Holographic phase transitions in real time

Romuald A. Janik
Jagiellonian University
Kraków

RJ, J. Jankowski, H. Soltanpanahi
RJ, J. Jankowski, H. Soltanpanahi
RJ, J. Jankowski, H. Soltanpanahi

PRL '16 [1512.06871]
JHEP '16 [1603.05950]
1704.05387

Outline

Motivation

The AdS/CFT description of equilibrium phase transitions

How to model nonconformal plasma?

Equilibrium configurations

Linearized dynamics

Why are quasi-normal modes interesting?

Nonlinear evolution

Conclusions and Outlook

Outline

Motivation

The AdS/CFT description of equilibrium phase transitions
How to model nonconformal plasma?

Equilibrium configurations

Linearized dynamics

Why are quasi-normal modes interesting?
Nonlinear evolution
Conclusions and Outlook

Outline

Motivation
The AdS/CFT description of equilibrium phase transitions
How to model nonconformal plasma?

Equilibrium configurations

Linearized dynamics

Why are quasi-normal modes interesting?
Nonlinear evolution
Conclusions and Outlook

Outline

Motivation
The AdS/CFT description of equilibrium phase transitions
How to model nonconformal plasma?
Equilibrium configurations
Linearized dynamics

Why are quasi-normal modes interesting?
Nonlinear evolution
Conclusions and Outlook

Outline

Motivation
The AdS/CFT description of equilibrium phase transitions
How to model nonconformal plasma?
Equilibrium configurations
Linearized dynamics
Why are quasi-normal modes interesting?
Nonlinear evolution
Conclusions and Outlook

Outline

Motivation
The AdS/CFT description of equilibrium phase transitions
How to model nonconformal plasma?
Equilibrium configurations
Linearized dynamics
Why are quasi-normal modes interesting?
Nonlinear evolution
Conclusions and Outlook

Outline

Motivation
The AdS/CFT description of equilibrium phase transitions
How to model nonconformal plasma?
Equilibrium configurations
Linearized dynamics
Why are quasi-normal modes interesting?
Nonlinear evolution

Conclusions and Outlook

Outline

Motivation
The AdS/CFT description of equilibrium phase transitions
How to model nonconformal plasma?
Equilibrium configurations
Linearized dynamics
Why are quasi-normal modes interesting?
Nonlinear evolution
Conclusions and Outlook

Motivation

> Goal:

> Understand passage through phase transitions during real time evolution

Motivation

Goal:

Understand passage through phase transitions during real time evolution

Motivation

Goal:

Understand passage through phase transitions during real time evolution

Motivation

Concrete physical motivation: heavy-ion collision at RHIC/LHC:

Motivation

Concrete physical motivation: heavy-ion collision at RHIC/LHC:

$$
|\rightarrow \quad \leftarrow| \quad \text { Collision }
$$

Motivation

Concrete physical motivation: heavy-ion collision at RHIC/LHC:

$$
\rightarrow \quad \text { Collision }
$$

Motivation

Concrete physical motivation: heavy-ion collision at RHIC/LHC:

$$
\rightarrow+\infty \quad \begin{aligned}
& \text { Collision } \\
& \text { isotropization } \\
& \text { thermalization }
\end{aligned}
$$

Motivation

Concrete physical motivation: heavy-ion collision at RHIC/LHC:

$$
\rightarrow \leftarrow \left\lvert\, \begin{gathered}
\text { Collision } \\
\text { Fireball } \\
\sim \text { isetropization }
\end{gathered}\right.
$$

Motivation

Concrete physical motivation: heavy-ion collision at RHIC/LHC:
$\mid \rightarrow \leftarrow 1$ 1

Collision

Fireball
hydrodynamic expansion

Motivation

Concrete physical motivation: heavy-ion collision at RHIC/LHC:
$\mid \rightarrow+1$ 1

Collision

Fireball
hydrodynamic expansion
freezout
hadronization

Motivation

Concrete physical motivation: heavy-ion collision at RHIC/LHC:

Another motivation...

Understand the AdS/CFT description of a dynamical phase transition...

Another motivation...

Understand the AdS/CFT description of a dynamical phase transition... (in Minkowski signature!!)

The AdS/CFT description of equilibrium phase transitions

```
- \(\mathcal{N}=4\) SYM on \(\mathbb{R}^{4}\) is a conformal theory - cannot have a phase
    transition
    - \(\mathcal{N}=4\) SYM on \(\mathbb{R} \times S^{3}\) can have a phase transition and in fact does
    have it ( \(T R\) is a dimensionless quantity).
    - In equilibrium we study a field theory at nonzero temperature by
    compactifying euclidean time on a circle of radius \(1 / T\)
- We thus have to find dual geometries to \(\mathcal{N}=4\) SYM on \(S^{1} \times S^{3}\)..
```

The AdS/CFT description of equilibrium phase transitions

- $\mathcal{N}=4$ SYM on \mathbb{R}^{4} is a conformal theory - cannot have a phase transition
- $\mathcal{N}=4$ SYM on $\mathbb{R} \times S^{3}$ can have a phase transition and in fact does have it ($T R$ is a dimensionless quantity).
- In equilibrium we study a field theory at nonzero temperature by compactifying euclidean time on a circle of radius $1 / T$
- We thus have to find dual geometries to $\mathcal{N}=4$ SYM on $S^{1} \times S^{3}$.

The AdS/CFT description of equilibrium phase transitions

- $\mathcal{N}=4 S Y M$ on \mathbb{R}^{4} is a conformal theory - cannot have a phase transition
- $\mathcal{N}=4$ SYM on $\mathbb{R} \times S^{3}$ can have a phase transition and in fact does have it ($T R$ is a dimensionless quantity).
- In equilibrium we study a field theory at nonzero temperature by compactifying euclidean time on a circle of radius $1 / T$
- We thus have to find dual geometries to $\mathcal{N}=4 \mathrm{SYM}$ on $S^{1} \times S^{3}$..

The AdS/CFT description of equilibrium phase transitions

- $\mathcal{N}=4$ SYM on \mathbb{R}^{4} is a conformal theory - cannot have a phase transition
- $\mathcal{N}=4$ SYM on $\mathbb{R} \times S^{3}$ can have a phase transition and in fact does have it (TR is a dimensionless quantity).
- In equilibrium we study a field theory at nonzero temperature by compactifying euclidean time on a circle of radius $1 / T$
- We thus have to find dual geometries to $\mathcal{N}=4$ SYM on $S^{1} \times S^{3}$.

The AdS/CFT description of equilibrium phase transitions

- $\mathcal{N}=4$ SYM on \mathbb{R}^{4} is a conformal theory - cannot have a phase transition
- $\mathcal{N}=4$ SYM on $\mathbb{R} \times S^{3}$ can have a phase transition and in fact does have it ($T R$ is a dimensionless quantity).
- In equilibrium we study a field theory at nonzero temperature by compactifying euclidean time on a circle of radius $1 / T$
- We thus have to find dual geometries to $\mathcal{N}=4 \mathrm{SYM}$ on $S^{1} \times S^{3}$.

The AdS/CFT description of equilibrium phase transitions

- $\mathcal{N}=4$ SYM on \mathbb{R}^{4} is a conformal theory - cannot have a phase transition
- $\mathcal{N}=4$ SYM on $\mathbb{R} \times S^{3}$ can have a phase transition and in fact does have it ($T R$ is a dimensionless quantity).
- In equilibrium we study a field theory at nonzero temperature by compactifying euclidean time on a circle of radius $1 / T$

The AdS/CFT description of equilibrium phase transitions

- $\mathcal{N}=4$ SYM on \mathbb{R}^{4} is a conformal theory - cannot have a phase transition
- $\mathcal{N}=4$ SYM on $\mathbb{R} \times S^{3}$ can have a phase transition and in fact does have it ($T R$ is a dimensionless quantity).
- In equilibrium we study a field theory at nonzero temperature by compactifying euclidean time on a circle of radius $1 / T$
- We thus have to find dual geometries to $\mathcal{N}=4$ SYM on $S^{1} \times S^{3} \ldots$

The AdS/CFT description of equilibrium phase transitions

Dual geometries to $\mathcal{N}=4$ SYM on $S^{1} \times S^{3}$

1. Empty (global) $A d S_{5} \times S^{5}$ with periodic identification of the time coordinate (\equiv thermal AdS)

$$
d s^{2}=\left(r^{2}+1\right) d t^{2}+\frac{d r^{2}}{r^{2}+1}+r^{2} d \Omega_{3}^{2}
$$

2. (Euclidean) AdS black hole

$$
d s^{2}=\left(r^{2}+1-\frac{C}{r^{2}}\right) d t^{2}+\frac{d r^{2}}{r^{2}+1-\frac{c}{r^{2}}}+r^{2} d \Omega_{3}^{2}
$$

Compare the free energies of the two solutions...

The AdS/CFT description of equilibrium phase transitions

Dual geometries to $\mathcal{N}=4$ SYM on $S^{1} \times S^{3}$

1. Empty (global) $A d S_{5} \times S^{5}$ with periodic identification of the time coordinate (\equiv thermal AdS)
2. (Euclidean) AdS black hole

Compare the free energies of the two solutions...

The AdS/CFT description of equilibrium phase transitions

Dual geometries to $\mathcal{N}=4$ SYM on $S^{1} \times S^{3}$

1. Empty (global) $A d S_{5} \times S^{5}$ with periodic identification of the time coordinate (\equiv thermal AdS)

$$
d s^{2}=\left(r^{2}+1\right) d t^{2}+\frac{d r^{2}}{r^{2}+1}+r^{2} d \Omega_{3}^{2}
$$

2. (Euclidean) AdS black hole

Compare the free energies of the two solutions...

The AdS/CFT description of equilibrium phase transitions

Dual geometries to $\mathcal{N}=4$ SYM on $S^{1} \times S^{3}$

1. Empty (global) $A d S_{5} \times S^{5}$ with periodic identification of the time coordinate (\equiv thermal AdS)

$$
d s^{2}=\left(r^{2}+1\right) d t^{2}+\frac{d r^{2}}{r^{2}+1}+r^{2} d \Omega_{3}^{2}
$$

2. (Euclidean) AdS black hole

$$
d s^{2}=\left(r^{2}+1-\frac{C}{r^{2}}\right) d t^{2}+\frac{d r^{2}}{r^{2}+1-\frac{C}{r^{2}}}+r^{2} d \Omega_{3}^{2}
$$

Compare the free energies of the two solutions...

The AdS/CFT description of equilibrium phase transitions

Dual geometries to $\mathcal{N}=4$ SYM on $S^{1} \times S^{3}$

1. Empty (global) $A d S_{5} \times S^{5}$ with periodic identification of the time coordinate (\equiv thermal AdS)

$$
d s^{2}=\left(r^{2}+1\right) d t^{2}+\frac{d r^{2}}{r^{2}+1}+r^{2} d \Omega_{3}^{2}
$$

2. (Euclidean) AdS black hole

$$
d s^{2}=\left(r^{2}+1-\frac{C}{r^{2}}\right) d t^{2}+\frac{d r^{2}}{r^{2}+1-\frac{C}{r^{2}}}+r^{2} d \Omega_{3}^{2}
$$

Compare the free energies of the two solutions...

The AdS/CFT description of equilibrium phase transitions

- Evaluate the free energies from the gravitational action evaluated on the relevant classical solution
- Conclusions:

Witten 9803131

* At low temperatures the dominant geometry is the thermal AdS solution
- At high temperatures the AdS black hole takes over

The AdS/CFT description of equilibrium phase transitions

- Evaluate the free energies from the gravitational action evaluated on the relevant classical solution

The AdS/CFT description of equilibrium phase transitions

- Evaluate the free energies from the gravitational action evaluated on the relevant classical solution
- Conclusions:

Witten 9803131

- At low temperatures the dominant geometry is the thermal AdS solution
- At high temperatures the AdS black hole takes over

The AdS/CFT description of equilibrium phase transitions

- Evaluate the free energies from the gravitational action evaluated on the relevant classical solution
- Conclusions:

Witten 9803131

- At low temperatures the dominant geometry is the thermal AdS solution
- At high temperatures the AdS black hole takes over

The AdS/CFT description of equilibrium phase transitions

- Evaluate the free energies from the gravitational action evaluated on the relevant classical solution
- Conclusions:

Witten 9803131

- At low temperatures the dominant geometry is the thermal AdS solution
- At high temperatures the AdS black hole takes over

The AdS/CFT description of equilibrium phase transitions
> 1. The two geometries are two distinct saddle point solutions with same asymptotic boundary conditions (i.e. $S^{1} \times S^{3}$ geometry)
> 2. The $1^{\text {st }}$ order phase transition occurs when switching between the two saddle points...
> 3. These are completely distinct 5-dimensional geometries $\left(\times S^{5}\right)$

Question:

What happens in real time??

The AdS/CFT description of equilibrium phase transitions

1. The two geometries are two distinct saddle point solutions with same asymptotic boundary conditions (i.e. $S^{1} \times S^{3}$ geometry)
2. The $1^{\text {st }}$ order phase transition occurs when switching between the two saddle points.
3. These are completely distinct 5-dimensional geometries $\left(\times S^{5}\right)$

Question:

What happens in real time??

The AdS/CFT description of equilibrium phase transitions

1. The two geometries are two distinct saddle point solutions with same asymptotic boundary conditions (i.e. $S^{1} \times S^{3}$ geometry)
2. The $1^{\text {st }}$ order phase transition occurs when switching between the two saddle points...
3. These are completely distinct 5 -dimensional geometries $\left(\times S^{5}\right)$

Question:
What happens in real time??

The AdS/CFT description of equilibrium phase transitions

1. The two geometries are two distinct saddle point solutions with same asymptotic boundary conditions (i.e. $S^{1} \times S^{3}$ geometry)
2. The $1^{\text {st }}$ order phase transition occurs when switching between the two saddle points...
3. These are completely distinct 5-dimensional geometries $\left(\times S^{5}\right)$

Question:
What happens in real time??

The AdS/CFT description of equilibrium phase transitions

1. The two geometries are two distinct saddle point solutions with same asymptotic boundary conditions (i.e. $S^{1} \times S^{3}$ geometry)
2. The $1^{\text {st }}$ order phase transition occurs when switching between the two saddle points...
3. These are completely distinct 5-dimensional geometries $\left(\times S^{5}\right)$

Question:

What happens in real time??

The AdS/CFT description of equilibrium phase transitions

1. The two geometries are two distinct saddle point solutions with same asymptotic boundary conditions (i.e. $S^{1} \times S^{3}$ geometry)
2. The $1^{\text {st }}$ order phase transition occurs when switching between the two saddle points...
3. These are completely distinct 5-dimensional geometries $\left(\times S^{5}\right)$

Question:

What happens in real time??

Our setup

- We would like to have the field theory defined on flat Minkowski space
- Need a nonconformal field theory.

Our setup

- We would like to have the field theory defined on flat Minkowski space
- Need a nonconformal field theory..

Our setup

- We would like to have the field theory defined on flat Minkowski space
- Need a nonconformal field theory..

How to model nonconformal plasma?

Two approaches:

1. Top-down approach:

Deform $\mathcal{N}=1$ SVM - some explicitly known (but rather complicated) gravitational backgrounds
2. Bottom-up approach: \leftarrow this talk

Assume AdS /CFT dictionary but try to model the gravity + matter background so as to exhibit the physics of interest

How to model nonconformal plasma?

Two approaches:

1. Top-down approach:

Deform $\mathcal{N}=1$ SVM - some explicitly known (but rather
complicated) gravitational backgrounds
2. Bottom-up approach: \leftarrow this talk

Assume AdS /CFT dictionary but try to model the gravity + matter
background so as to exhibit the physics of interest

How to model nonconformal plasma?

Two approaches:

1. Top-down approach:

Deform $\mathcal{N}=4$ SYM - some explicitly known (but rather
complicated) gravitational backgrounds
2. Bottom-up approach: \leftarrow this talk

Assume AdS /CFT dictionary but try to model the gravity + matter
background so as to exhibit the physics of interest

How to model nonconformal plasma?

Two approaches:

1. Top-down approach:

Deform $\mathcal{N}=4$ SYM - some explicitly known (but rather complicated) gravitational backgrounds
2. Bottom-up approach: \leftarrow this talk

Assume AdS/CFT dictionary but try to model the gravity + matter background so as to exhibit the physics of interest

How to model nonconformal plasma?

Two approaches:

1. Top-down approach:

Deform $\mathcal{N}=4$ SYM - some explicitly known (but rather complicated) gravitational backgrounds
2. Bottom-up approach:

Assume AdS/CFT dictionary but try to model the gravity+matter background so as to exhibit the physics of interest

How to model nonconformal plasma?

Two approaches:

1. Top-down approach:

Deform $\mathcal{N}=4$ SYM - some explicitly known (but rather complicated) gravitational backgrounds
2. Bottom-up approach: \leftarrow this talk

Assume AdS/CFT dictionary but try to model the gravity+matter background so as to exhibit the physics of interest

How to model nonconformal plasma?

Two approaches:

1. Top-down approach:

Deform $\mathcal{N}=4$ SYM - some explicitly known (but rather complicated) gravitational backgrounds
2. Bottom-up approach: \leftarrow this talk

Assume AdS/CFT dictionary but try to model the gravity+matter background so as to exhibit the physics of interest

The nonconformal models

- Following Gubser et. al. we consider a gravity+scalar field system:

$$
S=\frac{1}{2 k_{5}^{2}} \int d^{5} \times \sqrt{g}\left[R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right]
$$

- Here $V(\phi)$ is a self-interaction potential which we choose to reproduce the physics of interest (like lattice QCD equation of state, or a $1^{\text {st }}$ or $2^{\text {nd }}$ order transition)
- We choose the following parametrization for $V(\phi)$:

$$
V(\phi)=-12 \cosh (\gamma \phi)+b_{2} \phi^{2}+b_{4} \phi^{4}+b_{6} \phi^{6} \sim-12+\frac{1}{2} m^{2} \phi^{2}+O\left(\phi^{4}\right)
$$

or (in the case of IHQCD-like potential)

$$
V(\phi)=-12\left(1+\phi^{2}\right)^{\frac{1}{4}} \cosh (\gamma \phi)+b_{2} \phi^{2}
$$

The nonconformal models

- Following Gubser et. al. we consider a gravity+scalar field system:

$$
S=\frac{1}{2 \kappa_{5}^{2}} \int d^{5} \times \sqrt{g}\left[R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right]
$$

- Here $V(\phi)$ is a self-interaction potential which we choose to reproduce the physics of interest (like lattice QCD equation of state, or a $1^{\text {st }}$ or $2^{\text {nd }}$ order transition)
- We choose the following parametrization for $V(\phi)$: $V(\phi)=-12 \cosh (\gamma \phi)+b_{2} \phi^{2}+b_{4} \phi^{4}+b_{6} \phi^{6} \sim-12+\frac{1}{2} m^{2} \phi^{2}+O\left(\phi^{4}\right)$ or (in the case of IHQCD-like potential)

$$
V(\phi)=-12\left(1+\phi^{2}\right)^{\frac{1}{4}} \cosh (\gamma \phi)+b_{2} \phi^{2}
$$

The nonconformal models

- Following Gubser et. al. we consider a gravity+scalar field system:

$$
S=\frac{1}{2 \kappa_{5}^{2}} \int d^{5} x \sqrt{g}\left[R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right]
$$

- Here $V(\phi)$ is a self-interaction potential which we choose to reproduce the physics of interest like lattice QCD equation of state, or a $1^{\text {st }}$ or $2^{\text {nd }}$ order transition)
- We choose the following parametrization for $V(\phi)$:
or (in the case of IHQCD-like potential)

$$
V(\phi)=-12\left(1+\phi^{2}\right)^{\frac{1}{4}} \cosh ^{\prime}(\gamma \phi)+b_{2} \phi^{2}
$$

The nonconformal models

- Following Gubser et. al. we consider a gravity+scalar field system:

$$
S=\frac{1}{2 \kappa_{5}^{2}} \int d^{5} x \sqrt{g}\left[R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right]
$$

- Here $V(\phi)$ is a self-interaction potential which we choose to reproduce the physics of interest (like lattice QCD equation of state, or a $1^{\text {st }}$ or $2^{\text {nd }}$ order transition)
- We choose the following parametrization for $V(\phi)$: or (in the case of IHQCD-like potential)

$$
V(\phi)=-12\left(1+\phi^{2}\right)^{\frac{1}{4}} \cosh ^{\prime}(\gamma \phi)+b_{2} \phi^{2}
$$

The nonconformal models

- Following Gubser et. al. we consider a gravity+scalar field system:

$$
S=\frac{1}{2 \kappa_{5}^{2}} \int d^{5} x \sqrt{g}\left[R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right]
$$

- Here $V(\phi)$ is a self-interaction potential which we choose to reproduce the physics of interest (like lattice QCD equation of state, or a $1^{\text {st }}$ or $2^{\text {nd }}$ order transition)
- We choose the following parametrization for $V(\phi)$:
$V(\phi)=-12 \cosh (\gamma \phi)+b_{2} \phi^{2}+b_{4} \phi^{4}+b_{6} \phi^{6} \sim-12+\frac{1}{2} m^{2} \phi^{2}+O\left(\phi^{4}\right)$
or (in the case of IHQCD-like potential)

The nonconformal models

- Following Gubser et. al. we consider a gravity+scalar field system:

$$
S=\frac{1}{2 \kappa_{5}^{2}} \int d^{5} x \sqrt{g}\left[R-\frac{1}{2}(\partial \phi)^{2}-V(\phi)\right]
$$

- Here $V(\phi)$ is a self-interaction potential which we choose to reproduce the physics of interest (like lattice QCD equation of state, or a $1^{\text {st }}$ or $2^{\text {nd }}$ order transition)
- We choose the following parametrization for $V(\phi)$:
$V(\phi)=-12 \cosh (\gamma \phi)+b_{2} \phi^{2}+b_{4} \phi^{4}+b_{6} \phi^{6} \sim-12+\frac{1}{2} m^{2} \phi^{2}+O\left(\phi^{4}\right)$
or (in the case of IHQCD-like potential)

$$
V(\phi)=-12\left(1+\phi^{2}\right)^{\frac{1}{4}} \cosh (\gamma \phi)+b_{2} \phi^{2}
$$

Equilibrium configurations

Equilibrium configurations

- We look for black hole solutions of the form

$$
d s^{2}=-A(z) d v^{2}-\frac{d v d z}{z^{2}}+S^{2}(z) d x_{i}^{2} \quad \phi=\phi(z)
$$

- The Eddington-Finkelstein coordinates are very convenient for finding quasinormal modes...
- We can choose the coordinate system so that the horizon is at $z=0$
- The nonconformality of the theory is ensured by the boundary condition for the scalar field

$$
\phi(z) \sim 1 \cdot z^{\#}+\ldots
$$

The value 1 defines appropriate units

- We parametrize our solutions by setting the value of the scalar field at the horizon

$$
\phi(z=1)=\phi_{H}
$$

Equilibrium configurations

- We look for black hole solutions of the form

$$
d s^{2}=-A(z) d v^{2}-\frac{d v d z}{z^{2}}+S^{2}(z) d x_{i}^{2} \quad \phi=\phi(z)
$$

- The Eddington-Finkelstein coordinates are very convenient for finding quasinormal modes..
- We can choose the coordinate system so that the horizon is at $z=0$
- The nonconformality of the theory is ensured by the boundary condition for the scalar field

The value 1 defines appropriate units

- We parametrize our solutions by setting the value of the scalar field at the horizon

$$
\phi(z=1)=\phi_{H}
$$

Equilibrium configurations

- We look for black hole solutions of the form

$$
d s^{2}=-A(z) d v^{2}-\frac{d v d z}{z^{2}}+S^{2}(z) d x_{i}^{2} \quad \phi=\phi(z)
$$

- The Eddington-Finkelstein coordinates are very convenient for finding quasinormal modes...
- We can choose the coordinate system so that the horizon is at $z=0$
- The nonconformality of the theory is ensured by the boundary condition for the scalar field

The value 1 defines appropriate units

- We parametrize our solutions by setting the value of the scalar field at the horizon

$$
\phi(z=1)=\phi_{H}
$$

Equilibrium configurations

- We look for black hole solutions of the form

$$
d s^{2}=-A(z) d v^{2}-\frac{d v d z}{z^{2}}+S^{2}(z) d x_{i}^{2} \quad \phi=\phi(z)
$$

- The Eddington-Finkelstein coordinates are very convenient for finding quasinormal modes...
- We can choose the coordinate system so that the horizon is at $z=0$
$>$ The nonconformality of the theory is ensured by the boundary condition for the scalar field

The value 1 defines appropriate units

- We parametrize our solutions by setting the value of the scalar field at the horizon

$$
\phi(z=1)=\phi_{H}
$$

Equilibrium configurations

- We look for black hole solutions of the form

$$
d s^{2}=-A(z) d v^{2}-\frac{d v d z}{z^{2}}+S^{2}(z) d x_{i}^{2} \quad \phi=\phi(z)
$$

- The Eddington-Finkelstein coordinates are very convenient for finding quasinormal modes...
- We can choose the coordinate system so that the horizon is at $z=0$
- The nonconformality of the theory is ensured by the boundary condition for the scalar field

$$
\phi(z) \sim 1 \cdot z^{\#}+\ldots
$$

The value 1 defines appropriate units

- We parametrize our solutions by setting the value of the scalar field at the horizon
$\phi^{\prime}(z=1)=\phi_{H}$

Equilibrium configurations

- We look for black hole solutions of the form

$$
d s^{2}=-A(z) d v^{2}-\frac{d v d z}{z^{2}}+S^{2}(z) d x_{i}^{2} \quad \phi=\phi(z)
$$

- The Eddington-Finkelstein coordinates are very convenient for finding quasinormal modes...
- We can choose the coordinate system so that the horizon is at $z=0$
- The nonconformality of the theory is ensured by the boundary condition for the scalar field

$$
\phi(z) \sim 1 \cdot z^{\#}+\ldots
$$

The value 1 defines appropriate units

- We parametrize our solutions by setting the value of the scalar field at the horizon
$\phi(z=1)=\phi_{H}$

Equilibrium configurations

- We look for black hole solutions of the form

$$
d s^{2}=-A(z) d v^{2}-\frac{d v d z}{z^{2}}+S^{2}(z) d x_{i}^{2} \quad \phi=\phi(z)
$$

- The Eddington-Finkelstein coordinates are very convenient for finding quasinormal modes...
- We can choose the coordinate system so that the horizon is at $z=0$
- The nonconformality of the theory is ensured by the boundary condition for the scalar field

$$
\phi(z) \sim 1 \cdot z^{\#}+\ldots
$$

The value 1 defines appropriate units

- We parametrize our solutions by setting the value of the scalar field at the horizon

$$
\phi(z=1)=\phi_{H}
$$

Equilibrium configurations

For each value of ϕ_{H} solve numerically for the black hole geometry
Evaluate observables:

1. Find entropy $S^{\prime}\left(\phi_{H}\right)$ from the area of the horizon
2. Find temperature $T\left(\phi_{H}\right)$ from the euclidean time periodicity
3. Find free energy $F\left(\phi_{H}\right)$ from the on-shell value of the gravitational action (with appropriate counterterms)
4. Find the energy density $E\left(\phi_{H}\right)$ and pressure $p\left(\phi_{H}\right)$ from the near boundary asymptotics of the solution

Scanning through ϕ_{H} we get various equation of state plots like $S(T)$, $E(T)$ etc.

Equilibrium configurations

For each value of ϕ_{H} solve numerically for the black hole geometry
Evaluate observables:

1. Find entropy $S\left(\phi_{H}\right)$ from the area of the horizon
2. Find temperature $T\left(\phi_{H}\right)$ from the euclidean time periodicity
3. Find free energy $F\left(\phi_{H}\right)$ from the on-shell value of the gravitational action (with appropriate counterterms)
4. Find the energy density $E\left(\phi_{H}\right)$ and pressure $p\left(\phi_{H}\right)$ from the near boundary asymptotics of the solution

Scanning through ϕ_{H} we get various equation of state plots like $S(T)$, $E(T)$ etc.

Equilibrium configurations

For each value of ϕ_{H} solve numerically for the black hole geometry

Evaluate observables:

1. Find entropy $S\left(\phi_{H}\right)$ from the area of the horizon
2. Find temperature $T\left(\phi_{H}\right)$ from the euclidean time periodicity
3. Find free energy $F\left(\phi_{H}\right)$ from the on-shell value of the gravitational action (with appropriate counterterms)
4. Find the energy density $E\left(\phi_{H}\right)$ and pressure $p\left(\phi_{H}\right)$ from the near boundary asymptotics of the solution

Scanning through ϕ_{H} we get various equation of state plots like $S(T)$,
$E(T)$ etc.

Equilibrium configurations

For each value of ϕ_{H} solve numerically for the black hole geometry

Evaluate observables:

1. Find entropy $S\left(\phi_{H}\right)$ from the area of the horizon
2. Find temperature $T\left(\phi_{H}\right)$ from the euclidean time periodicity
3. Find free energy $F\left(\phi_{H}\right)$ from the on-shell value of the gravitational action (with appropriate counterterms)
4. Find the energy density $E\left(\phi_{H}\right)$ and pressure $p\left(\phi_{H}\right)$ from the near boundary asymptotics of the solution

Scanning through ϕ_{H} we get various equation of state plots like $S(T)$,
$E(T)$ etc.

Equilibrium configurations

For each value of ϕ_{H} solve numerically for the black hole geometry

Evaluate observables:

1. Find entropy $S\left(\phi_{H}\right)$ from the area of the horizon
2. Find temperature $T\left(\phi_{H}\right)$ from the euclidean time periodicity
3. Find free energy $F\left(\phi_{H}\right)$ from the on-shell value of the gravitational action (with appropriate counterterms)
4. Find the energy density $E\left(\phi_{H}\right)$ and pressure $p\left(\phi_{H}\right)$ from the near boundary asymptotics of the solution

Scanning through ϕ_{H} we get various equation of state plots like $S(T)$,
$E(T)$ etc.

Equilibrium configurations

For each value of ϕ_{H} solve numerically for the black hole geometry

Evaluate observables:

1. Find entropy $S\left(\phi_{H}\right)$ from the area of the horizon
2. Find temperature $T\left(\phi_{H}\right)$ from the euclidean time periodicity
3. Find free energy $F\left(\phi_{H}\right)$ from the on-shell value of the gravitational action (with appropriate counterterms)
4. Find the energy density $E\left(\phi_{H}\right)$ and pressure $p\left(\phi_{H}\right)$ from the near boundary asymptotics of the solution

Scanning through ϕ_{H} we get various equation of state plots like $S(T)$,
$E(T)$ etc.

Equilibrium configurations

For each value of ϕ_{H} solve numerically for the black hole geometry

Evaluate observables:

1. Find entropy $S\left(\phi_{H}\right)$ from the area of the horizon
2. Find temperature $T\left(\phi_{H}\right)$ from the euclidean time periodicity
3. Find free energy $F\left(\phi_{H}\right)$ from the on-shell value of the gravitational action (with appropriate counterterms)
4. Find the energy density $E\left(\phi_{H}\right)$ and pressure $p\left(\phi_{H}\right)$ from the near boundary asymptotics of the solution

Scanning through ϕ_{H} we get various equation of state plots like $S(T)$,
$E(T)$ etc.

Equilibrium configurations

For each value of ϕ_{H} solve numerically for the black hole geometry

Evaluate observables:

1. Find entropy $S\left(\phi_{H}\right)$ from the area of the horizon
2. Find temperature $T\left(\phi_{H}\right)$ from the euclidean time periodicity
3. Find free energy $F\left(\phi_{H}\right)$ from the on-shell value of the gravitational action (with appropriate counterterms)
4. Find the energy density $E\left(\phi_{H}\right)$ and pressure $p\left(\phi_{H}\right)$ from the near boundary asymptotics of the solution

Scanning through ϕ_{H} we get various equation of state plots like $S(T)$, $E(T)$ etc.

Lattice QCD crossover potentials

Noronha et al G. Plewa, RJ, H. Soltanpanahi, M. Spaliński

Potentials choosen to reproduce speed of sound $c_{s}^{2}(T)$ curve obtained from lattice QCD [Z. Fodor et.al. 1204.6710]:

Lattice QCD crossover potentials

Gubser
Noronha et. al.
G. Plewa, RJ, H. Soltanpanahi, M. Spaliński

Potentials choosen to reproduce speed of sound $c_{s}^{2}(T)$ curve obtained from lattice QCD [Z. Fodor et.al. 1204.6710]:

Lattice QCD crossover potentials

Noronha et. al.

G. Plewa, RJ, H. Soltanpanahi, M. Spaliński

Potentials choosen to reproduce speed of sound $c_{s}^{2}(T)$ curve obtained from lattice QCD [Z. Fodor et.al. 1204.6710]:

Lattice QCD crossover potentials

Noronha et. al.

G. Plewa, RJ, H. Soltanpanahi, M. Spaliński

Potentials choosen to reproduce speed of sound $c_{s}^{2}(T)$ curve obtained from lattice QCD [Z. Fodor et.al. 1204.6710]:

$2^{\text {nd }}$ order phase transition potential

$$
V(\phi)=-12 \cosh (0.7071 \phi)+1.958 \phi^{2}
$$

This gives the following entropy-temperature $S(T)$ curve with $c_{s}^{2}\left(T_{c}\right)=0$:
$2^{\text {nd }}$ order phase transition potential

$$
V(\phi)=-12 \cosh (0.7071 \phi)+1.958 \phi^{2}
$$

This gives the following entropy-temperature $S(T)$ curve

 with $c_{s}^{2}\left(T_{c}\right)=0$:$2^{\text {nd }}$ order phase transition potential

$$
V(\phi)=-12 \cosh (0.7071 \phi)+1.958 \phi^{2}
$$

This gives the following entropy-temperature $S(T)$ curve with $c_{s}^{2}\left(T_{c}\right)=0$:
$2^{\text {nd }}$ order phase transition potential

$$
V(\phi)=-12 \cosh (0.7071 \phi)+1.958 \phi^{2}
$$

This gives the following entropy-temperature $S(T)$ curve with $c_{s}^{2}\left(T_{c}\right)=0$:

$1^{\text {st }}$ order phase transition potential

$$
V(\phi)=-12 \cosh ^{-1}(0.5345 \phi)+2.5 \phi^{2}
$$

This gives the following entropy-temperature $S(T)$ curve:
$1^{\text {st }}$ order phase transition potential

$$
V(\phi)=-12 \cosh (0.5345 \phi)+2.5 \phi^{2}
$$

This gives the following entropy-temperature $S(T)$ curve:
$1^{\text {st }}$ order phase transition potential

$$
V(\phi)=-12 \cosh (0.5345 \phi)+2.5 \phi^{2}
$$

This gives the following entropy-temperature $S(T)$ curve:
$1^{\text {st }}$ order phase transition potential

$$
V(\phi)=-12 \cosh (0.5345 \phi)+2.5 \phi^{2}
$$

This gives the following entropy-temperature $S(T)$ curve:

IHQCD-like potential

$$
V(\phi)=-12\left(1+\phi^{2}\right)^{\frac{1}{4}} \cosh (0.8165 \phi)+6.25 \phi^{2}
$$

This gives the following entropy-temperature $S(T)$ curve:

IHQCD-like potential

$$
V(\phi)=-12\left(1+\phi^{2}\right)^{\frac{1}{4}} \cosh (0.8165 \phi)+6.25 \phi^{2}
$$

This gives the following entropy-temperature $S(T)$ curve:

IHQCD-like potential

$$
V(\phi)=-12\left(1+\phi^{2}\right)^{\frac{1}{4}} \cosh (0.8165 \phi)+6.25 \phi^{2}
$$

This gives the following entropy-temperature $S(T)$ curve:

IHQCD-like potential

$$
V(\phi)=-12\left(1+\phi^{2}\right)^{\frac{1}{4}} \cosh (0.8165 \phi)+6.25 \phi^{2}
$$

This gives the following entropy-temperature $S(T)$ curve:

Linearized dynamics

- We are interested in small perturbations of an equilibrium system

$$
T_{\mu \nu}=\left(\begin{array}{cccc}
E & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)+\delta T_{\mu \nu} e^{-i \omega t+i k x}
$$

- We obtain hydrodynamic excitations

$$
\omega_{\text {shear }}=-i \frac{\eta}{E+p} k^{2}+\mathcal{O}\left(k^{3}\right) \quad \omega_{\text {sound }}=c_{s} k-i \frac{2}{3} \frac{\eta+\frac{3}{4} \zeta}{E+p} k^{2}+\mathcal{O}\left(k^{3}\right)
$$

- Hypothetical resummed all-order hydrodynamics would predict the full dispersion relation for these modes $\omega_{\text {shear }}(k), \omega_{\text {sound }}(k)$
- In addition we get a family of nonhydrodynamic modes

$$
\omega_{\text {non-hydro }}^{(n)}=-i \Gamma_{n} \pm \Omega_{n}+\mathcal{O}\left(k^{\#}\right)
$$

- We are interested in small perturbations of an equilibrium system

$$
T_{\mu \nu}=\left(\begin{array}{cccc}
E & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)+\delta T_{\mu \nu} e^{-i \omega t+i k x}
$$

- We obtain hydrodynamic excitations
- Hypothetical resummed all-order hydrodynamics would predict the full dispersion relation for these modes $\omega_{\text {shear }}(k), \omega_{\text {sound }}(k)$
\Rightarrow In addition we get a family of nonhydrodynamic modes

- We are interested in small perturbations of an equilibrium system

$$
T_{\mu \nu}=\left(\begin{array}{cccc}
E & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)+\delta T_{\mu \nu} e^{-i \omega t+i k x}
$$

- We obtain hydrodynamic excitations

$$
\omega_{\text {shear }}=-i \frac{\eta}{E+p} k^{2}+\mathcal{O}\left(k^{3}\right) \quad \omega_{\text {sound }}=c_{s} k-i \frac{2}{3} \frac{\eta+\frac{3}{4} \zeta}{E+p} k^{2}+\mathcal{O}\left(k^{3}\right)
$$

- Hypothetical resummed all-order hydrodynamics would predict the full dispersion relation for these modes $\omega_{\text {shear }}(k), \omega_{\text {sound }}(k)$
- In addition we get a family of nonhydrodynamic modes
- We are interested in small perturbations of an equilibrium system

$$
T_{\mu \nu}=\left(\begin{array}{cccc}
E & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)+\delta T_{\mu \nu} e^{-i \omega t+i k x}
$$

- We obtain hydrodynamic excitations

$$
\omega_{\text {shear }}=-i \frac{\eta}{E+p} k^{2}+\mathcal{O}\left(k^{3}\right) \quad \omega_{\text {sound }}=c_{s} k-i \frac{2}{3} \frac{\eta+\frac{3}{4} \zeta}{E+p} k^{2}+\mathcal{O}\left(k^{3}\right)
$$

- Hypothetical resummed all-order hydrodynamics would predict the full dispersion relation for these modes $\omega_{\text {shear }}(k), \omega_{\text {sound }}(k)$
- In addition we get a family of nonhydrodynamic modes
- We are interested in small perturbations of an equilibrium system

$$
T_{\mu \nu}=\left(\begin{array}{cccc}
E & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)+\delta T_{\mu \nu} e^{-i \omega t+i k x}
$$

- We obtain hydrodynamic excitations

$$
\omega_{\text {shear }}=-i \frac{\eta}{E+p} k^{2}+\mathcal{O}\left(k^{3}\right) \quad \omega_{\text {sound }}=c_{s} k-i \frac{2}{3} \frac{\eta+\frac{3}{4} \zeta}{E+p} k^{2}+\mathcal{O}\left(k^{3}\right)
$$

- Hypothetical resummed all-order hydrodynamics would predict the full dispersion relation for these modes $\omega_{\text {shear }}(k), \omega_{\text {sound }}(k)$
- In addition we get a family of nonhydrodynamic modes

$$
\omega_{\text {non-hydro }}^{(n)}=-i \Gamma_{n} \pm \Omega_{n}+\mathcal{O}\left(k^{\#}\right)
$$

- Small disturbances of the uniform static plasma \equiv small perturbations of the black hole metric (\equiv quasinormal modes (QNM))

$$
g_{\alpha \beta}^{5 D}=g_{\alpha \beta}^{5 D, \text { black hole }}+\delta g_{\alpha \beta}^{5 D}(z) e^{-i \omega t+i k x}
$$

- Dispersion relation fixed by linearized Einstein's equations. Results for the sound channel
- Small disturbances of the uniform static plasma \equiv small perturbations of the black hole metric (\equiv quasinormal modes (QNM))

$$
g_{\alpha \beta}^{5 D}=g_{\alpha \beta}^{5 D, \text { black hole }}+\delta g_{\alpha \beta}^{5 D}(z) e^{-i \omega t+i k x}
$$

- Dispersion relation fixed by linearized Einstein's equations. Results for the sound channel
- Small disturbances of the uniform static plasma \equiv small perturbations of the black hole metric (\equiv quasinormal modes (QNM))

$$
g_{\alpha \beta}^{5 D}=g_{\alpha \beta}^{5 D, b l a c k ~ h o l e}+\delta g_{\alpha \beta}^{5 D}(z) e^{-i \omega t+i k x}
$$

- Dispersion relation fixed by linearized Einstein's equations. for the sound channel

- Small disturbances of the uniform static plasma \equiv small perturbations of the black hole metric (\equiv quasinormal modes (QNM))

$$
g_{\alpha \beta}^{5 D}=g_{\alpha \beta}^{5 D, b l a c k ~ h o l e}+\delta g_{\alpha \beta}^{5 D}(z) e^{-i \omega t+i k x}
$$

- Dispersion relation fixed by linearized Einstein's equations. for the sound channel

from Kovtun,Starinets hep-th/0506184
- Small disturbances of the uniform static plasma \equiv small perturbations of the black hole metric (\equiv quasinormal modes (QNM))

$$
g_{\alpha \beta}^{5 D}=g_{\alpha \beta}^{5 D, \text { black hole }}+\delta g_{\alpha \beta}^{5 D}(z) e^{-i \omega t+i k x}
$$

- Dispersion relation fixed by linearized Einstein's equations. Results for the sound channel

from Kovtun,Starinets hep-th/0506184
- This is equivalent to summing contributions from all-order viscous hydrodynamics
- But, in addition, there is an infinite set of higher QNM - effective degrees of freedom not contained in the hydrodynamic description at all!
- Small disturbances of the uniform static plasma \equiv small perturbations of the black hole metric (\equiv quasinormal modes (QNM))

$$
g_{\alpha \beta}^{5 D}=g_{\alpha \beta}^{5 D, \text { black hole }}+\delta g_{\alpha \beta}^{5 D}(z) e^{-i \omega t+i k x}
$$

- Dispersion relation fixed by linearized Einstein's equations. Results for the sound channel

from Kovtun,Starinets hep-th/0506184
- This is equivalent to summing contributions from all-order viscous hydrodynamics
- But, in addition, there is an infinite set of higher QNM - effective degrees of freedom not contained in the hydrodynamic description at al!!
- Small disturbances of the uniform static plasma \equiv small perturbations of the black hole metric (\equiv quasinormal modes (QNM))

$$
g_{\alpha \beta}^{5 D}=g_{\alpha \beta}^{5 D, \text { black hole }}+\delta g_{\alpha \beta}^{5 D}(z) e^{-i \omega t+i k x}
$$

- Dispersion relation fixed by linearized Einstein's equations. Results for the sound channel

from Kovtun,Starinets hep-th/0506184
- This is equivalent to summing contributions from all-order viscous hydrodynamics
- But, in addition, there is an infinite set of higher QNM - effective degrees of freedom not contained in the hydrodynamic description at all!

Why are the quasi-normal modes interesting?

1. They describe what kind of small excitations propagate on top of a thermal system
2. These include the well known hydrodynamic modes, whose dispersion relation depends on transport coefficients..
3. ...as well as the nonhydrodynamic QNMs whose behaviour is unknown in QCD.. Lattice QCD??
4. In generic black hole geometries these QNM frequencies (say for $k=0$) have comparable real and imaginary parts.. Boltzmann equations/weak coupling lead to purely imaginary frequencies
5. We can study when the hydrodynamic modes are dominant and when the higher modes may be non negligible
6. The understanding of QNM's is a prelude to truly nonlinear dynamics

Why are the quasi-normal modes interesting?

1. They describe what kind of small excitations propagate on top of a thermal system
2. These include the well known hydrodynamic modes, whose dispersion relation depends on transport coefficients..
3. ...as well as the nonhydrodynamic QNMs whose behaviour is unknown in QCD.
Lattice QCD??
4. In generic black hole geometries these QNM frequencies (say for $k=0$) have comparable real and imaginary parts.. Boltzmann equations/weak coupling lead to purely imaginary frequencies
5. We can study when the hydrodynamic modes are dominant and when the higher modes may be non negligible
6. The understanding of QNM's is a prelude to truly nonlinear dynamics

Why are the quasi-normal modes interesting?

1. They describe what kind of small excitations propagate on top of a thermal system
2. These include the well known hydrodynamic modes, whose dispersion relation depends on transport coefficients.
3. ...as well as the nonhydrodynamic QNMs whose behaviour is unknown in QCD
Lattice QCD??
4. In generic black hole geometries these QNM frequencies (say for $k=0$) have comparable real and imaginary parts.. Boltzmann equations/weak coupling lead to purely imaginary frequencies
5. We can study when the hydrodynamic modes are dominant and when the higher modes may be non negligible
6. The understanding of QNM's is a prelude to truly nonlinear dynamics

Why are the quasi-normal modes interesting?

1. They describe what kind of small excitations propagate on top of a thermal system
2. These include the well known hydrodynamic modes, whose dispersion relation depends on transport coefficients..
3. ...as well as the nonhydrodynamic QNMs whose behaviour is unknown in QCD Lattice QCD??
4. In generic black hole geometries these QNM frequencies (say for $k=0$) have comparable real and imaginary parts.. Boltzmann equations/weak coupling lead to purely imaginary frequencies
5. We can study when the hydrodynamic modes are dominant and when the higher modes may be non negligible
6. The understanding of QNM's is a prelude to truly nonlinear dynamics

Why are the quasi-normal modes interesting?

1. They describe what kind of small excitations propagate on top of a thermal system
2. These include the well known hydrodynamic modes, whose dispersion relation depends on transport coefficients.
3. ...as well as the nonhydrodynamic QNMs whose behaviour is unknown in QCD.
4. In generic black hole geometries these QNM frequencies (say for $k=0$) have comparable real and imaginary parts.. Boltzmann equations/weak coupling lead to purely imaginary frequencies
5. We can study when the hydrodynamic modes are dominant and when the higher modes may be non negligible
6. The understanding of QNM's is a prelude to truly nonlinear dynamics

Why are the quasi-normal modes interesting?

1. They describe what kind of small excitations propagate on top of a thermal system
2. These include the well known hydrodynamic modes, whose dispersion relation depends on transport coefficients..
3. ...as well as the nonhydrodynamic QNMs whose behaviour is unknown in QCD.
Lattice QCD??
4. In generic black hole geometries these QNM frequencies (say for $k=0$) have comparable real and imaginary parts.. Boltzmann equations/weak coupling lead to purely imaginary frequencies
5. We can study when the hydrodynamic modes are dominant and when the higher modes may be non negligible
6. The understanding of QNM's is a prelude to truly nonlinear dynamics

Why are the quasi-normal modes interesting?

1. They describe what kind of small excitations propagate on top of a thermal system
2. These include the well known hydrodynamic modes, whose dispersion relation depends on transport coefficients..
3. ...as well as the nonhydrodynamic QNMs whose behaviour is unknown in QCD..
Lattice QCD??
4. In generic black hole geometries these QNM frequencies (say for $k=0$) have comparable real and imaginary parts..
5. W/e can study when the hydrodynamic modes are dominant and when the higher modes may be non negligible
6. The understanding of QNM's is a prelude to truly nonlinear dynamics

Why are the quasi-normal modes interesting?

1. They describe what kind of small excitations propagate on top of a thermal system
2. These include the well known hydrodynamic modes, whose dispersion relation depends on transport coefficients..
3. ...as well as the nonhydrodynamic QNMs whose behaviour is unknown in QCD..
Lattice QCD??
4. In generic black hole geometries these QNM frequencies (say for $k=0$) have comparable real and imaginary parts.. Boltzmann equations/weak coupling lead to purely imaginary frequencies
5. We can study when the hydrodynamic modes are dominant and when the higher modes may be non negligible
6. The understanding of QNM's is a prelude to truly nonlinear dynamics

Why are the quasi-normal modes interesting?

1. They describe what kind of small excitations propagate on top of a thermal system
2. These include the well known hydrodynamic modes, whose dispersion relation depends on transport coefficients..
3. ...as well as the nonhydrodynamic QNMs whose behaviour is unknown in QCD..
Lattice QCD??
4. In generic black hole geometries these QNM frequencies (say for $k=0$) have comparable real and imaginary parts.. Boltzmann equations/weak coupling lead to purely imaginary frequencies
5. We can study when the hydrodynamic modes are dominant and when the higher modes may be non negligible
6. The understanding of QNM's is a prelude to truly nonlinear dynamics

Why are the quasi-normal modes interesting?

1. They describe what kind of small excitations propagate on top of a thermal system
2. These include the well known hydrodynamic modes, whose dispersion relation depends on transport coefficients.
3. ...as well as the nonhydrodynamic QNMs whose behaviour is unknown in QCD..
Lattice QCD??
4. In generic black hole geometries these QNM frequencies (say for $k=0$) have comparable real and imaginary parts.. Boltzmann equations/weak coupling lead to purely imaginary frequencies
5. We can study when the hydrodynamic modes are dominant and when the higher modes may be non negligible
6. The understanding of QNM's is a prelude to truly nonlinear dynamics

The range of applicability of hydrodynamic excitations

- Once we know the (complex) dispersion relation of all modes we can ask whether for all momenta k, the hydrodynamic modes are less damped than the higher QNM's
\Rightarrow In the conformal case in the sound channel this is always the case:
- However Amado, Hoyos, Landsteiner Montero discovered that in the shear channel, the hydrodynamic mode becomes more damped than the nonhydro mode for $q=\frac{k}{2 \pi T}>1.3$

The range of applicability of hydrodynamic excitations

- Once we know the (complex) dispersion relation of all modes we can ask whether for all momenta k, the hydrodynamic modes are less damped than the higher QNM's
- In the conformal case in the sound channel this is always the case:
from Kovtun,Starinets hep-th/0506184
- However Amado, Hoyos, Landsteiner, Montero discovered that in the shear channel, the hydrodynamic mode becomes more damped than the nonhydro mode for $q=\frac{k}{2 \pi T}>1.3$

The range of applicability of hydrodynamic excitations

- Once we know the (complex) dispersion relation of all modes we can ask whether for all momenta k, the hydrodynamic modes are less damped than the higher QNM's
- In the conformal case in the sound channel this is always the case:

from Kovtun,Starinets hep-th/0506184
- However Amado, Hoyos, Landsteiner, Montero discovered that in the shear channel, the hydrodynamic mode becomes more damped than the nonhydro mode for $q=\frac{k}{2 \pi T}>1.3$

The range of applicability of hydrodynamic excitations

- Once we know the (complex) dispersion relation of all modes we can ask whether for all momenta k, the hydrodynamic modes are less damped than the higher QNM's
- In the conformal case in the sound channel this is always the case:

from Kovtun,Starinets hep-th/0506184
- However Amado, Hoyos, Landsteiner, Montero discovered that in the shear channel, the hydrodynamic mode becomes more damped than the nonhydro mode for $q=\frac{k}{2 \pi T}>1.3$

from Landsteiner 1202.3550

Selected results

Scalar QNM's - QCD crossover potential

The damping of quasinormal modes decreases by a factor of two around T_{c} :

- The damping is essentially insensitive to differences in the UV
- The change in the damping seems to be correlated with deviations of the speed of sound from conformality

Scalar QNM's - QCD crossover potential

The damping of quasinormal modes decreases by a factor of two around T_{c} :

- The damping is essentially insensitive to differences in the UV
- The change in the damping seems to be correlated with deviations of the speed of sound from conformality

Scalar QNM's - QCD crossover potential

The damping of quasinormal modes decreases by a factor of two around T_{c} :

- The damping is essentially insensitive to differences in the UV
* The change in the damping seems to be correlated with deviations of the speed of sound from conformality

Scalar QNM's - QCD crossover potential

The damping of quasinormal modes decreases by a factor of two around T_{c} :

- The damping is essentially insensitive to differences in the UV
- The change in the damping seems to be correlated with deviations of the speed of sound from conformality

Scalar QNM's - QCD crossover potential

A phenomenological fit:

with $\gamma=-3.73$ and $\gamma^{\prime}=0.45$

Scalar QNM's - QCD crossover potential

A phenomenological fit:

$$
\frac{\operatorname{Im} \omega}{2 \pi T}-\underbrace{\frac{\operatorname{Im} \omega_{\text {conf }}}{2 \pi T}}_{-1.373}=\gamma\left(c_{s}^{2}(T)-\frac{1}{3}\right)+\gamma^{\prime} T \frac{d}{d T} c_{s}^{2}(T)
$$

with $\gamma=-3.73$ and $\gamma^{\prime}=0.45$

Scalar QNM's - QCD crossover potential

A phenomenological fit:

$$
\frac{\operatorname{Im} \omega}{2 \pi T}-\underbrace{\frac{\operatorname{Im} \omega_{\text {conf }}}{2 \pi T}}_{-1.373}=\gamma\left(c_{s}^{2}(T)-\frac{1}{3}\right)+\gamma^{\prime} T \frac{d}{d T} c_{s}^{2}(T)
$$

with $\gamma=-3.73$ and $\gamma^{\prime}=0.45$

Scalar QNM's - QCD crossover potential

A phenomenological fit:

$$
\frac{\operatorname{Im} \omega}{2 \pi T}-\underbrace{\frac{\operatorname{Im} \omega_{\text {conf }}}{2 \pi T}}_{-1.373}=\gamma\left(c_{s}^{2}(T)-\frac{1}{3}\right)+\gamma^{\prime} T \frac{d}{d T} c_{s}^{2}(T)
$$

with $\gamma=-3.73$ and $\gamma^{\prime}=0.45$

Scalar QNM's - QCD crossover potential

A phenomenological fit:

$$
\frac{\operatorname{Im} \omega}{2 \pi T}-\underbrace{\frac{\operatorname{Im} \omega_{\text {conf }}}{2 \pi T}}_{-1.373}=\gamma\left(c_{s}^{2}(T)-\frac{1}{3}\right)+\gamma^{\prime} T \frac{d}{d T} c_{s}^{2}(T)
$$

with $\gamma=-3.73$ and $\gamma^{\prime}=0.45$

Sound channel QNM's

QCD crossover

$2^{\text {nd }}$ order phase transition

Sound channel QNM's

QCD crossover

order phase transition

Sound channel QNM's

QCD crossover

$2^{\text {nd }}$ order phase transition

Sound channel QNM's

QCD crossover

$2^{\text {nd }}$ order phase transition

Sound channel QNM's

QCD crossover

$2^{\text {nd }}$ order phase transition

We will focus on the case of $1^{\text {st }}$ order phase transition

We will focus on the case of $1^{\text {st }}$ order phase transition

$1^{\text {st }}$ order phase transition potential
Overcooled branch $T \sim 1.00004 T_{\text {min }}$:

- Speed of sound is very small
- Real part of the hydrodynamic sound mode vanishes for a range of momenta (here approximately $0.5<q<1$)
- The sound mode becomes nonpropagating for a range of length scales
- The onset of such a behaviour was also seen in [Gursoy, Shu, Shuryak]
- We did not observe any instabilities at the linearized level
$1^{\text {st }}$ order phase transition potential
Overcooled branch $T \sim 1.00004 T_{\text {min }}:$
- Speed of sound is very small
- Real part of the hydrodynamic sound mode vanishes for a range of momenta (here approximately $0.5<q<1$)
- The sound mode becomes nonpropagating for a range of length scales
> The onset of such a behaviour was also seen in [Gursoy, Shu, Shuryak]
- Me did not observe any instabilities at the linearized level
$1^{\text {st }}$ order phase transition potential
Overcooled branch $T \sim 1.00004 T_{\text {min }}$:
- Speed of sound is very small
- Real part of the hydrodynamic sound mode vanishes for a range of momenta (here approximately $0.5<q<1$)
- The sound mode becomes nonpropagating for a range of length scales
- The onset of such a behaviour was also seen in [Gursoy, Shu, Shuryak]
- We did not observe any instabilities at the linearized level
$1^{\text {st }}$ order phase transition potential
Overcooled branch $T \sim 1.00004 T_{\text {min }}$:

- Speed of sound is very small
- Real part of the hydrodynamic sound mode vanishes for a range of momenta (here approximately $0.5<q<1$)
- The sound mode becomes nonpropagating for a range of length scales
- The onset of such a behaviour was also seen in [Gursoy, Shu, Shuryak]
- We did not observe any instabilities at the linearized level
$1^{\text {st }}$ order phase transition potential
Overcooled branch $T \sim 1.00004 T_{\text {min }}$:

- Speed of sound is very small
- Real part of the hydrodynamic sound mode vanishes for a range of momenta (here approximately $0.5<q<1$)
- The sound mode becomes nonpropagating for a range of length scales
- The onset of such a behaviour was also seen in [Gursoy, Shu, Shuryak]
- We did not observe any instabilities at the linearized level
$1^{\text {st }}$ order phase transition potential
Overcooled branch $T \sim 1.00004 T_{\text {min }}$:

- Speed of sound is very small
- Real part of the hydrodynamic sound mode vanishes for a range of momenta (here approximately $0.5<q<1$)
- The sound mode becomes nonpropagating for a range of length scales
- The onset of such a behaviour was also seen in [Gursoy, Shu,
- We did not observe any instabilities at the linearized level
$1^{\text {st }}$ order phase transition potential
Overcooled branch $T \sim 1.00004 T_{\text {min }}$:

- Speed of sound is very small
- Real part of the hydrodynamic sound mode vanishes for a range of momenta (here approximately $0.5<q<1$)
- The sound mode becomes nonpropagating for a range of length scales
- The onset of such a behaviour was also seen in [Gursoy, Shu,
- We did not observe any instabilities at the linearized level
$1^{\text {st }}$ order phase transition potential
Overcooled branch $T \sim 1.00004 T_{\text {min }}$:

- Speed of sound is very small
- Real part of the hydrodynamic sound mode vanishes for a range of momenta (here approximately $0.5<q<1$)
- The sound mode becomes nonpropagating for a range of length scales
- The onset of such a behaviour was also seen in [Gursoy, Shu, Shuryak]
- We did not observe any instabilities at the linearized level
$1^{\text {st }}$ order phase transition potential
Overcooled branch $T \sim 1.00004 T_{\text {min }}$:

- Speed of sound is very small
- Real part of the hydrodynamic sound mode vanishes for a range of momenta (here approximately $0.5<q<1$)
- The sound mode becomes nonpropagating for a range of length scales
- The onset of such a behaviour was also seen in [Gursoy, Shu, Shuryak]
- We did not observe any instabilities at the linearized level
$1^{\text {st }}$ order phase transition potential
Unstable branch $T \sim 1.067 T_{\text {min }}$:
- Hydrodynamic instability as $c_{s}^{2}<0$
- Scale of bubble formation can be estimated from the momentum at the maximum instability - here for $k \sim 0.25 \cdot 2 \pi T=1.57 T$
- What is the endpoint of the spinoidal instability?
$1^{\text {st }}$ order phase transition potential
Unstable branch $T \sim 1.067 T_{\text {min }}$:
- Hydrodynamic instability as $c_{s}^{2}<0$
- Scale of bubble formation can be estimated from the momentum at the maximum instability - here for $k \sim 0.25 \cdot 2 \pi T=1.57 T$
-What is the endpoint of the spinoidal instability?
$1^{\text {st }}$ order phase transition potential
Unstable branch $T \sim 1.067 T_{\text {min }}$:
- Hydrodynamic instability as $c_{s}^{2}<0$
- Scale of bubble formation can be estimated from the momentum at the maximum instability - here for $k \sim 0.25 \cdot 2 \pi T=1.57 T$
- What is the endpoint of the spinoidal instability?
$1^{\text {st }}$ order phase transition potential
Unstable branch $T \sim 1.067 T_{\text {min }}$:

- Hydrodynamic instability as $c_{s}^{2}<0$
- Scale of bubble formation can be estirnated from the momentum at the maximum instability - here for $k \sim 0.25 \cdot 2 \pi T=1.57 T$
- What is the endpoint of the spinoidal instability?
$1^{\text {st }}$ order phase transition potential
Unstable branch $T \sim 1.067 T_{\text {min }}$:

- Hydrodynamic instability as $c_{s}^{2}<0$
- Scale of bubble formation can be estimated from the momentum at the maximum instability - here for $k \sim 0.25 \cdot 2 \pi T=1.57 T$
- What is the endpoint of the spinoidal instability?
$1^{\text {st }}$ order phase transition potential
Unstable branch $T \sim 1.067 T_{\text {min }}$:

- Hydrodynamic instability as $c_{s}^{2}<0$
- Scale of bubble formation can be estimated from the momentum at the maximum instability - here for $k \sim 0.25 \cdot 2 \pi T=1.57 T$
$1^{\text {st }}$ order phase transition potential
Unstable branch $T \sim 1.067 T_{\text {min }}$:

- Hydrodynamic instability as $c_{s}^{2}<0$
- Scale of bubble formation can be estimated from the momentum at the maximum instability - here for $k \sim 0.25 \cdot 2 \pi T=1.57 T$
- What is the endpoint of the spinoidal instability?

IHQCD-like potential
New kind of unstable regime (in addition to spinoidal):

- A nonhydrodynamic instability at $k=0$
- The mode remains purely imaginary for a range of momenta
- Low temperature phase is not of a black hole type (but naked singularity)

IHQCD-like potential
New kind of unstable regime (in addition to spinoidal):

- A nonhydrodynamic instability at $k=0$
- The mode remains purely imaginary for a range of momenta
- Low temperature phase is not of a black hole type (but naked singularity)

IHQCD-like potential
New kind of unstable regime (in addition to spinoidal):

- A nonhydrodynamic instability at $k=0$
- The mode remains purely imaginary for a range of momenta
- Low temperature phase is not of a black hole type (but naked singularity)

IHQCD-like potential
New kind of unstable regime (in addition to spinoidal):

- A nonhydrodynamic instability at $k=0$
- The mode remains purely imaginary for a range of momenta
- Low temperature phase is not of a black hole type (but naked singularity)

IHQCD-like potential
New kind of unstable regime (in addition to spinoidal):

- A nonhydrodynamic instability at $k=0$
- The mode remains purely imaginary for a range of momenta
- Low temperature phase is not of a black hole type (but naked singularity)

IHQCD-like potential
New kind of unstable regime (in addition to spinoidal):

- A nonhydrodynamic instability at $k=0$
- The mode remains purely imaginary for a range of momenta
- Low temperature phase is not of a black hole type (but naked singularity)

IHQCD-like potential
New kind of unstable regime (in addition to spinoidal):

- A nonhydrodynamic instability at $k=0$
- The mode remains purely imaginary for a range of momenta
- Low temperature phase is not of a black hole type (but naked singularity)

IHQCD-like potential
New kind of unstable regime (in addition to spinoidal):

- A nonhydrodynamic instability at $k=0$
- The mode remains purely imaginary for a range of momenta
- Low temperature phase is not of a black hole type (but naked singularity)

Main questions

What happens at the nonlinear level?

1. Does the overcooled phase remain stable?
2. What is the endpoint of the spinoidal instability? Do we see a formation of domains of two coexisting phases?

Need $2+1$ dimensional numerical relativity evolution...

Main questions

What happens at the nonlinear level?

1. Does the overcooled phase remain stable?
2. What is the endpoint of the spinoidal instability?

Do we see a formation of domains of two coexisting phases?

Need $2+1$ dimensional numerical relativity evolution...

Main questions

What happens at the nonlinear level?

1. Does the overcooled phase remain stable?
2. What is the endpoint of the spinoidal instability? Do we see a formation of domains of two coexisting phases?

Need $2+1$ dimensional numerical relativity evolution...

Main questions

What happens at the nonlinear level?

1. Does the overcooled phase remain stable?
2. What is the endpoint of the spinoidal instability?

Do we see a formation of domains of two coexisting phases?

Need $2+1$ dimensional numerical relativity evolution...

Main questions

What happens at the nonlinear level?

1. Does the overcooled phase remain stable?
2. What is the endpoint of the spinoidal instability?

Do we see a formation of domains of two coexisting phases?

Need $2+1$ dimensional numerical relativity evolution...

Main questions

What happens at the nonlinear level?

1. Does the overcooled phase remain stable?
2. What is the endpoint of the spinoidal instability?

Do we see a formation of domains of two coexisting phases?

Need $2+1$ dimensional numerical relativity evolution...

- Initially we planned looking at a 2D field theory with a $1^{\text {st }}$ order phase transition and 3D dual gravitational description..
- This would have the advantage of not having to make any symmetry assumptions
- However in 3D (and 5D) the metric coefficients develop subleading logarithmic behaviour at the boundary $z=0$
- This caused huge difficulties with numerical evolution in the inhomogeneous case..
- We settled on considering a 3D field theory with a $1^{\text {st }}$ order phase transition and 4D dual gravitational description.. (no logs!)
see also Attems, Bea, Casalderrey-Solana, Mateos, Triana, Zilhao, 1703.02948
- Initially we planned looking at a 2D field theory with a $1^{\text {st }}$ order phase transition and 3D dual gravitational description..
- This would have the advantage of not having to make any symmetry assumptions
- However in 3D (and 5D) the metric coefficients develop subleading logarithmic behaviour at the boundary $z=0$
- This caused huge difficulties with numerical evolution in the inhomogeneous case..
- We settled on considering a 3D field theory with a $1^{\text {st }}$ order phase transition and 4D dual gravitational description.. (no logs!)
see also Attems, Bea, Casalderrey-Solana, Mateos, Triana, Zilhao, 1703.02948
- Initially we planned looking at a 2D field theory with a $1^{\text {st }}$ order phase transition and 3D dual gravitational description..
- This would have the advantage of not having to make any symmetry assumptions
- However in 3D (and 5D) the metric coefficients develop subleading logarithmic behaviour at the boundary $z=0$
- This caused huge difficulties with numerical evolution in the inhomogeneous case.
- We settled on considering a 3D field theory with a $1^{\text {st }}$ order phase transition and 4D dual gravitational description.. (no logs!)
see also Attems, Bea, Casalderrey-Solana, Mateos, Triana, Zilhao, 1703.02948
- Initially we planned looking at a 2D field theory with a $1^{\text {st }}$ order phase transition and 3D dual gravitational description..
- This would have the advantage of not having to make any symmetry assumptions
- However in 3D (and 5D) the metric coefficients develop subleading logarithmic behaviour at the boundary $z=0$
- This caused huge difficulties with numerical evolution in the inhomogeneous case.
- We settled on considering a 3D field theory with a $1^{\text {st }}$ order phase transition and 4D dual gravitational description.. (no logs!)
see also Attems, Bea, Casalderrey-Solana, Mateos, Triana, Zilhao, 1703.02948
- Initially we planned looking at a 2D field theory with a $1^{\text {st }}$ order phase transition and 3D dual gravitational description..
- This would have the advantage of not having to make any symmetry assumptions
- However in 3D (and 5D) the metric coefficients develop subleading logarithmic behaviour at the boundary $z=0$
- This caused huge difficulties with numerical evolution in the inhomogeneous case..
- We settled on considering a 3D field theory with a $1^{\text {st }}$ order phase transition and 4D dual gravitational description.. (no logs!)
see also Attems, Bea, Casalderrey-Solana, Mateos, Triana, Zilhao, 1703.02948
- Initially we planned looking at a 2D field theory with a $1^{\text {st }}$ order phase transition and 3D dual gravitational description..
- This would have the advantage of not having to make any symmetry assumptions
- However in 3D (and 5D) the metric coefficients develop subleading logarithmic behaviour at the boundary $z=0$
- This caused huge difficulties with numerical evolution in the inhomogeneous case..
- We settled on considering a 3D field theory with a $1^{\text {st }}$ order phase transition and 4D dual gravitational description.. (no logs!)
- Initially we planned looking at a 2D field theory with a $1^{\text {st }}$ order phase transition and 3D dual gravitational description..
- This would have the advantage of not having to make any symmetry assumptions
- However in 3D (and 5D) the metric coefficients develop subleading logarithmic behaviour at the boundary $z=0$
- This caused huge difficulties with numerical evolution in the inhomogeneous case..
- We settled on considering a 3D field theory with a $1^{\text {st }}$ order phase transition and 4D dual gravitational description.. (no logs!)
see also Attems, Bea, Casalderrey-Solana, Mateos, Triana, Zilhao, 1703.02948
$1^{\text {st }}$ order phase transition potential for the 3D case

$$
V(\phi)=-6 \cosh \left(\frac{\phi}{\sqrt{3}}\right)-0.2 \phi^{4}
$$

Energy density and free energy as a function of temperature

We consider the system in a microcanonical ensemble (total energy is fixed!)
$1^{\text {st }}$ order phase transition potential for the 3D case

$$
V(\phi)=-6 \cosh \left(\frac{\phi}{\sqrt{3}}\right)-0.2 \phi^{4}
$$

Energy density and free energy as a function of temperature

We consider the system in a microcanonical ensemble (total energy is fixed!)
$1^{\text {st }}$ order phase transition potential for the 3D case

$$
V(\phi)=-6 \cosh \left(\frac{\phi}{\sqrt{3}}\right)-0.2 \phi^{4}
$$

Energy density and free energy as a function of temperature

We consider the system in a microcanonical ensemble (total energy is fixed!)
$1^{\text {st }}$ order phase transition potential for the 3D case

$$
V(\phi)=-6 \cosh \left(\frac{\phi}{\sqrt{3}}\right)-0.2 \phi^{4}
$$

Energy density and free energy as a function of temperature

We consider the system in a microcanonical ensemble (total energy is fixed!)

- We adopt the following metric ansatz:

$$
d s^{2}=-A d v^{2}-\frac{2 d v d z}{z^{2}}-2 B d v d x+S^{2}\left(G d x^{2}+G^{-1} d y^{2}\right)
$$

The functions A, B, S, G and the scalar field ϕ are functions of (v, x, z)

- We assume no dependence on the y spatial coordinate
- We put the system in a (large) periodic box in the x-direction of size 12π. The system is infinite in the y-direction
- We use Fourier derivatives in the x direction and Chebyshev in the z directions
- We start from the relevant equilibrium black hole with a small x-dependent perturbation of the S metric coefficient:

$$
\begin{aligned}
\delta S(t, x, z) & =S_{0} z^{2}(1-z)^{3} \cos (k x) \\
\delta S(t, x, z) & =S_{0} z^{2}(1-z)^{3} \exp \left(-w_{0} \cos (\tilde{k} x)^{2}\right)
\end{aligned}
$$

with $S_{0} \sim 0.1-0.5, k=1 / 6, \tilde{k}=1 / 12$.

- We adopt the following metric ansatz:

$$
d s^{2}=-A d v^{2}-\frac{2 d v d z}{z^{2}}-2 B d v d x+S^{2}\left(G d x^{2}+G^{-1} d y^{2}\right)
$$

The functions A, B, S, G and the scalar field ϕ are functions of (v, x, z)

- We assume no dependence on the y spatial coordinate
- We put the system in a (large) periodic box in the x-direction of size 12π. The system is infinite in the y-direction
- We use Fourier derivatives in the x direction and Chebyshev in the z directions
- We start from the relevant equilibrium black hole with a small x-dependent perturbation of the S metric coefficient:

$$
\begin{aligned}
\delta S(t, x, z) & =S_{0} z^{2}(1-z)^{3} \cos (k x) \\
\delta S(t, x, z) & =S_{0} z^{2}(1-z)^{3} \exp \left(-w_{0} \cos (\tilde{k} x)^{2}\right)
\end{aligned}
$$

with $S_{0} \sim 0.1-0.5, k=1 / 6, \tilde{k}=1 / 12$.

- We adopt the following metric ansatz:

$$
d s^{2}=-A d v^{2}-\frac{2 d v d z}{z^{2}}-2 B d v d x+S^{2}\left(G d x^{2}+G^{-1} d y^{2}\right)
$$

The functions A, B, S, G and the scalar field ϕ are functions of (v, x, z)

- We assume no dependence on the y spatial coordinate
- We put the system in a (large) periodic box in the x-direction of size 12π. The system is infinite in the y-direction
- We use Fourier derivatives in the x direction and Chebyshev in the z directions
- We start from the relevant equilibrium black hole with a small x-dependent perturbation of the S metric coefficient:

$$
\begin{aligned}
\delta S(t, x, z) & =S_{0} z^{2}(1-z)^{3} \cos (k x) \\
\delta S(t, x, z) & =S_{0} z^{2}(1-z)^{3} \exp \left(-w_{0} \cos (\tilde{k} x)^{2}\right)
\end{aligned}
$$

with $S_{0} \sim 0.1-0.5, k=1 / 6, \tilde{k}=1 / 12$.

- We adopt the following metric ansatz:

$$
d s^{2}=-A d v^{2}-\frac{2 d v d z}{z^{2}}-2 B d v d x+S^{2}\left(G d x^{2}+G^{-1} d y^{2}\right)
$$

The functions A, B, S, G and the scalar field ϕ are functions of (v, x, z)

- We assume no dependence on the y spatial coordinate
- We put the system in a (large) periodic box in the x-direction of size 12π. The system is infinite in the y-direction
- We use Fourier derivatives in the x direction and Chebyshev in the z directions
- We start from the relevant equilibrium black hole with a small x-dependent perturbation of the S metric coefficient:

with $S_{0} \sim 0.1-0.5, k=1 / 6, \tilde{k}=1 / 12$.
- We adopt the following metric ansatz:

$$
d s^{2}=-A d v^{2}-\frac{2 d v d z}{z^{2}}-2 B d v d x+S^{2}\left(G d x^{2}+G^{-1} d y^{2}\right)
$$

The functions A, B, S, G and the scalar field ϕ are functions of (v, x, z)

- We assume no dependence on the y spatial coordinate
- We put the system in a (large) periodic box in the x-direction of size 12π. The system is infinite in the y-direction directions
- We start from the relevant equilibrium black hole with a small x-dependent perturbation of the S metric coefficient:

with $S_{0} \sim 0.1-0.5, k=1 / 6, \tilde{k}=1 / 12$.
- We adopt the following metric ansatz:

$$
d s^{2}=-A d v^{2}-\frac{2 d v d z}{z^{2}}-2 B d v d x+S^{2}\left(G d x^{2}+G^{-1} d y^{2}\right)
$$

The functions A, B, S, G and the scalar field ϕ are functions of (v, x, z)

- We assume no dependence on the y spatial coordinate
- We put the system in a (large) periodic box in the x-direction of size 12π. The system is infinite in the y-direction
- We use Fourier derivatives in the x direction and Chebyshev in the z directions
- We start from the relevant equilibrium black hole with a small x-dependent perturbation of the S metric coefficient:

with $S_{0} \sim 0.1-0.5, k=1 / 6, \tilde{k}=1 / 12$.
- We adopt the following metric ansatz:

$$
d s^{2}=-A d v^{2}-\frac{2 d v d z}{z^{2}}-2 B d v d x+S^{2}\left(G d x^{2}+G^{-1} d y^{2}\right)
$$

The functions A, B, S, G and the scalar field ϕ are functions of (v, x, z)

- We assume no dependence on the y spatial coordinate
- We put the system in a (large) periodic box in the x-direction of size 12π. The system is infinite in the y-direction
- We use Fourier derivatives in the x direction and Chebyshev in the z directions
- We start from the relevant equilibrium black hole with a small x-dependent perturbation of the S metric coefficient:

$$
\begin{aligned}
\delta S(t, x, z) & =S_{0} z^{2}(1-z)^{3} \cos (k x) \\
\delta S(t, x, z) & =S_{0} z^{2}(1-z)^{3} \exp \left(-w_{0} \cos (\tilde{k} x)^{2}\right)
\end{aligned}
$$

with $S_{0} \sim 0.1-0.5, k=1 / 6, \tilde{k}=1 / 12$.

Initial configuration \#1
$\phi_{H}=1$ (overcooled phase)

- We found no nonlinear instability...
- We tried choosing also other initial overcooled configurations on the line of linear stability with the same conclusions..

Initial configuration \#1

$\phi_{H}=1$ (overcooled phase)

- We found no nonlinear instability..
- We tried choosing also other initial overcooled configurations on the line of linear stability with the same conclusions.

Initial configuration \#1

$\phi_{H}=1$ (overcooled phase)

- We found no nonlinear instability...
- We tried choosing also other initial overcooled configurations on the line of linear stability with the same conclusions.

Initial configuration \#1

$\phi_{H}=1$ (overcooled phase)

- We found no nonlinear instability...
- We tried choosing also other initial overcooled configurations on the line of linear stability with the same conclusions..

Spinoidal instability

What is the endpoint of spinoidal instability?

- Total energy is conserved during evolution
- This rules out a homogeneous final state.
- So on very general grounds we expect an inhomogeneous final geometry with this scalar potential..

Spinoidal instability

What is the endpoint of spinoidal instability?

- Total energy is conserved during evolution
- This rules out a homogeneous final state..
- So on very general grounds we expect an inhomogeneous final geometry with this scalar potential..

Spinoidal instability

What is the endpoint of spinoidal instability?

- Total energy is conserved during evolution
- This rules out a homogeneous final state..
- So on very general grounds we expect an inhomogeneous final geometry with this scalar potential..

Spinoidal instability

What is the endpoint of spinoidal instability?

- Total energy is conserved during evolution
- This rules out a homogeneous final state.
- So on very general grounds we expect an inhomogeneous final geometry with this scalar potential..

Spinoidal instability

What is the endpoint of spinoidal instability?

- Total energy is conserved during evolution
- This rules out a homogeneous final state..
- So on very general grounds we expect an inhomogeneous final geometry with this scalar potential..

Spinoidal instability

What is the endpoint of spinoidal instability?

- Total energy is conserved during evolution
- This rules out a homogeneous final state..
- So on very general grounds we expect an inhomogeneous final geometry with this scalar potential..

Spinoidal instability

What is the endpoint of spinoidal instability?

- Total energy is conserved during evolution
- This rules out a homogeneous final state..
- So on very general grounds we expect an inhomogeneous final geometry with this scalar potential..

Initial configuration \#2
$\phi_{H}=2$ (spinoidal branch)
Energy density and $\left\langle O_{\phi}\right\rangle$ as a function of t and x

Clear spatially constant regions separated by domain walls...

Initial configuration \#2
$\phi_{H}=2$ (spinoidal branch)
Energy density and $\left\langle O_{\phi}\right\rangle$ as a function of t and x

Clear spatially constant regions separated by domain walls...

Initial configuration \#2

$\phi_{H}=2$ (spinoidal branch)
Energy density and $\left\langle O_{\phi}\right\rangle$ as a function of t and x

Clear spatially constant regions separated by domain walls...

Initial configuration \#2

$\phi_{H}=2$ (spinoidal branch)
Energy density and $\left\langle O_{\phi}\right\rangle$ as a function of t and x

Clear spatially constant regions separated by domain walls...

Initial configuration \#3
$\phi_{H}=3$ (spinoidal branch)
Energy density and $\left\langle O_{\phi}\right\rangle$ as a function of t and x

Clear spatially constant regions separated by domain walls...

Initial configuration \#3
$\phi_{H}=3$ (spinoidal branch)
Energy density and $\left\langle O_{\phi}\right\rangle$ as a function of t and x

Clear spatially constant regions separated by domain walls...

Initial configuration \#3

$\phi_{H}=3$ (spinoidal branch)
Energy density and $\left\langle O_{\phi}\right\rangle$ as a function of t and x

Clear spatially constant regions separated by domain walls...

Initial configuration \#3

$\phi_{H}=3$ (spinoidal branch)
Energy density and $\left\langle O_{\phi}\right\rangle$ as a function of t and x

Clear spatially constant regions separated by domain walls...

Question:
Do these domains correspond to the two equilibrium phases with the same free energy?

The two solutions differ in their total energy - different sizes of the domains

Question:

Do these domains correspond to the two equilibrium phases with the same free energy?

The two solutions differ in their total energy - different sizes of the domains

Question:
Do these domains correspond to the two equilibrium phases with the same free energy?

Question:
Do these domains correspond to the two equilibrium phases with the same free energy?

The two solutions differ in their total energy - different sizes of the

Question:

Do these domains correspond to the two equilibrium phases with the same free energy?

The two solutions differ in their total energy - different sizes of the

Question:

Do these domains correspond to the two equilibrium phases with the same free energy?

The two solutions differ in their total energy - different sizes of the domains

Superimpose the domain wall profiles for both solutions...

Superimpose the domain wall profiles for both solutions...

Conclusions

- We found numerically the endpoint of the spinoidal instability
- The final state is an inhomogeneous system with domains of the two coexisting phases with equal free energies
- The domains are separated by fairly sharp domain walls
- The dual gravitational configurations are black holes with an inhomogeneous horizon
- We can expect to have an immense moduli space of geometries which correspond to different configurations of phase domains coming from different seed perturbations
- We also observed nonlinear stability of the overcooled geometries

Conclusions

- We found numerically the endpoint of the spinoidal instability
- The final state is an inhomogeneous system with domains of the two coexisting phases with equal free energies
- The domains are separated by fairly sharp domain walls
- The dual gravitational configurations are black holes with an inhomogeneous horizon
- We can expect to have an immense moduli space of geometries which correspond to different configurations of phase domains coming from different seed perturbations
- We also observed nonlinear stability of the overcooled geometries

Conclusions

- We found numerically the endpoint of the spinoidal instability
- The final state is an inhomogeneous system with domains of the two coexisting phases with equal free energies
- The domains are separated by fairly sharp domain walls
- The dual gravitational configurations are black holes with an inhomogeneous horizon
- We can expect to have an immense moduli space of geometries which correspond to different configurations of phase domains coming from different seed perturbations
- We also observed nonlinear stability of the overcooled geometries

Conclusions

- We found numerically the endpoint of the spinoidal instability
- The final state is an inhomogeneous system with domains of the two coexisting phases with equal free energies
- The domains are separated by fairly sharp domain walls
- The dual gravitational configurations are black holes with an inhomogeneous horizon
- We can expect to have an immense moduli space of geometries which correspond to different configurations of phase domains coming from different seed perturbations
- We also observed nonlinear stability of the overcooled geometries

Conclusions

- We found numerically the endpoint of the spinoidal instability
- The final state is an inhomogeneous system with domains of the two coexisting phases with equal free energies
- The domains are separated by fairly sharp domain walls
- The dual gravitational configurations are black holes with an inhomogeneous horizon
- We can expect to have an immense moduli space of geometries which correspond to different configurations of phase domains coming from different seed perturbations
- We also observed nonlinear stability of the overcooled geometries

Conclusions

- We found numerically the endpoint of the spinoidal instability
- The final state is an inhomogeneous system with domains of the two coexisting phases with equal free energies
- The domains are separated by fairly sharp domain walls
- The dual gravitational configurations are black holes with an inhomogeneous horizon
- We can expect to have an immense moduli space of geometries which correspond to different configurations of phase domains coming from different seed perturbations
- We also observed nonlinear stability of the overcooled geometries

Conclusions

- We found numerically the endpoint of the spinoidal instability
- The final state is an inhomogeneous system with domains of the two coexisting phases with equal free energies
- The domains are separated by fairly sharp domain walls
- The dual gravitational configurations are black holes with an inhomogeneous horizon
- We can expect to have an immense moduli space of geometries which correspond to different configurations of phase domains coming from different seed perturbations
- We also observed nonlinear stability of the overcooled geometries

Outlook

Directions for future research:

- Boost-invariant setup
- Collisions of domains/bubbles
- Setups with non black hole phases
- Effective description of domain boundaries
c.f. Attems, Bea, Casalderrey-Solana, Mateos, Triana, Zilhao
- Setup with conserved charges
- Less symmetry/higher \# of dimensions

Outlook

Directions for future research:

- Boost-invariant setup
- Collisions of domains/bubbles
- Setups with non black hole phases
- Effective description of domain boundaries

Attems, Bea, Casalderrey-Solana, Mateos, Triana, Zilhao

- Setup with conserved charges
- Less symmetry/higher \# of dimensions

Outlook

Directions for future research:

- Boost-invariant setup

- Collisions of domains/bubbles
- Setups with non black hole phases
- Effective description of domain boundaries
c.f. Attems, Bea, Casalderrey-Solana, Mateos, Triana, Zilhao
- Setup with conserved charges
- Less symmetry/higher \# of dimensions

Outlook

Directions for future research:

- Boost-invariant setup

- Collisions of domains/bubbles
- Setups with non black hole phases
- Effective description of domain boundaries
c.f. Attems, Bea, Casalderrey-Solana Mateos, Triana, Zilhao
- Setup with conserved charges
- Less symmetry/higher \# of dimensions

Outlook

Directions for future research:

- Boost-invariant setup

- Collisions of domains/bubbles
- Setups with non black hole phases
- Effective description of domain boundaries
c.f. Attems, Bea, Casalderrey-Solana, Mateos, Triana, Zilhao
- Setup with conserved charges
- Less symmetry/higher \# of dimensions

Outlook

Directions for future research:

- Boost-invariant setup

- Collisions of domains/bubbles
- Setups with non black hole phases
- Effective description of domain boundaries
c.f. Attems, Bea, Casalderrey-Solana, Mateos, Triana, Zilhao
- Setup with conserved charges
- Less symmetry/higher \# of dimensions

Outlook

Directions for future research:

- Boost-invariant setup

- Collisions of domains/bubbles
- Setups with non black hole phases
- Effective description of domain boundaries
c.f. Attems, Bea, Casalderrey-Solana, Mateos, Triana, Zilhao
- Setup with conserved charges
- Less symmetry/higher \# of dimensions

Outlook

Directions for future research:

- Boost-invariant setup

- Collisions of domains/bubbles
- Setups with non black hole phases
- Effective description of domain boundaries
c.f. Attems, Bea, Casalderrey-Solana, Mateos, Triana, Zilhao
- Setup with conserved charges
- Less symmetry/higher \# of dimensions

