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History

Cagniard de la Tour (1822): discovered continuos transition from liquid
to vapour by heating alcohol, water, etc. in a gun barrel, glass tubes.
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Name

Faraday (1844) — liquefying gases:

“Cagniard de la Tour made an experiment some years ago which gave me
occasion to want a new word.”

Mendeleev (1860) — measured vanishing of liquid-vapour surface
tension: “Absolute boiling temperature”.

Andrews (1869) — systematic studies of many substances established
continuity of vapour-liquid phases. Coined the name “critical point”.
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Theory

van der Waals (1879) —
in “On the continuity of the gas and liquid state”
(PhD thesis) wrote e.o.s. with a critical point.

Smoluchowski, Einstein (1908,1910) — explained critical opalescence.
Landau — classical theory of critical phenomena

Fisher, Kadanoff, Wilson — scaling, full fluctuation theory based on RG.
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Critical opalescence
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Substancel131[14] &
Argon
Ammonial13]
Bromine
Caesium
Chlorine
Ethanol
Fluorine
Helium
Hydrogen
Krypton
CHa (methane)
Neon
Nitrogen
Oxygen
o,

Nz0
Hz504
Xenon
Lithium
Mercury
Sulfur
Iron
Gold
Waterl21[16]

Critical 4
—122.4 °C (150.8 K)
132.4 °C (405.5 K)
310.8 °C (584.0 K)

1,664.85 °C (1,938.00 K)
143.8 °C (416.9 K)

241 °C (514 K)

—128.85 "C (144.30 K)
—267.96 °C (5.19 K)
—238.95 °C (33.20 K)
—63.8 °C (209.3 K)
—82.3 °C (190.8 K)
—228.75 °C (44.40 K)
—146.9 °C (126.2 K)
—118.6 °C (154.6 K)
31.04 °C (304.19 K)

36.4 °C (309.5 K)
654 °C (927 K)
16.6 °C (289.8 K)
2,950 °C (3,220 K)
1,476.9 °C (1,750.1 K)

1,040.85 °C (1,314.00 K)
8,227 °C (8,500 K)
6,977 °C (7.250 K)

373.946 °C (647.096 K)
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Critical p (

48.1 atm (4,870 kPa)
111.3 atm (11,280 kPa)
102 atm (10,300 kPa)
94 atm (9,500 kPa)
76.0 atm (7,700 kPa)
62.18 atm (6,300 kPa)
51.5 atm (5,220 kPa)
2.24 atm (227 kPa)
12.8 atm (1,300 kPa)
54.3 atm (5,500 kPa)
45.79 atm ({4,640 kPa)
27.2 atm (2,760 kPa)
33.5 atm (3,390 kPa)
49.8 atm (5,050 kPa)
72.8 atm (7,380 kPa)
71.5 atm (7.240 kPa)
45.4 atm (4,600 kPa)
57.6 atm (5,840 kPa)
652 atm (66,100 kPa)

1,720 atm (174,000 kPa)

207 atm (21,000 kPa)

5,000 atm (510,000 kPa)

217.7 atm (22.06 MPa)

Critical point is a ubiquitous

phenomenon
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Critical point between the QGP and hadron gas phases?
QCD is a relativistic theory of a fundamental force.
CP is a singularity of EOS, anchors the 1st order transition.

T
200 MeV

regime

hadron

1 GeV “B
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Critical point between the QGP and hadron gas phases?
QCD is a relativistic theory of a fundamental force.
CP is a singularity of EOS, anchors the 1st order transition.

T
200 MeV

Quarky

regime

hadron gas

1 GeV B

Lattice QCD at up < 2T — a crossover.
C.P. is ubiquitous in models (NJL, RM, Holog., Strong coupl. LQCD, ...)
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Essentially two approaches to discovering the QCD critical point.
Each with its own challenges.

® [attice simulations.
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tice calculations to up = 0.
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Under different assumptions one can
estimate the position of the critical
point, assuming it exists, by extrapo- ¥ |
lation from p = 0.
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® Heavy-ion collisions.
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Essentially two approaches to discovering the QCD critical point.

Each with its own challenges.

® [attice simulations.

The sign problem restricts reliable lat-
tice calculations to up = 0.

Under different assumptions one can
estimate the position of the critical
point, assuming it exists, by extrapo-
lation from p = 0.
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Essentially two approaches to discovering the QCD critical point.

Each with its own challenges.

® [attice simulations.

The sign problem restricts reliable lat-
tice calculations to up = 0.

Under different assumptions one can
estimate the position of the critical
point, assuming it exists, by extrapo-
lation from p = 0.

® Heavy-ion collisions. Non-equilibrium.
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Outline

® Equilibrium

® Non-equilibrium
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Why fluctuations are large at a critical point?

® The key equation:

P(o) ~ %@ (Einstein 1910)
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Why fluctuations are large at a critical point?

® The key equation:

-—

P(o) ~ e (Einstein 1910) T

® At the critical point S(o) “flattens”. And x = (02)/V — 0.
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Why fluctuations are large at a critical point?

® The key equation:

-—

P(o) ~ e (Einstein 1910) T

® At the critical point S(o) “flattens”. And x = (02)/V — 0.

X ~ Vz/:;

CLT? ’ o is not a sum of co many uncorrelated contributions: £ — oo ‘

M. Stephanov QCD critical point, fluctuations and hydro Oxford 2017 10/32



Fluctuations of order parameter and ¢

® Fluctuations at CP — conformal field theory.
Parameter-free — universality. Only one scale ¢ = m, ! < oo,

Plo] ~ exp{-Q[o]/T},

1 m2 A A
_ 3 = 2 o 2 3 3 4 4
Q—/dm[Q(VU) +—2J+—3U +—40 +}

® Width/shape of P(oy = | o) best expressed via cumulants:

NV SR A

® Higher cumulants (shape of P(o)) depend stronger on &.
Universal: | (o§)e ~ VEP|, p=k(3 —[0]) — 3, [0] = B/v ~ 1/2.

E.g.,p~2fork=2,butp~7fork=4.

M. Stephanov QCD critical point, fluctuations and hydro Oxford 2017 11/32



Sign
@ Higher moments also depend on which side of the CP we are

kalo] = 2VT32 X347 kalo] = 6VT?[2(N3)% — M) €7

| This dependence is also universal. |

@ 2 relevant directions/parameters. Using Ising model variables:

far from CP:
KRg = 0

crossover side

5

kg <

1st order side
Ky >0
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Experiments do not measure o. J
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Mapping to QCD and experimental observables

Observed fluctuations are not the same as o, but related:

Think of a collective mode described by field o such that m = m(o):

o(np)

X 00
Oo

The cumulants of multiplicity M = [ np:

® xy[M]= @+ kalo] x gt (@)44-...,
———

baseline

Ing = 5ngee +

~M4

g — coupling of the critical mode (g = dm/do).
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Mapping to QCD and experimental observables

Observed fluctuations are not the same as o, but related:

Think of a collective mode described by field o such that m = m(o):

d{np)
do

The cumulants of multiplicity M = [ np:

® xy[M]= @+ kalo] x gt (@)44-...,
———

baseline

X 00

Ing = 5ngee +

~ M4
g — coupling of the critical mode (g = dm/do).

® 1,[o] < 0 means k4[M] < baseline
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Mapping to QCD and experimental observables

Observed fluctuations are not the same as o, but related:

Think of a collective mode described by field o such that m = m(o):

d{np)
do

The cumulants of multiplicity M = [ np:

® xy[M]= @+ kalo] x gt (@)44-...,
———

baseline

X 00

Ing = 5ngee +

~M4
g — coupling of the critical mode (g = dm/do).
® 1,[o] < 0 means k4[M] < baseline

® NB: Sensitivity t0 Mccepted: (k4)o ~ M* (number of 4-tets).
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Mapping Ising to QCD phase diagram

T Vs up:

t
® InQCD (t,H) — (. — pcp, T — Tcp)
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Mapping Ising to QCD phase diagram

T Vs up:

® InQCD (t,H) — (. — pcp, T — Tcp)

® 5\(N) = N+ O(k,(0))
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Beam Energy Scan

____baseline

HB
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Beam Energy Scan

Wy

___baseline

M. Stephanov

HB

QCD critical point, fluctuations and hydro
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Beam Energy Scan

Y
L e d

L + BES-I

ko2 net-proton

0%-5% Au+Au; Rapidity Window = 1
3 & 04<p <20GeV (Prelim.)

M. Stephanov
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Beam Energy Scan

Wy

__baseline

M. Stephanov

HB

ko2 net-proton

e S e Sl Sl Gl (<
‘

- ¢ 04<p <20GeV (Prelim.)

+ t
0%-5% Au+Au; Rapidity Window = 1

+ BES-I

y - 1 L
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“intriguing hint” (2015 LRPNS)
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QM2017 update: another intriguing hint

Preliminary, but very interesting: @ Non-monotonous /s

dependence with max

Ad “Ridge” near 19 GeV.
h*h*, AutAu, 19. h(ie/\/i'lr,‘"ﬂn +As g clation s i )+ H H 1
TRl LSmaUshan @ Charge/isospin blind.

19.6-27.0 GeV
+ The observed structure is similar in

R(AN,A6)

@ A¢ (in)dependence is
as expected from
critical correlations.

shape to “cluster” emission observed
in p+p at RHIC and the LHC

" B.Alver eral., Phys. Rev. C75, 054913 (2007)
CMS Collaboration, JHEP 1009, 091 (2010)

@ Width An suggests
soft thermal pions —

- but pr dependence

145 Gev 196 Gev 10Gey waGey need to be checked.

R T e ey , ,
AUSTAR S o Q207 " @ But: no signal in Ry
for K or p.
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Non-equilibrium physics is essential near the critical point. J

The goal for BEST

COLLABORATION
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Why ¢ is finite

| System expands and is out of equilibrium|

Kibble-Zurek mechanism:

Critical slowing down means Tye1ax ~ £°.
Given 1o S 7 (expansion time scale):

1
¢ <

z ~ 3 (universal).
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Why ¢ is finite

| System expands and is out of equilibrium|

Kibble-Zurek mechanism:

Critical slowing down means Tye1ax ~ £°.
Given 1o S 7 (expansion time scale):

1
¢ <

z ~ 3 (universal).

Estimates: £ ~2 —3fm !
(Berdnikov-Rajagopal)

KZ scaling for £(t)
and cumulants
(Mukherjee-Venugopalan-Yin) 0.5

-0.2 -0.15 -0.1 -0.05 0.05 OAlh
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Lessons

kn ~ & and  Epax ~ /=

® Therefore, the magnitude of fluctuation signals is determined by
non-equilibrium physics.
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Lessons

kn ~ & and  Epax ~ /%
® Therefore, the magnitude of fluctuation signals is determined by
non-equilibrium physics.
$ Logic so far:

Equilibrium fluctuations + a non-equilibrium effect (finite &)
— Observable critical fluctuations
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Lessons

kn ~ & and  Epax ~ /%
® Therefore, the magnitude of fluctuation signals is determined by
non-equilibrium physics.
$ Logic so far:

Equilibrium fluctuations + a non-equilibrium effect (finite &)
— Observable critical fluctuations

® Can we get critical fluctuations from hydrodynamics directly?
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Time evolution of cumulants (memory)

Mukherjee-Venugopalan-Yin
Relaxation to equilibrium
dP(oy)
dr
I

= F[P(00)]

dkp,

T = Llkn, fn—1,-- -]
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Time evolution of cumulants (memory)

Mukherjee-Venugopalan-Yin
Relaxation to equilibrium
dP(o9)

- F[P(09)]
)

(T-T/AT

dkp,
? = L[Hn, Rp—1y.- ]

(T-To)/AT
(T-T)/AT

(T=T)AT
(T-T)fAT

T

R
R3 K4
Signs of cumulants also depend on off-equilibrium dynamics.
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Time evolution of cumulants (memory)

Mukherjee-Venugopalan-Yin

Relaxation to equilibrium

dP(o0)
2290 rp B}

190 _ Fip(ov)

U

dkp, o L
o = L[kn, Kn—1,-- -] E E
5‘@@\\

?@o(;t\\ K3

(T=T)AT
(T-T)fAT

T

o
K3 K4

Signs of cumulants also depend on off-equilibrium dynamics.
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Time evolution of cumulants (memory)

Mukherjee-Venugopalan-Yin

Relaxation to equilibrium

(T-T/AT

AP0) _ FiP(oy)

(T-To)/AT
(T-T)/AT

(T=T)AT
(T-T)fAT

T

D o
(=) dpe

K3 K4

Signs of cumulants also depend on off-equilibrium dynamics.
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Hydrodynamics breaks down at CP

™ = eutu” + pA*Y + THY

visc
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Hydrodynamics breaks down at CP

™ = eutu” + pA*Y + THY

visc

TH = —CAM(V -u) + ...

visc

Near CP gradient terms are dominated by ¢ ~ &% — oo
(z —a/v=3).
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Hydrodynamics breaks down at CP

™ = eutu” + pA*Y + THY

visc

TH = —CAM(V -u) + ...

visc

Near CP gradient terms are dominated by ¢ ~ &% — oo
(z —a/v=3).

When k ~ ¢-3 hydrodynamics breaks down, i.e., while k& < ¢! still.
(For simplicity, measure dim-ful quantities in units of T, i.e., k ~ T(T¢)3.)

Why does hydro break at so small £?
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Critical slowing down and bulk viscosity

Bulk viscosity is the effect of system taking time to adjust to local
equilibrium (Khalatnikov-Landau).

Phydro = Pequilibrium — (V.o

V - v — expansion rate

C "~ Trelaxation ™~ fd
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Critical slowing down and bulk viscosity

Bulk viscosity is the effect of system taking time to adjust to local
equilibrium (Khalatnikov-Landau).

Phydro = Pequilibrium — (V.o

V - v — expansion rate

C "~ Trelaxation ™~ 53

Hydrodynamics breaks down because of large relaxation time
(critical slowing down).

Similar to breakdown of an effective theory due to a low-energy mode
which should not have been integrated out.
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Critical slowing down and Hydro+

® There is a critically slow mode ¢ with relaxation time 7, ~ &3.
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Critical slowing down and Hydro+

® There is a critically slow mode ¢ with relaxation time 7, ~ &3.

® To extend the range of hydro — extend hydro by the slow mode.

(MS-Yin 1704.07396, in preparation)
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Critical slowing down and Hydro+

® There is a critically slow mode ¢ with relaxation time 7, ~ &3.

® To extend the range of hydro — extend hydro by the slow mode.

(MS-Yin 1704.07396, in preparation)
® “Hydro+” has two competing limits, & — 0 and £ — oo;

or competing rates 'y ~ £73 — 0 and pyaro ~ k — 0.
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Critical slowing down and Hydro+

® There is a critically slow mode ¢ with relaxation time 7, ~ &3.

® To extend the range of hydro — extend hydro by the slow mode.

(MS-Yin 1704.07396, in preparation)
® “Hydro+” has two competing limits, & — 0 and £ — oo;
or competing rates 'y ~ £73 — 0 and pyaro ~ k — 0.

® Regime |: T, >> Thyaro — Ordinary hydro (¢ ~ &3 — oo at CP).
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Critical slowing down and Hydro+

® There is a critically slow mode ¢ with relaxation time 7, ~ &3.

® To extend the range of hydro — extend hydro by the slow mode.

(MS-Yin 1704.07396, in preparation)
® “Hydro+” has two competing limits, £ — 0 and £ — oo;
or competing rates 'y ~ £73 — 0 and pyaro ~ k — 0.
® Regime |: T, >> Thyaro — Ordinary hydro (¢ ~ &3 — oo at CP).
Crossover occurs when Chydro ~ T'g, Or k ~ 5—3.

® Regime ll: k> ¢33 —*“Hydro+” regime.
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Advantages/motivation of Hydro+

® Extends the range of validity of “vanilla” hydro near CP

to length/time scales shorter than O(¢£3).
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Advantages/motivation of Hydro+

® Extends the range of validity of “vanilla” hydro near CP

to length/time scales shorter than O(¢£3).

® No kinetic coefficients diverging as ¢3.

(Since noise ~ ¢, also the noise is not large.)
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Ingredients of “Hydro+”

® Nonequilibrium entropy, or quasistatic EOS:

s*(g,m, @)
Equilibrium entropy is the maximum of s*:

s(e,n) = m(?X s*(e,n, )
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Ingredients of “Hydro+”

® Nonequilibrium entropy, or quasistatic EOS:
s*(g,m, @)
Equilibrium entropy is the maximum of s*:

s(e,n) = m(?X s*(e,n, )

® The 6th equation (constrained by 2nd law):

*

(u-0)p = —y4m — Gyp(0 - u), where T = 96

® Another example: relaxation of axial charge.
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Linearized Hydro+

Linearized Hydro+ has 4 longitudinal modes (soundx2 + density + ¢).

In addition to the usual c;, D, etc. Hydro+ has two more parameters

A =c?—c2and T =T,.

The sound velocities are different in Regime | (c;£ < T') and I

cg = (8}9) and ¢ = <8p>
Oe s/n,m=0 e s/n,¢

The bulk viscosity receives large contribution from the slow mode
given by Landau-Khalatnikov formula

Al = wAP)T
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Modes
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Microscopic origins of Hydro+

Understanding the microscopic origin of the slow mode:

The fluctuations around equilibrium are controlled by the entropy
functional P ~ .

Near the critical point convenient to “rotate” the basis of variables to
“Ising™-like critical variables £ and M. M ~ s/n — (s/n)cp.

1 1
OS[6E,0M] = | 5 apm (6M)* + 5 (6E) +bOESM? + ...

Since ap < ag fluctuations of M are large and are slow to equilibrate.

Their magnitude is related to the slow relaxation mode ¢.
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Hydro + mode distribution

Separate “hard” k > ¢! and “soft” k < ¢! modes.

The new variable, “mode distribution function”:

¢tz Q) = / (OM(t, +y/2) SM(t,x —y/2)) e QY

Yy

The additional mode distribution function relaxation equation:

(u ’ a)¢(t’ T, Q) = ZFM(Q) [CL'X/% - ¢(ta T, Q)]

where I'\((Q) is known from model H (Kawasaki).
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Relaxation of slow mode(s).

— KafKp=1.2

— Kz/Kg=1.5
Ka/Ko =3

— Kz/Kp=8

0o 0s 10 15 20 25
Qg
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Summary

® A fundamental question for Heavy-lon collision experiments:

Is there a critical point on the boundary between QGP and
hadron gas phases?

. , BEST
Theoretical framework is needed — the goal for AT

® | arge (non-gaussian) fluctuations — universal signature of a crit-
ical point.

® In H.I.C., the magnitude of the signatures is controlled by dy-
namical non-equilibrium effects. The physics of the interplay of
critical and dynamical phenomena can be captured by hydrody-
namics with a critically slow mode(s) — Hydro+.
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