hydro+” regime.
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Advantages/motivation of Hydro+

Extends the range of validity of “vanilla” hydro near CP

to length/time scales shorter than O(ξ3).

No kinetic coefficients diverging as ξ3.

(Since noise ∼ ζ, also the noise is not large.)
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Ingredients of “Hydro+”

Nonequilibrium entropy, or quasistatic EOS:

s∗(ε, n, φ)

Equilibrium entropy is the maximum of s∗:

s(ε, n) = max
φ

s∗(ε, n, φ)

The 6th equation (constrained by 2nd law):

(u · ∂)φ = −γφπ −Gφ(∂ · u), where π =
∂s∗

∂φ

Another example: relaxation of axial charge.
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Linearized Hydro+

Linearized Hydro+ has 4 longitudinal modes (sound×2 + density + φ).

In addition to the usual cs, D, etc. Hydro+ has two more parameters

∆c2 = c2∗ − c2s and Γ = Γφ.

The sound velocities are different in Regime I (csk � Γ) and II:

c2s =

(
∂p

∂ε

)
s/n,π=0

and c2∗ =

(
∂p∗

∂ε

)
s/n,φ

The bulk viscosity receives large contribution from the slow mode
given by Landau-Khalatnikov formula

∆ζ = w∆c2/Γ

M. Stephanov QCD critical point, fluctuations and hydro Oxford 2017 27 / 32



Modes
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Microscopic origins of Hydro+

Understanding the microscopic origin of the slow mode:

The fluctuations around equilibrium are controlled by the entropy
functional P ∼ eS .

Near the critical point convenient to “rotate” the basis of variables to
“Ising”-like critical variables E andM. M∼ s/n− (s/n)CP.

δS[δE , δM] =

[
1

2
aM (δM)2 +

1

2
aE (δE)2 + b δE δM2 + . . .

]
.

Since aM � aE fluctuations ofM are large and are slow to equilibrate.

Their magnitude is related to the slow relaxation mode φ.
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Hydro + mode distribution

Separate “hard” k > ξ−1 and “soft” k � ξ−1 modes.

The new variable, “mode distribution function”:

φ(t,x,Q) =

∫
y
〈 δM(t,x + y/2) δM(t,x− y/2) 〉 e−iQ·y

The additional mode distribution function relaxation equation:

(u · ∂)φ(t,x,Q) = 2ΓM(Q)
[
a−1M − φ(t,x,Q)

]
where ΓM(Q) is known from model H (Kawasaki).
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Relaxation of slow mode(s).
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Summary

A fundamental question for Heavy-Ion collision experiments:

Is there a critical point on the boundary between QGP and
hadron gas phases?

Theoretical framework is needed – the goal for .

Large (non-gaussian) fluctuations – universal signature of a crit-
ical point.

In H.I.C., the magnitude of the signatures is controlled by dy-
namical non-equilibrium effects. The physics of the interplay of
critical and dynamical phenomena can be captured by hydrody-
namics with a critically slow mode(s) – Hydro+.
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