Relativistic magnetio-hydrodynamics

Pavel Kovtun, University of Victoria

based on arXiv:1606.01226, 1703.08757

Canterbury tales of hot QFTs, Oxford

Motivation

THE SUN'S ATMOSPHERE ISA SUPERHOT PLASMA GOVERNED BY MAGNETOHYDRODYNAMIC FORCES...

AH, YES, OF COURSE.

WHENEVER I HEAR THE WORD
"MAGNETOHYDRODYNAMIC" MY BRAIN JUST REPLACES IT WITH "MAGIC."

Motivation

To understand things I missed as a student:
What is pressure?
What are Maxwell's equations in matter?

Motivation

I was talking about the same subject here at Oxford last year, and may have made some incorfect incomplete statements.

Hopefully, today's talk will be an improvement.

Definitions

Hydrodynamics $=$ whatever happens when stuff flows
Magneto $=$ whatever happens when stuff is placed in E, B fields

What is MHD?

Classical low-energy effective theory for systems with $U(1)$ gauge fields and locally in thermal equilibrium.

Vanilla MHD:
Take Navier-Stokes
Add Maxwell's eq-s in matter
Set E_{i} to zero, allow B_{i} non-zero

What is MHD?

Want:
Thermodynamics in electromagnetic fields
Navier-Stokes modified by "bound" charges/currents
Systematic derivative expansion
Include electric fields
Classify transport coefficients
Connect with microscopics through Kubo formulas Statistical fluctuations
...

How hydro equations are solved in practice

1. Write down hydro equations (Eckart, Landau-Lifshitz)
2. Mess with the eq-s to make them causal (Israel-Stewart)
3. Find the right variables suitable for numerics
4. Solve equations numerically
5. Study interesting physics

How hydro equations are solved in practice

1. Write down hydro equations (Eckart, Landau-Lifshitz)
2. Mess with the eq-s to make them causal (Israel-Stewart)
3. Find the right variables suitable for numerics
4. Solve equations numerically
5. Study interesting physics

Until recently, no consensus on step 1 for relativistic MHD

Outline

I. Thermodynamics
II. Hydro with fixed E \& B
III. Hydro with dynamical E \& B

Equilibrium in external fields

Add external time-independent $\mathrm{g}_{\mu v}, \mathrm{~A}_{\mu}$

Compute $W=-i \ln Z\left[g_{\mu \nu}, A_{\mu}\right]$

Local correlations $\Rightarrow W[g, A]=\int d^{d+1} x \sqrt{-g} \mathcal{F}(g, A)$

Near-uniform fields \Rightarrow expand $\mathcal{F}(g, A)$ in derivatives of g, A

Leading order $\Rightarrow \mathcal{F}(g, A)=P+O(\partial)$

Response to external sources

$$
W[g, A]=\int_{\mathcal{M}} d^{d+1} x \sqrt{-g} \mathcal{F}(g, A)+\int_{\partial \mathcal{M}} d^{d} x \sqrt{\gamma} L(g, A, n)
$$

Thermodynamic variables

Timelike Killing vector V^{μ}, e.g. $\mathrm{V}^{\mu}=(1, \mathbf{0})$ for matter "at rest"

$$
T=\frac{1}{\beta_{0} \sqrt{-V^{2}}}, \quad u^{\mu}=\frac{V^{\mu}}{\sqrt{-V^{2}}}, \quad \mu=\frac{V^{\mu} A_{\mu}+\Lambda_{V}}{\sqrt{-V^{2}}}
$$

JLY arXiv:1310.7024

Definition of electric and magnetic fields:

$$
F_{\mu \nu}=u_{\mu} E_{\nu}-u_{\nu} E_{\mu}-\epsilon_{\mu \nu \rho \sigma} u^{\rho} B^{\sigma}
$$

Equilibrium relations

$$
u^{\lambda} \partial_{\lambda} T=0, \quad u^{\lambda} \partial_{\lambda} \mu=0
$$

$$
a_{\lambda}=-\partial_{\lambda} T / T
$$

$$
E^{\alpha}-T \Delta^{\alpha \beta} \partial_{\beta}\left(\frac{\mu}{T}\right)=0
$$

$$
\nabla_{\mu} u_{\nu}=-u_{\mu} a_{\nu}-\frac{1}{2} \epsilon_{\mu \nu \alpha \beta} u^{\alpha} \Omega^{\beta}
$$

things don't depend on time
gravitational potential induces temperature gradient
electric field induces charge gradient: this is electric screening
shear and expansion vanish in equilibrium

$$
\begin{aligned}
a^{\mu} & \equiv u^{\lambda} \nabla_{\lambda} u^{\mu} \\
\Omega^{\mu} & \equiv \epsilon^{\mu \nu \alpha \beta} u_{\nu} \nabla_{\alpha} u_{\beta}
\end{aligned}
$$

Polarization vectors

$$
\delta_{F} W[g, A]=\frac{1}{2} \int_{\mathcal{M}} d^{d+1} x \sqrt{-g} M_{\substack{\text { polarization } \\ \text { tensor }}}^{\mu \nu} \delta F_{\mu \nu}+\int_{\partial \mathcal{M}} \ldots
$$

Definition of polarization vectors:

$$
M_{\mu \nu}=p_{\mu} u_{\nu}-p_{\nu} u_{\mu}-\epsilon_{\mu \nu \rho \sigma} u^{\rho} m^{\sigma}
$$

electric polarization magnetic polarization

$$
\delta_{F} W[g, A]=\int_{\mathcal{M}} d^{d+1} x \sqrt{-g}\left(p_{\mu} \delta E^{\mu}+m_{\mu} \delta B^{\mu}\right)+\int_{\partial \mathcal{M}} \ldots
$$

Polarization vectors

If you are lost, all this was just a covariant way of saying

$$
\delta F=\int d^{3} x(\mathbf{p} \cdot \delta \mathbf{E}+\mathbf{m} \cdot \delta \mathbf{B})
$$

in equilibrium, defining \mathbf{p} and \mathbf{m}.

Note the ambiguity:

$$
\begin{gathered}
F=F+0=F+\int d^{3} x(X(\mathbf{x}) \nabla \cdot \mathbf{B}+\mathbf{Y}(\mathbf{x}) \cdot(\nabla \times \mathbf{E})) \\
\quad \mathbf{p} \rightarrow \mathbf{p}-\nabla \times \mathbf{Y}, \quad \mathbf{m} \rightarrow \mathbf{m}-\nabla X \\
\text { Thus } \mathbf{p} \text { and } \mathbf{m} \text { not uniquely defined }
\end{gathered}
$$

Bound charges and bound currents

Define charge density and spatial current:

Take the variation $\delta_{A} W[g, A]$:

$$
J^{\mu}=\rho u^{\mu}-\nabla_{\lambda} M^{\lambda \mu}
$$

"free charges" "bound charges"

$$
\rho \equiv \partial \mathcal{F} / \partial \mu
$$

$$
\begin{aligned}
& \mathcal{N}=\rho-\nabla_{\mu} p^{\mu}+p^{\mu} a_{\mu}-m_{\mu} \Omega^{\mu} \\
& \mathcal{J}^{\mu}=\epsilon^{\mu \nu \rho \sigma} u_{\nu} \nabla_{\rho} m_{\sigma}+\epsilon^{\mu \nu \rho \sigma} u_{\nu} a_{\rho} m_{\sigma}
\end{aligned}
$$

$a_{\mu}=$ acceleration $\Omega_{\mu}=$ vorticity

Bound charges and bound currents

Define charge density and spatial current:

Take the variation $\delta_{A} W[g, A]: \quad J^{\mu}=\rho u^{\mu}-\nabla_{\lambda} M^{\lambda \mu}$
"free charges" "bound charges"

$$
\rho \equiv \partial \mathcal{F} / \partial \mu
$$

$$
\begin{aligned}
& n=\rho-\boldsymbol{\nabla} \cdot \mathbf{p}-\mathbf{p} \cdot \boldsymbol{\nabla} T / T-2 \mathbf{m} \cdot \boldsymbol{\omega} \\
& \mathbf{J}=\boldsymbol{\nabla} \times \mathbf{m}+\mathbf{m} \times \boldsymbol{\nabla} T / T
\end{aligned}
$$

Bound charges and bound currents

Define charge density and spatial current:

Take the variation $\delta_{A} W[g, A]: \quad J^{\mu}=\rho u^{\mu}-\nabla_{\lambda} M^{\lambda \mu}$
"free charges" "bound charges"

$$
\rho \equiv \partial \mathcal{F} / \partial \mu
$$

Equilibrium surface charge and current:

$$
\sigma_{s}=\mathbf{p} \cdot \mathbf{n}+O(\partial) \quad \mathbf{j}=\mathbf{m} \times \mathbf{n}+O(\partial)
$$

These were equilibrium charges and currents.
Now need to find equilibrium $\mathrm{T}^{\mu \nu}$.
For that, need the derivative expansion.

Derivative expansion

$$
W[g, A]=\int \sqrt{-g} p+O(\partial)
$$

How do we count derivatives?
Clearly, $g_{\mu v}, T \sim O(1)$
In equilibrium, $\quad E^{\alpha}-T \Delta^{\alpha \beta} \partial_{\beta}\left(\frac{\mu}{T}\right)=0$
So if $\mu \sim O(1)$, then $E \sim O(\partial)$. This is screening.
No similar constraint on B, can take $B \sim O(1)$

Derivative expansion

$$
W[g, A]=\int \sqrt{-g} p+O(\partial)
$$

Insulator: $\mathrm{P}=\mathrm{p}\left(\mathrm{T}, \mathrm{E}^{2}, \mathrm{~B}^{2}, \mathrm{E} \cdot \mathrm{B}\right)$
Conductor: $\mathrm{p}=\mathrm{p}\left(\mathrm{T}, \mu, \mathrm{B}^{2}\right)$
In between: $\mathrm{P}=\mathrm{p}\left(\mathrm{T}, \mu, \mathrm{E}^{2}, \mathrm{~B}^{2}, \mathrm{E} \cdot \mathrm{B}\right)$

Example: $T^{\mu v}$ in external E,B fields

Leading order: $\mathcal{F}=p\left(T, \mu, E^{2}, B^{2}, E \cdot B\right)$

Calculate $T^{\mu v}$:

$$
T^{\mu \nu}=p g^{\mu \nu}+(T s+\mu \rho) u^{\mu} u^{\nu}+T_{\mathrm{EM}}^{\mu \nu}
$$

$$
T_{\mathrm{EM}}^{\mu \nu}=M^{\mu \alpha} g_{\alpha \beta} F^{\beta \nu}+u^{\mu} u^{\alpha}\left(M_{\alpha \beta} F^{\beta \nu}-F_{\alpha \beta} M^{\beta \nu}\right)
$$

This $T^{\mu v}$ is symmetric, first derived for ideal gas

P-invariant conducting fluid in $3+1$ dim

Free energy: $\quad \mathcal{F}(g, A)=p\left(T, \mu, B^{2}\right)+M_{\Omega}\left(T, \mu, B^{2}\right) B \cdot \Omega+O\left(\partial^{2}\right)$

Vary $W[g, A]=\int d^{d+1} x \sqrt{-g} \mathcal{F}(g, A)$ to find $T v_{\text {eq }}, J \mu_{\text {eq }}$

In constant B-field: $\quad T_{s}^{\mu \nu}=Q_{s}^{\mu} u^{\nu}+Q_{s}^{\nu} u^{\mu}, \quad Q_{s}^{\alpha}=M_{\Omega} \epsilon^{\alpha \mu \nu \rho} u_{\mu} B_{\nu} n_{\rho}$

Angular momentum:

$$
\frac{\mathbf{L}}{V}=2 M_{\Omega} \mathbf{B}
$$

Magneto-vortical susceptibility

System at rest
in flat space, constant B-field:

$$
\frac{\mathbf{L}}{V}=2 M_{\Omega} \mathbf{B}
$$

System rotating in flat space,

$$
\mathbf{m}=2 M_{\Omega} \boldsymbol{\omega}
$$

no B-field:

Static (zero frequency) correlation functions:
$\left\langle T^{t x} J^{z}\right\rangle=-k_{x} k_{z} M_{\Omega} \quad$ etc.

Outline

I. Thermodynamics
II. Hydro with fixed E \& B
III. Hydro with dynamical E \& B

Hydro equations

$$
\begin{gathered}
\nabla_{\mu} T^{\mu \nu}=F^{\nu} J_{\lambda} \\
\nabla_{\mu} \mathrm{J}^{\mu}=0
\end{gathered}
$$

$$
T^{\mu v}=T^{\mu v}{ }_{\text {eq }}+T^{\mu v} v_{\text {non-eq }}, \quad J \mu=J \mu_{\text {eq }}+J \mu_{\text {non-eq }}
$$

get from equilibrium $W[g, A]=\int p+O(\partial)$

$$
\text { e.g. } J^{\mu}{ }_{e q}=\rho u^{\mu}-\nabla_{\lambda} M^{\lambda \mu}
$$

Hydro equations

$$
\begin{gathered}
\nabla_{\mu} T^{\top \nu}=F^{\nu} \lambda_{\lambda} \\
\nabla_{\mu} \mathrm{J}^{\mu}=0
\end{gathered}
$$

$$
T \mu v=T \mu v_{e q}+T \mu v_{\text {non-eq }}, \quad J \mu=J \mu_{e q}+J \mu_{\text {non-eq }}
$$

vanish in equilibrium, depend on $\partial_{\mu}, B_{\mu}, E_{\mu}, \eta, \zeta, \ldots$

Transport coefficients

For P -invariant conducting fluid in $3+1$ dim:

- one thermodynamic susceptibility M_{Ω}
- two shear viscosities (\perp and || to B)
- three bulk viscosities
- two electrical conductivities (\perp and $|\mid$ to B)
- two Hall viscosities (\perp and || to B)
- one Hall conductivity

Eleven coefficients total:
1 thermodynamic, non-dissipative
3 non-equilibrium, non-dissipative
7 non-equilibrium, dissipative

Constitutive relations*

$$
T^{\mu \nu}=\mathcal{E} u^{\mu} u^{\nu}+\mathcal{P} \Delta^{\mu \nu}+\mathcal{Q}^{\mu} u^{\nu}+\mathcal{Q}^{\nu} u^{\mu}+\mathcal{T}^{\mu \nu}, \quad J^{\mu}=\mathcal{N} u^{\mu}+\mathcal{J}^{\mu}
$$

$$
\begin{array}{rlr}
\mathcal{E}= & -p+T p_{, T}+\mu p_{, \mu}+\left(T M_{\Omega, T}+\mu M_{\Omega, \mu}-2 M_{\Omega}\right) B \cdot \Omega, \\
\mathcal{P}= & p-\frac{4}{3} p_{, B^{2}} B^{2}-\frac{1}{3}\left(M_{\Omega}+4 M_{\Omega, B^{2}} B^{2}\right) B \cdot \Omega-\zeta_{1} \nabla \cdot u-\zeta_{2} b^{\mu} b^{\nu} \nabla_{\mu} u_{\nu}, \\
\mathcal{Q}^{\mu}= & -M_{\Omega} \epsilon^{\mu \nu \rho \sigma} u_{\nu} \partial_{\sigma} B_{\rho}+\left(2 M_{\Omega}-T M_{\Omega, T}-\mu M_{\Omega, \mu}\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} B_{\rho} \partial_{\sigma} T / T \\
& -M_{\Omega, B^{2} \epsilon^{\mu \nu \rho \sigma}} u_{\nu} B_{\rho} \partial_{\sigma} B^{2}+\left(-2 p_{, B^{2}}+M_{\Omega, \mu}-2 M_{\Omega, B^{2}} B \cdot \Omega\right) \epsilon^{\mu \nu \rho \sigma} u_{\nu} E_{\rho} B_{\sigma} \\
& +M_{\Omega} \epsilon^{\mu \nu \rho \sigma} \Omega_{\nu} E_{\rho} u_{\sigma}, \\
\mathcal{T}^{\mu \nu}= & 2 p_{, B^{2}}\left(B^{\mu} B^{\nu}-\frac{1}{3} \Delta^{\mu \nu} B^{2}\right)+M_{\Omega, B^{2}} B^{\langle\mu} B^{\nu\rangle} B \cdot \Omega+M_{\Omega} B^{\langle\mu} \Omega^{\nu\rangle} \\
& -\eta_{\perp} \sigma_{\perp}^{\mu \nu}-\eta_{\|}\left(b^{\mu} \Sigma^{\nu}+b^{\nu} \Sigma^{\mu}\right)-b^{\langle\mu} b^{\nu\rangle}\left(\eta_{1} \nabla \cdot u+\eta_{2} b^{\alpha} b^{\beta} \nabla_{\alpha} u_{\beta}\right) & \Delta^{\mu \nu} \\
& -\tilde{\eta}_{\perp} \tilde{\sigma}_{\perp}^{\mu \nu}-\tilde{\eta}_{\|}\left(b^{\mu} \tilde{\Sigma}^{\nu}+b^{\nu} \tilde{\Sigma}^{\mu}\right), & \sigma^{\mu \nu} \\
\mathcal{N}= & p_{, \mu}+M_{\Omega, \mu} B \cdot \Omega-m \cdot \Omega, \\
\tilde{\sigma}^{\mu \nu}= & \epsilon^{\mu \nu \rho \sigma} u_{\nu} \nabla_{\rho} m_{\sigma}+\epsilon^{\mu \nu \rho \sigma} u_{\nu} a_{\rho} m_{\sigma}+\left(\sigma_{\perp} \mathbb{B}^{\mu \nu}+\sigma_{\|} \frac{B^{\mu} B^{\nu}}{B^{2}}\right) V_{\nu}+\tilde{\sigma} \tilde{V}^{\mu} & \mathbb{B}^{\mu \nu} \\
V^{\mu}
\end{array}
$$

* In thermodynamic frame, up to $O(\partial)$

$$
\begin{aligned}
\Delta^{\mu \nu} & \equiv g^{\mu \nu}+u^{\mu} u^{\nu} \quad b^{\mu} \equiv B^{\mu} / B \\
\sigma^{\mu \nu} & \equiv \Delta^{\mu \alpha} \Delta^{\nu \beta}\left(\nabla_{\alpha} u_{\beta}+\nabla_{\beta} u_{\alpha}-\frac{2}{3} \Delta_{\alpha \beta} \nabla \cdot u\right) \\
\tilde{\sigma}^{\mu \nu} & \equiv \frac{1}{2 B}\left(\epsilon^{\mu \lambda \alpha \beta} u_{\lambda} B_{\alpha} \sigma_{\beta}{ }^{\nu}+\epsilon^{\nu \lambda \alpha \beta} u_{\lambda} B_{\alpha} \sigma_{\beta}{ }^{\mu}\right) \\
\mathbb{B}^{\mu \nu} & \equiv \Delta^{\mu \nu}-b^{\mu} b^{\nu} \quad \Sigma^{\mu} \equiv \mathbb{B}^{\mu \lambda} \sigma_{\lambda \rho} b^{\rho} \\
V^{\mu} & \equiv E^{\mu}-T \Delta^{\mu \nu} \partial_{\nu}(\mu / T) \\
\tilde{v}^{\mu} & \equiv \epsilon^{\mu \nu \rho \sigma} u_{\nu} B_{\rho} v_{\sigma} / B \\
m^{\mu} & =\left(2 p_{, B^{2}}+2 M_{\Omega, B^{2}} B \cdot \Omega\right) B^{\mu}+M_{\Omega} \Omega^{\mu}
\end{aligned}
$$

Other things

Inequality constraints on n＇s，乙＇s，o＇s from 2－nd law
Equality constraints on n＇s，そ＇s，o＇s from Onsager relations
Eigenmodes：collective cyclotron modes，sound，diffusion，．．．
Express n＇s，そ＇s，o＇s in terms of $\left\langle T_{\mu \nu} T_{\alpha \beta}\right\rangle,\left\langle T_{\mu \nu} J_{a}\right\rangle,\left\langle J_{\mu} J_{a}\right\rangle$
Transport coefficients for P －violating fluids

Is any of this near-equilibrium relativistic MHD business actually physically relevant?

I don't know. But the following story comes to mind.
In 1948, A.I.Akhiezer and his student L.E.Pargamanik worked out the kinetic waves of plasma in a magnetic field.

Akhiezer showed the results to L.D.Landau and was told: "Where have you seen plasma, moreover in magnetic field?"

As Landau disapproved, the results could only be published in an insignificant journal Notes of Kharkov University in 1948.

In 1958, I.B.Bernstein in Princeton didn't ask Landau's opinion, and independently worked out the same waves in Phys.Rev.

These are now called Bernstein waves in all plasma literature.

Outline

I. Thermodynamics
II. Hydro with fixed E \& B
III. Hydro with dynamical E \& B

What are the equations?

E, B external: $\nabla_{\mu} T^{\mu \nu}=F^{\nu \lambda} J_{\lambda}, \nabla_{\mu} J^{\mu}=0$

E, B dynamical: $\quad \nabla_{\mu} T^{\mu v}=0, J^{\mu}=0$
these are Maxwell's equations

Generating functional W[g,A] = effective action S[g,A]

$$
W[g, A]=\int d^{d+1} x \sqrt{-g} \mathcal{F}(g, A)
$$

$$
\mathcal{F}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\mathcal{F}_{m}
$$

definition of \mathcal{F}_{m} :
includes pressure, polarization, derivative expansion

Maxwell's equations in matter

$\mathrm{J}^{\mu}=0$ is same eqn as $\nabla_{\nu} H^{\mu \nu}=\rho u^{\mu}$

$$
H^{\mu \nu} \equiv F^{\mu \nu}-M_{m}^{\mu \nu}=u^{\mu} D^{\nu}-u^{\nu} D^{\mu}-\epsilon^{\mu \nu \rho \sigma} u_{\rho} H_{\sigma}{ }_{\text {defines D } \mathrm{D}, \mathrm{H}^{\mu}}
$$

Example: $\mathcal{F}_{\mathrm{m}}=p_{\mathrm{m}}\left(T, \mu, E^{2}, B^{2}, E \cdot B\right)$ gives the standard

$$
\begin{aligned}
& D^{\mu}=\varepsilon_{\mathrm{m}} E^{\mu}+\beta_{\mathrm{m}} H^{\mu} \\
& B^{\mu}=\beta_{\mathrm{m}} E^{\mu}+\mu_{\mathrm{m}} H^{\mu}
\end{aligned}
$$

$$
\begin{aligned}
\varepsilon_{\mathrm{m}} & \equiv 1+\chi_{\mathrm{EE}}+\chi_{\mathrm{EB}}^{2} /\left(1-\chi_{\mathrm{BB}}\right) \\
\mu_{\mathrm{m}} & \equiv 1 /\left(1-\chi_{\mathrm{BB}}\right) \\
\beta_{\mathrm{m}} & \equiv \chi_{\mathrm{EB}} /\left(1-\chi_{\mathrm{BB}}\right) \\
\chi_{\mathrm{EE}} & \equiv 2 \partial p_{\mathrm{m}} / \partial E^{2} \\
\chi_{\mathrm{EB}} & \equiv \partial p_{\mathrm{m}} / \partial(E \cdot B) \\
\chi_{\mathrm{BB}} & \equiv 2 \partial p_{\mathrm{m}} / \partial B^{2}
\end{aligned}
$$

MHD equations

Assume that E \& B change slowly so that $T^{\mu v}$ and J^{μ} keep the same form as for external $E \& B$

Adopt derivative counting $\mathrm{B} \sim \mathrm{O}(1), \mathrm{E} \sim \mathrm{O}(\partial)$
Equilibrium action $W[g, A]=\int \sqrt{-g}\left(-\frac{1}{2} B^{2}+p_{\mathrm{m}}\left(T, \mu, B^{2}\right)+M_{\Omega}\left(T, \mu, B^{2}\right) B \cdot \Omega\right)$

$$
\nabla_{\mu}\left(T \mu v_{e q}+T \mu v_{\text {non-eq }}\right)=0, \quad J \mu_{e q}+J \mu_{\text {non-eq }}=0, \quad \varepsilon^{\mu v a \beta} \nabla_{v} F_{a \beta}=0
$$

Just for fun, add $\frac{1}{2} \varepsilon_{\mathrm{e}} E^{2}$ to the action
This gives MHD eqs that we can do something with

MHD transport coefficients

Compared to hydro in fixed, non-dynamical B-field:

- MHD has the same 11 transport coefficients
- MHD has the same entropy current
- MHD has the same Kubo formulas for viscosities
- MHD has different Kubo formulas for conductivities

$$
\begin{aligned}
& \frac{1}{\omega} \operatorname{Im} G_{E_{z} E_{z}}^{\mathrm{ret}}(\omega, \mathbf{k}=0)=\rho_{\|} \\
& \frac{1}{\omega} \operatorname{Im} G_{E_{x} E_{x}}^{\mathrm{ret}}(\omega, \mathbf{k}=0)=\rho_{\perp} \\
& \frac{1}{\omega} \operatorname{Im} G_{E_{x} E_{y}}^{\mathrm{ret} .}(\omega, \mathbf{k}=0)=-\tilde{\rho}_{\perp} \operatorname{sign}\left(B_{0}\right)
\end{aligned}
$$

$$
\begin{array}{r}
\sigma_{a b} \equiv \sigma_{\perp} \delta_{a b}+\tilde{\sigma} \epsilon_{a b} \\
\left(\sigma^{-1}\right)_{a b}=\rho_{\perp} \delta_{a b}+\tilde{\rho}_{\perp} \epsilon_{a b} \\
\rho_{\|} \equiv 1 / \sigma_{\|}
\end{array}
$$

Eigenmodes: $\mathrm{n}_{0}=0, \mathrm{~B}_{0} \neq 0$

Gapped modes: $\quad \omega=-\frac{i \sigma_{\|}}{\varepsilon_{\mathrm{e}}}+O\left(k^{2}\right), \quad \omega=-\frac{i \sigma_{\perp} \pm \tilde{\sigma}}{\varepsilon_{\mathrm{e}}}+O\left(k^{2}\right)$

Alfvén waves: $\quad \omega= \pm v_{\mathrm{A}} k \cos \theta-\frac{i \Gamma_{\mathrm{A}}}{2} k^{2}$

$$
v_{A}^{2}=\frac{B_{0}^{2}}{\mu_{m}\left(\epsilon_{0}+p_{0}\right)+B_{0}^{2}}
$$

$$
\Gamma_{\mathrm{A}}=\frac{1}{\epsilon_{0}+p_{0}}\left(\eta_{\perp} \sin ^{2} \theta+\eta_{\|} \cos ^{2} \theta\right)+\frac{1}{\mu_{\mathrm{m}}}\left(\rho_{\perp} \cos ^{2} \theta+\rho_{\|} \sin ^{2} \theta\right)
$$

Magnetosonic waves, two branches:

$$
\omega= \pm v_{\mathrm{ms}} k-\frac{i \Gamma_{\mathrm{ms}}}{2} k^{2}
$$

$$
\begin{aligned}
& \left(v_{\mathrm{ms}}^{2}\right)^{2}-v_{\mathrm{ms}}^{2}\left(v_{A}^{2}+v_{s}^{2}-v_{A}^{2} v_{s}^{2} \sin ^{2} \theta\right)+v_{A}^{2} v_{s}^{2} \cos ^{2} \theta=0, \quad v_{s}^{2}=\partial p / \partial \epsilon \\
& \text { slow: } \Gamma_{\mathrm{ms}}=\frac{\eta}{\epsilon_{0}+p_{0}}+\frac{1}{\sigma \mu_{\mathrm{m}}} \\
& \text { fast: } \Gamma_{\mathrm{ms}}=\frac{1}{\epsilon_{0}+p_{0}}\left(\frac{4}{3} \eta+\zeta\right)
\end{aligned}
$$

Eigenmodes: $\mathrm{n}_{0} \neq 0, \mathrm{~B}_{0}=0$

Set $\sigma=\eta=\zeta=0: \quad \omega^{2}=\Omega_{p}^{2}+v_{s}^{2} k^{2}$

$$
\omega^{2}=\Omega_{p}^{2}+\frac{k^{2}}{\varepsilon_{\mathrm{e}} \mu_{\mathrm{m}}} \quad \Omega_{p}^{2}=\frac{n_{0}^{2}}{(\epsilon+p) \varepsilon_{e}}
$$

Relativistic Langmuir oscillations
relativistic "plasma frequency"

Turn on σ, η, ζ : $\omega\left(\omega+\frac{i \sigma_{\|}}{\varepsilon_{\mathrm{e}}}\right)=\Omega_{p}^{2}$
$\omega\left(\omega+\frac{i\left(\sigma_{\perp} \pm i \tilde{\sigma}\right)}{\varepsilon_{\mathrm{e}}}\right)=\Omega_{p}^{2} \quad$ Damped transverse waves

$$
\begin{aligned}
\omega & =-\frac{i \eta k^{4}}{n_{0}^{2} \mu_{\mathrm{m}}} \\
\omega & =-i D k^{2}
\end{aligned}
$$

Damped Langmuir oscillations

Shear modes have ω ~ -ink ${ }^{4}$, not -ink²

Charge diffusion

Eigenmodes: $\mathrm{n}_{0} \neq 0, \mathrm{~B}_{0} \neq 0$

Gapped modes $\quad \omega=\Omega_{p, i}\left(B_{0}\right)$

Diffusion mode:

$$
\omega=-i D k^{2}
$$

$$
\omega= \pm \frac{B_{0} \cos \theta}{n_{0} \mu_{\mathrm{m}}} k^{2}
$$

six of them,
magnetosonic waves gapped out by no

D depends on $\theta, \sigma_{\perp}, \sigma_{\|}$
similar to
Alfvén waves, but at non-zero no

Conclusions

- Thermodynamics in external fields can be done with W[g,A]
- At leading order in derivatives, simple equilibrium Thv:

$$
T_{\mathrm{EM}}^{\mu \nu}=M^{\mu \alpha} g_{\alpha \beta} F^{\beta \nu}+u^{\mu} u^{\alpha}\left(M_{\alpha \beta} F^{\beta \nu}-F_{\alpha \beta} M^{\beta \nu}\right)
$$

- At one-derivative order, get gyromagnetic physics:

$$
\frac{\mathbf{L}}{V}=2 M_{\Omega} \mathbf{B}, \quad \mathbf{m}=2 M_{\Omega} \boldsymbol{\omega}
$$

- Screening does not mean $\mathrm{E}=0$, it means $\mathrm{E} \sim \mathrm{O}(\partial)$
- MHD has 11 transport coefficients, of which 7 are dissipative

What we haven't done

Well-posedness of the PDE problem a la Israel-Stewart
Evaluate the full set of transport coefficients in a given model (kinetic theory, holography)

Statistical fluctuations are aggravated by the B field in 2+1 dim.
Better connection with "dual" formulation of MHD (Sašo's talk)
Implications of the full set of transport coefs for real systems

Thank you!

