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Motivation

https://xkcd.com/1851/



To understand things I missed as a student: 

    What is pressure? 

    What are Maxwell’s equations in matter? 

Motivation



I was talking about the same subject here at Oxford last 
year, and may have made some incorrect incomplete 
statements. 

Hopefully, today’s talk will be an improvement.

Motivation



Hydrodynamics = whatever happens when stuff flows 

Magneto = whatever happens when stuff is placed 
                       in E, B fields 

Definitions

Image: http://sachikokodama.com



Classical low-energy effective theory for systems with 
U(1) gauge fields and locally in thermal equilibrium. 

Vanilla MHD:  
  Take Navier-Stokes 
  Add Maxwell’s eq-s in matter 
  Set Ei to zero, allow Bi non-zero 

What is MHD?



Want: 
   Thermodynamics in electromagnetic fields 
   Navier-Stokes modified by “bound” charges/currents 
   Systematic derivative expansion 
   Include electric fields 
   Classify transport coefficients 
   Connect with microscopics through Kubo formulas 
   Statistical fluctuations 
   …

What is MHD?



1. Write down hydro equations  (Eckart, Landau-Lifshitz) 

2. Mess with the eq-s to make them causal (Israel-Stewart) 

3. Find the right variables suitable for numerics 

4. Solve equations numerically 

5. Study interesting physics 

How hydro equations are solved in practice



1. Write down hydro equations  (Eckart, Landau-Lifshitz) 

2. Mess with the eq-s to make them causal (Israel-Stewart) 

3. Find the right variables suitable for numerics 

4. Solve equations numerically 

5. Study interesting physics 

How hydro equations are solved in practice

Until recently, no consensus on step 1 for relativistic MHD



I. Thermodynamics 

II. Hydro with fixed E & B 

III. Hydro with dynamical E & B 

Outline



Add external time-independent gμν, Aμ  

Compute  

Local correlations  ⟹ 

Near-uniform fields  ⟹  expand          in derivatives of g,A 

Leading order  ⟹ 

W [g,A] =

Z
d

d+1
x

p
�g F(g,A)

F(g,A)

F(g,A) = P +O(@)

W = �i lnZ[gµ⌫ , Aµ]

Equilibrium in external fields

BBBJMS  arXiv:1203.3544 
JKKMRY arXiv:1203.3556

http://arxiv.org/abs/1203.3544
http://arxiv.org/abs/1203.3556


W [g,A] =

Z

M
d

d+1
x

p
�g F(g,A) +

Z

@M
d

d
x

p
� L(g,A, n)

Response to external sources

gravitational field, 
rotation

electromagnetic fields
surface tension, 
boundary effects



Timelike Killing vector Vμ, e.g. Vμ =(1,0) for matter “at rest”

T =
1

�0

p
�V 2

, uµ =
V µ

p
�V 2

, µ =
V µAµ + ⇤Vp

�V 2

Fµ⌫ = uµE⌫ � u⌫Eµ � ✏µ⌫⇢�u
⇢B�

Definition of electric and magnetic fields:

Thermodynamic variables

JLY arXiv:1310.7024 

http://arxiv.org/abs/1310.7024


Equilibrium relations

E↵ � T�↵�@�
⇣ µ

T

⌘
= 0

a� = �@�T/T

u�@�µ = 0u�@�T = 0 , things don’t depend on time

gravitational potential induces 
temperature gradient

electric field induces charge  
gradient: this is electric  
screening

This has implication for derivative counting. For “weak” electric fields Eλ ∼ O(∂), the

gradients of T and µ are O(∂) as well. For “strong” electric fields Eλ ∼ O(1), there will be

an O(1) gradient of µ/T . How exactly this gradient is achieved depends on the nature of the

microscopic degrees of freedom. Given that the chemical potential determines the number

of charge carriers, we take “strong” electric fields to mean that both E and ∂µ are O(1),

while ∂T is still O(∂), so that ∂µ
µ ≫ ∂T

T . In the generating functional, the derivatives of the

chemical potential may then be traded for the electric field.

Similarly, the derivative of the velocity can be decomposed in equilibrium as

d = 1 : ∇µuν = −uµaν , (2.8a)

d = 2 : ∇µuν = −uµaν − 1
2ϵµνα u

αΩ , (2.8b)

d = 3 : ∇µuν = −uµaν − 1
2ϵµναβ u

αΩβ , (2.8c)

The vorticity is Ω ≡ −ϵµνλuµ∇νuλ for d = 2, and Ωµ ≡ ϵµναβuν∇αuβ for d = 3. This

velocity decomposition implies that both the expansion ∇µuµ and the shear tensor σµν ≡
(∆µα∆νβ +∆να∆µβ − 2

d∆
µν∆αβ)∇αuβ (where ∆µν = gµν + uµuν is the transverse projector)

vanish in equilibrium. This is as it should be: out of equilibrium, the expansion would

contribute to dissipation through bulk viscosity, and the shear tensor would contribute to

dissipation through shear viscosity.

Combined with the electromagnetic “Bianchi identity” ϵµναβ∇νFαβ = 0 in 3+1 dimen-

sions, the velocity decomposition (2.8) implies

∇·B = B·a− E·Ω ,

uµϵ
µνρσ∇ρEσ = uµϵ

µνρσEρaσ .

These are the covariant versions of the familiar flat-space equilibrium relations ∇·B = 0 and

∇×E = 0. More generally, for the electric field in equilibrium we have

d = 2 : ϵµαβ∇αEβ = ϵµαβEαaβ , (2.9a)

d = 3 : ϵµνρσ∇ρEσ = ϵµνρσEρaσ , (2.9b)

as a consequence of £V Eα = 0 and Eαuα = 0.

2.4 Polarization ambiguities

The electromagnetic Bianchi identity also implies that there is an ambiguity in the definition

of the polarization tensor: in 3+1 dimensions, one can always add to the generating functional

an identically vanishing term W∅ = 1
2

∫√
−g Cµ ϵµναβ∇νFαβ , where Cµ can be a function of

the field strength and its derivatives. Such a term shifts the polarization tensor by

Mαβ → Mαβ + ϵαβµν∇µCν . (2.10)
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The surface terms Js, Πa
s , Πs, Ma

s depend on how the equilibrium is set up, and what the

boundary conditions on ∂M are, as determined by the nature of the phase separation at ∂M.

In all the above variations, we assume that the regionM occupied by matter is unchanged.

One could also consider the response of the generating functional to changing the shape of

∂M, however this will not be needed for our purposes. See Ref. [11] for a recent discussion

of surface terms in the Euclidean generating functional.

The polarization tensor contains both electric and magnetic components. We define the

electric field as Eµ ≡ Fµνuν , the magnetic field as B ≡ −1
2ϵ

µαβuµFαβ for d = 2, and Bµ ≡
1
2ϵ

µναβuνFαβ for d = 3. In 1+1 dimensions, we define the “magnetic field” as B ≡ 1
2ϵ

µνFµν ,

so that Fµν = −Bϵµν . The Levi-Civita tensor is ϵµναβ = εµναβ/
√
−g, with ε0123 = 1, and

similarly in other dimensions. Both Eµ and Bµ are spacelike and orthogonal to uµ. We have

the following decomposition of the field strength:

d = 1 : Fµν = uµEν − uνEµ ,

d = 2 : Fµν = uµEν − uνEµ − ϵµνρu
ρB ,

d = 3 : Fµν = uµEν − uνEµ − ϵµνρσu
ρBσ .

The electric polarization vector pα and the magnetization vector mα (for d=3) are defined

by rewriting the integrand in (2.5) as 1
2M

µνδFµν = pαδEα +mαδBα. For d=2, the variation

is 1
2M

µνδFµν = pαδEα+mδB, which defines the magnetization m. The decomposition of the

polarization tensor into the electric and magnetic parts is then

d = 1 : Mµν = mϵµν , (2.6a)

d = 2 : Mµν = pµuν − pνuµ − ϵµνρu
ρm, (2.6b)

d = 3 : Mµν = pµuν − pνuµ − ϵµνρσu
ρmσ , (2.6c)

where pµ ≡ uλMλµ, mµ ≡ 1
2ϵ

µναβuνMαβ (for d = 3), and m ≡ −1
2ϵ

µαβuµMαβ (for d = 2).

Both pα and mα are transverse to uα.

2.3 Equilibrium relations

The equilibrium definitions (2.1) together with £V (. . . ) = 0 give

∂λT = −Taλ , ∂λµ = Eλ − µaλ , (2.7)

where aµ ≡ uλ∇λuµ is the acceleration vector, uµaµ = 0. These relations imply that

T∂λ(µ/T ) − Eλ vanishes in equilibrium. In other words, a system subject to an external

electric field will develop a gradient of µ/T in order to compensate the applied field and

ensure that the equilibrium is maintained.

– 6 –



�FW [g,A] =

Z

M
d

d+1
x

p
�g (pµ �E

µ +mµ �B
µ) +

Z

@M
. . .

Polarization vectors

�FW [g,A] = 1
2

Z

M
d

d+1
x

p
�g M

µ⌫
�Fµ⌫ +

Z

@M
. . .

polarization 
tensor

electric polarization magnetic polarization

Mµ⌫ = pµu⌫ � p⌫uµ � ✏µ⌫⇢�u
⇢m�

Definition of polarization vectors:



Polarization vectors

If you are lost, all this was just a covariant way of saying

in equilibrium, defining p and m.

Note the ambiguity:

Thus p and m not uniquely defined

,

F = F + 0 = F +

Z
d

3
x

�
X(x)r·B+Y(x)·(r⇥E)

�

�F =

Z
d

3
x (p·�E+m·�B)

m ! m�rXp ! p�r⇥Y



Define charge density 
and spatial current:

Jµ = Nuµ + J µ

charge density spatial current,  
orthogonal to uμ 

N = ⇢�rµ p
µ + pµaµ �mµ⌦

µ

J µ = ✏µ⌫⇢�u⌫r⇢m� + ✏µ⌫⇢�u⌫a⇢m�

Bound charges and bound currents

aμ = acceleration 
Ωμ = vorticity

�AW [g,A] Jµ = ⇢uµ �r�M
�µ

“free charges” “bound charges”
⇢ ⌘ @F/@µ

Take the variation                  :



Define charge density 
and spatial current:

Jµ = Nuµ + J µ

charge density spatial current,  
orthogonal to uμ 

Bound charges and bound currents

�AW [g,A] Jµ = ⇢uµ �r�M
�µ

“free charges” “bound charges”
⇢ ⌘ @F/@µ

Take the variation                  :

J = r⇥m+m⇥rT/T

n = ⇢�r·p� p·rT/T � 2m·!



Define charge density 
and spatial current:

Jµ = Nuµ + J µ

charge density spatial current,  
orthogonal to uμ 

Bound charges and bound currents

�AW [g,A] Jµ = ⇢uµ �r�M
�µ

“free charges” “bound charges”
⇢ ⌘ @F/@µ

Take the variation                  :

Equilibrium surface charge and current: 

�s = p·n+O(@) j = m⇥ n+O(@)



These were equilibrium charges and currents. 

Now need to find equilibrium Tμν. 

For that, need the derivative expansion.



Derivative expansion

W [g,A] =

Z p
�g p+O(@)

How do we count derivatives? 

Clearly, gμν,T~O(1) 

In equilibrium,  

So if μ~O(1), then E~O(∂). This is screening. 

No similar constraint on B, can take B~O(1)

E↵ � T�↵�@�
⇣ µ

T

⌘
= 0



Derivative expansion

W [g,A] =

Z p
�g p+O(@)

Insulator: p=p(T, E2, B2, E∙B) 

Conductor: p=p(T, μ, B2) 

In between: p=p(T, μ, E2, B2, E∙B)



Leading order:

Calculate Tμν :

Tµ⌫
EM = Mµ↵g↵�F

�⌫ + uµu↵
�
M↵�F

�⌫ � F↵�M
�⌫
�

This Tμν is symmetric, first derived for ideal gas 

Does not assume any particular microscopic model of matter PK arXiv:1606.01226

Example: Tμν in external E,B fields

F = p(T, µ,E2, B2, E·B)

Tµ⌫ = p gµ⌫ + (Ts+ µ⇢)uµu⌫ + Tµ⌫
EM

W.Israel, Gen.Rel.Grav. 1978

http://arxiv.org/abs/1606.01226
https://doi.org/10.1007/BF00759845


P-invariant conducting fluid in 3+1 dim

Free energy:    ℱ(g,A) = p(T,μ,B2) + MΩ(T,μ,B2) B∙Ω + O(∂2)

W [g,A] =

Z
d

d+1
x

p
�g F(g,A)Vary                                               to find Tμνeq, Jμeq 

In constant B-field:                                , Tµ⌫
s = Qµ

su
⌫ +Q⌫

su
µ Q↵

s = M⌦✏
↵µ⌫⇢uµB⌫n⇢

Angular momentum: 

L

V
= 2M⌦B



Magneto-vortical susceptibility

System at rest 
in flat space, 
constant B-field:  

L

V
= 2M⌦B

System rotating 
in flat space, 
no B-field:  

m = 2M⌦ !

Static (zero frequency) 
correlation functions:  

hT txJzi = �k
x

k
z

M⌦ etc.



I. Thermodynamics 

II. Hydro with fixed E & B 

III. Hydro with dynamical E & B 

Outline



∇μTμν = FνλJλ  

∇μ Jμ = 0

Tμν = Tμνeq+ Tμνnon-eq ,     Jμ = Jμeq+ Jμnon-eq     

get from equilibrium W[g,A]=∫p + O(∂) 
e.g. Jμeq = ρuμ - ∇λMλμ  

Hydro equations



∇μTμν = FνλJλ  

∇μ Jμ = 0

Tμν = Tμνeq+ Tμνnon-eq ,     Jμ = Jμeq+ Jμnon-eq     

vanish in equilibrium, depend on ∂μ, Bμ, Eμ, η, ζ, …

Hydro equations



Transport coefficients

For P-invariant conducting fluid in 3+1dim: 

  - one thermodynamic susceptibility MΩ  
  - two shear viscosities (⟂ and || to B) 
  - three bulk viscosities 
  - two electrical conductivities (⟂ and || to B) 
  - two Hall viscosities (⟂ and || to B) 
  - one Hall conductivity 

Eleven coefficients total: 
  1 thermodynamic, non-dissipative 
  3 non-equilibrium, non-dissipative 
  7 non-equilibrium, dissipative



Constitutive relations*

where �µ⌫

⌘ gµ⌫ + uµu⌫ is the transverse projector, Q

µ is transverse to u
µ

, and T

µ⌫ is

transverse to u
µ

, symmetric, and traceless. Explicitly, the coe�cients are E ⌘ u
µ

u
⌫

T µ⌫ ,

P ⌘

1
3
�

µ⌫

T µ⌫ , Q
µ

⌘ ��
µ↵

u
�

T ↵� and T

µ⌫

⌘

1
2
(�

µ↵

�
⌫�

+�
⌫↵

�
µ�

�

2
3
�

µ⌫

�
↵�

)T ↵�. Similarly,

we will write the current as

Jµ = Nuµ + J

µ (9)

where the charge density is N ⌘ �u
µ

Jµ, and the spatial current is J
µ

⌘ �
µ�

J�.

Using the equilibrium free energy (7), one can isolate O(1) and O(@) contributions to the

energy-momentum tensor and the current:

E = ✏(T, µ,B2) + fE ,

P = ⇧(T, µ,B2) + fP ,

N = n(T, µ,B2) + fN ,

T

µ⌫ = ↵
BB

(T, µ,B2)
�
BµB⌫

�

1
3
�µ⌫B2

�
+ fµ⌫

T ,

where ✏ = �p + T (@p/@T ) + µ(@p/@µ), ⇧ = p �

2
3
↵

BB

B2, n = @p/@µ, and the magnetic

susceptibility is ↵
BB

= 2@p/@B2. The terms fE , fP , fN , fµ⌫

T , Qµ, and J

µ are all O(@), and

contain both equilibrium and non-equilibrium contributions, fE = f̄E + fnon-eq.
E etc, where the

bar denotes O(@) contributions coming from the variation of W
s

.

3.2 Field redefinitions

Out of equilibrium, the variables T , u↵, and µ may be redefined. Such a redefinition is

often referred to as a choice of “frame”. Consider changing the hydrodynamic variables to

T 0 = T + �T , u0↵ = u↵ + �u↵, µ0 = µ + �µ, where �T , �u↵, and �µ are O(@). The same

energy-momentum tensor and the current may be expressed either in terms of T , u↵, µ, or

in terms of T 0, u0↵, µ0 (note that B2 = B02 + O(@2)). Physical transport coe�cients must

be derived from O(@) quantities which are invariant under such changes of hydrodynamic

variables. A direct evaluation shows that the following combinations are invariant under

“frame” transformations:

f ⌘ fP �

✓
@⇧

@✏

◆

n

fE �

✓
@⇧

@n

◆

✏

fN , (10a)

` ⌘
B↵

B

✓
J

↵

�

n

✏+ p
Q

↵

◆
, (10b)

`µ? ⌘ Bµ↵

✓
J

↵

�

n

✏+ p� ↵
BB

B2
Q

↵

◆
, (10c)

tµ⌫ ⌘ fµ⌫

T �

�
BµB⌫

�

1
3
�µ⌫B2

� ✓@↵
BB

@✏

◆

n

fE +

✓
@↵

BB

@n

◆

✏

fN

�
. (10d)

6

(primed variables) by redefinitions of T , µ, and u↵ that give

E

0 = ✏(T 0, µ0, B02) + f̄E , (14a)

N

0 = n(T 0, µ0, B02) + f̄N , (14b)

Q

0
↵

= Q̄

↵

. (14c)

In other words, in this thermodynamic frame the coe�cients E , N , and Q

↵

in the decompo-

sitions (8), (9) take their equilibrium values, derived from the equilibrium generating func-

tional W
s

. The other coe�cients take the following form in the thermodynamic frame:

P

0 = ⇧(T 0, µ0, B02) + f̄P + fnon-eq. , (14d)

J

0µ = J̄

µ + `µ?non-eq. +
B0µ

B0 `non-eq. , (14e)

T

0µ⌫ = ↵
BB

(T 0, µ0, B02)
�
B0µB0⌫

�

1
3
�0µ⌫B02�+ f̄µ⌫

T + tµ⌫non-eq. . (14f)

3.4 Non-equilibrium contributions

With the equilibrium contributions out of the way, the next task is to find the non-equilibrium

terms in the constitutive relations (13). This amounts to finding one-derivative scalars, vectors

(orthogonal both to B
µ

and to u
µ

), and transverse traceless symmetric tensors that vanish

in equilibrium. Note that non-equilibrium contributions (those that vanish in equilibrium)

are not the same as dissipative contributions (those that contribute to hydrodynamic entropy

production). Every dissipative contribution is non-equilibrium, but not every non-equilibrium

contribution is dissipative.

The six independent non-equilibrium one-derivative scalars are given in Table 3. The

scalar u�@
�

B2 is not independent as a consequence of the electromagnetic Bianchi identity,

and can be expressed as a combination of r·u and BµB⌫

r

µ

u
⌫

. Three scalar equations of

motion r

µ

Jµ = 0, u
⌫

r

µ

T µ⌫ + E
µ

Jµ = 0, and B
⌫

r

µ

T µ⌫ + (E·B)(u·J) = 0 taken at zeroth

order provide three relations among the scalars. We choose to eliminate s(1)

1 non-eq., s
(1)

2 non-eq.,

and s(1)

6 non-eq. and write the scalar and pseudo-scalar constitutive relations as

fnon-eq. = c1s
(1)

3 non-eq. + c2s
(1)

4 non-eq. + c3s
(1)

5 non-eq. ,

`non-eq. = c4s
(1)

3 non-eq. + c5s
(1)

4 non-eq. + c6s
(1)

5 non-eq. ,

with some undetermined transport coe�cients c
n

.

The independent non-equilibrium transverse one-derivative vectors are given in Table 3,

where the shear tensor is �µ⌫

⌘ �µ↵�⌫�(r
↵

u
�

+ r

�

u
↵

�

2
3
�

↵�

r·u). We use the vector

9

n 1 2 3 4 5 6

s(1)

n non-eq. u�@
�

T u�@
�

µ r·u BµB⌫

r

µ

u
⌫

E·B � TB↵@
↵

(µ/T ) B·a+B↵@
↵

T/T

P + + + + � �

n 1 2 3

v(1)µ

n non-eq. Eµ

� T�µ⌫@
⌫

(µ/T ) aµ +�µ⌫@
⌫

T/T �µ⌫B
⌫

P � � +

Table 3: Non-equilibrium scalars and transverse non-equilibrium vectors at O(@). In addition

to the vectors listed in the table, there are corresponding transverse non-equilibrium vectors

ṽ(1)µ

non-eq. ⌘ ✏µ⌫⇢�u
⌫

B
⇢

v(1)

non-eq.�/B. The table also shows the parity of non-equilibrium scalars

and vectors. Under time-reversal, the scalars s(1)

n non-eq. are T-odd, the vectors v(1)µ

n non-eq. are

T-even, and the vectors ṽ(1)µ

n non-eq. are T-odd.

equation of motion (2a) projected with Bµ⌫ at zeroth order to eliminate one of the vectors,1

and write the vector constitutive relation as

`µ?non-eq. = c7 Bµ

⌫

v(1)⌫

1 non-eq. + c8 Bµ

⌫

v(1)⌫

3 non-eq. + c9 ṽ
(1)µ

1 non-eq. + c10 ṽ
(1)µ

3 non-eq. ,

The tilded vectors are defined as ṽµ ⌘ ✏µ⌫⇢�u
⌫

B
⇢

v
�

/B.

There is a number of symmetric transverse traceless non-equilibrium one-derivative tensors

besides the shear tensor �µ⌫ . One such tensor is

�̃µ⌫

⌘

1

2B

�
✏µ�↵�u

�

B
↵

� ⌫

�

+ ✏⌫�↵�u
�

B
↵

� µ

�

�
.

Other tensors can be formed by BhµB⌫is(1)

n non-eq., or by symmetrizing Bµ with a transverse

non-equilibrium vector. Again, we eliminate three scalars and one vector by the zeroth order

equations of motion and write the tensor constitutive relation as

tµ⌫non-eq. = c11�
µ⌫ +BhµB⌫i �c12s(1)

3 non-eq. + c13s
(1)

4 non-eq. + c14s
(1)

5 non-eq.

�

+ c15B
hµv(1)⌫i

1 non-eq. + c16B
hµv(1)⌫i

3 non-eq. + c17B
hµṽ(1)⌫i

1 non-eq. + c18B
hµṽ(1)⌫i

3 non-eq. + c19 �̃
µ⌫ ,

with some undetermined transport coe�cients c
n

. Thus there are five equilibrium func-

tions M
n

(T, µ,B2), and nineteen non-equilibrium functions c
n

(T, µ,B2) that determine one-

derivative contributions to the energy-momentum tensor and the current in strong magnetic

1 Namely, using the equation of motion (2a) with the constitutive relations for Tµ⌫ and Jµ derived from

the generating functional W =
R
p

�g p(T, µ,B2) + O(@). The relation among the vectors that one finds is

v(1)µ
2 non-eq.

= v(1)µ
1 non-eq.

n/(✏+ p) +O(@2).
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where �µ⌫

⌘ gµ⌫ + uµu⌫ is the transverse projector, Q

µ is transverse to u
µ

, and T

µ⌫ is

transverse to u
µ

, symmetric, and traceless. Explicitly, the coe�cients are E ⌘ u
µ

u
⌫

T µ⌫ ,

P ⌘

1
3
�

µ⌫

T µ⌫ , Q
µ

⌘ ��
µ↵

u
�

T ↵� and T

µ⌫

⌘

1
2
(�

µ↵

�
⌫�

+�
⌫↵

�
µ�

�

2
3
�

µ⌫

�
↵�

)T ↵�. Similarly,

we will write the current as

Jµ = Nuµ + J

µ (9)

where the charge density is N ⌘ �u
µ

Jµ, and the spatial current is J
µ

⌘ �
µ�

J�.

Using the equilibrium free energy (7), one can isolate O(1) and O(@) contributions to the

energy-momentum tensor and the current:

E = ✏(T, µ,B2) + fE ,

P = ⇧(T, µ,B2) + fP ,

N = n(T, µ,B2) + fN ,

T

µ⌫ = ↵
BB

(T, µ,B2)
�
BµB⌫

�

1
3
�µ⌫B2

�
+ fµ⌫

T ,

where ✏ = �p + T (@p/@T ) + µ(@p/@µ), ⇧ = p �

2
3
↵

BB

B2, n = @p/@µ, and the magnetic

susceptibility is ↵
BB

= 2@p/@B2. The terms fE , fP , fN , fµ⌫

T , Qµ, and J

µ are all O(@), and

contain both equilibrium and non-equilibrium contributions, fE = f̄E + fnon-eq.
E etc, where the

bar denotes O(@) contributions coming from the variation of W
s

.

3.2 Field redefinitions

Out of equilibrium, the variables T , u↵, and µ may be redefined. Such a redefinition is

often referred to as a choice of “frame”. Consider changing the hydrodynamic variables to

T 0 = T + �T , u0↵ = u↵ + �u↵, µ0 = µ + �µ, where �T , �u↵, and �µ are O(@). The same

energy-momentum tensor and the current may be expressed either in terms of T , u↵, µ, or

in terms of T 0, u0↵, µ0 (note that B2 = B02 + O(@2)). Physical transport coe�cients must

be derived from O(@) quantities which are invariant under such changes of hydrodynamic

variables. A direct evaluation shows that the following combinations are invariant under

“frame” transformations:

f ⌘ fP �

✓
@⇧

@✏

◆

n

fE �

✓
@⇧

@n

◆

✏

fN , (10a)

` ⌘
B↵

B

✓
J

↵

�

n

✏+ p
Q

↵

◆
, (10b)

`µ? ⌘ Bµ↵

✓
J

↵

�

n

✏+ p� ↵
BB

B2
Q

↵

◆
, (10c)

tµ⌫ ⌘ fµ⌫

T �

�
BµB⌫

�

1
3
�µ⌫B2

� ✓@↵
BB

@✏

◆

n

fE +

✓
@↵

BB

@n

◆

✏

fN

�
. (10d)
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similarly M4 may be termed magneto-vortical susceptibility. For the rest of the paper, we

will adopt the derivative counting B ⇠ O(1) and E ⇠ O(@), as is appropriate for MHD.

As an example, consider a parity-invariant theory in magnetic field. The only O(@) ther-

modynamic coe�cient is the magneto-vortical susceptibility M4, which a↵ects hT µ⌫

i and hJµ

i

when there is non-zero vorticity, and higher-point equilibrium correlation functions of T µ⌫

and Jµ when there is no vorticity. We define static (zero frequency) correlation functions

of T µ⌫ and Jµ by varying the generating functional (1) with respect to g
µ⌫

and A
µ

in the

standard fashion. For example, in flat space at constant temperature T0, constant chemical

potential µ0, and constant magnetic field B0 in the z-direction, static correlation functions at

small momentum such as

hT txJz

i = �k
x

k
z

M4 , hT txT yz

i = �iB0kzM4 ,

may in principle be used to evaluate the magneto-vortical susceptibility M4 in a given theory.

3 Hydrodynamics with external electromagnetic fields

3.1 Constitutive relations

Hydrodynamics is conventionally formulated as an extension of thermodynamics, in the sense

that hydrodynamic variables are inherited from the thermodynamic parameters. This is a

strong assumption, and we expect the hydrodynamic description only to be valid for B ⌧ T 2,

otherwise new non-hydrodynamic degrees of freedom (such as those associated with Landau

levels) must be taken into account. Let us start by taking E and B fields as external and non-

dynamical. In hydrodynamics, the thermodynamic variables T , u↵, and µ are promoted to

time-dependent quantities. Out of equilibrium, they no longer have a microscopic definition,

but are merely auxiliary variables used to build the non-equilibrium energy-momentum tensor

and the current. The expressions of T µ⌫ and Jµ in terms of the auxiliary variables T , u↵, and

µ are called constitutive relations; they contain both thermodynamic contributions (coming

from the variation of F), and non-equilibrium contributions (such as the viscosity). It is worth

noting that thermodynamic contributions and non-equilibrium contributions to the constitu-

tive relations may appear at the same order in the derivative expansion. The constitutive

relations are then used together with the conservation laws (2) to find the energy-momentum

tensor and the current. While in thermodynamics Eqs. (2) are mere identities reflecting the

symmetries of W
s

, solving Eqs. (2) in hydrodynamics can be a challenging endeavour leading

to rich physics.

We will write the energy-momentum tensor using the decomposition with respect to the

timelike velocity vector uµ,

T µ⌫ = Euµu⌫ + P�µ⌫ +Q

µu⌫ +Q

⌫uµ + T

µ⌫ , (8)

5

* In thermodynamic frame, up to O(∂)

and the current is given by Eq. (9) with the following coe�cients:

N = p
,µ

+M4,µB·⌦�m·⌦ , (16a)

J

µ = ✏µ⌫⇢�u
⌫

r

⇢

m
�

+ ✏µ⌫⇢�u
⌫

a
⇢

m
�

+

✓
�?Bµ⌫ + �k

BµB⌫

B2

◆
V
⌫

+ �̃ Ṽ µ . (16b)

The current is written in terms of the magnetic polarization vector

mµ = (2 p
,B

2 + 2M4,B2B·⌦)Bµ +M4⌦
µ ,

while the electric polarization vector vanishes at leading order in a parity-invariant system.

The comma subscript denotes the derivative with respect to the argument that follows. Note

that we are keeping O(@2) thermodynamic terms in the constitutive relations (coming from

the variation of M4s
(1)

4 ) that are needed to ensure that the conservation laws (2) are satisfied

identically for time-independent background fields. In writing down the constitutive relations

(15), (16), we have relabeled the non-equilibrium transport coe�cients as ⇣1 ⌘ �c1, ⇣2 ⌘

�B2c2, �k ⌘ Bc6, �? ⌘ c7, �̃ ⌘ c9, ⌘ ⌘ �c11, ⌘1 ⌘ �B2c12, ⌘2 ⌘ �B4c13, ⌘3 ⌘ �B2c16,

⌘̃3 ⌘ �B2c18, ⌘̃ ⌘ �c19 and defined V µ

⌘ Eµ

�T�µ⌫@
⌫

(µ/T ), W µ

⌘ �µ⌫B
⌫

. The coe�cient ⌘

is the usual shear viscosity, ⌘̃ is the Hall viscosity, �? and �k are the transverse and longitudinal

conductivities, and �̃ is the Hall conductivity.

3.5 Eigenmodes

As a simple application of the hydrodynamic equations (2) together with the constitutive re-

lations (15), (16), one can study the eigenmodes of small oscillations about the thermal equi-

librium state. We set the external sources to zero, and linearize the hydrodynamic equations

near the flat-space equilibrium state with constant T = T0, µ = µ0, u↵ = (1,0), and B↵ =

(0, 0, 0, B0). Taking the fluctuating hydrodynamic variables proportional to exp(�i!t+ ik·x),

the source-free system admits five eigenmodes, two gapped (!(k!0) 6= 0), and three gapless

(!(k!0) = 0). The frequencies of the gapped eigenmodes are

! = ±

B0n0

w0

�

iB2
0

w0

(�? ± i�̃) +O(k2) , (17)

where w0 ⌘ ✏0 + p0 is the equilibrium enthalpy density, and we have taken ↵
BB

B2
0 ⌧ w0,

M4,µB2
0 ⌧ w0 in the hydrodynamic regime B0 ⌧ T 2

0 . As the imaginary part of the eigenfre-

quency must be negative for stability, this implies �? > 0. The analogous mode in 2+1 dimen-

sional hydrodynamics was christened the hydrodynamic cyclotron mode in Ref. [12], which

also explored its implications for transport near two-dimensional quantum critical points.

For momenta k k B0, the three gapless eigenmodes are the two sound waves, and one
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and the current is given by eq. (3.2) with the following coe�cients:

N = p,µ +M⌦,µB·⌦�m·⌦ , (3.12a)

J

µ = ✏µ⌫⇢�u⌫r⇢m� + ✏µ⌫⇢�u⌫a⇢m� +

✓
�?Bµ⌫ + �k

BµB⌫

B2

◆
V⌫ + �̃ Ṽ µ . (3.12b)

The current is written in terms of the magnetic polarization vector

mµ =
�
2 p,B2 + 2M⌦,B2B·⌦

�
Bµ +M⌦⌦

µ , (3.13)

while the electric polarization vector vanishes at leading order in a parity-invariant system.

The comma subscript denotes the derivative with respect to the argument that follows. Note

that we are keeping O(@2) thermodynamic terms in the constitutive relations (coming from

the variation ofM
4

s(1)

4

) that are needed to ensure that the conservation laws (2.2) are satisfied

identically for time-independent background fields. In writing down the constitutive relations

(3.11), (3.12), we have relabeled the non-equilibrium transport coe�cients as ⇣
1

⌘ �c
1

,

⇣
2

⌘ �c
2

, �k ⌘ c
6

, �? ⌘ c
7

, �̃ ⌘ c
9

, ⌘? ⌘ �c
11

, ⌘k ⌘ �c
11

� c
16

, ⌘
1

⌘ �c
12

+ 1

2

c
11

+ 2

3

c
16

,

⌘
2

⌘ �c
13

�

3

2

c
11

� 2c
16

, ⌘̃k ⌘ �c
18

�

1

2

c
19

, ⌘̃? ⌘ �c
19

, and defined V µ
⌘ Eµ

�T�µ⌫@⌫(µ/T ).

The coe�cients �?, �k are the transverse and longitudinal conductivities, and ⌘?, ⌘k are the

transverse and longitudinal shear viscosities. The coe�cients ⇣
1

, ⇣
2

, ⌘
1

and ⌘
2

may all be

called “bulk viscosities”, of which only three are independent due to the Onsager relation.

The coe�cients ⌘̃?, ⌘̃k are the two Hall viscosities, and �̃ is the Hall conductivity.3

When the external electromagnetic field vanishes, the system becomes isotropic, and we

expect to recover the constitutive relations of the standard isotropic hydrodynamics, with

shear viscosity ⌘, bulk viscosity ⇣, and electrical conductivity �. Thus as B ! 0 we expect

⌘? = ⌘k = �2⌘
1

= 2

3

⌘
2

= ⌘, ⌘̃? = ⌘̃k = 0, ⇣
1

= ⇣, ⇣
2

= 0, �? = �k = �, �̃ = 0.

3.5 Eigenmodes

As a simple application of the hydrodynamic equations (2.2) together with the constitutive

relations (3.11), (3.12), one can study the eigenmodes of small oscillations about the thermal

equilibrium state. We set the external sources to zero, and linearize the hydrodynamic

equations near the flat-space equilibrium state with constant T = T
0

, µ = µ
0

, u↵ = (1,0), and

B↵ = (0, 0, 0, B
0

). Taking the fluctuating hydrodynamic variables proportional to exp(�i!t+

ik·x), the source-free system admits five eigenmodes, two gapped (!(k!0) 6= 0), and three

gapless (!(k!0) = 0). The frequencies of the gapped eigenmodes are

! = ±

B
0

n
0

w
0

�

iB2

0

w
0

(�? ± i�̃)� iDck
2 , (3.14)

3 The actual Hall conductivity, measured as a response to external electric field, must be obtained after

the hydrodynamic equations with the constitutive relations (3.11), (3.12) have been solved. Doing so in a

state with constant charge density n
0

and magnetic field B
0

gives the Hall conductivity n
0

/B
0

, as expected

from elementary considerations of boosting the state in the plane transverse to B
0

. See eq. (3.24c) below.
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and eight “viscosities” c
1

, c
2

, c
11

, c
12

, c
13

, c
16

, c
18

, and c
19

. We will see later that the On-

sager relations impose a relation between c
2

, c
12

, and c
13

, plus four more relations among

the parity-violating coe�cients. This leaves eleven transport coe�cients (one thermody-

namic and ten non-equilibrium) for a conducting parity-invariant system in magnetic field in

3+1 dimensions. In a conformal theory, the tracelessness condition2 will in addition impose

c
1

= c
2

= 0.

The constitutive relations may be simplified further if we note that the shear tensor can

be decomposed with respect to the magnetic field as

�µ⌫ = �µ⌫
? + (bµ⌃⌫ + b⌫⌃µ) + 1

2

bhµb⌫i (3S
4

� S
3

) . (3.9)

Here �µ⌫
? ⌘

1

2

�
Bµ↵B⌫� + B⌫↵Bµ�

� Bµ⌫B↵�
�
�↵� is traceless, ⌃µ

⌘ Bµ���⇢b⇢, and both are

orthogonal to the magnetic field Bµ. The scalars are S
3

⌘ r·u and S
4

⌘ bµb⌫rµu⌫ . The

tensor (3.8) then becomes

�̃µ⌫ = �̃µ⌫
? + 1

2

⇣
bµ⌃̃⌫ + b⌫⌃̃µ

⌘
, (3.10)

where �̃µ⌫
? is transverse to both uµ and Bµ, symmetric, and traceless.

For completeness, let us summarize the constitutive relations for a parity-invariant theory

in the thermodynamic frame. Defining M⌦ ⌘ M
4

, the energy-momentum tensor is given by
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Other things

Inequality constraints on η’s, ζ’s, σ’s from 2-nd law 

Equality constraints on η’s, ζ’s, σ’s from Onsager relations 

Eigenmodes: collective cyclotron modes, sound, diffusion,… 

Express η’s, ζ’s, σ’s in terms of ⟨TμνTαβ⟩, ⟨TμνJα⟩, ⟨JμJα⟩ 

Transport coefficients for P-violating fluids

Hernandez, PK, arXiv:1703.08757

http://arxiv.org/abs/1703.08757


Is any of this near-equilibrium relativistic MHD business 
actually physically relevant?

I don’t know. But the following story comes to mind. 

In 1948, A.I.Akhiezer and his student L.E.Pargamanik worked out 
the kinetic waves of plasma in a magnetic field. 

Akhiezer showed the results to L.D.Landau and was told: “Where 
have you seen plasma, moreover in magnetic field?” 

As Landau disapproved, the results could only be published in 
an insignificant journal Notes of Kharkov University in 1948. 

In 1958, I.B.Bernstein in Princeton didn’t ask Landau’s opinion, 
and independently worked out the same waves in Phys.Rev. 

These are now called Bernstein waves in all plasma literature.



I. Thermodynamics 

II. Hydro with fixed E & B 

III. Hydro with dynamical E & B 

Outline



What are the equations?

E, B external:  ∇μTμν = FνλJλ , ∇μ Jμ = 0 

E, B dynamical:   ∇μTμν = 0,  Jμ = 0

these are Maxwell’s equations

Generating functional W[g,A] = effective action S[g,A] 

W [g,A] =

Z
d

d+1
x

p
�g F(g,A) F = �1

4
Fµ⌫F

µ⌫ + Fm

definition of ℱm : 
includes pressure, 
polarization, deri- 
vative expansion



Maxwell’s equations in matter

Jμ = 0 is same eqn as r⌫H
µ⌫ = ⇢uµ

Hµ⌫ ⌘ Fµ⌫ �Mµ⌫
m = uµD⌫ � u⌫Dµ � ✏µ⌫⇢�u⇢H�

defines Dμ, Hμ 

where Hµ⌫

⌘ F µ⌫

� Mµ⌫

m

. This is the desired equation that must be satisfied by electro-

magnetic fields in equilibrium. Following the standard hydrodynamic lore and assuming that

Eq. (40) also holds for small departures away from equilibrium, one obtains hydrodynamics

of “perfect fluids”, now with dynamical electric and magnetic fields. For these perfect flu-

ids, equations (40) have to be solved together with the stress tensor (non)-conservation (38),

where T µ⌫ is derived from the e↵ective action (39).

In fact, Eq. (40) is nothing but the standard Maxwell’s equations in matter. The polar-

ization tensor Mµ⌫

m

defines electric and magnetic polarization vectors P µ and Mµ through the

decomposition

Mµ⌫

m

= P µu⌫

� P ⌫uµ

� ✏µ⌫⇢�u
⇢

M
�

. (41)

The antisymmetric tensor H
µ⌫

can be decomposed in the same way as the field strength F
µ⌫

,

H
µ⌫

= u
µ

D
⌫

� u
⌫

D
µ

� ✏
µ⌫⇢�

u⇢H� ,

which defines D
µ

⌘ H
µ⌫

u⌫ and Hµ

⌘

1
2
✏µ⌫↵�u

⌫

H
↵�

, so that

Dµ = Eµ + P µ ,

Hµ = Bµ

�Mµ .

It is then clear that Eq. (40) is the covariant form of Maxwell’s equations in matter: the

currents of ‘free charges’ are in the right-hand side, while the e↵ects of polarization appear

in the left-hand side through the substitution Eµ

! Dµ, Bµ

! Hµ in the vacuum Maxwell’s

equations. Action (39) is the action for Maxwell’s equations in matter.

As an example, consider the following ‘matter’ contribution: F
m

= p
m

(T, µ, E2, B2, E·B),

where p
m

is the ‘matter’ pressure. The polarization tensor is then Mµ⌫

m

= 2@p
m

/@F
µ⌫

, and the

polarization vectors are

P µ = �
EE

Eµ + �
EB

Bµ , (42a)

Mµ = �
EB

Eµ + �
BB

Bµ , (42b)

where the susceptibilities �
EE

⌘ 2@p
m

/@E2, �
EB

⌘ @p
m

/@(E·B), and �
BB

⌘ 2@p
m

/@B2 all

depend on T , µ, E2, B2, and E·B. This gives the standard constitutive relations, expressing

D and B in terms of E and H,

Dµ = "
m

Eµ + �
m

Hµ ,

Bµ = �
m

Eµ + µ
m

Hµ ,

where "
m

⌘ 1+�
EE

+�2
EB

/(1��
BB

) is the electric permittivity, µ
m

⌘ 1/(1��
BB

) is the magnetic

permeability, and �
m

⌘ �
EB

/(1��
BB

). We will also use "
e

⌘ 1+�
EE

, which coincides with the

electric permittivity if �
EB

= 0.
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MHD equations

  ∇μ(Tμνeq+ Tμνnon-eq) = 0,    Jμeq+ Jμnon-eq = 0,    εμναβ∇νFαβ = 0

Assume that E & B change slowly so that Tμν and Jμ keep  
the same form as for external E & B  

Adopt derivative counting B~O(1), E~O(∂) 

Equilibrium action

Just for fun, add            to the action1
2"eE

2

This gives MHD eqs that we can do something with

W [g,A] =

Z p
�g

�
� 1

2B
2 + pm(T, µ,B

2) +M⌦(T, µ,B
2)B·⌦

�



MHD transport coefficients

Compared to hydro in fixed, non-dynamical B-field: 

   - MHD has the same 11 transport coefficients 

   - MHD has the same entropy current 

   - MHD has the same Kubo formulas for viscosities 

   - MHD has different Kubo formulas for conductivities

1

!
ImGret.

E
x

E
x

(!,k=0) = ⇢?

1

!
ImGret.

E
x

E
y

(!,k=0) = �⇢̃?sign(B0)

1

!
ImGret.

EzEz
(!,k=0) = ⇢k

⇢k ⌘ 1/�k

(��1)ab = ⇢?�ab + ⇢̃?✏ab

�ab ⌘ �?�ab + �̃✏ab



Eigenmodes: n0=0, B0≠0

Gapped modes:  

Alfvén waves:

following frequencies at small momenta:

! = �

i�

"
e

+
ik2

�µ
m

, ! = �

ik2

�µ
m

.

The gapless conductor mode is responsible for the skin e↵ect in metals.

We now turn on non-zero magnetic field and consider modes propagating at an angle ✓

with respect to B0. Thermal and mechanical fluctuations now no longer decouple from elec-

tromagnetic fluctuations. There is one longitudinal gapped mode, and two transverse gapped

modes,

! = �

i�k

"
e

+O(k2) , ! = �

i�? ± �̃

"
e

+O(k2) .

In writing down the transverse eigenfrequencies, we have assumed B2
0 ⌧ ✏0 + p0.

All six gapless modes have linear dispersion relation at small momenta. Two of the gapless

modes are the Alfvén waves,

! = ±vAk cos ✓ �
i�A

2
k2 , (45a)

whose speed and damping are determined by

v2A =
B2

0

µ
m

(✏0+p0)
, �A =

1

✏0+p0

�
⌘ + ⌘3 cos

2 ✓
�
+

1

µ
m

⇣
⇢? cos2 ✓ + ⇢k sin

2 ✓
⌘
, (45b)

where ⇢k ⌘ 1/�k, and ⇢? was defined below Eq. (19). In writing down these expressions,

we have taken B2
0 ⌧ ✏0+p0, otherwise there is an additive B2

0 in the denominator of v2A,

and similar B0-dependent and M4-dependent corrections that appear in �A. The other four

gapless modes are the two branches of magnetosonic waves,

! = ±vmsk �

i�ms

2
k2 , (46a)

whose speed is determined by the quadratic equation

(v2ms)
2
� v2ms(v

2
A

+ v2
s

� v2
A

v2
s

sin2 ✓) + v2
A

v2
s

cos2 ✓ = 0 , (46b)

where v2
s

= (s/T )/(@s/@T ) = @p/@✏ is the speed of sound at n0 = 0. These expressions for

vA and vms agree with Ref. [24]. The two solutions of (46b) correspond to the sound-type (or

“fast”) branch, and the Alfvén-type (or “slow”) branch. At ✓ = 0, the slow branch turns into

a second set of Alfvén waves, while the fast branch becomes the sound wave. The damping

coe�cients of the magnetosonic waves are straightforward to evaluate, but are quite lengthy

to write down in general, and we will only present them in the limits of small B0 and small ✓.

As B0 ! 0, the damping coe�cients become

slow: �ms =
1

✏0+p0

�
⌘ + ⌘3 +

1
2
⌘2 sin

2 2✓
�
+

⇢?
µ

m

, (46c)

fast: �ms =
1

✏0+p0

�
4
3
⌘ + ⇣1 + 2⌘1(

2
3
+ cos 2✓) + 2⌘2 cos

4 ✓ + 2⌘3(
5
9
+ 1

3
cos 2✓)

�
. (46d)
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We now turn on non-zero magnetic field and consider modes propagating at an angle ✓

with respect to B
0

. Thermal and mechanical fluctuations now no longer decouple from

electromagnetic fluctuations. There is one longitudinal gapped mode, and two transverse

gapped modes,

! = �

i�k

"e

+O(k2) , ! = �

i�? ± �̃

"e

+O(k2) .

In writing down the transverse eigenfrequencies, we have assumed B2

0

⌧ ✏
0

+ p
0

.

All six gapless modes have linear dispersion relation at small momenta. Two of the

gapless modes are the Alfvén waves,

! = ±v
A

k cos ✓ �
i�

A

2
k2 , (4.9a)

whose speed and damping are determined by
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(4.9b)

where ⇢k ⌘ 1/�k, and ⇢? was defined below eq. (3.16). In writing down the damping coef-

ficient, we have taken B2

0

⌧ ✏
0

+p
0

, the corrections of order B2

0

/(✏
0

+p
0

) are straightforward

to write down. The other four gapless modes are the two branches of magnetosonic waves,
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whose speed is determined by the quadratic equation

(v2
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2

s sin
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2

s cos
2 ✓ = 0 , (4.10b)

where v2s = (s/T )/(@s/@T ) = @p/@✏ is the speed of sound at n
0

= 0. The two solutions of

(4.10b) correspond to the sound-type (or “fast”) branch, and the Alfvén-type (or “slow”)

branch. At ✓ = 0, the slow branch turns into a second set of Alfvén waves, while the fast

branch becomes the sound wave. See e.g. ref. [21] for an early derivation of v
A

and v
ms

in

relativistic MHD. The damping coe�cients of the magnetosonic waves are straightforward

to evaluate, but are quite lengthy to write down in general, and we will only present them

in the limits of small B
0

and small ✓. As B
0

! 0, the damping coe�cients become

slow: �
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+
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, (4.10c)

fast: �
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Eigenmodes: n0≠0, B0=0

Set σ=η=ζ=0: Relativistic Langmuir oscillations

⌦2
p =

n2
0

(✏+ p)"e

!2 = ⌦2
p + v2sk

2

relativistic  
“plasma  
frequency”

!2 = ⌦2
p +

k2

"eµm

Turn on σ, η, ζ: 

though the system is overall electrically neutral, its dynamics is not equivalent to that of the

system with µ0 = 0, n0 = 0: for example, the fluctuation of the spatial electric current has

a convective contribution n0 �ui

. More formally, when analyzing hydrodynamic modes, the

limits n0 ! 0 and k ! 0 do not commute. We now find six gapped modes and three gapless

modes.

To get some intuition about the gapped modes, let us set all transport coe�cients to zero,

as well as set B0 = 0. Then at small momenta there are two longitudinal gapped modes whose

frequencies are determined by

!2 = ⌦2
p

+ v2
s

k2 ,

where ⌦2
p

⌘ n2
0/[(✏0+p0)"e

], and v
s

is the speed of sound that the charged fluid would have, if

the electromagnetic fields were not dynamical, see Sec 3.5. These modes are the relativistic

analogues of Langmuir oscillations, and ⌦
p

is the relativisitc “plasma frequency” which gaps

out the sound waves. In addition, there are four transverse gapped modes whose frequencies

are determined by

!2 = ⌦2
p

+
k2

"
e

µ
m

.

These are electromagnetic waves in the fluid, gapped by the same plasma frequency ⌦
p

as the

sound waves. If we now turn on the transport coe�cients, the gaps are determined by

!

✓
! +

i�k

"
e

◆
= ⌦2

p

, !

✓
! +

i(�? ± i�̃)

"
e

◆
= ⌦2

p

,

indicating the damping of plasma oscillations. At non-zero B2
0 ⌧ ✏0+p0, the gaps will receive

dependence on the magnetic field.

At B0 = 0 the system is isotropic, and we can again neglect all transport coe�cients

except ⌘, ⇣1, and �? = �k = �. The gapless modes (B0 ! 0 first, k ! 0 second) include two

transverse shear modes with quartic dispersion relation, and one longitudinal di↵usive mode,

! = �

i⌘k4

n2
0µm

, ! = �

i��33w3
0

n2
0 det(�)

k2 ,

where again w0 ⌘ T0s0 + µ0n0, and the susceptibility matrix � was defined below Eq. (18).

At non-zero B0, the three gapless modes all have quadratic dispersion relation at small

momenta. There are two propagaing waves with real frequencies

! = ±

B0 cos ✓

n0µm

k2 , (49)

where ✓ is the angle between k and B0, and one di↵usive mode. For B2
0M4,µ ⌧ ✏0 + p0, the

di↵usive frequency is

! = �i
�33w3

0
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✓
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0
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Damped Langmuir oscillations

Damped transverse waves
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! = �iDk2 Charge diffusion

Shear modes have ω ~ -iηk4 ,  
not -iηk2  



Eigenmodes: n0≠0, B0≠0

Gapped modes 

Diffusion mode: 

Transverse waves:
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similar to 
Alfvén waves, but 
at non-zero n0 

! = �iDk2 D depends on 
θ, σ⟂, σ|| 

six of them, 
magnetosonic waves 
gapped out by n0 

! = ⌦p,i(B0)



Conclusions

• Thermodynamics in external fields can be done with W[g,A] 

• At leading order in derivatives, simple equilibrium Tμν:

Tµ⌫
EM = Mµ↵g↵�F

�⌫ + uµu↵
�
M↵�F

�⌫ � F↵�M
�⌫
�

• Screening does not mean E=0, it means E~O(∂) 

• MHD has 11 transport coefficients, of which 7 are dissipative

• At one-derivative order, get gyromagnetic physics:

L

V
= 2M⌦B , m = 2M⌦ !



What we haven’t done

Well-posedness of the PDE problem a la Israel-Stewart 

Evaluate the full set of transport coefficients in a given model  
(kinetic theory, holography) 

Statistical fluctuations are aggravated by the B field in 2+1 dim. 

Better connection with “dual” formulation of MHD (Sašo’s talk) 

Implications of the full set of transport coefs for real systems



Thank you!


