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macroscopic: microscopic:Separation of scales → 

Knudsen number
expansion:

FLUID

  ~ 1 m              ~                 

Macroscopic: Gradient of velocity field 

Example of microscopic scale
(gas): 

mean free path

The ubiquitousness of fluid dynamics

Based on conservations laws + large separation of length scales
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Quark-gluon plasma: the primordial liquid 

gluon self-interactions

QCD  = confinement + asymptotic freedom Quark-Gluon Plasma

?

Ex: Schenke, Jeon, Gale, PRL 2011

QGP perfect fluidity:                → emergent property of QCD??

Is this present even in elementary proton+proton collisions ???

Fluid dynamics at length scales of the size of a proton ???  
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QGP initial condition

QGP

Hydrodynamic behavior in small systems???? 

Knudsen number event-by-
event

macro scale

microscopic scale ????

J. Noronha-Hostler, JN, M. Gyulassy, PRC 2016

Schenke, Tribedy, Venugopalan, PRL 2012

There is no reason to believe that
 Kn has to be small in this case.



6

Hydrodynamics at its edge ...

What happens to a many-body system when                    ???

- This must be figured out to properly interpret collectivity in pp.

- Causality + divergence of gradient expansion → resummation

- Hydrodynamic attractor, Kn resummation, in complicated
flow profiles?

- Interplay between hydro and non-hydro modes when Kn ~ 1?

Heller, Spalinski PRL 2015
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II – Exact solutions of the Boltzmann equation
(full nonlinear collision kernel)
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Let us first focus solely on the dynamics of non-hydro modes
in rapidly expanding systems …
 

Simplest example: kinetic theory in an expanding Universe

Symmetries are so powerful that only non-hydro modes
have nontrivial dynamics
 

Fig. from D. Baumann's
lectures
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Friedmann-Robertson-Lemaitre-Walker (FRLW) spacetime

Maximally (spatially) symmetric
spacetime

K ~ 0 (spatially flat –> our universe)

K = 1, -1

Einstein's equations
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FLRW spacetime

Spatial isotropy + 
homogeneity 

       Isotropic and homogeneous expanding FLRW spacetime
(zero spatial curvature)

Ex: metric

Determined from Einstein's equations

Universe
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Friedmann-Lemaitre-Robertson-Walker spacetime

We consider an isotropic and homogeneous expanding FRW spacetime

Cosmological 
scale factor
(e.g., radiation)

(zero spatial curvature)

Hubble 
parameter

Distances get stretched

metric

Expanding system!



 

- Dilute gases display complex non-equilibrium dynamics. 
 

- The Boltzmann equation has been instrumental in physics and mathematics 
(e.g., 2010 Fields Medal).
 

Collision termSpace-time variation

General Relativistic Boltzmann equation

- It describes how the particle distribution function                    varies in time and space
due to the effects of collisions (and external fields).

General relativistic Boltzmann equation

on-shell
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Boltzmann Equation in FLRW spacetime

Simplest toy model for an out-of-equilibrium Universe:

- Massless particles, classical statistics, constant cross section: 

- Weakly coupled QCD at high T is much more complicated than this 

- However, I will solve also the case of a massless            field ... 

- Here                                 but  
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We want to find solutions for the distribution function

Given an initial condition:                and  

This equation includes general relativistic effects + full nonlinear 
collision dynamics

How does one solve this type of nonlinear integro-differential 
equation?

Our Boltzmann equation: 
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The moments method

- Originally introduced by Grad (1949) and used by Israel and Stewart (1979) in the
relativistic regime.

- Applications in HIC: see DNMR, Phys. Rev. D 85 (2012) 114047

- Used more recently in Phys. Rev. Lett. 116 (2016) 2, 022301 

  The idea is simple

 Instead of solving for the distribution function itself directly, one uses the Boltzmann 
eq. to find exact equations of motion for the moments of the distribution function.

Ex: The particle density                                                      is a scalar moment  

with equation
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Ex: The energy density                                              is a scalar moment  

with equation

Clearly, due to the symmetries, here only scalar moments can be nonzero. 

Thus, if we can find the time dependence of the scalar moments

via solving their exact equations of motion, one should be able to recover 
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Defining the scaled time:

(constant mean free path)

And the normalized moments                                      which obey the exact set of eqs: 

GR effect Simple recursive nonlinearity

Conservation laws require 

See Bazow, Denicol, Heinz, Martinez, JN,
PRL 2016, arXiv:1507.07834 [hep-ph]

ALL THE NONLINEAR BOLTZMANN DYNAMICS IS ENCODED HERE

http://arxiv.org/abs/arXiv:1507.07834
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“Fourier” transforming the Boltzmann equation

G. Denicol and JN, to appear 

If the moments are what we want, it makes sense to define the generating function

where v is a complex number

Thermalization → development of a pole at 

x
Thermalization process is mapped onto
how the analytical structure of this function
changes with time.

Equilibrium = global
attractor on the plane 
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“Fourier” transforming the Boltzmann equation

G. Denicol and JN, to appear 

This way to see the thermalization process is valid for any type of cross section
(does not depend on the mass, quantum statistics changes the pole) 

It is easy to 
show that this → 

Taking derivatives w.r.t.         one can easily find the equation for the moments

Becomes this: 
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Full Analytical Solution

Using the moments equations in this form

One can show that 

is an analytical solution of the moments equations !

Redefining time

Non-perturbative in 
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Full Analytical Solution

Analytical solution of the Boltzmann equation for an expanding gas 

= fugacity

BDHMN, PRL (2016) arXiv:1507.07834 [hep-ph]

Initial condition

See BDHMN arXiv:1607.05245  for many more details about this and other solutions

http://arxiv.org/abs/arXiv:1507.07834
https://arxiv.org/pdf/1607.05245.pdf
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Full Analytical Solution

Time evolution Momentum dependence

For radiation dominated universe higher order moments will certainly not erase 
the info about initial conditions → system never equilibrates due to expansion.

The approach to equilibrium here depends on the occupancy of each moment.
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Full Analytical Solution – Generating function

For the analytical solution

one finds

Time dependent pole at x Equilibrium = global
attractor on the plane 

IC at
- Thermalization process of different initial conditions 
correspond to other trajectories on the plane. 

- Thermalization vs. non-hydro modes???? Universality? 
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Solving conformal kinetic theory

G. Denicol and JN, to appear 

- Assume tree level ~         , massless, classical statistics

FLRW conformal gauge Weyl transformation

Weyl symmetry emerges when m=0 (BRSSS, 2007)

One can solve the simple “static” dynamics and can Weyl back 
to the expanding state we desire at the end
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Solving conformal kinetic theory

G. Denicol and JN, to appear 

Boltzmann equation

General solution: 

Laguerre polynomials

See arXiv:1607.05245  

Mode-by-mode coupling:

Equilibrium:   

Moments

https://arxiv.org/pdf/1607.05245.pdf
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Solving conformal kinetic theory

G. Denicol and JN, to appear 

While for the constant cross section case dynamics was simple

BDHMN arXiv:1607.05245 

For the case of scalar field the exact equation for the moments is 

Resummation!!!!“Debye” mass squared

https://arxiv.org/pdf/1607.05245.pdf
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Solving conformal kinetic theory

G. Denicol and JN, to appear 

“Thermalization time” increases significantly
for the scalar field case

- It has been a challenge to generalize our
approach to anisotropic flows (e.g. Bjorken)

IC: 
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III – Hydrodynamic behavior of rapidly expanding
fluids
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Hydrodynamics as a series expansion

Scaled Boltzmann equation Knudsen number

Formal solution via a series

→ derives (does not assume) ideal fluid dynamics

No statement about existence of series is made

D. Hilbert, 1912

Hilbert Series
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Hydrodynamics as a gradient expansion

S. Chapman D. Enskog

Assume deviations from local equilibrium

- At 0th order in Kn → Euler equations, at 1st order → Navier-Stokes 

- Very hard to carry out procedure to higher orders

- Solution of Boltzmann completely defined in terms of local
hydrodynamic fields:   

Convergence???

Chapman-Enskog series
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Hydrodynamics as a gradient expansion

- Chapman-Enskog solution, though systematic, is highly contrived

- Kn itself depends on the flow properties

- Problems with instabilities and acausality in the relativistic domain

- Procedure cannot describe all possible solutions of Boltzmann …

Ex: Homogeneous relaxation 

→ Dynamics contains only non-hydro modes

Non-hydro modes → defined by nonzero eigenvalues of collision operator
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Chapman-Enskog expansion: Non-relativistic regime

Santos, Brey, Dufty, 1571, vol 51 PRL (1986) 

Newtonian fluid:

Uniform shear flow 

BGK Boltzmann Series converges if

(Maxwell molecules)

DIVERGES

(e.g., hard spheres, n=2)

Pressure tensor
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Hydrodynamics from the method of moments

Harold Grad, 1948

Define infinite set of moments such as

energy density Energy-momentum tensor

- Use Boltzmann equation to find exact equations for the moments

- Reconstruct solution of Boltzmann using a complete set of moments

- In the relativistic domain, 14 moments truncation → Israel-Stewart eqs. 
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PROS:

- Moments method played a major role in the derivation of the
hydrodynamic equations for the QGP – linear stability and causality!!!

- Used in many approaches: Israel-Stewart, DNMR, (v)AHYDRO ...

- Describe interactions between hydro and non-hydro modes

- Can provide consistent (and convergent) solution of Boltzmann

CONS:  

- Absence of a small expansion parameter

- Very hard to derive general equations in practice (full collision term),
unless flow too simple (such as FLRW)
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Divergence of the Chapman-Enskog (CE) expansion

Heavy ion collisions → perfect arena to study CE expansion

Bjorken expanding (conformal, transversely homogeneous) fluid:   

G. Denicol and JN,  arXiv:1608.07869 [nucl-th]

Spacetime rapidity

Milne propertime
By symmetry: 

- 

- Any gradient  

Boltzmann equation

Flow velocity

https://arxiv.org/abs/1608.07869
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Divergence of the Chapman-Enskog (CE) expansion

G. Denicol and JN,  arXiv:1608.07869 [nucl-th]

Relaxation time        approximation Knudsen number 

Shear stress tensor Landau matching condition

Massless particles, constant relaxation time

constant 

https://arxiv.org/abs/1608.07869
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Divergence of the Chapman-Enskog (CE) expansion

G. Denicol and JN,  arXiv:1608.07869 [nucl-th]

Method of moments: 

Dimensionless moments

Nonlinearity

https://arxiv.org/abs/1608.07869
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Divergence of the Chapman-Enskog (CE) expansion

G. Denicol and JN,  arXiv:1608.07869 [nucl-th]

Solution of Boltzmann → reconstructed via 

Chapman-Enskog series: Knudsen number 

Exact recursive relation

https://arxiv.org/abs/1608.07869
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Divergence of the Chapman-Enskog (CE) expansion

G. Denicol and JN,  arXiv:1608.07869 [nucl-th]

Chapman-Enskog series is clearly divergent !!!

See also Heller, Kurkela,
Spalinski, arXiv:1609.04803

https://arxiv.org/abs/1608.07869
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Divergence of the Chapman-Enskog (CE) expansion

Simple argument (a la Dyson) to show that the series must diverge

If series converged around                        , there would be a nonzero
radius of convergence R  

But for RTA 

Since 

Im Kn

Re Kn
0

INSTABILITY  !!!!!!

R
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Generalized Chapman-Enskog expansion

G. Denicol and JN,  arXiv:1608.07869 [nucl-th]

Regularity of the system near initial condition:

                                      +

And the 1st order nature of the ODE's for the moments

Show that at early times  

Essential singularity

Dynamics contains highly 
non-perturbative terms !!!!

Valid also for a nonlinear kernel

https://arxiv.org/abs/1608.07869
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Generalized Chapman-Enskog expansion

G. Denicol and JN,  arXiv:1608.07869 [nucl-th]

- These new terms cannot be captured by the usual Knudsen series

- They show that initial condition data is not easily “erased”

- They carry information about how non-hydro modes 

We define a Generalized Chapman-Enskog (GCE) series

This introduces an expansion parameter in the moments method 

https://arxiv.org/abs/1608.07869
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Generalized Chapman-Enskog expansion

G. Denicol and JN,  arXiv:1608.07869 [nucl-th]

CE series:              → obey algebraic relations

GCE series:                  → obey differential equations  

New series describes the whole time evolution since initial condition !!!

https://arxiv.org/abs/1608.07869
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Generalized Chapman-Enskog expansion

New series describes the whole time evolution since initial condition !!!

Excellent agreement with full exact solution of Boltzmann already when
truncated at 2nd order !!!



45

One expects that:
 

- First the higher order moments relax, effectively changing the equation 
for shear stress tensor

- RTA Boltzmann → Israel-Stewart-like equation → hydrodynamic 
   attractor

Israel-Stewart-like eqs

Hydrodynamic attractor
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What happens in the case of more complex flows?

Gubser, PRD82 (2010) 085027.
Gubser and Yarom, NPB846 (2011) 469-511.

Transverse flow velocity in flat spacetime – Gubser flow

Symmetry under

Flow velocity
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Conformal hydrodynamics undergoing Gubser flow

Flat Minkowski space dS
3
 x R

3d de Sitter spaceComplicated dynamics

Trivial (locally static) flow

Weyl transformation

Gubser and Yarom, NPB846 (2011) 469-511

For other flows see:
Hatta, JN, Xiao
PRD89 (2014)
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Gubser flow and the Israel-Stewart equations

Marrochio, JN, Denicol, Luzum, Jeon, Gale, PRC 91, 014903 (2015)

Relaxation time:

Equations of motion Equations of motion: dS3 x R

NS gives 
negative
temperature

IS gives
well defined temperature
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Divergence of the gradient expansion: Gubser flow 

G. Denicol, JN, to appear

Israel-Stewart equations can be written as

Expansion in powers of ~ 

Gradient series diverges
also for more complex flow
patterns !!!
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Attractor dynamics for Gubser flow

G. Denicol, JN, to appear

We follow Heller, Spalinski PRL 2015

Define new variable w 

Look for attractor behavior 

non-equilibrium state

Goes to equilibrium

“Cold plasma limit”

Attractor
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- Are there hydrodynamic attractors for flows without any particular symmetry, 
such as in event-by-event simulations of heavy ion collisions?

- How does one generalize the resummation procedure when Kn is not “simple”
(i.e., series depends on more than one variable)? 

- Israel-Stewart leads to causal dynamics (in contrast to Navier-Stokes) and 
has a hydrodynamic attractor (at least for simple flows such as Bjorken and Gubser).

- Note that causality implies resummation of spatial derivatives:

cannot be a polynomial in k !!!! 

Linearized modes
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IV – A different way to handle 2nd order corrections
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- Asymptotic series are good in physics (QED). 

- Why is there is so much interest about the divergence of the 
gradient expansion in fluid dynamics?

- The problem is that we cannot seem to be able to easily truncate. 
If we write the viscous correction as 

To 2nd order in the expansion BRSSS (2007) proposed for a conformal fluid

Landau's choice
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If we stop at 1st order → relativistic Navier-Stokes:

- Initial value problem requires                             in the initial spacelike hypersurface 

- This theory does not have a well-defined Cauchy problem (Pichon, 1965).

- This theory is linearly unstable around equilibrium (Hiscock, Lindblom, 1984).

 

On the other hand, the BRSSS 2nd order theory 

- Main starting point of current hydrodynamic simulations (after IS-like
resummation).

- Initial value problem requires                                      → EOM are of 3rd order

- Causality is a tricky business in theories with higher order derivatives (even if
metric is flat) → I don't know how to deal with this.

- Naive linearized analysis shows that this theory is acausal and unstable
 (at large k)
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This problem is very complicated mathematically …

But let us be bold (and somewhat reckless)*

*It is easier to ask for forgiveness than to ask for permission ...
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To make it easier to write down a causal theory based on gradients:

- Remove for now the terms with 3rd in derivatives

- Remove terms in the energy-momentum tensor

- Include 2nd order-like terms (easy to handle in a proof of causality)    
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With 

This theory is:

- Causal (full nonlinear level)

- Linearly stable around equilibrium

- Has a well defined Cauchy problem (solution exists)

- Can be dynamically coupled to Einstein's equations 
(Cauchy + “gravity”)

Bemfica, Disconzi, JN, work in progress

where
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Bemfica, Disconzi, JN

Existence, uniqueness, and causality

Transport coeff.

Coupled

Dynamical variables:  
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Hydrodynamic attractor (Bjorken flow)

Heller, Spalinski variables

Series

Divergent series
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Hydrodynamic attractor (Bjorken flow)

Attractor

Causality → Resummation → Attractor ?
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Gubser flow

New tensor

Navier-Stokes

Ideal hydro

New causal tensor solution → Well defined temperature ~ Israel-Stewart
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Conclusions 

- Exact solutions of kinetic theory can be used to reveal nontrivial
dynamics of non-hydro modes (thermalization mapped onto complex plane)

- Hydrodynamic series diverges for simple flows (Bjorken, Gubser)

- Attractor solutions may be useful to define hydrodynamics in the large
Kn regime → Extension to nontrivial flows such as ebe IC?

- Consequence of hydrodynamic attractors to HIC phenomenology???

- A causal, stable, “GR compatible” 2nd-like theory can be written down
(at least in the conformal case)
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EXTRA SLIDES
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Divergence of the gradient expansion at strong coupling 

Fluid/gravity correspondence
(aka Chapman-Enskog at strong 
coupling) developed by Minwalla, 
Hubeny, Rangamani, and etc

1st study of gradient expansion at large orders at strong coupling
by Heller et al., PRL (2013), for SYM with Bjorken expansion
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Given that heavy ion data indicates that T ~ QCD transition the QGP 
is a nearly perfect fluid …

There must have been nearly perfect fluidity in the early universe

Experimental consequences of that are not yet known (are there any??)

Given that around those temperatures QCD is not conformal, we
would like to use a nonconformal gravity dual in a FLRW spacetime

This was done by A. Buchel, M. Heller, JN in arXiv:1603.05344 [hep-th]
PRD (2016)  

https://arxiv.org/abs/1603.05344
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HolographyToy model for QCD: N=2* gauge theory

N = 4 SYM theory  + 

Pilch, Warner, Buchel, Peet, Polchinski, 2000
A. Buchel, S. Deakin, P. Kerner and J. T. Liu, NPB 784 (2007) 72

Bosonic mass

Fermionic mass

A relevant deformation of SYM:            Breaking of SUSY 

 C. Hoyos, S. Paik, and L. G. Yaffe, JHEP 10, 062 (2011)
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Holography
Pilch, Warner, Buchel, Peet, Polchinski, 2000

Classical gravity dual action:

Scalar potential

- Well defined stringy origin

- Non-conformal strongly interacting plasma: 

- Used in tests of holography in non-conformal setting

Bulk viscosity

Toy model for QCD: N=2* gauge theory
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HolographyN=2* gauge theory in a FLRW Universe

Characteristic formulation of gravitational dynamics in asymptoticaly AdS5
spacetimes

Assuming spatial isotropy and homogeneity                        leads to

Chesler,Yaffe, 2013

Encode non-equilibrium
dynamics in an expanding
Universe !!!

Buchel, Heller, JN, arXiv:1603.05344 [hep-th], PRD 94, 106011 (2016)

https://arxiv.org/abs/1603.05344
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HolographyN=2* gauge theory in a FLRW Universe

Conformal limit

Analytical solution for SYM in FLRW spacetime

Temperature Energy density Pressure

Conformal anomaly!!!!

First studied by P. S. Apostolopoulos, G. Siopsis, and N. Tetradis, PRL, (2009)

Buchel, Heller, JN, arXiv:1603.05344 [hep-th], PRD 94, 106011 (2016)

https://arxiv.org/abs/1603.05344
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HolographyDivergence of the gradient series at strong coupling

In our FLRW case, the gradient expansion corresponds to

equilibrium dissipation

Energy-momentum
tensor

In terms of the energy density and pressure out-of-equilibrium

Bulk viscosity

Buchel, Heller, JN, arXiv:1603.05344 [hep-th], PRD 94, 106011 (2016)

https://arxiv.org/abs/1603.05344
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Holography

Entropy production 

For single component cosmologies

Factorial growth!!!

Apparent horizon:

Divergence of the gradient series at strong coupling

Buchel, Heller, JN, arXiv:1603.05344 [hep-th], PRD 94, 106011 (2016)

https://arxiv.org/abs/1603.05344
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Holography

1st analytical proof of the divergence of gradient expansion:
 

→  Knudsen gradient series has zero radius of convergence

→  Knudsen series leads to acausal and unstable dynamics

→ There must be a new way to define hydrodynamics 
      beyond the gradient expansion 

→  A recent way to understand that involves resurgence.
 

 

Divergence of the gradient series at strong coupling

Buchel, Heller, JN, arXiv:1603.05344 [hep-th], PRD 94, 106011 (2016)

https://arxiv.org/abs/1603.05344
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HolographyDivergence of the hydrodynamic series

Hydrodynamic series

Borel sum

Borel singularities = are the 
black hole quasinormal modes !!!

Buchel, Heller, JN, arXiv:1603.05344 [hep-th], PRD 94, 106011 (2016)

https://arxiv.org/abs/1603.05344
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Non-equilibrium entropy

One can prove that H-theorem is valid here. Entropy production solely
from non-hydrodynamic modes (hydro modes have decoupled).

Even though energy-momentum tensor always the same 
as in equilibrium.

Expansion is never truly adiabatic in this toy Universe.

See arXiv:1607.05245

https://arxiv.org/pdf/1607.05245.pdf
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Resurgence

Recent works by Dunne, Unsal, Cherman, Heller, Janik ...

Heller, Spalinski, PRL 2015

Hydro expansion

via resurgence


