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General Prologue

® QCD is a prime example of a strongly coupled
theory

® The particle excitations of the vacuum are very
different from the microscopic degree of freedom

® A very similar situation in FQHE




The setup




Integer quantum Hall effect

® |gnore Coulomb interactions

® When electrons moving in 2D in a magnetic field, energy
is quantized: Landau level

® |QHE: electrons filling n Landau levels
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Plateaux require energy gap




Fractional QHE

Assume we have less particles than states on LLL
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In the approximation of noninteracting electrons:
exponential degeneracy of states
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Why the FQH problem is hard
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degenerate perturbation theory

Starting point: exponentially large number of
degenerate states

Any small perturbation lifts the degeneracy

no small parameter




Lowest Landau level limit
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Lowest Landau level limit
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Projection to
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Experimental hints




Jain’s sequences of QH plateaux
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Systematics of Jain’s
sequences

® Gapped states
® Energy gap goes down ~ 1/n for n— 00

® n=00:gapless, likely Fermi liquid state




A powerful theory with
a flaw




Flux attachment

(Wilczek 1982, Jain 1989)

® Flux attachment: statistics does not change by
attaching an even number of flux quanta
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Composite fermion
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Composite fermion

v =1/3 FQH

average | per

IQHE of CFs with v=|I




Composite fermion

v =2/3 FQH

per ® @ average | per %?%?

FQHE for B |IQHE for

original fermions composite fermions (n=2)




HLR field theory
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b=V xa=2x2m) “flux attachment”

mean field: Bag=B—-b=B —4mn
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Jain’s sequence of plateaux

® Using the composite fermion most observed
fractions can be explained

Electrons Composite fermions
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Prediction for nu=1/2 state

Halperin Lee Read 1993
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Prediction for nu=1/2 state

Halperin Lee Read 1993
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CFs form a Fermi liquid; HLR theory
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Is the composite fermion real?

® Composite fermion can be detected as a
quasiparticle near half-filling

® Jarge semiclassical orbit when magnetic fields do
not exactly cancel




W=40nm n=1.74x10" cm™>
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(Kamburov et al, 2014)




® For a long time it was thought that the HLR theory

(zoomed in the near Fermi surface region) gives the
correct low-energy effective theory

® There is one crucial problem







The problem of
particle-hole symmetry




Particle-hole symmetry
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exact symmetry the Hamiltonian on the LLL, when mixing
of higher LLs negligible




PH symmetry in the CF theory

PH conjugate pairs of FQH states
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PH symmetry in the CF theory

PH conjugate pairs of FQH states

n n+ 1
P V:
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v=3/7 v=4/7

CF picture does not respect PH symmetry




PH symmetry of a Fermi
liquid!?
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PH symmetry of a Fermi
liquid!?
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PH symmetry in HLR

® HLR Lagrangian does not have any symmetry that
can be identified with PH symmetry ~1997

® The problem was considered “hard” as it requires
projection to lowest Landau level

® PH conjugation acts nonlocally




Sharpening the problem

® Consider a 2-component massless Dirac fermion
® Can realize fractional quantum Hall effect

® Natural particle-hole symmetry at zero density

E 4




The puzzle of QHE for Dirac
fermion

Half filled Landau level arises naturally at zero
chemical potential

Turn on a magnetic field: ground state is a Fermi
liquid
Volume of Fermi sphere ~ magnetic field

Which conserved charge in Luttinger’s theorem ???




Solution to the
problem of particle-
hole symmetry




Prelude to solution:
particle-vortex duality

Peskin; Dasgupta, Halperin
L1 =—|0,®]° — m?|®]* — \|P|*

Lo=—|(0, —an)o|® —m?|o)? — No|*

Goldstone boson photon

particle vortex




Coupling to external gauge
field
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Rypothetical duality

DTS 2015
Metlitski, Vishwanath 2015
Wang, Senthil 2015

“electron theory” L = ihey* (0, — iA,)e

_ 1
CF theory L =ipy" (0, — ia,)Y "' A0, a,
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Particle-vortex duality
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Turn on magnetic field lead to a finite density
Landau’s reasoning: Fermi surface

original fermion composite fermion e

magnetic field density

density magnetic field




Dirac composite fermion

® | ow energy dynamics of a half-filled Landau level is
described by a low-energy effective theory of a
new fermion (“composite fermion”) coupled to a

dynamical gauge field
® The composite fermion is electrically neutral

® Density of composite fermion = physical magnetic
field




Particle-hole symmetry as
CT symmetry

Magnetic field breaks C,P, T
preserves PT, CT, CP

Particle-hole symmetry of the n=0 Landau level
can be identified with CT

Effective theory of the composite fermion has CT
symmetry




Action of CT

Aog(t,x) = —Ap(—t,x) ao(t,x) — ag(—t,x)

Ai(6%) — Aj(—t,x) ai(t,x) = —a;(—t,x)

Y(t,x) = —ioap(—t, X)




CT on composite fermion
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CT on composite fermion
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CT on composite fermion

@ — ©

Particle-hole symmetry maps particle to particle

k — —k
w%iggw




CT on composite fermion

@ — ©

Particle-hole symmetry maps particle to particle

k — —k
w%iggw

DTS 2015




Away from half ﬁlllng
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Now the CFs move in large
circular orbits
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Mapping Jain’s sequences
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CFs form an IQH state at half-integer filling factor:
must be a Dirac fermion




IQHE in graphene

n (102 cm™)

Figure 4 | QHE for massless Dirac fermions. Hall conductivity o, and
longitudinal resistivity p ., of graphene as a function of their concentration
at B=14Tand T=4K. 0, = (4e*/h)v is calculated from the measured

Novoselov et al 2005




(Particle-hole)?




On a single Landau level
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On a single Landau level




On a single Landau level

Dirac CF: > (. iUz)Qw = —

Geraedts, Zaletel, Mong, Metlitski,Vishwanath, Motrunich; Levin, Son




Consequences of PH symmetry

J =0z E+ nyE X Z+ 0p VI + OéxyVT X Z

\/ N/

conductivities thermoelectric
coefficients

® At exact half filling, in the presence of particle-hole
symmetric disorders

Oy = 0

Potter, Serbyn,Vishwanath 2015




A new gapped state

® The composite fermions can form Cooper pairs

® Simplest pairing does not break particle-hole
symmetry

(€*Phathg) # 0

® A new gapped state: PH-Pfaffian state




Consequences of Dirac CF

Suppression of Friedel oscillations in correlations of
particle-hole symmetric observables O = (p — py)V*p
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Geraedts, Zaletel, Mong, Metlitsky,
Vishwanath, Montrunich, 2015

Direct proof of Berry phase 11 of the composite fermion




A window to duality

® Fermionic particle-vortex duality can be derived of
a more “elementary” fermion-boson duality Karch,
Tong; Seiberg, Senthil,Wang, Witten

® small N version of duality between CS
theories, tested at large N

® New dualities can be obtained

® Example: Nf=2 QED3 is self-dual Cenke Xu




The elementary duality
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Comments on duality

One side of duality is a theory of a single 2-
component Dirac fermion coupled to U(l) gauge field

It is usually thought QED3 with Nf fermions is
unstable with respect to SSB for Nf<Nf*. Nf* ~ 6 in

Schwinger-Dyson

One lattice simulation (Karthik, Narayanan 2015)
indicates Nf* < 2.

The stability of theory with Nf=1 is not required for
fractional quantum Hall effect (finite density)




Conclusion

The low-energy quasiparticle of half-filled Landau
level is completely different from the electron

Symmetries allowed to guess the form of the low-
energy effective theory

Hints on new field-theoretic dualities in 2+1 D
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