Fractional quantum Hall effect and duality

Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017

 General prologue: Fractional Quantum Hall Effect (FQHE)

- General prologue: Fractional Quantum Hall Effect (FQHE)
- Composite fermions

- General prologue: Fractional Quantum Hall Effect (FQHE)
- Composite fermions
- The puzzle of particle-hole symmetry

- General prologue: Fractional Quantum Hall Effect (FQHE)
- Composite fermions
- The puzzle of particle-hole symmetry
- Dirac composite fermions

General Prologue

- QCD is a prime example of a strongly coupled theory
- The particle excitations of the vacuum are very different from the microscopic degree of freedom
- A very similar situation in FQHE

The setup

Integer quantum Hall effect

- Ignore Coulomb interactions
- When electrons moving in 2D in a magnetic field, energy is quantized: Landau level
- IQHE: electrons filling n Landau levels

Plateaux require energy gap

Fractional QHE

Assume we have less particles than states on LLL

In the approximation of noninteracting electrons: exponential degeneracy of states

Fractional QHE

Assume we have less particles than states on LLL

In the approximation of noninteracting electrons: exponential degeneracy of states

Why the FQH problem is hard

- degenerate perturbation theory
- Starting point: exponentially large number of degenerate states
- Any small perturbation lifts the degeneracy
- no small parameter

Lowest Landau level limit

$$H = \sum_{a} \frac{(\mathbf{p}_a + e\mathbf{A}_a)^2}{2m} + \sum_{\langle a,b\rangle} \frac{e^2}{|\mathbf{x}_a - \mathbf{x}_b|}$$

Lowest Landau level limit

$$H = \sum_{a} \frac{(\mathbf{p}_a + e\mathbf{A}_a)^2}{2m} + \sum_{\langle a,b\rangle} \frac{e^2}{|\mathbf{x}_a - \mathbf{x}_b|}$$

 $m \rightarrow 0$

Lowest Landau level limit

$$H = \sum_{a} \frac{(\mathbf{p}_a + e\mathbf{A}_a)^2}{2m} + \sum_{\langle a,b\rangle} \frac{e^2}{|\mathbf{x}_a - \mathbf{x}_b|}$$

Experimental hints

Jain's sequences of QH plateaux

Systematics of Jain's sequences

- Gapped states
- Energy gap goes down ~ 1/n for $n \rightarrow \infty$
- n=∞: gapless, likely Fermi liquid state

A powerful theory with a flaw

(Wilczek 1982, Jain 1989)

per e

per e

average per G

IQHE of CFs with v=1

original fermions

composite fermions (n=2)

HLR field theory

$$\mathcal{L} = i\psi^{\dagger}(\partial_0 - iA_0 + ia_0)\psi - \frac{1}{2m}|(\partial_i - iA_i + ia_i)\psi|^2 + \frac{1}{2}\frac{1}{4\pi}\epsilon^{\mu\nu\lambda}a_{\mu}\partial_{\nu}a_{\lambda}$$

$$b = \nabla \times a = 2 \times 2\pi \psi^{\dagger} \psi$$
 "flux attachment"

mean field:
$$B_{\text{eff}} = B - b = B - 4\pi n$$

$$\nu = \frac{1}{2} \qquad \qquad B_{\text{eff}} = 0$$

Jain's sequence of plateaux

• Using the composite fermion most observed fractions can be explained

Halperin Lee Read 1993

per e

Halperin Lee Read 1993

per e

Halperin Lee Read 1993

Halperin Lee Read 1993

CFs form a Fermi liquid; HLR theory

Is the composite fermion real?

- Composite fermion can be detected as a quasiparticle near half-filling
 - large semiclassical orbit when magnetic fields do not exactly cancel

(Kamburov et al, 2014)

- For a long time it was thought that the HLR theory (zoomed in the near Fermi surface region) gives the correct low-energy effective theory
- There is one crucial problem

The problem of particle-hole symmetry

Particle-hole symmetry

exact symmetry the Hamiltonian on the LLL, when mixing of higher LLs negligible

PH conjugate pairs of FQH states

$$\nu = \frac{n}{2n+1} \qquad \qquad \nu = \frac{n+1}{2n+1}$$

$$v = 1/3$$
 $v = 2/3$

PH conjugate pairs of FQH states

$$\nu = \frac{n}{2n+1} \qquad \qquad \nu = \frac{n+1}{2n+1}$$

$$v = 2/5$$
 $v = 3/5$

PH conjugate pairs of FQH states

$$\nu = \frac{n}{2n+1} \qquad \qquad \nu = \frac{n+1}{2n+1}$$

PH conjugate pairs of FQH states

$$\nu = \frac{n}{2n+1} \qquad \qquad \nu = \frac{n+1}{2n+1}$$

$$v = 3/7$$
 $v = 4/7$

CF picture does not respect PH symmetry

PH symmetry in HLR

- HLR Lagrangian does not have any symmetry that can be identified with PH symmetry ~1997
- The problem was considered "hard" as it requires projection to lowest Landau level
 - PH conjugation acts nonlocally

Sharpening the problem

- Consider a 2-component massless Dirac fermion
- Can realize fractional quantum Hall effect
- Natural particle-hole symmetry at zero density

The puzzle of QHE for Dirac fermion

- Half filled Landau level arises naturally at zero chemical potential
- Turn on a magnetic field: ground state is a Fermi liquid
- Volume of Fermi sphere ~ magnetic field
- Which conserved charge in Luttinger's theorem ???

Solution to the problem of particlehole symmetry

Prelude to solution: particle-vortex duality

Peskin; Dasgupta, Halperin

$$\mathcal{L}_1 = -|\partial_\mu \Phi|^2 - m^2 |\Phi|^2 - \lambda |\Phi|^4$$
$$\mathcal{L}_2 = -|(\partial_\mu - a_\mu)\phi|^2 - \tilde{m}^2 |\phi|^2 - \tilde{\lambda} |\phi|^4$$

Goldstone boson photon particle vortex

Coupling to external gauge field

$$\mathcal{L}_{1} = -|(\partial_{\mu} - A_{\mu})\phi|^{2} - m^{2}|\phi|^{2} - \lambda|\phi|^{4}$$

$$\mathcal{L}_2 = -|(\partial_\mu - a_\mu)\phi|^2 - \tilde{m}^2|\phi|^2 - \tilde{\lambda}|\phi|^4 + \frac{1}{2\pi}\epsilon^{\mu\nu\lambda}A_\mu\partial_\nu a_\lambda$$

$$j^{\mu} = \frac{1}{2\pi} \epsilon^{\mu\nu\lambda} \partial_{\nu} a_{\lambda}$$

Hypothetical duality

DTS 2015 Metlitski,Vishwanath 2015 Wang, Senthil 2015

"electron theory" $\mathcal{L} = i \overline{\psi}_e \gamma^\mu (\partial_\mu - i A_\mu) \psi_e$

CF theory
$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}(\partial_{\mu} - ia_{\mu})\psi - \frac{1}{4\pi}\epsilon^{\mu\nu\lambda}A_{\mu}\partial_{\nu}a_{\lambda}$$

Particle-vortex duality

$$S = \int d^3x \left[i\bar{\psi}\gamma^{\mu}(\partial_{\mu} - ia_{\mu})\psi - \frac{1}{4\pi}\epsilon^{\mu\nu\lambda}A_{\mu}\partial_{\nu}a_{\lambda} \right]$$

$$\rho = \frac{\delta S}{\delta A_0} = -\frac{b}{4\pi} \qquad \qquad \frac{\delta S}{\delta a_0} = 0 \longrightarrow \langle \psi \bar{\gamma}^0 \psi \rangle = \frac{B}{4\pi}$$

Turn on magnetic field lead to a finite density Landau's reasoning: Fermi surface

original fermion ψ composite fermion ψ_e magnetic fielddensitydensitymagnetic field

Dirac composite fermion

- Low energy dynamics of a half-filled Landau level is described by a low-energy effective theory of a new fermion ("composite fermion") coupled to a dynamical gauge field
- The composite fermion is electrically neutral
- Density of composite fermion = physical magnetic field

Particle-hole symmetry as CT symmetry

- Magnetic field breaks C, P, T
- preserves PT, CT, CP
- Particle-hole symmetry of the n=0 Landau level can be identified with CT
- Effective theory of the composite fermion has CT symmetry

Action of CT

$$A_0(t, \mathbf{x}) \to -A_0(-t, \mathbf{x}) \qquad a_0(t, \mathbf{x}) \to a_0(-t, \mathbf{x})$$
$$A_i(t, \mathbf{x}) \to A_i(-t, \mathbf{x}) \qquad a_i(t, \mathbf{x}) \to -a_i(-t, \mathbf{x})$$

$$a_0(t, \mathbf{x}) \to a_0(-t, \mathbf{x})$$

 $a_i(t, \mathbf{x}) \to -a_i(-t, \mathbf{x})$

$$\psi(t,\mathbf{x}) \to -i\sigma_2\psi(-t,\mathbf{x})$$

Particle-hole symmetry maps particle to particle

$$\mathbf{k}
ightarrow -\mathbf{k}$$

 $\psi
ightarrow i\sigma_2 \psi$
CT on composite fermion

Particle-hole symmetry maps particle to particle

$$\mathbf{k}
ightarrow -\mathbf{k}$$

 $\psi
ightarrow i\sigma_2 \psi$

DTS 2015

Away from half filling

$$S = \int d^3x \left[i\bar{\psi}\gamma^{\mu}(\partial_{\mu} - ia_{\mu})\psi - \frac{1}{4\pi}\epsilon^{\mu\nu\lambda}A_{\mu}\partial_{\nu}a_{\lambda} \right]$$

$$\rho = \frac{\delta S}{\delta A_0} = -\frac{b}{4\pi} \qquad \qquad \frac{\delta S}{\delta a_0} = 0 \longrightarrow \langle \psi \bar{\gamma}^0 \psi \rangle = \frac{B}{4\pi}$$
$$\neq 0$$

Now the CFs move in large circular orbits

(Kamburov et al, 2014)

Mapping Jain's sequences

$$\nu = \frac{n}{2n+1} \longrightarrow \nu_{\rm CF} = n$$

$$\nu = \frac{n+1}{2n+1} \longrightarrow \nu_{\rm CF} = n+1$$

Mapping Jain's sequences

Mapping Jain's sequences

CFs form an IQH state at half-integer filling factor: must be a Dirac fermion

IQHE in graphene

$$\sigma_{xy} = \left(n + \frac{1}{2}\right) \frac{e^2}{2\pi\hbar}$$

Figure 4 | **QHE for massless Dirac fermions.** Hall conductivity σ_{xy} and longitudinal resistivity ρ_{xx} of graphene as a function of their concentration at B = 14 T and T = 4 K. $\sigma_{xy} \equiv (4e^2/h)\nu$ is calculated from the measured

Novoselov et al 2005

 $\Theta^2 = (-1)^{M(M-1)/2}$

$$\Theta^2 = (-1)^{M(M-1)/2}$$
$$M = 2N_{\rm CF}$$

$$\Theta^2 = (-1)^{N_{\rm CF}}$$

$$\Theta^2 = (-1)^{M(M-1)/2}$$

 $M = 2N_{\rm CF}$
 $\Theta^2 = (-1)^{N_{\rm CF}}$

Dirac CF:
$$\psi \to (-i\sigma_2)^2 \psi = -\psi$$

Geraedts, Zaletel, Mong, Metlitski, Vishwanath, Motrunich; Levin, Son

Consequences of PH symmetry

• At exact half filling, in the presence of particle-hole symmetric disorders

$$\sigma_{xy} = rac{e^2}{2h}$$
LR $ho_{xy} = rac{2h}{e^2}$

Н

 $\alpha_{xx} = 0$

Potter, Serbyn, Vishwanath 2015

A new gapped state

- The composite fermions can form Cooper pairs
- Simplest pairing does not break particle-hole symmetry

 $\left\langle \epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}\right\rangle \neq 0$

• A new gapped state: PH-Pfaffian state

Consequences of Dirac CF

Suppression of Friedel oscillations in correlations of particle-hole symmetric observables $\hat{O} = (\rho - \rho_0) \nabla^2 \rho$

Direct proof of Berry phase π of the composite fermion

A window to duality

- Fermionic particle-vortex duality can be derived of a more "elementary" fermion-boson duality Karch, Tong; Seiberg, Senthil, Wang, Witten
 - small N version of duality between CS theories, tested at large N
- New dualities can be obtained
 - Example: Nf=2 QED3 is self-dual Cenke Xu

The elementary duality

$$\mathcal{L} = L[\psi, A] - \frac{1}{2} \frac{1}{4\pi} A dA$$

$$\mathcal{L} = L[\phi, a] + \frac{1}{4\pi}ada + \frac{1}{2\pi}Ada$$

Comments on duality

- One side of duality is a theory of a single 2component Dirac fermion coupled to U(I) gauge field
- It is usually thought QED3 with Nf fermions is unstable with respect to SSB for Nf<Nf*. Nf* ~ 6 in Schwinger-Dyson
- One lattice simulation (Karthik, Narayanan 2015) indicates Nf^{*} < 2.
- The stability of theory with Nf=1 is not required for fractional quantum Hall effect (finite density)

Conclusion

- The low-energy quasiparticle of half-filled Landau level is completely different from the electron
- Symmetries allowed to guess the form of the lowenergy effective theory
- Hints on new field-theoretic dualities in 2+1 D

References

References

DTS, PRX 5, 301027 (2015) Wang, Senthil Metlitski, Vishwanath Geraedts et al., 1508.04140 Mross, Alicea, Motrunich, 1510.08455

•••